
Acta Informatica 7, 167--182 (1976)
�9 by Springer-Verlag 1976

Fundamental Operational Laws
of Computer System Performance*

J. P. Buzen

Received June 4, 1976

Sz,mmary. A number of laws are derived which establish relationships between
throughput, response time, device utilization, space-time products and various other
factors related to computer system performance. These laws are obtained through
the operational method of conlputer system analysis. The operational method, which
is formally introduced in this paper, differs significantly from the conventional
stochastic modeling approach and is based on a set of concepts tha t correspond
natural ly and directly to observed properties of real computer systems. The operational
laws presented in this paper apply wtth complete precision to all collections of ob-
servational data, and they are similar to fundamental laws found in other areas of
engineering and applied science

1. In t roduct ion

Most analyses of compute r sys tem performance re ly on e i ther benchmarks or
probabi l i s t ic models. Benchmarks , which m a y consist of real programs, syn the t i c
p rograms or t race dr iven s imulat ions, are most useful when it is necessary to
de te rmine sys tem behavior under a precisely specified workload. However ,
benchmark results can be surpr is ingly sensi t ive to the na ture of the work load
t ha t the sys tem is assumed to be processing, and sl ight changes in the work load
defini t ion m a y somet imes lead to s igni f icant ly different conclusions.

Table I i l lus t ra tes the crux of the problem th rough a h ighly s implif ied example .
Suppose t ha t an ana lys t is compar ing " r o u n d r o b i n " (RR) and " f i r s t come
first s e rved" (FCFS) scheduling a lgor i thms for a centra l processor. Assume t h a t
the workload consists of three jobs : Job A, wi th a dura t ion of 7 s; Job B, wi th a
dura t ion of t s, and Job C, wi th a dura t ion of 3 s. Tile first line of Table t gives
the average response t ime for the three jobs in the case where the order of a r r iva l
is "ABC" with all jobs ar r iv ing at a p p r o x i m a t e l y the same t ime. Note t h a t the
average response for F C F S is t 8% higher than the average response t ime for
R R wittl a q u a n t u m of two seconds (see A p p e n d i x A for details) . Thus the bench-
mark results in line one indicate a defini te preference for RR.

In the second line of Table 1, eve ry th ing is the same except t ha t the order of
a r r iva l is reversed, h i this case, average response t ime for R R is t t % higher
than average response t ime for FCFS. The second set of benchmark resul ts thus

* A preliminary version of this paper was published in the Proceedings of the I F I P !
ACM SIGMETRICS Internat ional Symposmm on Computer Performance Modeling,
Measurement and Evaluation, Cambridge (Mass.) March t976, p. 200-210

t68 J. P. Buzen

Table i

Workload Average response time

first second third FCFS RR (Q = 2)

A B C 8~ 7{
C B A 6 6w
B A C 6~ 6~

indicates a preference for FCFS, even though this benchmark contains the same
set of jobs as the first. As a point of interest, the third line of Table I presents
yet another arrival sequence in which the two scheduling algorithms produce
exactly the same average response time.

Although the example in Table I is highly simplified, the dangers which it
illustrates are very real. The reason for the discrepancies in Table 1, and for
similar discrepancies in other cases, is that benchmark evaluations require spe-
cification of the system workload in complete detail: as a result, the analyst is
often compelled to make subtle but critical decisions in areas where his knowledge
is imprecise. This results in confusing situation where seemingly equivalent
benchmark studies lead to different final conclusions.

2. Probablistic Models

Probabilistic models enable the analyst to deal directly with situations where
only partial knowledge of the worldoad exists. Suppose, in the case of Table t,
that the workload is known to consist ot Jobs A, B, and C, but the order in which
the jobs will arrive is uncertain. If the uncertainty concerning the order of arrival
can be represented with a probabilistic model, the analyst may be able to for-
mulate a solution in terms of random variables. For example, suppose that it is
reasonable to assume that the sequence "ABC" will occur 60% of the time, the
sequence "CBA" will occur t 0 % of the time, and the sequence" BAC" will occur
30~ of the time. In this case, the arrival sequence can be regarded as a random
variable, and the expected response times for FCFS and RR can be computed as
follows:

Expected FCFS response time

=0.60 x 8 w 0.t0 x 6+0.30 •167

= 7.80.

Expected RR response time

=0.60 X 7�89 x 6w + 0.30 X6{

= 7 . 0 7 .

Thus, the analyst can compute t h a t - - " o n the average"--FCFS response
time will be 10% higher than RR response time. The analyst is not troubled by
the fact that individual benchmark tests fail to confirm this prediction; indeed,
the analyst fully expects to find RR response higher than FCFS response time
for 10 % of the arrival sequences.

Fundamental Operational Laws of Computer System Performance 169

The potential discrepancies between predicted and observed average response
times discussed in the preceding paragraph were magnified by the implicit as-
sumption that the benchmark consisted of only a single three-job arrival sequence.
In practice one would normally include a large number of three job sequences
in a single benchmark. In such cases, results from probability theory (e.g., the
Law of Large Numbers, the Ergodic Theorem, and the theory of confidence
intervals) imply that predicted and observed average values will be reasonably
close in almost all cases. This is the major reason for constructing simulation
programs that run for long periods of time and constructing benchmarks that
constitute adequately large samples from the set of anticipated workloads.

3. Operational Objectives

The assertion that a particular theoretical result can be validated in practice
at some desired confidence level--if the experiment is run " long e n o u g h " - - m a y
be satisfactory for resolving certain performance evaluation issues, but such
assertions are clearly insufficient to meet all the needs of empirically oriented
computer performance analysts. Such individuals usually deal with sets of data
that have been collected by direct measurement of actual systems during finite
intervals of time. These analysts are basically interested in:

A) Precise mathematical expressions which relate existing measurement
data to other quantities that were not measured but which could, in principle, be
empirically determined.

B) Relationships that can be used to verify the internal consistency of exist-
ing sets of measurement data.

C) Formulas that predict the effect that certain modifications to the system
or the workload would have on measured quantities such as throughput and
response time.

Note that empirically oriented computer performance analysts are not prima-
rily interested in relationships between random variables or expected values of
random variables; rather, the}, are interested in relationships between measured
quantities and quantities which can, in principle, be measured. The remainder
of this paper will develop a theory of such relationships. This theory is based
on an approach to systems analysis that will be called the "operational method" .

4. The Operational Method

In the context of the operational method, an interval of time during which
system behavior is monitored and measurement data is collected is called an
observation interval. The quantities that are measured or computed during an
observation interval are referred to as operational variables. Given this simple
conceptual framework, the operational method consists of:

A) Defining a set of operational variables that correspond in a direct and
natural manner to intuitive concepts of interest (e.g., throughput, device utili-
zation, etc.).

170 J P Buzen

B) Deriving mathemat ical relationships among operational variables which
characterize system behavior during a single observation interval.

C) Applying these mathemat ical relationships to problems such as those
described in Section 3.

The first set of operational variables tha t will be defined correspond to basic
measurements taken during an observation interval.

T = Length of the observation interval. I t is assumed that the time units in
which T is expressed are also used to express all other time dependent
quantities.

J - - N u m b e r of jobs completed during the observation interval. A job is a
basic unit of work and may refer to a program, a job step, a job, or an
interaction, depending on the system being studied.

B (i) = A m o u n t of time that server i is bus)' (i.e., actually providing service)
during the observation interval. I t is assumed that there are a total of q
separate devices and processors in the system being observed, and that
each one is identified by an integer i (i = 1 , 2 q). Thus, the term
"server i " is understood to represent a unique device or processor for
i = 1, 2, ... q. B(i) is then defined for z = l , 2, ... q.

C (i) = T o t a l number of service requests completed by server i during the ob-
servation interval (~ = I, 2 q).

An additional set of operational variables can now be defined in terms of
T, J , B (i) and C(i).

X = Throughput (i.e., number of job completions per unit time). The oper-
ational variable X is expressed as follows:

X = J / T . (I)

U(i) = Utilization of server i (~ = l, 2 q). U(z) is expressed as follows:

g(i) = B (i) /T. (2)

S (z) = A v e r a g e service time for server ~ (z = l , 2 q). S (i) is expressed as
follows :

S (i) ~ B (i)/C(i). (3)

D (i) = A v e r a g e number of requests for server i per job (i = 1, 2 q). D(i) ,
which will be referred to as the demand oer job for server i, is expressed
as follows :

D O) -- C(z)/J. (4)

5. The Throughput Law and Utilization Equality

Given the above definitions, it is possible to derive the following basic result.

Theorem (Throughput Law). Throughput is equal to device utilization divided
by the product of average device service time and the average demand per job

Fundamental Operational Laws of Computer System Performance 171

for that device. Symbolically,

X - u(~) for i - - t, 2 q. (5) S(,) �9 1) (i)

Pro@ The Throughput Law is an immediate consequence of Equations (I)
thr, mgh (4) since

U(z) B(i) C(i) J
S(i) �9 D(,) T B(z) C(i)

=j/r
~ X .

An important aspect of the Throughput Law is that it is independent of a
large number of factors which must normally be specified in other analyses.
These factors include: the degree of multiprogramming; the service time distri-
bution for each device and processor in the system; the fact that the system is or
is not in statistical equilibrium; the fact that overlap af CPU and I /0 processing
within a single program is or is not permitted. In other words, the Throughput
Law is valid regardless of tile status of these other factors.

Corollary (Utilization Equality). The utilization, average service time, and
demand per job for any two servers in a system must satisfy the following re-
lationship :

u(,) vo)
- - for i = t , 2 q; j = t , 2 q. (6)

S(i) �9 1)(0 S(1) �9 D(/)

Pro@ Immediate from Throughput Law since Equation (5) must hold for
all values of i.

6. R e s p o n s e T i m e L a w s

in order to apply operational techniques to the analysis of interactive systems,
it is first necessary to provide a basic model for describing the manner in which
such systems operate. The model and terminology that will be employed in this
discussion are based on the work of Scherr [t4], Kleinrock [t t] , Moore [12],
and Muntz and Wong [13]. The essence of this model is illustrated in Figure 1.
There are a fixed number of interactive terminals, and each terminal has one
interactive process associated with it. The interactive process is either in think
state (i.e., blocked) or system state (i.e., active). Response time is the elapsed
time between the instant that an interactive process enters system state and the
instant that it next leaves system state. Each time that an interactive process
leaves system state (i.e., completes a processing request), an interaction is said
to occur.

Given this general context, let J represent the number of interactions com-
pleted during the observation interval, and let N be equal to the number of
interactive terminals "logged on" during the observation interval. Define the
operational variable R as follows:

R = A v e r a g e response time (i.e., average amount of time in system state per
interaction).

t72 J. P Buzen

THINK STATE

SYSTEM STATE

I N

INTERACTIVE

TERMINALS

I SYSTEM
t

RESPONSE TIME

Fig. 1. Basic interactive model

Lemma
N

l
R =] ~, r(k) (7)

k = l

where r (k) : t o t a l time that the k-th interactive process (i.e., the interactive
process associated with the k-th terminal) spends in system state during the
observation interval (k = I, 2 N).

Pro@ The average amount of time in system state per interaction is, by
definition, equal to the total time spent in system state by all interactive pro-
cesses divided by the total number of interactions completed during the observa-
tion interval. Since r (k) is the total time that the k-th interactive process spends
in system state during the observation interval, the total time in system state

,v
for all interactive processes is ~ r (k). The total number of completed interactions

k - - 1

is, by definition, equal to J . Equation (7) follows directly.
Before presenting the main theorem, it is necessary to prove another lemma

which is similar to the lemma that has just been derived. First define the opera-
tional variable Z as follows:

Z: -Average think time (i.e., average amount of time in think state per tran-
sition from think state to system state).

L e m m a
N

1
z = j , ~ 1 z (k) (8)

where J ' ~ t o t a l number of transitions from think state to system state during
the observation interval.

Fundamental Operational Laws of Computer System Performance 173

z (k)= total time that the k-th interactive process spends in think state during
the observation interval (k= t, 2 N).

Proo]. The proof is similar to that of the previous lemma. Simply replace
R by Z, r (k) by z (k), and J by J ' .

Theorem (General Response Time Law). The average response time of an
interactive system is expressed as follows:

R ~ N SO) " D(i) J ' u0) y z. (9)

Proo]. The derivation of Equation (9) utilizes the fact that the total time
that the k-th interactive process (the process associated with the k-th terminal)
spends in think state, plus the total time that the k-th interactive process spends
in system state, must be equal to the length of the observational interval. That is

z (k) + r (k) = T for k : l , 2 N. (10)
Thus,

N N

Z z(k)+ Z r(k)=X. T. (1t)
k = l k = l

Dividing both sides by J and using Equations (7) and (8) to simplify the left
hand side,

J ' T
-~r--" Z + R = N "-7- (t2)

By Equation (t) and the Throughput Law,

J u(z)
T -- S(i) �9 D(z) (t3)

Equations (12) and (t3) yield Equation (9).

Corollary (Response Time Law or Asymptotic Response Time Law). As the
number of interactions that take place during the observation interval becomes
large, average response time tends to the limiting value given in Equation (t4).

lim R = N S(i) . D(i)
j-~oo u(,) --Z. (14)

Proo[. Let z' be equal to the number of terminals in think state at the start
of the observation interval, and let z" be equal to the number of terminals in
think state at the end of the observation interval. Clearly,

Z H Z t ._~ t = J - J . (t5)
Thus,

[z" - - z '] = [J - i f] . (16)

Next note that [z " - - z'] =< N since 0 --< z' ~ N and 0 ~ z" ~ N. Thus,

I J - J ' [<=N. (17)
Dividing by J ,

] 1 - J ' / J I _<N]J. (18)

12 Acta l n f o r m a t i e a , Vol. 7

174 J .P . Buzen

Now consider the effect of allowing J to become large by increasing the length
of the observation interval. Since N is fixed, N/J will approach zero as J ap-
proaches infinity. By Equation (18), this implies J'/J--~ 1 as J - > oo.
Combining this fact with Equation (9) yields (14).

7. Space-Time Product Laws

Space-time products are often used to evaluate program performance and
assign accounting charges to programs in virtual memory systems. Essentially,
a program's space-time product is equal to its execution time multiplied by the
average amount of memory allocated to it during its execution. Since space-
time products, response time, and throughput are all used as indicators of system
performance, it is interesting to examine the manner in which these quantities
are related.

Theorem (Space-Time Product Throughput Law). Throughput is equal to
average amount of memory in use divided by average space-time product. Sym-
bolically,

X = M / Y (19)
where

Y = Average space-time product (i.e., space-time product per completed job);
M----Average amount of memory in use during the observation interval.

Proo/. I t is first necessary to define four auxiliary variables for use within
the proof.

A = Number of jobs that arrive at the system during the observation in-
terval (including those present at the start of the interval).

/(k, t) = A m o u n t of memory allocated to the k-th job at time t.

k = t , 2 A tE[O, T].

y (k)= Space-time product for the k-th job. The operational variable y(k) is
defined as follows:

T

y (k) = f l (k , t) d t k = 1, 2 A. (20)
0

m (t)=Amount of memory in use (i.e., allocated to some job) at time t. The
operational variable m (t) is defined as follows:

A

re(l)= Z /(k,t) tel0, T]. (2t)
k = l

Since Y is defined as average space time product per completed job, Y is equal
to the sum of all space-time products accumulated during the observation interval
divided by the total number of completed jobs. Thus, Y is given by

A
1

Y=- j ~, y(k). (22)
k = l

Note that M is defined as the average value of m (t) during tile interval [0, T].

Fundamental Operational Laws of Computer System Performance t 75

Thus,
T

,f M = - y m (t) dr. (23)
0

By Equations (21) and (23),
T

1 J" A .3 t= T ~' / (k, t) dt. (24)
k = l 0

Reversing the order of integration and summation, and applying Equat ions (20)
and (22)

M = Y . J / T . (25)

Applying Equat ion (t) completes the proof.

Corollary (General Space-Time Product Response Time Law)

M J '
R = N y j Z. (26)

Proo/. Immedia te from Equat ions (t), (9) and (19)

Corollary (Space-Time Product Response Time Law)

Y
R = N ~ -- Z (27)

Pro@ Immediate from Equat ions (1), (t4) and (19).
Table 2 illustrates the basic structure of the operational variables defined in

this paper. Note tha t some operational variables correspond to events, some
correspond to time durations, and some correspond to space-time integrals.
Within each of these three classes, certain quantit ies are expressed for the entire

Table 2. Operational variables

Event counts Time durations Space-time integrals

Entire interval J T
A B (,)
J ' r (k)
C (,) z (k)

J B (,)
Per unit time X = ~ U (~) -T--

Per job

Per service
completion

c(,)
D (0 = - -

J

N
1

N
1

z =) 2 z(k>
k = l

s (i) = B (i)
C (i)

T
y(k) = f l(k, t) dt

0

T

, f A I = ~ - m (t) d t

o

A
l

Y= 7 y' yIkl
k = l

t 2 "

t 76 J.P. Buzen

observation interval, certain quantities are expressed on a "per unit t ime"
basis, certain quantities are expressed on a "per job" basis, and certain quantities
are expressed on a "pe r service completion" basis.

8. Congestion Law

If it is assumed that each job has unit size (i.e., occupies one unit of memory
space), M will be equal to the average number of occupied memory units or,
equivalently, the average number of jobs present in the system. I t also follows
in this case that y (k) is equal to the timedn-systeIu (response time) for the k-th
job multiplied by one unit of space. Thus Y is equal to average response time (R)
multiplied by one unit of space.

Define the operational variable L as follows:

L = A v e r a g e number of jobs present in the system during the observation
interval.

From the previous paragraph,

M ~ L • one unit of space, (28)

Y = R • one unit of space. (29)

Theorem (Congestion Law). The average number of jobs present in a system
is equal to the throughput of the system multiplied by the average response
time of the system. Symbolically,

L----- X . R . (30)

Pro@ Substitute from (28) and (29) into (19) and cancel the space units.

Equation (30) is the operational counterpart of the well known result from
queueing theory that is usually referred to as Little's formula [91. Note, of course,
that Equation (30) is expressed in terms of operational variables rather than
expected values of random variables. Note also that Equation (30) involves
throughput (i.e., departure rate) rather than arrival rate (i.e., 4). If it is assumed
that the system being studied is in equilibrium in the sense that the same number
of jobs are present at the beginning and the end of the observation interval, the
departure rate will be equal to the arrival rate and a direct counterpart to
Little 's formula can be deduced as a special case.

9. Relationship to Probabilistic Results

Since most operational results presented in this paper have counterparts
which can be expressed in terms of probabilistic models and random variables,
it is useful to consider the relationship between probabilistic and operational
analyses. Essentially, operational analyses are concerned with the properties of
specific behavior sequences which systems follow during well defined intervals of
time. Most results in this paper involve operational variables that represent
averages computed over such time intervals, and as a consequence these results
apply to all possible behavior sequences which produce a given set of average
values.

Fundamental Operational Laws of Computer System Performance 17 7

STATE

V•••••I) TIME
0 T

Fig. 2. Behavior Sequences

Figure 2 illustrates this basic idea by indicating three possible behavior
sequences that a system may follow during an observation interval of length T.
If each of these sequences has the same value of M and the same value of Y,
then the Space-Time Product Throughput Law implies that each will have the
same value of X. In other words, the Space-Time Product Throughput Law
actually applies to families of possible behavior sequences: each family is made
up of a set of behavior sequences that have the same values of M and Y, and
the Space-Time Product Throughput Law asserts that all members of such a
family have the same throughput (i.e., M/Y). Corresponding statements can,
of course, be made for other operational laws as well.

In the case of benchmarks, trace driven models, and mathematical forms of
deterministic analysis, the analyst must normally specify a set of parameters
which completely determines the behavior sequence that the system will follow
during the observation interval. Consequently, deterministic results apply to
single behavior sequences rather than families such as those illustrated in
Figure 2.

As pointed out in Section t, analysts seldom have sufficient knowledge to
specify actual behavior sequences in complete detail. The operational method
circumvents this difficulty by only requiring specification of summary statistics
such as U(i), S (i), and D (i). Note tha t analysts are more likely to have accurate
knowledge of summary statistics than detailed behavior sequences. In addition,
summary statistics are more likely to remain constant from day to day. Thus
the operational method can be far more effective than deterministic analyses in
dealing with situations where only partial knowledge of the workload exists.

Probabilistic results can also be expressed in terms of summary statistics
such as mean service time. Furthermore, probabilistic results also apply to
ensembles (i.e., families) of possible behavior sequences of the type iUustrated in
Figure 2. However, probabilistic results for stochastic processes in equilibrium
differ significantly from operational results because probabilistic results only
apply precisely (i.e., with probabili ty one) to ensembles which are comprised of
infinitely long behavior sequences.

To elaborate upon this point, consider the probabilistic counterpart of the
Throughput Law. In order to derive such a result, one would normally begin by

178 J .P . Buzen

assuming that successive service times at device i are given by independent,
identically distributed random variables with mean S(i). One would also assume
that the demand per job for device z is given by a sequence of independent,
identically distributed random variables with mean D(i). One would then add
certain technical assumptions needed to guarantee ergodicity (i.e., the existence
of an equilibrium probability that server i is active). Denoting this equilibrium
probability by U(i), one could then demonstrate that U(i)/S(z) . D(i) is the ex-
pected number of jobs completed per unit time in equilibrium (i.e., throughput).

This result would apply to the ensemble of infinite time behavior sequences
associated with the stochastic process defined by S(i), D(z) and U(i). In gener-
ating each member of the ensemble, the random variables that define "device i
service t ime" and "demand per job for device ~" would both be sampled an
infinite number of times. Thus, for each member of the ensemble, the Law of
Large Numbers will imply that the operational values of "average device i ser-
vice t ime" and "average demand per job for device ~ " will be equal to the means
of the corresponding random variables (i.e., S(i) and D(i)). t"urthermore, since
the stochastic process is assumed to be in equilibrium and the observation interval
is infinite, the operational values of utilization and throughput will be equal to
U(i) and X by the Ergodic Theorem. Thus, the probabilistic and operational
versions of the Throughput Law will have the same formal appearance. 1

This type of reasoning can clearly be applied to other operational laws that
involve constants and summary statistics computed over an observation interval.
However, probabilistic results cannot be regarded as equivalent to their opera-
tional counterparts because:

A) Probabilistic results only apply precisely (i.e., with probability one) in
the case where the length of the observation interval is infinite.

B) The assumption of equilibrium sometimes obscures the true identity of
critical parameters (viz., Congestion Law).

C) A number of artifical technical assumptions must often be introduced
when deriving probabilistic results.

D) In probabilistic analyses, quantities such as throughput and device service
time are associated with random variables and stochastic processes. However,
such quantities are more naturally regarded as measurable properties of system
behavior during specific intervals of time (i.e., as operational variables).

E) When specifying the expected value of a random variable used in a stoch-
astic model, the analyst is in effect specifying the exact value of the corresponding
operational variable for each member of the associated ensemble of infinite time
behavior sequences. Thus, probabilistic models do not really enable the analyst to
specify problems in greater generality; in fact, probabilistic versions of the oper-
ational laws derived in this paper are less general (i.e., apply to fewer cases) than
the operational versions.

I A precise statement of the points presented in this paragraph would require a
lengthy digression into advanced probability theory. Such a digression would add
little to the basic content of the argument. For further details, refer to Chapters 7, 8
and 1 t of Feller [7]

Fundamental Operational Laws of Computer System Performance 179

F) The mathematical techniques required to analyze stochastic models are
considerably more complex than those needed in operational analyses. This
complexity limits the number of individuals who have access to stochastic models.

Despite these limitations and reservations, stochastic models have proven
remarkably successful in predicting performance of actual systems E4J. This is
due in part to the fact that many probabilistic results have operational counter-
parts or operational upper and lower bounds. Since the operational results require
fewer assumptions, the probabilistic results sometimes exhibit surprising degrees
of robustness. The operational method helps to explain this situation and also
provides a bridge between probabilistic results and data collected during actual
studics of computer system performance.

A number probabilistic counterparts of the operational laws presented in
this paper have been derived previously. In particular, probabilistic counterparts
have been derived for the Throughput Law E23, the Utilization Equality [2, 6],
the Response Time Law [!, i t -13] , and the Congestion Law [8-10]. In some
cases, the derivations include arguments that are very similar to those used in
the operational method. However, all previous analyses were primarily concerned
with random variables and stochastic processes. Thus, additional assumptions
were always required to insure ergodicity, and results were always expressed in
terms of equilibrium distributions and underlying random variables.

10. Practical Considerations

One question which arises when appliying operational laws in practice concerns
the problem of end effects (i.e., the state of the system at the initial and terminal
points of the observation interval). Actually, end effects do not in any way
impair the validity of operational laws themselves since these laws are internally
consistent and valid for all possible initial and terminal states. However, the
implications of certain operational definitions should be carefully understood to
avoid possible misinterpretation of operational variables.

For example, Equation (3) states that average device service time is equal
to total device busy time divided by the number of requests completed during
the observation interval. If a service request is partially complete at the start
of the observation interval, the value of S (i) will, in a sense, be artificially reduced.
Likewise, a service request which is only partially complete at the end of the
observation interval will contribute to B (i) but not to C(i). This will artificially
raise the value of S (i). Fortunately, if the observation interval is at least moder-
ately long, these effects will be negligible and can be safely disregarded.

The same considerations apply to all variables defined on a "per job" basis
(e.g., X, Y, and R). In effect, the operational definitions presented in this paper
are based on the assumption that measurements are collected during the obser-
vation interval and that "per job" and "per service completion" averages are
computed at the end of the interval by simple division. This assumption appears
to conform well to existing practice in the computer performance measurement
and evaluation field.

Note that the above comments actually pertain to the problem of estimating
intrinsic system parameters (e.g., average service time) on the basis of observations

180 J .P . Buzen

taken during finite intervals of time. This problem arises in both operational
and probabilistic analyses, and it is independent of the analysis method that is
actually employed.

A somewhat different problem arises in the case of disk and drum subsystems
which utilize rotational position sensing and block multiplexing [3]- The appli-
cation of Equation (3) to such devices yields average service times which are
approximately equal to average data transfer times. Thus, ttle additional delay
due to seek and rotational latency will not appear in S(i). Once again, this
phenomenon does not affect the validity of the operational laws derived in this
paper, but it does illustrate the need to fully understand the implications of all
operational definitions.

11. Applications

Since the laws derived in this paper are directly applicable to all systems,
they can be used to verify the internal consistency of: performance measure-
ments collected by empirical methods; numerical values generated by simulation
programs; algebraic equations derived through the explicit solution of probabi-
listic models of systems in equilibrium. The laws can also be used to express an
unknown variable (e.g., device service time) in terms of other variables which are
easier to measure. Additional applications are discussed in an earlier version of
this paper [5].

12. Conclusions

Because they apply without restriction to broad classes of systems, the opera-
tional laws derived in this paper can be regarded as universal and fundamental
laws of computer system performance. They are similar in certain respects to
the fundamental laws found in such fields as basic mechanics, thermodynamics,
and electrical engineering. Analysts who deal with problems which are not related
to computer system performance, but which do involve queueing theory and
stochastic models, should also be able to benefit from employing the operational
method.

Acknowledgements. Many of the concepts presented in this paper were refined
and sharpened during conversations between the author and D. B. Rubin, P. J. Den-
ning, and E. Gelenbe The author was also influenced by the work of R R. Muntz
and L. Kleinrock

Appendix A Benchmark Analysis

Tables A-t, A-2, and A- 3 present the completion times of individual jobs
and the average response time (completion time) of the entire benchmark for
each of the three workloads presented in Table t. I t is assumed that the quantum
size in the round robin scheduling algorithm is 2 seconds.

Table A- 1. Workload = ABC

FCFS RR

A 7 11
B 8 3
C II 8
Average 8w 7{

Fundamenta l Operational Laws of Computer System Performance

Table A-2. Workload = CBA

FCFS RR

C 3 6
B 4 3
A 11 11
Average 6 6 4

Table A-3. Workload = BAC

FCFS R R

B t 1
A 8 li
C 11 g
Average 6{ 6 4

18t

A = Number
B (i) = A m o u n t
C(i) = N u m b e r
D (i) = Average
](k, t) ---- A m o u n t
J = N u m b e r

in terval .
J ' = N u m b e r
L = Average
M = Average
m (t) = A m o u n t
N ---- N u m b e r

Appendix B Glossary

of ar r ivals a t system.
of t ime server i is busy.
of requests comple ted b y server i.
number of requests per job for server i.
of m e m o r y a l located to the k- th job a t t ime t.
of jobs (or interact ions) comple ted dur ing the observa t ion

of t rans i t ions from th ink s ta te to sys tem state .
number of jobs in the system.
amoun t of m e m o r y in use.
of m e m o r y in use a t t ime t.
of in te rac t ive terminals .

R = Average response t ime.
r (k) = To ta l t ime in sys tem s ta te for k- th in te rac t ive process (k-th terminal) .
S (i) = Average service t ime for server i.
T = Leng th of observa t ion in terval .
U(i) = Ut i l iza t ion of server i.
X ---- Throughput .
Y = Average space- t ime p roduc t per job.
y(k) ---- Space- t ime p roduc t for k- th job.
Z = Average th ink t ime.
z (k) = To ta l t ime in th ink s ta te for k-th in te rac t ive process (k-th terminal) .

Appendix C Principal Operational Laws

Asympto t i c Response Time L a w - - E q u a t i o n (t4)
Congestion L a w - - E q u a t i o n (30)
General Response Time L a w - - E q u a t i o n (9)
Response Time L a w - - E q u a t i o n (t4)
Space-Time P roduc t Response Time L a w - - E q u a t i o n (27)

182 J .P . Buzen

Space-Time Product Throughput L a w - - E q u a t i o n (t9)
Throughput L a w - - E q u a t i o n (5)
Uti l ization E q u a l i t y - - E q u a t i o n (6)

References

1. Boyse, J. W., Warn, D. R.: A straightforward model for computer performance
prediction. Computing Surveys 7, 73-93 (1975)

2. Buzen, J . P . : Analysis of system bottlenecks using a queuelng network model.
Proc. ACM SIGOPS Workshop on Syst Perf Eval., April 197t, Cambridge
(Mass.) p. 82-103

3. Buzen, J. P. : [/0 subsystem architecture. Proc. IEEE 63, 871-879 (1975)
4. Buzen, J. P.: Cost-effective analytic tools for computer performance evaluation.

Proc. COMPCON 75 ~ I E E E Computer Society Conference, Sept. 1975. p. 293-296
5. Buzen, J P.: Fundamental laws of computer system performance. Proc. ACM-

I F I P International Syrup. on Computer Performance Modeling, Measurement and
Evaluation, March 1976, p. 200-210

6. Chang, A., Lavenburg, S.S. : Work rates in closed queueing networks with
general independent servers. Operations Research 22, 838-847 (1974)

7. Feller, W.: An introduction to probabihty theory and its applications, Vol. II.
New York" Wiley 1966

8. Jewell, \V. S. : A simple proof of : L = ~ IV. Operations Research 15, 1109-1116
(1967)

9. Little, J. D.C. A proof of the queueing tormula L = ;~W. Operations Research
9, 383-387 (1961)

10. Maxwell, W. L. : On the generahty of the equation L = 2 W Operahons Research
18, 172-174 (1970)

11. Kleinrock, L.: Certain analytic results for time shared processors. Proc. I F I P
Congress 1968, Amsterdam: North-Holland 1968, p. 838-845

12. Moore, C. : Network models for large scale time sharing systems. Dept. Industrial
Eng., Univ. of Michigan, Ann Arbor TR-71-1, April 1971

13. Muntz, R .R. , Wong, J.: Asymptotic properties of closed queueing network
models. Proc. Eighth Annual Princeton Conference on Information Sciences and
Systems, March 1974, p. 348-353

14. Scherr, A.: An analysis of time shared computer systems. Cambridge (Mass.):
M.I.T. Press 1967

J. P. Buzen
Center for Research
in Computing Technology
Harvard University
Cambridge, Mass. 02138
and
BGS Systems, Inc.
Box 128
Lincoln, Mass. 01773
U.S.A.

