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Sz,mmary. A number of laws are derived which establish relationships between 
throughput,  response time, device utilization, space-time products  and various other 
factors related to computer  system performance. These laws are obtained through 
the operational method of conlputer system analysis. The operational  method, which 
is formally introduced in this paper, differs significantly from the conventional 
stochastic modeling approach and is based on a set of concepts tha t  correspond 
natural ly and directly to observed properties of real computer systems. The operational 
laws presented in this paper  apply  wtth complete precision to all collections of ob- 
servational data, and they are similar to fundamental  laws found in other areas of 
engineering and applied science 

1. In t roduct ion 

Most analyses  of compute r  sys tem performance  re ly  on e i ther  benchmarks  or 
probabi l i s t ic  models.  Benchmarks ,  which m a y  consist  of real  programs,  syn the t i c  
p rograms or t race  dr iven s imulat ions,  are most  useful when it  is necessary to  
de te rmine  sys tem behavior  under  a precisely specified workload.  However ,  
benchmark  results  can be surpr is ingly  sensi t ive to the  na ture  of the  work load  
t ha t  the  sys tem is assumed to be processing, and  sl ight  changes in the  work load  
defini t ion m a y  somet imes  lead to s igni f icant ly  different  conclusions. 

Table  I i l lus t ra tes  the  crux of the  problem th rough  a h ighly  s implif ied example .  
Suppose t ha t  an ana lys t  is compar ing  " r o u n d  r o b i n "  (RR) and  " f i r s t  come 
first s e rved"  (FCFS) scheduling a lgor i thms for a centra l  processor. Assume t h a t  
the  workload  consists of three jobs :  Job  A, wi th  a dura t ion  of 7 s; Job  B, wi th  a 
dura t ion  of t s, and  Job  C, wi th  a dura t ion  of 3 s. Tile first  line of Table  t gives 
the  average response t ime for the three  jobs  in the  case where the  order  of a r r iva l  
is "ABC" with all jobs  ar r iv ing  at  a p p r o x i m a t e l y  the  same t ime.  Note  t h a t  the  
average response for F C F S  is t 8% higher than  the average response t ime for 
R R  wittl a q u a n t u m  of two seconds (see A p p e n d i x  A for details) .  Thus the  bench-  
mark  results  in line one indicate  a defini te  preference for RR.  

In the  second line of Table  1, eve ry th ing  is the  same except  t ha t  the  order  of 
a r r iva l  is reversed,  h i  this  case, average response t ime for R R  is t t % higher  
than  average response t ime for FCFS.  The second set of benchmark  resul ts  thus  

* A preliminary version of this paper  was published in the Proceedings of the I F I P !  
ACM SIGMETRICS Internat ional  Symposmm on Computer Performance Modeling, 
Measurement and Evaluation, Cambridge (Mass.) March t976, p. 200-210 
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Table i 

Workload Average response time 

first second third FCFS RR (Q = 2) 

A B C 8~ 7{ 
C B A 6 6w 
B A C 6~ 6~ 

indicates a preference for FCFS, even though this benchmark contains the same 
set of jobs as the first. As a point of interest, the third line of Table I presents 
yet another arrival sequence in which the two scheduling algorithms produce 
exactly the same average response time. 

Although the example in Table I is highly simplified, the dangers which it 
illustrates are very real. The reason for the discrepancies in Table 1, and for 
similar discrepancies in other cases, is that benchmark evaluations require spe- 
cification of the system workload in complete detail: as a result, the analyst is 
often compelled to make subtle but critical decisions in areas where his knowledge 
is imprecise. This results in confusing situation where seemingly equivalent 
benchmark studies lead to different final conclusions. 

2. Probablistic Models 

Probabilistic models enable the analyst to deal directly with situations where 
only partial knowledge of the worldoad exists. Suppose, in the case of Table t, 
that the workload is known to consist ot Jobs A, B, and C, but the order in which 
the jobs will arrive is uncertain. If the uncertainty concerning the order of arrival 
can be represented with a probabilistic model, the analyst may be able to for- 
mulate a solution in terms of random variables. For example, suppose that it is 
reasonable to assume that the sequence "ABC"  will occur 60% of the time, the 
sequence "CBA"  will occur t 0 % of the time, and the sequence" BAC" will occur 
30~ of the time. In this case, the arrival sequence can be regarded as a random 
variable, and the expected response times for FCFS and RR can be computed as 
follows: 

Expected FCFS response time 

=0.60 x 8 w  0.t0 x 6+0.30  •167 

= 7.80. 

Expected RR response time 

=0.60 X 7�89 x 6w + 0.30 X6{ 

= 7 . 0 7 .  

Thus, the analyst can compute t h a t - - " o n  the average"--FCFS response 
time will be 10% higher than RR response time. The analyst is not troubled by 
the fact that individual benchmark tests fail to confirm this prediction; indeed, 
the analyst fully expects to find RR response higher than FCFS response time 
for 10 % of the arrival sequences. 
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The potential discrepancies between predicted and observed average response 
times discussed in the preceding paragraph were magnified by the implicit as- 
sumption that  the benchmark consisted of only a single three-job arrival sequence. 
In practice one would normally include a large number of three job sequences 
in a single benchmark. In such cases, results from probability theory (e.g., the 
Law of Large Numbers, the Ergodic Theorem, and the theory of confidence 
intervals) imply that  predicted and observed average values will be reasonably 
close in almost all cases. This is the major reason for constructing simulation 
programs that  run for long periods of time and constructing benchmarks that  
constitute adequately large samples from the set of anticipated workloads. 

3. Operational Objectives 

The assertion that  a particular theoretical result can be validated in practice 
at some desired confidence level--if  the experiment is run " long e n o u g h " - - m a y  
be satisfactory for resolving certain performance evaluation issues, but such 
assertions are clearly insufficient to meet all the needs of empirically oriented 
computer performance analysts. Such individuals usually deal with sets of data  
that  have been collected by direct measurement of actual systems during finite 
intervals of time. These analysts are basically interested in: 

A) Precise mathematical  expressions which relate existing measurement 
data to other quantities that  were not measured but which could, in principle, be 
empirically determined. 

B) Relationships that  can be used to verify the internal consistency of exist- 
ing sets of measurement data. 

C) Formulas that  predict the effect that  certain modifications to the system 
or the workload would have on measured quantities such as throughput and 
response time. 

Note that  empirically oriented computer performance analysts are not prima- 
rily interested in relationships between random variables or expected values of 
random variables; rather, the}, are interested in relationships between measured 
quantities and quantities which can, in principle, be measured. The remainder 
of this paper will develop a theory of such relationships. This theory is based 
on an approach to systems analysis that  will be called the "operational method" .  

4. The Operational Method 

In the context of the operational method, an interval of time during which 
system behavior is monitored and measurement data is collected is called an 
observation interval. The quantities that  are measured or computed during an 
observation interval are referred to as operational variables. Given this simple 
conceptual framework, the operational method consists of: 

A) Defining a set of operational variables that  correspond in a direct and 
natural manner to intuitive concepts of interest (e.g., throughput,  device utili- 
zation, etc.). 
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B) Deriving mathemat ical  relationships among operational variables which 
characterize system behavior during a single observation interval. 

C) Applying these mathemat ical  relationships to problems such as those 
described in Section 3. 

The first set of operational variables tha t  will be defined correspond to basic 
measurements  taken during an observation interval. 

T =  Length of the observation interval. I t  is assumed that  the time units in 
which T is expressed are also used to express all other time dependent 
quantities. 

J - - N u m b e r  of jobs completed during the observation interval. A job is a 
basic unit of work and may  refer to a program, a job step, a job, or an 
interaction, depending on the system being studied. 

B ( i ) = A m o u n t  of time that  server i is bus)' (i.e., actually providing service) 
during the observation interval. I t  is assumed that  there are a total of q 
separate devices and processors in the system being observed, and that  
each one is identified by an integer i ( i = 1 ,  2 . . . .  q). Thus, the term 
"server  i "  is understood to represent a unique device or processor for 
i =  1, 2, ... q. B(i) is then defined for z = l ,  2, ... q. 

C ( i ) = T o t a l  number  of service requests completed by server i during the ob- 
servation interval (~ = I, 2 . . . .  q). 

An additional set of operational variables can now be defined in terms of 
T, J ,  B (i) and C(i). 

X =  Throughput  (i.e., number  of job completions per unit time). The oper- 
ational variable X is expressed as follows: 

X = J / T .  (I) 

U(i) = Utilization of server i (~ = l, 2 . . . .  q). U(z) is expressed as follows: 

g( i )  = B ( i ) /T.  (2) 

S ( z ) = A v e r a g e  service time for server ~ ( z = l ,  2 . . . .  q). S ( i )  is expressed as 
follows : 

S (i) ~ B (i)/C(i). (3) 

D ( i ) = A v e r a g e  number  of requests for server i per job ( i =  1, 2 . . . .  q). D( i ) ,  
which will be referred to as the demand oer job for server i, is expressed 
as follows : 

D O) -- C(z)/J. (4) 

5. The Throughput Law and Utilization Equality 

Given the above definitions, it is possible to derive the following basic result. 

Theorem (Throughput  Law). Throughput  is equal to device utilization divided 
by  the product  of average device service time and the average demand per job 
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for that  device. Symbolically, 

X -  u(~) for i - -  t, 2 . . . .  q. (5) S(,) �9 1) (i) 

Pro@ The Throughput Law is an immediate consequence of Equations (I) 
thr, mgh (4) since 

U(z) B(i) C(i) J 
S(i) �9 D(,) T B(z) C(i) 

=j/r  
~ X .  

An important  aspect of the Throughput Law is that  it is independent of a 
large number of factors which must normally be specified in other analyses. 
These factors include: the degree of multiprogramming; the service time distri- 
bution for each device and processor in the system; the fact that  the system is or 
is not in statistical equilibrium; the fact that  overlap af CPU and I /0  processing 
within a single program is or is not permitted. In other words, the Throughput 
Law is valid regardless of tile status of these other factors. 

Corollary (Utilization Equality). The utilization, average service time, and 
demand per job for any two servers in a system must satisfy the following re- 
lationship : 

u(,) vo)  
- -  for i = t ,  2 . . . .  q; j = t ,  2 . . . .  q. (6) 

S(i) �9 1)(0 S(1 ) �9 D(/) 

Pro@ Immediate from Throughput Law since Equation (5) must hold for 
all values of i. 

6. R e s p o n s e  T i m e  L a w s  

in order to apply operational techniques to the analysis of interactive systems, 
it is first necessary to provide a basic model for describing the manner in which 
such systems operate. The model and terminology that  will be employed in this 
discussion are based on the work of Scherr [t4], Kleinrock [ t t ] ,  Moore [12], 
and Muntz and Wong [13]. The essence of this model is illustrated in Figure 1. 
There are a fixed number of interactive terminals, and each terminal has one 
interactive process associated with it. The interactive process is either in think 
state (i.e., blocked) or system state (i.e., active). Response time is the elapsed 
time between the instant that  an interactive process enters system state and the 
instant that  it next leaves system state. Each time that  an interactive process 
leaves system state (i.e., completes a processing request), an interaction is said 
to occur. 

Given this general context, let J represent the number of interactions com- 
pleted during the observation interval, and let N be equal to the number of 
interactive terminals "logged on"  during the observation interval. Define the 
operational variable R as follows: 

R = A v e r a g e  response time (i.e., average amount of time in system state per 
interaction). 
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Fig. 1. Basic interactive model 

Lemma 
N 

l 
R =  ] ~, r(k) (7) 

k = l  

where r ( k ) : t o t a l  time that the k-th interactive process (i.e., the interactive 
process associated with the k-th terminal) spends in system state during the 
observation interval (k = I, 2 . . . .  N). 

Pro@ The average amount of time in system state per interaction is, by 
definition, equal to the total time spent in system state by all interactive pro- 
cesses divided by the total number of interactions completed during the observa- 
tion interval. Since r (k) is the total time that the k-th interactive process spends 
in system state during the observation interval, the total time in system state 

,v 
for all interactive processes is ~ r (k). The total number of completed interactions 

k - - 1  

is, by definition, equal to J .  Equation (7) follows directly. 
Before presenting the main theorem, it is necessary to prove another lemma 

which is similar to the lemma that has just been derived. First define the opera- 
tional variable Z as follows: 

Z: -Average  think time (i.e., average amount of time in think state per tran- 
sition from think state to system state). 

L e m m a  
N 

1 
z = j ,  ~ 1  z (k) (8) 

where J ' ~ t o t a l  number of transitions from think state to system state during 
the observation interval. 
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z (k)= total time that the k-th interactive process spends in think state during 
the observation interval (k=  t, 2 . . . .  N). 

Proo]. The proof is similar to that of the previous lemma. Simply replace 
R by Z, r (k) by z (k), and J by J ' .  

Theorem (General Response Time Law). The average response time of an 
interactive system is expressed as follows: 

R ~ N  SO) " D(i) J '  u0) y z. (9) 

Proo]. The derivation of Equation (9) utilizes the fact that the total time 
that the k-th interactive process (the process associated with the k-th terminal) 
spends in think state, plus the total time that the k-th interactive process spends 
in system state, must be equal to the length of the observational interval. That  is 

z ( k ) + r ( k ) = T  for k : l ,  2 . . . .  N. (10) 
Thus, 

N N 

Z z(k)+ Z r(k)=X. T. (1t) 
k = l  k = l  

Dividing both sides by J and using Equations (7) and (8) to simplify the left 
hand side, 

J '  T 
-~r--" Z +  R = N  "-7- (t2) 

By Equation (t) and the Throughput Law, 

J u(z) 
T --  S(i) �9 D(z) (t3) 

Equations (12) and (t3) yield Equation (9). 

Corollary (Response Time Law or Asymptotic Response Time Law). As the 
number of interactions that take place during the observation interval becomes 
large, average response time tends to the limiting value given in Equation (t4). 

lim R = N  S(i) . D(i) 
j-~oo u(,) --Z. (14) 

Proo[. Let z' be equal to the number of terminals in think state at the start 
of the observation interval, and let z"  be equal to the number of terminals in 
think state at the end of the observation interval. Clearly, 

Z H  Z t ._~ t = J - J .  (t5) 
Thus, 

[z" - - z ' ]  = [ J - i f ] .  (16) 

Next note that [ z " - -  z'] =< N since 0 --< z' ~ N and 0 ~ z" ~ N. Thus, 

I J - J ' [  <=N. (17) 
Dividing by J ,  

] 1 -  J ' / J I  _<N]J. (18) 

12 Acta  l n f o r m a t i e a ,  Vol. 7 
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Now consider the effect of allowing J to become large by increasing the length 
of the observation interval. Since N is fixed, N/J  will approach zero as J ap- 
proaches infinity. By Equation (18), this implies J'/J--~ 1 as J - >  oo. 
Combining this fact with Equation (9) yields (14). 

7. Space-Time Product Laws 

Space-time products are often used to evaluate program performance and 
assign accounting charges to programs in virtual memory systems. Essentially, 
a program's space-time product is equal to its execution time multiplied by the 
average amount of memory allocated to it during its execution. Since space- 
time products, response time, and throughput are all used as indicators of system 
performance, it is interesting to examine the manner in which these quantities 
are related. 

Theorem (Space-Time Product Throughput Law). Throughput is equal to 
average amount of memory in use divided by average space-time product. Sym- 
bolically, 

X = M / Y  (19) 
where 

Y =  Average space-time product (i.e., space-time product per completed job); 
M----Average amount of memory in use during the observation interval. 

Proo/. I t  is first necessary to define four auxiliary variables for use within 
the proof. 

A = Number of jobs that  arrive at the system during the observation in- 
terval (including those present at the start  of the interval). 

/(k, t ) = A m o u n t  of memory allocated to the k-th job at time t. 

k = t ,  2 . . . .  A tE[O, T]. 

y (k)= Space-time product for the k-th job. The operational variable y(k) is 
defined as follows: 

T 

y (k) = f l (k ,  t) d t  k = 1, 2 . . . .  A.  (20) 
0 

m ( t )=Amount  of memory in use (i.e., allocated to some job) at time t. The 
operational variable m (t) is defined as follows: 

A 

re( l )= Z /(k,t) tel0,  T]. (2t) 
k = l  

Since Y is defined as average space time product per completed job, Y is equal 
to the sum of all space-time products accumulated during the observation interval 
divided by the total number of completed jobs. Thus, Y is given by 

A 
1 

Y=- j ~, y(k). (22) 
k = l  

Note that  M is defined as the average value of m (t) during tile interval [0, T]. 
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Thus, 
T 

,f M =  - y  m (t) dr. (23) 
0 

By Equations (21) and (23), 
T 

1 J" A .3 t= T ~'  / (k, t) dt. (24) 
k = l  0 

Reversing the order of integration and summation,  and applying Equat ions (20) 
and (22) 

M =  Y .  J / T .  (25) 

Applying Equat ion (t) completes the proof. 

Corollary (General Space-Time Product  Response Time Law) 

M J '  
R = N  y j Z. (26) 

Proo/. Immedia te  from Equat ions (t), (9) and (19) 

Corollary (Space-Time Product  Response Time Law) 

Y 
R = N ~ --  Z (27) 

Pro@ Immediate  from Equat ions (1), (t4) and (19). 
Table 2 illustrates the basic structure of the operational variables defined in 

this paper. Note tha t  some operational variables correspond to events, some 
correspond to time durations, and some correspond to space-time integrals. 
Within  each of these three classes, certain quantit ies are expressed for the entire 

Table 2. Operational variables 

Event counts Time durations Space-time integrals 

Entire interval J T 
A B (,) 
J '  r (k) 
C (,) z (k) 

J B (,) 
Per unit time X = ~ U (~) . . . .  -T-- 

Per job 

Per service 
completion 

c(,) 
D (0 = - -  

J 

N 
1 

N 
1 

z = ) 2  z(k> 
k = l  

s (i) = B (i) 
C (i) 

T 
y(k) = f l(k, t) dt 

0 

T 

, f  A I  = ~ -  m (t) d t  

o 

A 
l 

Y= 7 y' yIkl 
k = l  

t 2 "  
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observation interval, certain quantities are expressed on a "per  unit t ime"  
basis, certain quantities are expressed on a "per  job"  basis, and certain quantities 
are expressed on a "pe r  service completion" basis. 

8. Congestion Law 

If it is assumed that  each job has unit size (i.e., occupies one unit of memory 
space), M will be equal to the average number of occupied memory units or, 
equivalently, the average number of jobs present in the system. I t  also follows 
in this case that  y (k) is equal to the timedn-systeIu (response time) for the k-th 
job multiplied by one unit of space. Thus Y is equal to average response time (R) 
multiplied by one unit of space. 

Define the operational variable L as follows: 

L = A v e r a g e  number of jobs present in the system during the observation 
interval. 

From the previous paragraph, 

M ~ L • one unit of space, (28) 

Y =  R • one unit of space. (29) 

Theorem (Congestion Law). The average number of jobs present in a system 
is equal to the throughput of the system multiplied by the average response 
time of the system. Symbolically, 

L----- X . R .  (30) 

Pro@ Substitute from (28) and (29) into (19) and cancel the space units. 

Equation (30) is the operational counterpart of the well known result from 
queueing theory that  is usually referred to as Little's formula [91. Note, of course, 
that  Equation (30) is expressed in terms of operational variables rather than 
expected values of random variables. Note also that  Equation (30) involves 
throughput (i.e., departure rate) rather than arrival rate (i.e., 4). If it is assumed 
that  the system being studied is in equilibrium in the sense that  the same number 
of jobs are present at the beginning and the end of the observation interval, the 
departure rate will be equal to the arrival rate and a direct counterpart to 
Little 's formula can be deduced as a special case. 

9. Relationship to Probabilistic Results 

Since most operational results presented in this paper have counterparts 
which can be expressed in terms of probabilistic models and random variables, 
it is useful to consider the relationship between probabilistic and operational 
analyses. Essentially, operational analyses are concerned with the properties of 
specific behavior sequences which systems follow during well defined intervals of 
time. Most results in this paper involve operational variables that  represent 
averages computed over such time intervals, and as a consequence these results 
apply to all possible behavior sequences which produce a given set of average 
values. 
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STATE 

V•••••I ) TIME 
0 T 

Fig. 2. Behavior Sequences 

Figure 2 illustrates this basic idea by indicating three possible behavior 
sequences that  a system may follow during an observation interval of length T. 
If each of these sequences has the same value of M and the same value of Y, 
then the Space-Time Product Throughput Law implies that  each will have the 
same value of X. In other words, the Space-Time Product Throughput Law 
actually applies to families of possible behavior sequences: each family is made 
up of a set of behavior sequences that  have the same values of M and Y, and 
the Space-Time Product Throughput Law asserts that  all members of such a 
family have the same throughput (i.e., M/Y). Corresponding statements can, 
of course, be made for other operational laws as well. 

In the case of benchmarks, trace driven models, and mathematical  forms of 
deterministic analysis, the analyst must normally specify a set of parameters  
which completely determines the behavior sequence that  the system will follow 
during the observation interval. Consequently, deterministic results apply to 
single behavior sequences rather than families such as those illustrated in 
Figure 2. 

As pointed out in Section t, analysts seldom have sufficient knowledge to 
specify actual behavior sequences in complete detail. The operational method 
circumvents this difficulty by only requiring specification of summary statistics 
such as U(i), S (i), and D (i). Note tha t  analysts are more likely to have accurate 
knowledge of summary statistics than detailed behavior sequences. In addition, 
summary  statistics are more likely to remain constant from day to day. Thus 
the operational method can be far more effective than deterministic analyses in 
dealing with situations where only partial knowledge of the workload exists. 

Probabilistic results can also be expressed in terms of summary  statistics 
such as mean service time. Furthermore, probabilistic results also apply to 
ensembles (i.e., families) of possible behavior sequences of the type iUustrated in 
Figure 2. However, probabilistic results for stochastic processes in equilibrium 
differ significantly from operational results because probabilistic results only 
apply precisely (i.e., with probabili ty one) to ensembles which are comprised of 
infinitely long behavior sequences. 

To elaborate upon this point, consider the probabilistic counterpart  of the 
Throughput  Law. In order to derive such a result, one would normally begin by 
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assuming that  successive service times at device i are given by independent, 
identically distributed random variables with mean S(i). One would also assume 
that  the demand per job for device z is given by a sequence of independent, 
identically distributed random variables with mean D(i). One would then add 
certain technical assumptions needed to guarantee ergodicity (i.e., the existence 
of an equilibrium probability that server i is active). Denoting this equilibrium 
probability by U(i), one could then demonstrate that U(i)/S(z) .  D(i) is the ex- 
pected number of jobs completed per unit time in equilibrium (i.e., throughput). 

This result would apply to the ensemble of infinite time behavior sequences 
associated with the stochastic process defined by S(i),  D(z) and U(i). In gener- 
ating each member of the ensemble, the random variables that define "device i 
service t ime"  and "demand per job for device ~" would both be sampled an 
infinite number of times. Thus, for each member of the ensemble, the Law of 
Large Numbers will imply that  the operational values of "average device i ser- 
vice t ime"  and "average demand per job for device ~ " will be equal to the means 
of the corresponding random variables (i.e., S(i) and D(i)). t"urthermore, since 
the stochastic process is assumed to be in equilibrium and the observation interval 
is infinite, the operational values of utilization and throughput will be equal to 
U(i) and X by the Ergodic Theorem. Thus, the probabilistic and operational 
versions of the Throughput Law will have the same formal appearance. 1 

This type of reasoning can clearly be applied to other operational laws that 
involve constants and summary statistics computed over an observation interval. 
However, probabilistic results cannot be regarded as equivalent to their opera- 
tional counterparts because: 

A) Probabilistic results only apply precisely (i.e., with probability one) in 
the case where the length of the observation interval is infinite. 

B) The assumption of equilibrium sometimes obscures the true identity of 
critical parameters (viz., Congestion Law). 

C) A number of artifical technical assumptions must often be introduced 
when deriving probabilistic results. 

D) In probabilistic analyses, quantities such as throughput and device service 
time are associated with random variables and stochastic processes. However, 
such quantities are more naturally regarded as measurable properties of system 
behavior during specific intervals of time (i.e., as operational variables). 

E) When specifying the expected value of a random variable used in a stoch- 
astic model, the analyst is in effect specifying the exact value of the corresponding 
operational variable for each member of the associated ensemble of infinite time 
behavior sequences. Thus, probabilistic models do not really enable the analyst to 
specify problems in greater generality; in fact, probabilistic versions of the oper- 
ational laws derived in this paper are less general (i.e., apply to fewer cases) than 
the operational versions. 

I A precise statement of the points presented in this paragraph would require a 
lengthy digression into advanced probability theory. Such a digression would add 
little to the basic content of the argument. For further details, refer to Chapters 7, 8 
and 1 t of Feller [7] 
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F) The mathematical techniques required to analyze stochastic models are 
considerably more complex than those needed in operational analyses. This 
complexity limits the number of individuals who have access to stochastic models. 

Despite these limitations and reservations, stochastic models have proven 
remarkably successful in predicting performance of actual systems E4J. This is 
due in part to the fact that many probabilistic results have operational counter- 
parts or operational upper and lower bounds. Since the operational results require 
fewer assumptions, the probabilistic results sometimes exhibit surprising degrees 
of robustness. The operational method helps to explain this situation and also 
provides a bridge between probabilistic results and data collected during actual 
studics of computer system performance. 

A number probabilistic counterparts of the operational laws presented in 
this paper have been derived previously. In particular, probabilistic counterparts 
have been derived for the Throughput Law E23, the Utilization Equality [2, 6], 
the Response Time Law [!, i t -13] ,  and the Congestion Law [8-10]. In some 
cases, the derivations include arguments that are very similar to those used in 
the operational method. However, all previous analyses were primarily concerned 
with random variables and stochastic processes. Thus, additional assumptions 
were always required to insure ergodicity, and results were always expressed in 
terms of equilibrium distributions and underlying random variables. 

10. Practical Considerations 

One question which arises when appliying operational laws in practice concerns 
the problem of end effects (i.e., the state of the system at the initial and terminal 
points of the observation interval). Actually, end effects do not in any way 
impair the validity of operational laws themselves since these laws are internally 
consistent and valid for all possible initial and terminal states. However, the 
implications of certain operational definitions should be carefully understood to 
avoid possible misinterpretation of operational variables. 

For example, Equation (3) states that average device service time is equal 
to total device busy time divided by the number of requests completed during 
the observation interval. If a service request is partially complete at the start 
of the observation interval, the value of S (i) will, in a sense, be artificially reduced. 
Likewise, a service request which is only partially complete at the end of the 
observation interval will contribute to B (i) but not to C(i). This will artificially 
raise the value of S (i). Fortunately, if the observation interval is at least moder- 
ately long, these effects will be negligible and can be safely disregarded. 

The same considerations apply to all variables defined on a "per job"  basis 
(e.g., X, Y, and R). In effect, the operational definitions presented in this paper 
are based on the assumption that measurements are collected during the obser- 
vation interval and that "per  job"  and "per  service completion" averages are 
computed at the end of the interval by simple division. This assumption appears 
to conform well to existing practice in the computer performance measurement 
and evaluation field. 

Note that the above comments actually pertain to the problem of estimating 
intrinsic system parameters (e.g., average service time) on the basis of observations 
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taken during finite intervals of time. This problem arises in both operational 
and probabilistic analyses, and it is independent of the analysis method that is 
actually employed. 

A somewhat different problem arises in the case of disk and drum subsystems 
which utilize rotational position sensing and block multiplexing [3]- The appli- 
cation of Equation (3) to such devices yields average service times which are 
approximately equal to average data transfer times. Thus, ttle additional delay 
due to seek and rotational latency will not appear in S(i). Once again, this 
phenomenon does not affect the validity of the operational laws derived in this 
paper, but it does illustrate the need to fully understand the implications of all 
operational definitions. 

11. Applications 

Since the laws derived in this paper are directly applicable to all systems, 
they can be used to verify the internal consistency of: performance measure- 
ments collected by empirical methods; numerical values generated by simulation 
programs; algebraic equations derived through the explicit solution of probabi- 
listic models of systems in equilibrium. The laws can also be used to express an 
unknown variable (e.g., device service time) in terms of other variables which are 
easier to measure. Additional applications are discussed in an earlier version of 
this paper [5]. 

12. Conclusions 

Because they apply without restriction to broad classes of systems, the opera- 
tional laws derived in this paper can be regarded as universal and fundamental 
laws of computer system performance. They are similar in certain respects to 
the fundamental laws found in such fields as basic mechanics, thermodynamics, 
and electrical engineering. Analysts who deal with problems which are not related 
to computer system performance, but which do involve queueing theory and 
stochastic models, should also be able to benefit from employing the operational 
method. 
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Appendix A Benchmark Analysis 

Tables A-t, A-2, and A- 3 present the completion times of individual jobs 
and the average response time (completion time) of the entire benchmark for 
each of the three workloads presented in Table t. I t  is assumed that the quantum 
size in the round robin scheduling algorithm is 2 seconds. 

Table A- 1. Workload = ABC 

FCFS RR 

A 7 11 
B 8 3 
C II 8 
Average 8w 7{ 
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Table A-2. Workload = CBA 

FCFS RR 

C 3 6 
B 4 3 
A 11 11 
Average 6 6 4 

Table A-3. Workload = BAC 

FCFS R R  

B t 1 
A 8 li 
C 11 g 
Average 6{ 6 4 

18t 

A = Number  
B (i) = A m o u n t  
C(i) = N u m b e r  
D (i) = Average  
](k, t) ---- A m o u n t  
J = N u m b e r  

in terval .  
J '  = N u m b e r  
L = Average  
M = Average  
m (t) = A m o u n t  
N ---- N u m b e r  

Appendix B Glossary 

of ar r ivals  a t  system.  
of t ime server  i is busy.  
of requests  comple ted  b y  server  i. 
number  of requests  per  job  for server  i. 
of m e m o r y  a l located  to the  k- th  job  a t  t ime t. 
of jobs  (or interact ions)  comple ted  dur ing  the  observa t ion  

of t rans i t ions  from th ink  s ta te  to sys tem state .  
number  of jobs  in the  system.  
amoun t  of m e m o r y  in use. 
of m e m o r y  in use a t  t ime t. 
of in te rac t ive  terminals .  

R = Average  response t ime.  
r (k) = To ta l  t ime in sys tem s ta te  for k- th  in te rac t ive  process (k-th terminal) .  
S (i) = Average  service t ime  for server  i. 
T = Leng th  of observa t ion  in terval .  
U(i) = Ut i l iza t ion  of server  i. 
X ---- Throughput .  
Y = Average  space- t ime p roduc t  per  job. 
y(k)  ---- Space- t ime p roduc t  for k- th  job.  
Z = Average  th ink  t ime.  
z (k) = To ta l  t ime in th ink  s ta te  for k-th in te rac t ive  process (k-th terminal) .  

Appendix C Principal Operational Laws 

Asympto t i c  Response Time L a w - - E q u a t i o n  (t4) 
Congestion L a w - - E q u a t i o n  (30) 
General  Response Time L a w - - E q u a t i o n  (9) 
Response Time L a w - - E q u a t i o n  (t4) 
Space-Time P roduc t  Response Time L a w - - E q u a t i o n  (27) 



182 J .P .  Buzen 

Space-Time Product  Throughput  L a w - - E q u a t i o n  (t9) 
Throughput  L a w - - E q u a t i o n  (5) 
Uti l ization E q u a l i t y - - E q u a t i o n  (6) 
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