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Summary. There has recently been a burgeoning interest 
in the analysis of paternity patterns for natural popula- 
tions because of its relevance to population genetic phe- 
nomena such as the distance between successful mates, 
relative male reproductive success and gene flow. In this 
paper we develop a method of analyzing populational 
patterns of paternity, the fractional paternity method, 
and compare its performance to two other commonly 
used methods of paternity analysis (simple exclusion and 
the most-likely methods). We show that the fractional 
method is the most accurate method for determining 
populational patterns of paternity because it assigns pa- 
ternity to all progeny examined, and because it avoids 
biases inherent in the other paternity analysis methods 
when model assumptions are met. In particular, it avoids 
a systematic bias of the most-likely paternity assignment 
method, which has a tendency to over-assign paternity of 
progeny to certain male parents with a greater than aver- 
age number of homozygous marker loci. We also demon- 
strate the effect of linkage of some of the marker loci on 
paternity assignment, showing how the knowledge of the 
linkage phase of male and female parents in the popula- 
tion can significantly improve the accuracy of the es- 
timates of populational patterns of paternity. Knowledge 
of the linkage phase of individuals in a population is 
usually unknown and difficult to assess without progeny 
testing, which involves considerable labor. However, we 
show how the linkage phase of hermaphroditic individu- 
als in a population can be obtained in conjunction with 
the paternity analysis if progeny can be obtained from 
each hermaphroditic individual in the population, there- 
by avoiding the problem of traditional progeny testing. 
Applications of the fractional paternity approach devel- 
oped herein should contribute significantly to our under- 
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standing of the mating patterns in, and hence the evolu- 
tion of, natural populations. 
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Introduction 

The most critical evolutionary event in a population is 
the successful transmission of genes from one generation 
to the next. In many species, the identification of the 
successful female parent is straightforward because prog- 
eny are held on that individual for a period of time (e.g., 
seeds). Identification of the successful male parent is con- 
siderably more difficult. Recently, a number of studies 
have used multilocus data to document mating patterns 
within populations. Specifically, such studies have sought 
to measure the number of sires contributing to a sibship 
(e.g., Hanken and Sherman 1981; Ellstrand and Marshall 
1986; Brown et al. 1986), the distances among successful 
mates within a population (e.g., Neale 1983; Hamrick and 
Schnabel 1985; Meagher 1986), the relative male fitnesses 
and/or functional gender of bisexual individuals (e.g., 
Muller-Starck and Ziehe 1984; Schoen and Stewart 1986; 
Cheliak et al. 1987; Ennos and Dodson 1987), the role of 
phenology on mating success (Ennos and Dodson 1987) 
and the rate of interpopulational gene flow by pollen (e.g., 
Ellstrand and Marshall 1985; Smith and Adams 1983; 
Friedman and Adams 1985). 

In any paternity analysis, it is important to distin- 
guish between the problem of paternity assignment where 
interest is focussed on the likelihood of a single triplet of 
progeny, mother and putative male parent (e.g., human 
paternity analysis) and that of paternity assignment for 
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populations, where the objective is to discern the popula- 
tional patterns of paternity (or mating patterns). A num- 
ber of methods have been used to identify populational 
patterns of paternity when the identity of the mother is 
known. Simple exclusion techniques (Ellstrand 1984; 
Hamrick and Schnabel 1985) compare the multilocus 
genotype of the progeny with that of its female parent, 
subtract the maternal contribution, and compare the 
remaining paternal gametic contribution with all possible 
local fathers' genotypes. Those individuals who could not 
have produced the appropriate multilocus gamete are 
excluded, and one or more individuals are assigned as 
possible parents. 

Another method (Meagher 1986; Meagher and 
Thompson 1986, 1987), which we call the "most-likely" 
method, is a direct extension of the theory developed for 
inference of human paternity (e.g., Smouse and Chakra- 
borty 1986 and references therein). In this method, the 
likelihood of paternity for each potential male parent, 
given the female parent and her progeny, is calculated 
based on segregation probabilities - paternity is assigned 
to the male parent with the highest likelihood value. If 
there is no most-likely male parent (ties), no father is 
assigned. This method should provide more information 
than the simple exclusion method because paternity can 
generally be assigned for more progeny. 

A third method, which we term the "fractional meth- 
od" (Brown et al. 1985) and develop later, calculates pa- 
ternal likelihoods in the same way as the most-likely 
method. However, the fractional method assigns pater- 
nity of a progeny to one or more non-excluded male 
parents, the fraction assigned to any particular male pa- 
rent being proportional to its likelihood of paternity rela- 
tive to all other male parent likelihoods. Consequently, in 
contrast to the most-likely method, paternity will be as- 
signed for all progeny, although some progeny will not be 
assigned a single father. 

An alternative approach is to not assign progeny to 
fathers in any manner (fractional or otherwise), but to 
model the probability structure of the entire sample of 
offspring simultaneously, determining the most likely fer- 
tility parameters that would have generated such a sam- 
ple. Similar genetic problems have been modeled in this 
fashion (e.g., Elandt-Johnson 1971). Schoen and Stewart 
(1986) apply this approach to analyze fertilities of gymno- 
sperm populations, modeling the fertilities as a series of 
linear equations. Roeder etal. (1988) generalize this 
approach of modeling fertilities using the set of progeny 
genotypes, presenting exact likelihood models for three 
cases: the estimation of male fertilities when the maternal 
parent is known and the fertility parameters depend upon 
or are independent of the maternal parent and the estima- 
tion of fertilities when neither parent is known. 

In this study, we develop the fractional method for 
two situations: (1) where there is no linkage among the 

marker loci; and (2) where some of the marker loci are 
linked. In the latter case, we show how the linkage phase 
of hermaphroditic individuals can be determined by 
progeny testing and how these data can be used to refine 
the paternity assignment. We compare the performance 
of the fractional method to the most-likely and simple 
exclusion methods through simulation analysis. We dem- 
onstrate that the efficacy of all methods improves with 
the exclusion probability of a given population, that the 
fractional method is the most appropriate of the three 
methods for determining mating pattern parameters in 
populations, and that knowledge of linkage phase further 
improves assignment. 

General background 

The exclusion probability and its significance 

The power of any paternity exclusion method depends on 
the exclusion probability of a given population and its 
loci under study. Consider a female parent of genotype 
aa, one of her progeny of genotype Aa, and a set of M 
potential male parents from the population (sexually ma- 
ture individuals that are either functionally male or her- 
maphroditic). If the allele frequencies of A and a are p and 
q for a population in Hardy-Weinberg equilibrium, then 
the paternal genotypes AA, Aa and aa are expected to 
occur in M*p  2, M* 2pq and M*q 2 potential male pa- 
rents. Given this scenario, it is clear that on the average 
M* qZ potential male parents (genotype aa) can be ex- 
cluded as fathers for this particular female parent and 
progeny pair. This leads to the definition of a population 
statistic, the exclusion probability for a population for 
the locus or loci under observation, defined as the ex- 
pected value of an indicator of exclusion, I, where 

1 if a randomly selected male parent is excluded 
I = from a randomly selected female parent and proge- 

ny pair, 0 otherwise. 

Since 

P ( I = I ) =  Z P ( I = 1 & 6 t , 8 2 )  
all pairs 

where (61, 62) denote the genotypes of a mother and 
progeny pair respectively. If follows that the expected 
value of exclusion is calculated as 

= Z P ( I = l I 6 1 , 8 2 ) P ( 8 2 1 8 1 ) P ( 6 0  (1) 
all pairs 

(Neel and Schull 1954; Selvin 1980). For the single locus, 
2 allele case, the exclusion probability is given by 

e i = pq(1 - -pq)  (2) 

and the exclusion probability for a set of n loci by 

= 1 -  f i  ( 1 - - e i )  (3) 
i = l  
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(Ryman and Chakraborty 1982). An equivalent empirical 
calculation consists of summing the number of male pa- 
rents in the population that can be excluded for each 
observed female parent and progeny pair and dividing by 
the total number of observed pairs. 

The exclusion probability increases with the number 
of loci that can be used as genetic markers, with the 
number of alleles at each locus and with the evenness of 
the allele frequency at each locus (Chakraborty et al. 
1974; Selvin 1980; Ryman and Chakraborty 1982; 
Smouse and Chakraborty 1986). However, the relation- 
ship exhibits a diminishing marginal return. 

The importance of exclusion probability to paternity 
assignment is that an increase in the exclusion probabili- 
ty increases the probability of paternity among the set of 
non-excluded male parents (Smouse and Chakraborty 
1986). This fact can be illustrated by example. Consider 3 
populations, each containing 40 potential male parents 
but having different exclusion probabilities, say 0.5, 0.7 
and 0.9. Then, on average, the number of non-excluded 
male parents for a progeny will be 20, 12 and 4, respec- 
tively, for the 3 populations. Clearly, the likelihood of 
choosing the correct non-excluded male parent of the 
progeny increases when the number of non-excluded 
male parents decreases. In the extreme case, as the exclu- 
sion probability approaches 1, most progeny can be as- 
signed exclusively to a single male parent in the popula- 
tion. 

The simple exclusion procedure of paternity analysis 
considers the paternity of progeny assignable only in 
cases with a single non-excluded male parent. This class 
of progeny, however, will be relatively infrequent. For the 
example above with a population size of 40 and a rela- 
tively high exclusion probability of 90%, approximately 
30% of the progeny are assignable. We will demonstrate 
later that this level of assignment is not sufficient to derive 
accurate population statistics on mating patterns. Conse- 
quently, it is usually necessary to use other methods to 
determine the likelihood of paternity. 

Human paternity analysis 

Most of the theory of paternity assignment based on 
likelihood has been developed for application to human 
populations where a particular male is accused of pater- 
nity (Thompson 1986; Smouse and Chakraborty 1986 
and references therein). We will briefly review the theory 
for human paternity analysis herein because it is perti- 
nent to the theoretical development of methods to deter- 
mine the patterns of paternity for natural populations. 

Consider a triplet of female parent i (FP0, putative 
male parent j (MPj), and offspring k (Ok) with vectors ai, 
fl~, and Vk denoting their respective multilocus genotypes. 
Let i and j be indices that range over the individual 
parents, but let k index the distinctive offspring geno- 

types. The likelihood of putative male parent j being the 
actual father is generally formulated as the posterior odds 
of paternity versus non-paternity given the available ge- 
netic information, call it 2j. 

P (ai, J~j, ~k [ paternity) 
25 = P (~, fl~, Vk [ non-paternity)" (4) 

Assuming random mating and independent loci, the con- 
ditional probabilities can be rewritten as 

2j = P (fli) P (0q) T (?k [ 0r ]~j ) 
P(flj) P(~i) T(~k l Ul) ' (5) 

where T denotes the transition (Mendelian) probabilities 
of the child's multilocus genotype given either the mother 
and putative father's multilocus genotype (numerator) or 
that of the mother and a random draw of complementary 
alleles from the population (denominator), and P( . )  
denotes the probability of that multilocus genotype for 
the population. The method of calculating these transi- 
tion probabilities is well known, particularly when loci 
assort independently. With simplification, 

T (~k I cq, flj) (6) 
, t j -  T(rkla~) 

The decision on paternity (versus non-paternity) is then 
usually based on some arbitrary threshold value for the 
likelihood ratio (Valentin 1980). 

Modification to populational patterns of paternity 

Theory 

To analyze the patterns of paternity of a natural popula- 
tion, we assume that the genotypes of all parents are 
known. Further, we assume that a set of progeny have 
been collected from either a sub sample of mothers or the 
entire set of mothers in the population, and that the 
multilocus genotype of each progeny has been deter- 
mined. Ideally, we would like to know the number of 
offspring fathered by MPj on FP~, denote this number F~. 
The information we have for estimating this is the num- 
ber of offspring of each genotype (~k) from this female 
parent, call it Xik. 

We argue, developing the fractional paternity ap- 
proach suggested by Brown et al. (1985), that Fij should 
be estimated by 

Fij = Z Xik P ( M P = j  I FP =i, 0 = k ) .  (7) 
k 

Equation (7) can be generalized to matrix form. Let $], = 
(~il,  ~i2 . . . .  Elm) denote the number of offspring from FP~ 
fathered by each of the male parents. Suppose we have 
M male parents and b i distinct offspring genotypes. 



372 

Let P~ equal an M by b~ matrix containing elements 
P (MP =j  I FP = i, 0 = k), where each column is this proba- 
bility for each MP for a fixed ~'k, and each row this 
probability for each 7k for a fixed MPj. In addition, let 
Xi=(Xi l  , Xi2 . . . . .  Xibi). Then 

Fi = Pi Xi,  (8) 

E [f'~ ] = Pi E [X~], and (9) 

cov (F i) = P'i coy (X i ) Pi. (10) 

Since X i has a multinomial distribution, we can estimate 
the covariance matrix in the usual way. 

It remains to estimate the conditional probability that 
the putative male parent is the actual male parent, given 
the female parent and the multilocus genotype of the 
progeny. Using Bayes Theorem, we get 

P (MP =j* I FP = i, 0 = k) 

P ( 0 = k I F P = i ,  MP =j*) P ( M P = j * I F P = i )  
= ( 1 1 )  

E P (0 = k l FP = i, MP =j) P (MP =j I FP = i)" 
J 

We can rewrite the term P ( 0 = k l F P = i ,  M P = j )  as 
T (Tk 17i, flj), the transition probability of the offspring 
genotype given the multilocus genotype of the female 
parent and putative male parent. 

P (MP =j* IFP =i, 0=k)  

T(Tkl~ i, flj,) P ( M P = j * [ F P = i )  
(12) 

)Z T (Tk I cq, flj) P (MP =j I FP = i) 
J 

The term P (MP = j l F P  =i), however, is not easily dis- 
missed. Let us assume that P (MP =j IFP=i )  is constant 
for all j (we will justify this shortly). We can then show 
that (11) is identical to the usual likelihood ratio of pater- 
nity versus non-paternity for male parent j divided by the 
sum all potential paternal likelihood ratios. 

, ~ j . -  I T  (Tk ] cq, f l j* ) l /~  r (Yk I Cti, flj) 
"~)~j r (~k]~  5 j~" r(~k[ ~i) 

_ T(Tk[~i,flj.) _ p ( M P = j . i F P = i ,  0 = k ) .  
'~ T(Tk[~i, flj) 
J 

(13) 

The term P ( M P = j I F P = i )  is not usually included or 
discussed in human paternity analysis or in studies of 
paternity patterns in natural populations, although an 
understanding of this term is important for the latter case. 
This term can be thought of as the prior probability of 
paternity, encompassing all of the ecological/genetic pa- 
rameters of the population that make certain individuals 
more or less likely to be the male parent of a particular 
FP's progeny. In plant populations, for instance, it is 
generally assumed that near neighbors of FPi have a 

much greater probability of siring seed than distant indi- 
viduals of the same population (the result of leptokurtic 
pollen movement; Levin and Kerster 1974). Consequent- 
ly, if the assumption of limited pollen dispersal is correct, 
then a priori, male parents closest to FP~ are more likely 
to father FP~'s seed than distant male parents; this 
information would be accounted for in the term 
P (MP =j I FP = i). Likewise, differential attractiveness 
among males (Trivers 1985 and references therein), differ- 
ential pollen fertility (Devlin and Stephenson 1987) and 
the like would affect this prior probability. Hence, al- 
though most studies to date assume that the population 
is a random mating population in which the paternal 
probabilities are equal, as we will, the assumption is 
clearly not accurate. 

We justify the assumption that P ( M P = j  I F P = i )  is 
constant for all j with two arguments. The first and most 
obvious argument is that there are little to no data on 
these prior probabilities; consequently, we do not know 
what probability density function maps the paternity 
probabilities to the pertinent ecological/genetic variables 
nor, for that matter, what the pertinent variables are. The 
second argument is that a major goal of analyzing pat- 
terns of paternity in natural populations is to identify the 
pertinent variables that affect this prior probability. 
Hence, it would be circular to assume a certain functional 
relationship for an ecological parameter like inter-parent 
distance and then perform the paternity analysis with the 
goal of ascertaining the effects of inter-parent distance. 

The distinction between the fractional paternity ap- 
proach we have just developed and the most-likely pater- 
nity approach developed by Meagher (1986) and 
Meagher and Thompson (1986) is straightforward. In our 
method, some proportion of the seed of genotype Yk from 
FP~ are assigned to each potential male parent; only the 
set of non-excluded male parents receive a fraction 
greater than 0. For the set of non-excluded male parents, 
the fraction of Xik assigned to MPj is proportional to its 
likelihood of paternity relative to the sum of non- 
excluded male parents' likelihoods. In the most-likely 
method, however, all seeds of 7k from FPi (i.e., Xik ) are 
assigned to the MPj with the greatest likelihood of pater- 
nity; specifically, assign Xik to MPj, if and only if 
Y (Yk I 0~i, flj* ) > T (7k I ~i, flj ), J* # J, over the set of all poten- 
tial male parents. Moreover, in the case where there is no 
"most-likely" potential male parent, Xik is not assigned 
while all seed are assigned in the fractional method. 

We argue that the most-likely method, as formulated 
above, embodies a bias in that the most-likely paternal 
parent will always be that individual in the population 
that has the highest number of loci homozygous for the 
necessary paternal gamete contribution that comple- 
ments the maternal contribution for a particular 7k- We 
can illustrate this fact with a simple example. Consider a 
random mating population of 4 individuals, 3 male and 
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1 female. The 3 males have genotypes AA, Aa and aa. The 
female of genotype AA will produce progeny of geno- 
types AA and Aa in equal proportions. In the most-likely 
method, all AA progeny are assigned to the male with 
genotype AA although, all other things being equal, the 
male of genotype Aa would have fathered 0.33 of these 
progeny. Additionally, all progeny of genotype Aa are 
assigned to the male of genotype aa, although again the 
male of genotype Aa would have fathered 0.33 of the 
progeny. Hence, the most-likely method is biased even 
when the model assumptions are met. While this problem 
of bias is ameliorated with multilocus paternity estima- 
tion, we demonstrate from simulation results (below) that 
the estimator remains biased in the multilocus case. 

In Appendix 1, we demonstrate that the fractional 
method is unbiased only if the model assumptions are 
met, and how a bias is introduced when these assump- 
tions are violated. This bias is minimized with greater 
genetic information and with larger samples of progeny. 

Simulations 

The relative abilities of the simple exclusion, most-likely 
and fractional methods to determine the patterns of pa- 
ternity of a population were evaluated with a simulation 
analysis. In this analysis, 48 hermaphroditic individuals 
functioned as both male and female parents but individu- 
als were self-incompatible. Eleven independent loci were 
used as genetic markers, with 2 - 4  alleles per locus; this 
variation is similar to natural systems in which paternity 
has been assessed (e.g., Meagher 1986). Each individual 
produced 60 progeny as a female parent. Paternity of 
each progeny was assigned randomly to one of the 47 
potential paternal parents, with all potential male parents 
having 1/47 probability of being chosen. After assign- 
ment, the multilocus genotype of this progeny was pro- 
duced by randomly choosing 1 of the 2 alleles from the 
maternal and paternal parent for each of the 11 loci; each 
allele at each locus had a 0.5 probability of being chosen. 
The program kept track of each value of F~j, i.e., the 
number of progeny of maternal parent i fathered by pa- 
ternal parent j. 

With the progeny and parental data sets, ~'~j was 
determined for each of the three paternity assignment 
methods. From these data, two mean square error statis- 
tics (MSE) were calculated. The first MSE statistic used 
the squared difference between F~j and ~j,  specifically 

MSE~ = ~ \ N A  F i j - - F i j  M(M--1).  (14) 

Note that ~'~j was adjusted by a scaling parameter 
(2880/NA), where NA equals the number of progeny 
assigned by a particular method. Recall that both the 
simple exclusion and the most-likely methods do not 
generally assign all progeny. This scaling parameter 

made the three methods comparable and, if assignment 
for either method was incomplete but proportionately 
correct, then MSEoM = 0. The second MSE statistic used 
the squared difference between the estimated total proge- 
ny fathered by each individual and the actual number, 
specifically 

LT.,t  <:15) 
The subscripts of the mean square statistics are acronyms 
chosen to represent possible applications of the particu- 
lar estimator. In plant population genetics, values for ~'ij 
would generally be used to evaluate realized gene move- 
ment (GM) by pollen and ~ ~'ij, paternal reproductive 

success (RS). In essence, these MSE statistics tell us the 
relative abilities of the three methods to track the values 
of these variables for a population. 

We replicated the above procedure 20 times. For 5 of 
the replications, parental gene frequencies were adjusted 
to achieve an expected exclusion fraction of 0.7, and 
likewise 5 replications each for expected exclusion frac- 
tions of 0.8, 0.9 and 0.96. Because parental alleles were 
assigned randomly for each replication (with the restric- 
tion placed on gene frequency), the actual exclusion frac- 
tion varied slightly from their expected values. 

In every replication, the minimum MSE6M and the 
minimum MSERs were produced by the fractional pater- 
nity method (Figs. 1 and 2). Consequently, we concluded 
that the fractional approach is the most appropriate of 
the three methods when all of the assumptions are met. 
We noted that the square root of the MSE's overestimates 
the mean difference between F~j and ~j. For instance, the 
average difference between ~ Fij and ~ ~j over all repli- 

i i 
cations with an expected exclusion fraction of 0.96 was 
3.06, 10.22 and 21.17 for the fractional, most-likely and 
simple exclusion methods, respectively. 

We performed a second set of simulations in which we 
violated the assumption of equal male parent fertility 
(holding female fertility constant). In this simulation, 10 
individuals out of the 48 were chosen to have twice the 
male fertility; that is, they were twice as likely to father 
progeny than the remaining 38 hermaphroditic individu- 
als. In addition, we restricted the range of expected exclu- 
sion fractions to 0.96 and 0.90, because we felt that the 
genetic information for a population of 48 individuals 
with exclusion fractions of 0.8 and 0.7 would not be suffi- 
cient to track the population patterns of paternity. Ex- 
cept for these changes, the structure of the simulations 
remained as described above. 

In 9 of 10 replications, the minimum MSEoM was 
produced by the fractional method, while in I replication, 
the fractional and most-likely methods produced equal 
values (Fig. 3). In every replication, the minimum MSERs 
was produced by the fractional paternity method (Fig. 4). 
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Fig. 1. The relative performance of the fractional (o), most- 
likely (A) and simple exclusion (o) methods of paternity assign- 
ment in relation to the population's exclusion fraction. All loci 
assort independently and model assumptions are satisfied. 
Smaller values for this MSE statistic (GM) indieate greater accu- 
racy in the estimation of the number of progeny of each female 
parent fathered by each male parent in the population. Each 
point represents a separate simulation run. Note that most 
points for the simple exclusion method are out of range on the 
Y-axis 
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population's exclusion fraction. All loci assort independently but 
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twice the fertility of the remaining 38 male parents. See caption 
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population's exclusion fraction. All loci assort independently but 
the model assumptions are violated, that is, 10 male parents have 
twice the fertility of the remaining 38 male parents. See caption 
of Fig. 2 for the definition of MSE (RS). Each point represents a 
separate simulation run 

Moreover ,  the fractional paterni ty  method tracked the 
pat terns  of paterni ty  quite well; for instance, the average 
difference between ~ F  u and Z l~ij was 8.5. The other 

i i 

methods  produced  considerably greater values. While the 
fractional paterni ty  method revealed a reasonably accu- 
rate pat tern  of paternity,  the violat ion of the model  as- 
sumpt ion  of equal paternal  fertilities increased the MSE 
substant ial ly (Figs. I and 2 versus Figs. 3 and 4). 

Summarizing this section, we i l lustrated a method of 
analyzing popula t iona l  pat terns  of paternity,  namely the 
fractional paterni ty  method.  We showed that  the perfor- 
mance of this measure is superior  to other suggested 
methods  of paterni ty  analysis when the objective is to 

determine populat ional  pat terns of paternity. The weak 
performance of the simple exclusion method is the result 
of limited assignment of paternity;  those assignments 
that  occur do not  accurately reflect popula t ional  pat terns  
of paterni ty (Figs. 1-4),  but  rather are biased to identify 
potential  male parents with unusual alleles and unusual 
combinat ions of maternal /paternal  gametes. While the 
foregoing is less true for the most-l ikely method,  that  
method also suffers from the addi t ional  bias that  highly 
homozygous potential  male parents are overrepresented 
as the chosen most-l ikely male parent. This assertion is 
suppor ted  by the simulation results. Using a nested anal- 
ysis of variance with dependent  variable, MSERs, and 
independent  variables, "exclusion fraction and the num- 



ber of homozygous loci per MPj nested in the exclusion 
fraction", the later variable accounted for 12.7% of the 
variance (F = 10.93; p < 0.0001). 

While fractional assignment minimizes the difference 
between the estimated and actual paternity values rela- 
tive to the most-likely and the simple exclusion methods, 
the technique is only as powerful as the genetic informa- 
tion in the population, specifically the exclusion fraction 
(Figs. 1-4). Moreover, we emphasize that the genetic in- 
formation must also be considered in light of the number 
of potential male parents. In addition, while the fractional 
assignment is unlike the simple exclusion and most-likely 
methods in that its estimates are unbiased when assump- 
tions of the model are met, its estimates are also biased 
when the assumptions are violated. In this case, the frac- 
tional method consistently underestimates F~j for high 
fertility males. For hypothesis testing, this bias could be 
argued to be conservative since the null hypothesis would 
generally be that there are no differences among individu- 
als in male fertility. Consequently, it is more difficult to 
reject the null hypothesis when the estimated values are 
lower than the true value for individuals who are truly 
more male fertile. There is, however, another and more 
troublesome issue. The variance estimates [Eq. (10)] will 
now also underestimate the true variance. This aspect of 
the problem and the general experimental design of pa- 
ternity studies are a focus of our current research. 

The effects of linkage on paternity assignment 

Theory 

To appreciate the effect of linkage on paternity analysis, 
recall that the key element in the estimating equation is 
the transition probability. When loci are linked, alleles at 
the linked loci do not segregate independently, and hence 
linkage has an effect on the transition probabilities for 
each pair of parents in the population (Chakraborty and 
Hedrick 1983). The transition probabilities for the linked 
loci will depend on which alleles are associated on the 
parental chromosomes, termed the linkage phase. To cal- 
culate the transition probabilities, we treat the linked loci 
as a pseudolocus. Given the pseudolocus construct, two 
linked loci, each with 2 alleles, would be considered a 
single pseudolocus with 4 possible alleles, say AB, aB, Ab 
and ab. Call the probability of recombination for this 
locus pair r. For a heterozygous individual with linkage 
phase Ab/aB, the gametes Ab, aB, AB and ab are pro- 
duced by this individual with probabilities 0.5 ( 1 -  r), 0.5 
( l - r ) ,  0.5r and 0.5r. 

In general, if we have 1 loci involved in the pseudo- 
locus construction there are 21 possible gametes, but if the 
parent is homozygous at any locus then some of the 
gametes are not distinct. Let ~ (~) and 9)1 (/3) denote the 
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set of possible gametes formed by the female and male 
parents of genotypes ~t and p respectively (note that in 
this section ct and fl represent not only the genotypes, but 
also the linkage phase of the parents.) Let q~ and p repre- 
sent particular elements in ~ and ~ and let Pf (~) and 
PC (#) denote the probability densities for the elements in 

and ~0/, respectively. The transition probability for a 
triplet (Yk, cq, flj) can be calculated as 

T(Tk[~i,flj) = Z E Pf(~)Pm(P)I(7) (16) 
~p ~(~) ~ ( # )  

where I (y) = 1 if the two gametes ~b and # can combine to 
form an offspring of genotype ~k, and 0 otherwise. 

As an example, consider 2 linked marker loci with 
r = 0.1, a female parent of genotype AABB, her progeny 
of genotype AaBb and two potential male parents: MP 1 
with genotype Ab/aB and MP 2 with genotype ab/AB. 
The female parent contributes gamete AB with probabili- 
ty 1. Thus ~ - -  {AB} and Pf (AB) = 1. Both potential male 
parents produce gamete sets 9J/= {AB, Ab, aB and ab}, 
but the probabilities of producing these gametes are re- 
versed. For MP 1 the respective probabilities P( . )  are 
0.05, 0.45, 0.45 and 0.05, while the respective probabilities 
for MP z are 0.45, 0.05, 0.05 and 0.45. T(AaBb[AABB, 
Ab/aB) = 0.05 and T (AaBb I AABB, ab/AB) = 0.45. It is 
apparent in this example that linkage can have a signifi- 
cant effect on the transition probabilities and hence on 
paternity assignment. Finally, the calculation of transi- 
tion probabilities for mixed linked and unlinked loci is a 
simple extension of the normal method; calculate the 
transition probabilities at each pseudolocus, then take 
the product of the independent groups as usual. 

Simulations 

The effect of linkage in the example above is apparent but 
its effects on the determination of populational patterns 
of paternity are probably less apparent. In order to illus- 
trate these effects, we performed a simulation analysis 
where 4 of the 11 marker loci were linked, with r = 0.05 for 
adjacent pairs of loci. Furthermore, genotypes were as- 
signed such that the population was in linkage equilibri- 
um. All other aspects of the simulation remained as re- 
ported in the previous section. In these simulations, two 
scenarios concerning knowledge of the assortment of the 
marker loci were developed: (1) that 4 of the loci were 
linked, that we had perfect knowledge concerning this 
linkage and about the linkage phase of all individuals in 
the population; and (2) that 4 of the loci were linked but 
that we had no information that this was the case. 

Because the simple exclusion technique is unaffected 
by linkage (unless there is no recombination), we ignored 
this method in the analysis. Moreover, because the frac- 
tional method is the most appropriate of the three meth- 
ods for the determination of populational patterns of 
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Fig. 5. The relative performance of the fractional method of 
paternity assignment in relation to the population's exclusion 
fraction - 4 of the t 1 marker loci are linked in the case. [] indicate 
values obtained when the method is modified to take this linkage 
into account and <, indicate values obtained when this informa- 
tion is either ignored or unknown. See caption of Fig. 1 for the 
definition of MSE (GM). Each point represents a separate simu- 
lation run 
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Fig. 6. The relative performance of the fractional method of 
paternity assignment in relation to the population's exclusion 
fraction 4 of the 11 marker loci are linked in the case. [] indicate 
values obtained when the method is modified to take this linkage 
into account and <, indicate values obtained when this informa- 
tion is either ignored or unknown. See caption of Fig. 2 for the 
definition of MSE (RS). Each point represents a separate simula- 
tion run 
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Fig. 7. The relative performance of the fractional method of 
paternity assignment in relation to the population's exclusion 
fraction - 4 of the 11 marker loci are linked and male parent 
fertilities vary as discussed in Fig. 3's caption. [] indicate values 
obtained when the method is modified to take this linkage into 
account and o indicate values obtained when this information is 
either ignored or unknown. See caption of Fig. 1 for the defini- 
tion of MSE (GM). Each point represents a separate simulation 
run 
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Fig. 8. The relative performance of the fractional method of 
paternity assignment in relation to the population's exclusion 
fraction - 4 of the 11 marker loci are linked and male parent 
fertilities vary as discussed in the caption of Fig. 3. [] indicate 
values obtained when the method is modified to take this linkage 
into account and o indicate values obtained when this informa- 
tion is either ignored or unknown. See caption of Fig. 2 for the 
definition of MSE (RS). Each point represents a separate simula- 
tion run 

paternity (theoretical and empirical results of the last 
section), we will not  present the results of the most-likely 
technique, except to make two points: linkage has an 
effect on the accuracy of the technique and, in all repli- 
cations of these simulations, the fractional paternity 
method proved to be more accurate than the most-likely 
method. With respect to the latter point, the magnitude 
of the differences between the two methods was similar to 
those of the previous section. 

The effects of prior knowledge of linkage versus no 
knowledge of linkage when the loci are linked can be seen 
in Figs. 5 and 6. Prior knowledge of linkage and knowl- 
edge of the appropriate linkage phase of each individual 
in the populat ion improve the accuracy of both estima- 
tors, as illustrated by the decrease in both the MSEcM 
and the MSEAs. Visually, it appears that the knowledge 
of linkage has its greatest effect on the accuracy of the 

estimators at higher exclusion fractions, although it has a 
strong effect throughout the range of exclusion fractions 
examined. The effect of the violation of the assumption of 
equal male fertilities, while still apparent in the increase 
in both MSE statistics (Figs. 7 and 8 versus Figs. 5 and 6), 
is somewhat ameliorated by the knowledge of the linkage 
phases of the individuals in the population. Finally, con- 
trasting the case when 4 of the 11 marker loci are linked 
and the linkage phases are known to the case when all 11 
marker loci are independent (Fig. 9), the former case 
leads to a significant improvement in the accuracy of the 
estimate of ~j .  

While we have demonstrated that the knowledge of 
linkage and the linkage phases for members of a popula- 
tion can contribute considerable accuracy to the deter- 
minat ion of populational patterns of paternity, it is not 
clear that this would necessarily be the case when the loci 
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Fig. 9. The relative performance of the fractional method of 
paternity assignment in relation to the population's exclusion 
fraction, t~ indicate values obtained when the method is modified 
to take into account that 4 of the 11 marker loci are linked and 
o indicate values obtained when all loci segregate independently. 
See caption of Fig. 1 for the definition of MSE (GM). Each point 
represents a separate simulation run 

are in linkage disequilibrium (Chakraborty and Hedrick 
1983). Linkage disequilibrium is defined as a lack of inde- 
pendence of loci for a population, regardless of whether 
the loci occur on the same chromosome. Consider the 
case of 2 loci in linkage disequilibrium, with 2 alleles at 
each locus (say A and a, B and b). Further, assume for 
simplicity that A is always found in association with b 
and a with B. Then, in this case, rather than 2 indepen- 
dent loci, each with two alleles or even a pseudolocus 
with 4 possible gametes, the 2 loci represent a single 
pseudolocus with only two possible gametes, reducing 
the expected exclusion fraction relative to the case of 
linkage equilibrium. Therefore, increased linkage disequi- 
librium makes all methods of paternity analysis increas- 
ingly inaccurate. 

Estimation of the linkage phase of hermaphrodites 

Theory 

We showed in the previous section that knowledge of the 
linkage of marker loci and knowledge of the individuals' 
linkage phases can significantly improve the measure- 
ment of populational patterns of paternity. It is reason- 
able to question, however, if one could ever obtain the 
necessary information on individual linkage phases. One 
could obtain the linkage phases of individuals in the 
usual way, by test crossing, although this may be more 
readily practicable for plant populations. Moreover, even 
in the case where the species is amenable to test-crossing, 
the effort involved would be formidable. In this section, 
we will demonstrate that this information is obtainable 
with little or no additional experimental effort if the spe- 
cies is hermaphroditic and each individual produces 
some progeny through the maternal function. Since ap- 

proximately 80% of the seed plant species are herma- 
phroditic (Yampolsky and Yampolsky 1922), this tech- 
nique should be particularly applicable to paternity stud- 
ies of these species. 

Suppose we have collected N offspring from a plant 
and we are interested in estimating the linkage phase of 
a pair of loci where each locus has 2 possible alleles (say 
A and a, B and b) and the recombination probability is 
r. Define nab, n a, n b and n as the number of offspring 
homozygous at both, only the first, only the second, and 
neither locus, respectively. We note that only for the latter 
class of progeny is the linkage phase of the progeny un- 
known. For completely homozygous progeny, we recog- 
nize only 4 linkage phases (AB/AB, Ab/Ab, aB/aB and 
ab/ab), but for the two single homozygote progeny geno- 
types, we recognize two linkage phases for each genotype 
(Ab/AB and aB/ab; AB/aB and Ab/ab). Finally, we can 
not meaningfully sub-divide the double heterozygote 
class. Let 1 denote the linkage phase of an offspring and 
X l denote the number of offspring of each phase (e.g., 
XAB/~B ). 

Let g denote the "gamete" (with respect to the linked 
loci) donated by the male parent. P (g) is the probability 
of this gamete from the population. Assuming gametic 
equilibrium, P ( A B ) = p l .  p2, where pl  and p2 are the 
population gene frequencies of the A and B alleles at the 
respective loci. Further, let Yg be the unknown number of 
gametes of type g contributed by the female parent to the 
progeny. Suppose that FP~ has a linkage phase Ab/aB, 
then FP~ will contribute gametes Ab and aB with proba- 
bility 0.5 ( 1 - r )  and gametes AB and ab with probability 
0.5 r. Then the AB maternal gametes will appear as AB/ 
AB, Ab/AB, aB/AB and ab/AB offspring with probabi- 
lities 0.5rP(AB), 0.5 ( 1 -  r) P(Ab), 0 .5(1- r )P(aB)  and 
0.5 rP (ab), respectively. The data we have are the number 
of progeny in each distinct genotype class. Recall that the 
linkage phase of each genotype is known (except the n 
double heterozygotes). Let X = ( X A B / A  B . . . . .  XAb/ab,  n). 
Note that X has a multinomial distribution where the 
probability of each progeny genotype can be determined 
under the presumed linkage phase of FP (see Fig. 10). In 
Fig. 10 we see, for instance, that if the mother is in the 
repulsion phase the probability of an Ab/AB progeny is 
0.5 rP (Ab) + 0.5 (1 - r) P(AB). Furthermore, the expected 
number of progeny for each genotype changes with the 
postulated linkage phase of the mother. 

Using this model, we get the likelihood ratio of cou- 
pling versus repulsion by finding 

L (coupling ] X = Z) P (x = g ] coupling) 
= 

A = L (Repulsion I x = Z) P (X = g I Repulsion) (17) 

This expands to 

FPr Pc (Ab/aB)l" ]- [ FPc (1)] X' 
a = L ~ ~ - ; ~  ] ,~. L p ~ _  ] (18) 
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Fig. 10. Mapping of the expected number of progeny of each 
genotype under the presumed linkage phase of the mother 
(repulsion for this diagram). See text for definitions of the sta- 
tistics 

where Pc (1) (P' (1)) is the probability of the progeny's 
genotype being in linkage phase 1 (1 e H) when FP is 
in the coupling (repulsion) phase, and H is the set of all 
known linkage phases of the progeny (one/two homozy- 
gous loci). Decision: 

A >> 1 coupling phase 

A ~ 1 repulsion phase 

A - 1  phase unclear. 

The smaller r is, the more information we find in A and, 
obversely, as r approaches 0.5, the determination of the 
proper linkage phase becomes more difficult (at r=0.5, 
A = 1, always). This fact, however, is not troublesome 
since the information contained in, and the effects of, 
linkage is greatest for small r and must go to 0 as r goes 
to 0.5. Also, when the alleles are all equally likely, Eq. (18) 
reduces to 

(1 r r)(X,,/A, +Xab/,b, ( r  ~(XAb/*U +X,b/,b, 

\i~-U 
which behaves as we would expect. If we find many off- 
spring in the coupling phase the first term is large and 
dominates, suggesting that FP is in the coupling phase. If 
a larger number of offspring are in the repulsion phase, 
the second term is extremely small and dominates, sug- 
gesting that FP is in the repulsion state. Consequently, in 
this special case of equal gene frequency, only the homo- 
zygous offspring offer any information. 

If there are more than two loci in the linkage group, 
linkage can be determined in a pairwise manner. Since 
the order of the loci on the chromosome will generally be 
ascertained by some previous genetic analysis, this proce- 
dure is straightforward. Also, if more than two alleles are 
possible at the loci, the method can be extended directly. 

Simulations 

We examined the performance of this procedure for de- 
termining the linkage phase with the simulated data sets 

described in the previous section (expected exclusion frac- 
tions of 0.8, 0.9 and 0.96 only). After creating progeny 
arrays for each female parent with female and male pa- 
rent's linkage phases taken into account, we then esti- 
mated each of the 48 hermaphrodite's linkage phase for 
the 4 linked loci, using the procedure outlined above. 
Recall that each hermaphrodite produced 60 progeny 
and that the recombination probabilities were 0.05 for 
each adjacent pair of loci. For these conditions, all link- 
age phases of all possible locus pairs were assigned cor- 
rectly (4320/4320). 

Discussion 

In this paper, we develop a likelihood approach to ascer- 
tain populational patterns of paternity. In this method, 
some fraction between 0 and 1 of the progeny of a partic- 
ular genotype from a female parent is assigned to each 
potential male parent, with the fraction calculated by 
dividing likelihood of paternity for each male parent by 
the sum of all male parents' likelihoods. We show that 
this method is superior to the most-likely and the simple 
exclusion methods. 

While our conclusions concerning the relative perfor- 
mances of paternity methods apply to any analysis of 
populational patterns of paternity, we should point out 
that there are numerous situations where none of these 
methods would be appropriate. For instance, in our 
study, all simulation analyses were performed using a 
population of 48 hermaphroditic individuals functioning 
as both female and male parents. As the simulations indi- 
cate, the ability to accurately estimate paternal reproduc- 
tive success is not very good at the lower exclusion frac- 
tion values (Figs. 2 and 4) and inaccuracy is exacerbated 
by violations of the model assumptions (e.g., Fig. 4). We 
note that while the fractional method minimizes the mean 
square error, it is always biased if individuals vary in 
fertility. If the purpose of the study is to determine if 
individuals in a population vary in fertility, then the frac- 
tional method is biased toward the null hypothesis, mak- 
ing it conservative. Moreover, the bias is predictable. On 
the other hand, under certain conditions, by considering 
the entire sample of progeny simultaneously, it is possible 
to obtain a Maximum Likelihood estimator of fertility 
(Roeder et al. 1988). Combining this approach with the 
fractional assignment of progeny (by using the fertility 
estimates as a prior) should lead to a better estimate of 
paternity. 

A. H. D. Brown (personal communication) has point- 
ed out that in those species where matings are known to 
be correlated, there is additional genetic information con- 
cerning paternal identity in the entire progeny array. 
Specifically, if we knew that all of the seed of a fruit were 
typically sired by one male parent, then the multilocus 
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genotypes of all progeny should be considered in the 
decision on paternal identity. This approach merits in- 
vestigation; it should be particulary useful in situations 
where multiple paternity is infrequent (e.g., plants that 
produce pollinia and certain insects, such as dragonflies). 

Our simulations also did not incorporate gene flow; 
recall that gene flow is defined as interpopulation gene 
movement. Gene flow is easily detectable when the suc- 
cessful paternal gamete could not be contributed by any 
member of the population (Ellstrand and Marshall 1985), 
but it is problematic when the gamete contributed by an 
individual from outside the population could also be con- 
tributed by an individual within the population. The 
problem of gene flow obscuring interpretations of the 
population patterns of paternity is made more severe by 
the fact that the boundary of a population is rarely cir- 
cumscribed with certainty�9 For instance, Ellstrand and 
Marshall (1985) examined gene movement among 
locationally-circumscribed populations of wild radish, 
finding conservative values of "gene flow" of 8 % - 2 0 %  
(conservative because they underestimated the actual 
value). While it could be argued that the values were too 
high to represent gene flow, they illustrated the impor- 
tance of knowing the actual boundaries of the population 
when the question of interest is the populational pattern 
of paternity. 

Experimental populations that are genetically struc- 
tured so that paternity and gene flow are unambivalent 
can be important tools by which the genetic parameters, 
such as effective population size and genetic neighbor- 
hood area, are delimited (Levin and Kerster 1974; Schaal 
1980; Levin 1981, 1983; Ennos and Clegg 1982; Handel 
1983). Data on neighborhood size will be essential in 
order to study populations with large numbers of individ- 
uals. Moreover, structured populations should permit 
evaluation of the effects of plant spacing, male parent 
attractiveness, flower production, degree of relatedness 
and intrinsic features such as pollen production on pater- 
nal reproductive success and intra-versus interpopula- 
tion gene movement. Of course, populations need not be 
structured to obtain much of this information if the exclu- 
sion fraction is relatively high or the population size is 
small so that the genetic information is sufficient to track 
patterns of paternity in natural populations. 

Appendix 

Theorem. If the assumptions of random mating and equal 
male fertility are met then ~j is an unbiased estimator of 
populational patterns of paternity, namely E[~j] 
= P (MP =j ] FP = i) • N, where N is the number of off- 

spring. Otherwise 

E [Fij] 

= N ~ {Z P (0 = k l MP =j, FP =i) P (MP =j  I FP =i)} 
k j 

~ P ( 0 = k I M P = j * ,  FP=i )  ~ 
�9 ( E P ( 0 = k l M P = j ,  F P = i ) ) "  (A1) 

Proof. First note that clearly, 

E [X i (~')l = N (P (0 = k I FP = i) (A 2) 

= N • P ( 0 = k I M P = j ,  F P = i )  P ( M P = j I F P = i ) ,  
J 

by the law of total probability and the multiplicative rule. 
By Bayes Theorem 

P (MP =j* I FP = i, 0 = k) (A 3) 

P (0 = k IMP =j*, FP = i) P (MP =j* I FP = i) 

Z P (0 =k l  MP =j ,  F P = i )  P ( M P = j  IFP--i)" 

From Eq. (7), 

E[~j] = X~ E[Xik] P ( M P = j  IFP=i ,  0 = k ) .  (A4) 
k 

Substituting in equations A 2 and A 3 we get 

E [Fij] (A 5) 

= N S~ {S~ P (0 = k l MP =j, FP = i) P (MP =j  I FP = i)} 
k j 

�9 ~ P ( 0 = k I M P = j * ,  S P = i ) P ( M P = j * I F P = i ) ~ .  

(3~ P (0 = k[ MP =j, FP = i) P (MP =j  I FP = i)) 

By cancellation this reduces to 

N ~ P ( 0 = k I M P = j * ,  FP=i )  P ( M P = j * I F P = i )  
k 

= N Z P(0=k ,  MP =j*l FP=i )  (A6) 
k 

by the multiplicative rule. Then by the law of total proba- 
bility this reduces to 

N P (MP =j* I FP =i) ,  (A 7) 

which was our claim. 
Thus, we can conclude that ~ is an unbiased es- 

timator of F~j, provided that we could estimate 
P (MP =j I FP = i, 0 = k) by equation 15. However, we de- 
termined that this was impossible except in the trivial 
case specified by our assumptions since it would require 
knowledge of the probability, P (MP =j  1FP = i), which is 
in fact unknown (and the parameter of interest)�9 Given 
the trivial case, this probability is constant over j and i 
and cancels out of our calculations�9 However, if we es- 
timate P ( M P = j  [FP=i ,  0=k)  by equation 8 as recom- 
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mended by the fractional method, we introduce the fol- 
lowing bias. 

E [~j] 
= N ~ {~2 P (0 = k IMP =j ,  F P  = i) P (MP = j  I FP  = i)} 

k j 

P ( 0 = k l  M P = J * '  F P = i ) . ~  

�9 [ ~  P (0 = k F M P  = j ,  F P  = i)J" (A 8) 

Now, the sums over j no longer cancel unless 
P (MP = j  I FP  = i) is a constant  over j. 
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