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Let C be a closed rectifiable Jordan curve and f a function which maps the 
interior of C conformally onto the unit disk. In this note we give bounds for 

S ]T'(z)l p [dzl 
C 

for three classes of curves C: (1) C has bounded arc length-chord length ratio, 
(2) C is of bounded rotation, and (3) C is sectionally smooth and has a finite 
number of corners. In all three cases the bounds obtained depend only on certain 
parameters of the curve C and are therefore useful when one desires bounds 
which hold uniformly for families of curves characterized by the same parameter 
values. 

An application of the results for the classes (2) and (3) is found in [9]. It is 
also readily seen that in all three cases the existence of the integral 

] f ' (z)[  p ]dzl 
C 

implies that f ' e H p ( C )  (of. [9, p. 500]). Conditions which imply that higher deri- 
vatives f("), n>2 ,  are in Hp(C) were given by SEIDEL [6] and SMIRNOFF [7]. 

1. Curves with Bounded Arc Length-Chord Length Ratio 

A rectifiable Jordan curve C has a bounded arc length-chord length ratio if 

ae o < b re t2 (b constant, 1 < b < oo) (1) 

uniformly for all points P, QeC.  Here ave is the shorter arc length along C 
between P and Q, and reQ is the Euclidean distance between P and Q. 

Theorem 1. Let w =f(z )  map R, the interior of a rectifiable Jordan curve C, 
conformally onto [w] < 1 such that zoe R corresponds to w=O. Let d be the distance 
from z o to C, and assume that C satisfies condition (1). Then there exists a 6 > 0 
which depends on b only such that for every h, 0 < h < 6, 

t 1 ~c[f'(z)il+hidz[<=2~ 1+ . (2) 
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Proof. We make use of the following result of LAVRENTIEFF [1, Theorem 7]: 
Under the hypothesis of our Theorem 1 there exists a 6 > 0, which depends on b 
only, such that under the mapping f a set E c  C of measure e corresponds to a 

on Iwl=l with measure m(d~)<2n ( d )  a . / \  set 
k - - /  

Assume 
J" [f ' (z)f  Idzl =a < oo 
C 

for some p > 1. (Since f is absolutely continuous on C, this is certainly valid for 
p = l  and A =2~.) Let E,,={zEC: e"<lf'(z)] t'} and 8. =f(E,). Then the measure 
of the set E. with respect to the arc length of C 

m(E.)= S [dzl<=e-"[. I f ' (z) f ldz[~ Ae-n, 
En En 

and by LaWENTIEFF'S result 

m (~',,) < 2 rc ( A - ~ )  ' 

where 6>0  and depends only on b. Let ~o(w)=f-l(w), and note that ~.={e~~ 
e" <l ~o'(ei~ <en+ l } c S , .  Then 

2 n  

J" If'(z)l l+'h Idzl= I I~~176 
C 0 

<2~+ ~ S I~~176 -phdO 
n = 0  o~-n 

__<2re+ ~ e("+l)hm(gn) (3) 
n = 0  

e-h_e-n  1 

for h<6. Now (2) follows from (3) with p = l  and A = 2 m  

Corollary. Under the hypothesis of Theorem 1 

c~ If'(z)l v=~ Idzl<2rc e_-~-S-~e_,./ (4) 

for every non-negative h < 6 where 6 > 0 depends only on b. Consequently, for every 
6 

non-negative q < 1 - 6 

.[ If,(z)[1 +,11dz[<= M(q, 6(b), d). (5) 
c 
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A = 2 n  II-~ 

one obtains (4). 

Proof. If 

S l f ' ( z ) lP ldz l<A,  A > I ,  
c 

it follows from (3) that 
2 n d -  ~ "~ 

c ~ I f ' ( z ) l '  +'h I d z l < 2 n  + - e _ - ~ _ ~ - )  A 

for h<6 (note 6<  1). By substituting consecutively p = 1 and A =2n,  p = 1 +h  and 

e-h--e -~2nd-~ ] , - t  ,=o"-~/ 2nd-~ ) , . . . .  p =  ~ h" and A = 2 n ~ | . e - ~ - ~ e _  ,. , 
v=O 

2. Curves of Bounded Rotation 

A rectifiable Jordan curve C is called of bounded rotation [3; see also 4, p. 225] 
if the forward half-tangent exists at every point and the tangent angle z (s) which 
it makes with a fixed direction may be defined as a function of bounded variation 
of the arc length s, O<_s<L. Furthermore, z(s) is so determined that its jumps 
do not exceed 7~ in absolute value. We assume that the arc length parametrization 
corresponds to the positive orientation of C. 

Theorem 2. Suppose C is a rectifiable Jordan curve of bounded rotation whose 
interior R has area at most A and contains a disk of radius d about Zo. Suppose 
furthermore that condition (1) is satisfied. Let v+ (s) and v_ (s) be the positive and 
negative variation functions of z (s), respectively, and 

a• =max [v_+ ( s + 0 ) -  v• ( s -0 ) ]  1 
s 

Let z=~p(w) map Iwl<l conformally onto R such that cp(0)=z o. Then there 
exist constants M~ and M~- depending only on p, a• b, d, A, and the function 
v+ (s) such that uniformly for 0 < r< 1 

2 5  7C 

Iq~'(re'~ for 0 < p < - -  (6) 
0 a +  

and 
2~ dO n 
So I~o'(rei~ < M ;  for 0<P<--a_  (7) 

Consequently, if f(z)=qg-~(z), then similar bounds N~ exist, depending on the 
same parameters, such that 

Idz[ < N  + for 0 < p <  n ..... 1 (8) 
c ~ If ' (z) l  p a+ 

and 

Slf ' (z) lPldzl<=N; for 0 ~ p <  ~-+1 .  (9) 
C a _  

x The symbol _ denotes that the statement is interpreted throughout using either the + sign 
or the -- sign. 
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I f  a+ =0,  then (6) and (8) are valid for all p>=O, and if a_ =0 ,  then (7) and (9) 
are valid for all p >= 0 2. 

Remark  1. This theorem is sharp in the sense that  the ranges of p given are 
the best possible. Indeed there exist curves (e.g., polygons)  satisfying the hypo-  
thesis but  for  which the integrals in ( 6 ) - ( 9 )  diverge if p is allowed to equal the 
least upper  bound  of its given range. This theorem contains s ta tement  B of 
[9, p. 499] as a special case. 

Remark  2. One obtains uniform bounds in (6) and (8) in the following manner. 
Let V+ be a non-decreasing function defined on [0, S] and 

A+ = m a x  [-V+ (s + 0 ) -  V§ ( s - 0 ) ] .  
$ 

Suppose that L <= S, and that 

d v § (s) d V§ (s) 
I ! 

over every interval I of [0, L]. Then the bounds in (6) and (8) may be chosen to 
depend only on p, A § b, d, A, and the function V+. The ranges of p then involve 
A+ rather than a§ A completely analogous statement is valid for the bounds in 
(7) and (9). 

Before proving Theorem 2 we first present  a lemma.  

L e m m a  1. Suppose C is a rectifiable Jordan curve satisfying condition (1). 
Let z = ~o ( w) map [ w I < 1 conf ormally onto R, the interior of C, such that ~o (0) = z o . 
Assume that R has area at most A and contains a disk of radius d about z o . 

Then there exist positive constants H and a depending only on b, d, and A such 
that 

2 
Iq) (w)-q) (c~  ~ ~ = ( - ~ z  (10) 

for Iw-col<�89 Iwl<l, I~l=l.  Furthermore, the arc length s(O) of C as a 
function of 0 (where z=cp(ei~ satisfies 

I s (O)-s ( ,9 ) l<KlO- ,g l  ~ ( K - - b H )  (11) 

for 10- l_<�89 o. 

Proof .  L e m m a  1 in [10] establishes (10) for  every co with I o91 = 1 and t w l < l, 
provided I w -  col < 1 a, and it is shown there that  H depends only on b, A, and a. 
The  constant  a is defined such that  the image of the arc {w: I w I =  l, I w - c o l <  a} 
under  the mapp ing  z=~o(w) has a smaller arc length than  the complementa ry  
arc of C. To  prove our  s ta tement  concerning H it is therefore sufficient to show 
that  an a m a y  be chosen which depends only on b, d, and A. 

Let  lcol=l, and denote k , = { w :  Iw-~ol-=r, Iwl-<_l}. By a theorem of 
WOLFF [11, p.217] there exists for  every r, 0 < r < l ,  ap,  r < p < ] / r ,  such that  

.... z The same result is obtained if one uses the extended definition of PAAXERO [2] for simply 
connected domains of bounded boundary rotation. In this case r(s) is to be replaced by the func- 
tion ~(0) used in the representation of log O'(w) by a Poisson-Stieltjes integral [2, p.44] in I wl < 1 
and v+ (s) and v_ (s) by the positive and negative variations of gt(0). 
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7o =q~(kp) is a crosscut of R whose length 

~ f 2 n A  
l~ [ log r l " 

For r = e x p [ - 8 n A  bZ/d z] the resulting crosscut 7p has length 

1 d lo__<~- y .  

Denote by F the arc of C which is the image of the arc {w: [ w [ = 1, [ w -  co I < P}. 
Since p < 1, the closed Jordan curve ( C - F ) u  7o contains q~ (0)=z o in its interior 
R o. Furthermore, since 7o has length 

1 d 1 
Ip<~- ~ - < ~  d,  

the whole disk I z -  z o I < �89 d must be contained in R 0. If C -  F were to have an 
arc length less than or equal to that of F, then by (1) the arc length of C - F  
would be at most b l o <�89 d. In that case the total length of ( C - F ) u  7p would 
not exceed d, but this is impossible since Ro contains a disk of radius i d which 
has circumference n d>d. Thus F has a shorter arc length than C - F ,  and a =  
e x p [ - S n A  b2/d 2] has the desired properties. Now the inequality (11) follows 
from (1) and (10) with K=bH. 

Proof of Theorem 2. We express by means of the mapping z=qJ(e ~~ the 
angle 0, 0_<0<2n, as a function of the arc length s, O<s<L. Then for [w[ < 1 
(see [2, p.44]) 

q;(w) 1 L 
log ~ = --~-~ log Id~ dz(s) 

u 
(12) 

= l i l ~  e' 0 ( s )21dz ( s ) -21~  w 

Let p > 0 be restricted so that p < n/a+. (If a+ =0, p may be any positive number.) 
Then since the integrand is of one sign, 

L 

~o'(w) • +_p Slog 2 dz(s)-(21og2)(-I-p) 
log ~ n o e io ( S ) _ w  

(13) 
L t 2 

<---P S log [ ei 0 (s) dv• 2plog2. 
7TO - - W  

Let 

Since 

there exists a 6 > 0 such that 

v+ (s')-v+ (s")_-< 

h= ~--~(pa• +n)<l .  

rch 
- - ~ > a +  , 

P 

nh  

P 
_ " <  ,, , < - ,  if s'-s"<_6 tu_s < s _ ~ ) .  



206 S.E. WARSCHAWSKI t~ G. E. SCHOBER: 

Otherwise for every n there would exist points s;,, s"e  [0, L] such that 

but 

1 
0<s ' . -s ' . '<--  

tl 

~ h  
v• ( s ' , ) -  v• (S'n') > - -  (14) 

P 

We may assume that the sequences {s'.}, {s'.'} converge monotonically to a point 4. 
If both sequences approach ~ from the same side, then the left hand side of (14) 
tends to zero; if they converge from opposite sides, the limit is 

z~h 
v• (~+0)-v• ( 4 - 0 ) < %  < - - ,  

P 

so that we obtain a contradiction in either case. Thus there exists a partition of 
[0, L], 0 =s l  <s2 <.." <s,+ 1 =L,  such that 

z h  
0_-< ~ k -  v• (sk+ 1) - v• (sk) _-<--, 

P 

where each s k may be chosen as a point where v'~ (SR) exists. We assume that 
the partition is sufficiently fine that 

1)- 

where a is the constant of Lemma 1. By the result of LAVRENTIEFF [1, Theorem 7] 
quoted earlier this restriction on the norm of the partition of [0, L] depends 
only on the parameters b, d, and A. 

Now there exist constants A k and B k which depend only on b, d, A, and the 
function v• (s) such that 

Sk + l ~'~ S k + l  7~ 

S log O(s)_O(Sk)  d v •  k and S l o g 0 ( s k + 0 _ 0 ( s  ) dv+(s)<=B k. 
Sk Sk 

To establish the bound A k we first note that v'~ (Sk) exists so that 

v• (s)- v• (s~) 
G k = sup < oo. 

Sk < S < S k  + l S - -  S k  

Moreover, by Lemma 1 there exist positive constants K and ~ which depend 
only on b, d, and A such that s -  s k __< K [0 (s) - 0 (Sk)] ~ for s k <= s <= s k + 1. Consequently, 
through integration by parts 

sk+ zc d v •  ~ log S--Sk log 0 (S)-- 0 (Sk) - -  d v • (s) 
5k Sk 

1 [V+(Sg+I)_V•  ] log K~z~ 
S k  + 1 - -  Sk  

< 1  [v • (sk + D - -  v • (sk)] log 
Kz~ ~ 

= ~ S k + l - - S  k 

One develops the bound B k in a similar manner. 

S k + l  
f - -  ~ v+_(s)-v+(s,3 ds 

O~ sk S - -  S k 

+ 1  ak(sk+ 1 -- sk) =-- Ak. 
r 
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Let w=re  it, 0<t<2r~ ,  and let t be exterior to the interval (O(Sk) , O(Sk+l) ). 
Then for Sk<S<Sk+I 

l e '~ (~) - w I= min {sin I-0 ( s ) -  O(Sk)], sin [0(sk+ 1) -- 0 (s)]} 

> 2  min {O(s)- O(sk), O(sk + ,) - O(s)}. 

As a result, 

S k + l  [ 2 [ S k + l  

j" log eiO(~) dv• S log rc �9 k --W sk min{O(s)_O(Sk),O(Sk+l)_O(s)} dv• 

<= A k  .q- B k . 

(15) 

Now if O(sj)<= t<-_ O(sj+ 1), we obtain from (13) and (15) 

' • " 2 I log ~p'(w) < P ~  rA + B ' ~ + P  sJ+'[ log I dv• (s)+ 2plog2. 
e i o (s) _ W 

If 
~h  

0 < 2 j < - - ,  
P 

then since log x is a convex function, 

and so 

Thus if 0 =< 2j <= . - -  

where 

e i o (s) _ W - -  W 

< log 1 ~ 2 d v • (s) 
e i o (s) 

s j  - -  W 

~O~f,,.~ -I-p P- ~ (Ak+Bk) 1 s%+~l 2 hdv • 
~ ~ e ~ j  s j  e i 0 (s) _ W 

rch 
P 

~p'(w) • 1 7 7  [ 1 +  s~ § h 
tp'(O) I 2 dv• 

= s j  e i o (s) _ W 

e l+max=l ]. 
~kr Zk  J 

Therefore, since h < 1, 

o (~)  (p ' (O)  t_ o (~ )  ~j o (~)  [ (~) - r e ~ ,[h 

and 
2,~ 4-p [ 4re r 1 tP'(re~t) dt<=H• 2zt+ 1_--~-~o ~ dv+(s) - M •  (16) e'(o) 



208 S.E. WARSCHAWSKI • G. E. SCHOBER: 

where M e depends only on p, a•  b, d, A, and the function v• (s). Using the 
Cauchy estimate below and R~NGEL'S inequality above, we find d__< [ qr [ __< l/~n/n. 
The inequalities (6) and (7) follow for 0=<r<l with M~-=(A/n)�89 and 
M~" = d - P M _ .  

By a well-known theorem of RIESZ the bounds M + and M ;  may be extended 
to r = 1. The inequalities (8) and (9) are immediate consequences of (6) and (7). 

To verify the remark concerning uniform bounds, one replaces a• with A• 
throughout the proof and v• with V• beginning at (13). The partition 
satisfying (14) is then constructed with respect to the function V• and its whole 
interval [0, S], S>L,  of definition. However, one restricts the range of integration 
of all integrals in the proof to [0, L]. Since the constants A k and B k can be con- 
structed for all k<=n, H• is uniform with respect to A• and V• If one uses 

S 

dV• (s) 
0 

in (16), then both M• and M~ are also uniform with respect to A• and V• 

3. Sectionally Smooth Curves 

The following theorem considers curves with a finite number of corners. 

Theorem 3. Suppose C is a rectifiable Jordan curve with sectionally continuous 
tangent, i.e., the tangent angle z(s) is a continuous function of the arc length s 
except for a finite number of points at which C has vertices with interior angles ~k, 
O< ~k <2n, k = 1, 2 . . . . .  n. Suppose furthermore that 

(i) fl(t) is a modulus of continuity of z(s) in each (closed) interval where z(s) 
is continuous, i.e., [ z (s + t ) -  z (s) I < [3 (t), t > O, where [3 (t) is non-decreasing and 
lim [3(t)=0; 

t ~ O  + 

(ii) C satisfies condition (1); 

(iii) the interior R of C has area A and contains a point Zo at the distance d 
from C; 

(iv) a+= max ['n--~k,O ] and a_= max [~k--n,O]. 
l<_k<_n l<_k<_n 

Let z = q~ (w) map [ w l < 1 conformally onto R such that q~ (0) =z  o . Then there 
exist constants M + and M ~  depending only on p, a+, b, d, A, n, and the function 
[3(t) such that uniformly for O<r< 1 

2 r t  

Iqr176 + for 0 < p <  n--n-- (17) 
0 a +  

and 
2~ dO lr 

<M~ for 0 = < p < - -  (18) 
[ q)'(r e~~ 6 a _  

Consequently, if f (z)=q)-l(z), then similar bounds N~ exist, depending on the 
same parameters, such that 

~c Idz[ < + for O<p< r c - 1  (19) 
[if(z) [P = Np a + 
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and 
7~ S If'(z)lPldzl<N; for 0 < p <  + 1 .  (20) 

c a_  

I f  a+ = 0 ,  then (17) and (19) are valid for all p>O, and if a_ =0 ,  then (18) 

and (20) are valid for  all p > O. 

Remarks .  This theorem is an extension of the resul t  in [8] for  smoo th  curves 
and  is p roved  in [5, Theo rem 10]. A g a i n  the results are sharp  in the sense tha t  the 
ranges of p given are the best  possible.  This theorem conta ins  s ta tement  A of 

[9, p. 499] as a special  case. 

The preparation of this paper was sponsored (in part) by the Office of Naval Research under 
contract Nonr-2216(28) (NR-043-332). 
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