
Acta Informatica 11, 1 30 (1978) nn matim
�9 by Springer-Verlag 1978

A Synthesis of Several Sorting Algorithms

John Darlington
Imperial College of Science and Technology, Department of Computing and Control,
180 Queen's Gate, London SW7 2BZ, United Kingdom

Summary. We synthesise versions of six well known sorting algorithms from
a common specification using program transformation techniques. On the
way to the sorting algorithms we synthesise three algorithms for generating
permutations thus building up a family tree for the sorts exposing certain
relationships between them.

1. Introduction

Where do algorithms come from? Existing techniques of algorithm analysis by
and large treat algorithms as "pre-existing" immutable objects; in this paper
we investigate an alternative approach concentrating more on the origins of
algorithms. For a class of algorithms we study the nature of each algorithm and
their relationships to one another by attempting to synthesise the algorithms
systematically from a common high level definition of the task to be performed,
constructing a family tree of algorithms.

In this paper we look at the sorting algorithms, starting with a common
high level mathematical definition of what it means to sort an array or list we
synthesise six well-known sorting algorithms: Quick Sort, Merge Sort, Insertion
Sort, Selection Sort, Exchange Sort and Bubble Sort.

This approach has grown out of our work on automatic program transfor-
mation and synthesis, and while we admit that the mechanisation of the syntheses
detailed here is impracticable at present, this approach has strongly influenced
our methodology. The basis for each synthesis is a small set of formal program
transformation rules and a set of reduction rules for set expressions. We aim
to divide the syntheses into (i) the mathematical kernels, the key reductions
that allow the synthesis to proceed and are the basic ideas behind each algorithm
and (ii) a lot of trivial, obviously correct, applications of the program transfor-
mation and set reduction rules. Thus the syntheses could be machine checked
if not machine generated, and we hope that our mechanical approach will high-
light the decisions and mathematical facts that lie behind each algorithm.

0001-5903/78/0011/0001/$06.00

2 J. Darlington

This constructive approach to algorithm analysis and design has been ad-
vocated by Dijkstra, [4] and others. We differ mainly in adopting a more mathe-
matical approach, in particular a more mathematical programming language,
and in attempting to cover a whole class of algorithms. Manna and Waldinger
in their work on automatic programming [-6] have independently developed
rules similar to our program transformation rules and we have benefited greatly
from interactions with them, as we have with members of Cordell Green's auto-
matic programming group who have developed a totally rule-driven system that
is able to automatically generate several sorts [5].

In Sect. 2 we use a small example to illustrate our style of high level definition,
target programming language, program transformation rules and set reduction
rules. In Sect. 3, we describe the notation needed for the synthesis of the sorting
algorithms. Sect. 4 gives an outline of the structure of the syntheses and Sects. 5
and 6 contain the detailed syntheses.

The style of language we use and the program transformation rules are
described fully in Burstall and Darlington [1] and their application to program
synthesis is outlined in Darlington [3].

2. Basic Rules and an Example of Synthesis

In this section we give the program transformation rules and the basic set reduction
rules we will use. Our language is a simple equational one. At the top, definition,
level the right hand sides will consist mainly of set and predicate logic constructs
while at the target language level the right hand sides will be recursively defined
expressions.

2.1. Program Transformation Rules

Given a set of equations we may add to them using the following inference rules.

(i) Definition. Introduce a new recursion equation whose left hand expression
is not an instance of the left hand expression of any previous equation.

(ii) Instantiation. Introduce a substitution instance of an existing equation.

(iii) Unfolding. If E ~ E' and F ~ F ' are equations and there is an occurrence
in F' of an instance of E, replace it by the corresponding instance of E' obtain-
ing F" then add the equation F ~ F " .

(iv) Folding. If E ~ E ' and F ~ F ' are equations and there is some occurrence
in F' of an instance of E', replace it by the corresponding instance of E obtain-
ing F", then add the equation F ~ F".

(v) Laws. We may transform an equation by using on its right hand expression
any laws we have about the primitives obtaining a new equation.

The new equations obtained by these rules may be taken as a definition of
the function appearing on the left provided we take a disjoint and exhaustive set

A Synthesis of Several Sorting Algorithms 3

of them (the notion of disjointness and exhaustiveness depend on the data
domain; we do not attempt an explicit definition but they are clear enough for
integers, lists and sets).

In the above rules unfolding corresponds to the symbolic evaluation of
recursively defined functions. In the case where we have set-constructs on the
right hand side that have no immediate expansion, we use a set of reduction
rules for such constructs which we give below. These are used via rule (v).

The novel rules is (iv), folding. This is the way that new recursions are intro-
duced into a system of equations. We use this rule to replace non-executable
set-expressions by recursively defined functions. A set-expression on the right
hand side of an equation is reduced until an appropriate instance re-occurs
and folding is then used to introduce a recursion.

2.2. Basic Set Reduction Rules for Set-Expressions

The following reduction rules are used repeatedly. Other reduction rules also
used will be detailed when needed. The form of the rules will be set-expression~
set-expression indicating that the expression of the left hand side can be reduced
to the expression on the right.

(i) Membership
RM1 {f(x)lxeq5 and P(x)}
RM2 {f(x)lxes+Sand P(x)}

RM3 {f(x)lx~S1 uS2 and P(x)}

(ii) Subset
RS1 { f(X)IX ~_eb and P(X)}

RS2

{f(s)} ~ {f(x)lx~ S and P(x)} if P(s)
{f(x)lxeS and P(x)} otherwise

(s + S is {s} ~ S)
{ f(x) lx e $I and P(x)}

u {f(x)lx~S2 and P(x)}.

{~} if P(~)
otherwise

{f(X)lXc_s+S and P(X)} ~ { f (X) I X z S and P(X)}
w {f(s+X)IX~_S and P(s+X)}

RS3 {f(X)IX~_S1 ~$2 andP(X)}~{f(X1 uX2)lX1 =_sIx2=_s2 and
P(X1 u X2)}.

(iii) Cartesian Product
RC1 ~ x T ~
RC2 (SlwS2) x T ~ S I x T ~ S 2 x T .

2.3. Synthesis

We will now give a preview of our syntheses by outlining the synthesis of a
program to calculate the set of all functions between two sets. We define it thus

1. Funcs(S, T) ~ { f [f ~_S x T and Isfunc(f)}
2. Isfunc(f) .r yl>ef, (x2y2>ef. x l = x 2 ~ y l = y 2 .

4 J. Darlington

Notice the style of our definition. It is of the "generate and test" form. Even
if this definition could be directly interpreted or compiled it would result in very
inefficient computat ion as the large set 2 s• would be formed first and then
many of its members filtered out by the lsfunc test. Our synthesis will use folding
to promote this filter into the generation process producing a recursive definition
for Funcs in which only acceptable candidates are produced at each level.

We start by using instantiation to derive from equation 1.

3. Funcs(eb, T) ~ { f I f % ~ x r a n d lsfunc(f)}
~ { f l f ceb and Isfunc(f)} Using rule RC1

{~} if Isfunc(Cb)
~b o therwise Using rule RS1

{~} Unfolding using definition of lsJunc.
We need to consider another base case, viz. Funcs({s}, r). This is fairly ob-

viously {{(s t>}lte T} u {4~} but we will synthesise a recursion for this as it
illustrates a technique we will use often later.

First we have

4. Funcs({s}, ~) "~{q~} as above

5. Funcs({s}, t + r) ~ { f l f c_ {s} x t + r and Isfunc(f)}
~ { f l f ~ _ { s } x {t}w{s} x r a n d Isfunc(f)} Rule RC2
~ { f l w f21 f l _{s} x {t} f2~_{s} x r a n d lsfunc(f l u f2)}

Rule RS3.

We now examine what values f l and f2 can take. f l is either �9 or {(s t>}.
In the latter case unless f2 is empty it will map s onto a t 'ET such that t#:t'
and we will have q Isfunc(f l w f2). Thus we can rewrite the above as

~ { { (s t>}}
{ f2 If2 ~- {s} x T and Isfunc(f2)}

~ { { (s t)}} uFuncs({s}, T) Folding with 1.

Finally we synthesise the main recursion, which we get by letting S be $1 ~ $2
where $1 and $2 are disjoint.

6. Funcs(S1 w $2, r) ~ { f l f ~ (S 1 w $2) x T and Isfunc(f)} Instantiating 1
~ { f l f ~ S 1 x T u S 2 x r a n d Isfunc(f)} Using RC2
~ { f l wf21f l =_Sl • r

f2~_$2 x T
and IsJunc(fl w f2)} Using RS3.

Our aim is to get a fold so we can introduce a recursion. We see that 6 is
almost in a form that will fold twice with 1. To achieve this it is necessary to
decompose the test Isfunc(f l u f2) into a form involving Isfunc(fl) and Isfunc(f2).
In this case it is simple as we can see that f l and f2 having disjoint domains
f l u f2 will be functional iff both f l and J2 are functions i.e. ls func(f l w f 2) ~
Is func(f l) and Isfunc(f2). Thus we can rewrite the above as

{ f l w f2 Lfl ~- S1 x T and ls func(f l)
J2c_$2 x r a n d Isfunc(f2)}

~ { f l ~ f 21 f l E {f3lf3=_S1 x r a n d Isfunc(fl)}
f2 e { f4 If4 ~- $2 x r and Isfunc(f2)} }

~ { f l u f 2 l f l e Funcs(S1, r)
f 2 e Funcs(S2, T)} Folding with 1.

A Synthesis of Several Sorting Algorithms 5

Equations 3-6 define a recursion that computes Funcs ensuring that no
unacceptable sets are produced at any level.

This process of applying set reductions, checking how the property of the
constructed object depends on the properties of each of its components and
then folding will re-occur repeatedly in our syntheses, and we give it the name
"filter promotion".

3. Notation and Representation

Our basic notation will be that of informal set-theory, most of whose symbols
have been used in the previous section. In addition we will use U to denote
union over a family of sets a n d - t o denote set subtraction, i.e. X - Y = { z l z ~ X
and z r Y} . Our other data types will be sequences and functions. We will often
use sets and sequences interchangeably where the context makes it clear what
is meant. In particular sets with a natural order over them, in our case always
the non-negative integers will often be treated as sequences. Conversely certain
set operation symbols (E, + , ~, etc.) will be used to denote the equivalent operation
on sequences. Additional operations solely on sequences are.

f i rs t : sequence ~ element
�9 - takes the first element of the sequence

f i r s t (x + X) = x
rest: sequence-~ sequence

�9 -- returns the rest of the sequence
res t (x + X) -= X

[] : set ~ sequence
�9 - the initial sequence of integers up to the cardinality of the set

[X] - (1 , 2 cardinality o f X)
N k: sequence x integer ~ sequence

�9 - the initial segment of the sequence with length equal to the integer
(n l , n2 n~) k - (n 1, n2 nk)

N k: sequence • integer ~ sequence
�9 -- the rest of the sequence

(nl, n2 nl) k - (nk + l , n l) .

Functions are sets of ordered pairs, and we use the following operations
on them.

Domain, Image: func t ion ~ set

�9 - D o m a i n (f) = { x [(x y) ~ f }
�9 - I m a g e (f) - { y [(x y) E f }

--Ira : func t ion X element ---,function
"-- f - - t , , yI -- { (x y) [(x y) e f and y l +y}.

The objects we will sort will be functions from a sequence of the integers
into a set of atoms with some total order, __<, over them. We will often treat
these sets of ordered pairs as sequences of ordered pairs, the order determined
by the natural order over the domain (the integers). These functions can be

6 J. Darlington

thought of as representing the more usual computer arrays or lists, thus the
function {(1 b), (2 a) , (3 c)} represents the array [b a c].

The use of such a "mathemat ica l" representation for the more normal data
structures makes our algorithms much more amenable to formal manipulation.
The final algorithms could easily be translated into a more familiar form by
the use of a "representation relationship" (see Burstall and Darlington [1])
mapping sets of ordered pairs into lists or arrays.

4. Structure and Presentation

4.1. Structure of the Syntheses

We first define Perm, the set of all permutations of a set. Using functions to
represent arrays enables us to define Perm(X) simply as the set of all bijective
(one to one and onto) functions from IX] to X. As we saw earlier, functions
are easily defined as a filter on the set of all subsets of the Cartesian product,
thus we have

Perm(X)~ { f l f ~-[X] x X and Bijective(f, [X], X)}

where

Bijective(f, Y, X) ~ f is a total one to one function from Y onto X.

Notice that this definition is in the generate and test form. From this high
level definition, which we call P, we can synthesise recursive algorithms that
compute Perm much more efficiently. Three different ways of proceeding with
these syntheses give us three different algorithms for generating permutations
which we call P1, P2, P3.

We then define Sort which takes a set and returns the function representing
the ordered array. We do this by filtering out of Perm all the unordered functions
i.e. those functions whose range elements are not in the order established by
the natural order on the domain.

Thus

Sort(X) ~ Ordered(P erm(X))

where

Ordered(X)~ {fl f e X and Ord(f)}

and

O r d (f) ~ V (n l x l) e f , (n2 x2)~f .
nl < n 2 ~ x l <x2.

We again take this generate and test definition and seek to promote the
filtering. For each of the 3 permutation algorithms P1, P2 and P3 we synthesise
two sorting algorithms deriving versions of Quick Sort, Selection Sort, Merge

A Synthesis of Several Sorting Algorithms 7

Sort, Insertion Sort, Bubble Sort and Exchange Sort respectively. The structure
of our syntheses is thus

P

P1 P2 P3

Quick Selection Merge Insertion Exchange Bubble
Sort Sort Sort Sort Sort Sort

The derivation of the first four sorts shows a pleasing symmetry, with the
derivation of P3 and Exchange Sort and Bubble Sort being different in character.
The difference in the synthesis for P1 and P2 is that in P1 the "work" necessary
to ensure that the bijective filter is satisfied is done by decomposition, going
down the recursion, while in P2 it is done on reconstruction, coming up the
recursion. The difference between Quick Sort and Selection Sort and Merge Sort
and Insertion Sort is the same viz. for Quick Sort and Selection Sort we recurse
by decomposing a set S into two disjoint sets $1, $2 while for Selection Sort
and Insertion Sort is the same viz. for Quick Sort and Merge Sort we recurse
and Bubble Sort are very similar. P3 is intrinsically an infinite algorithm that
cycles through the space of all permutations. Exchange Sort and Bubble Sort
differ in the way they move through this space towards the ordered permutation.

The idea of defining sorting as selecting the ordered permutation has been
used previously by Bob Kowalski and Maarten van Emden in their work on
Predicate Logic programming.

4.2. Presentation of the Syntheses

This paper has two, perhaps conflicting, aims. Firstly, we would like to show
that program transformation methods can be used for the complete derivation
of non-trivial algorithms and, secondly, we would like to present the syntheses
in such a way that the structure of the derivations is easily assimilated and the
relationships between the various algorithms becomes apparent. The first ap-
proach leans to the eventual mechanisation of this process, while the second
is more inclined towards using program transformation for manual program
development or analysis. Thus we would like to base our deductions on as
small a set of transformation rules as possible, but present them in a high level
or structured manner. We are, therefore, building up a catalogue of higher level
transformation types which can be used to discover and express the transfor-
mations in, and which, if needed, can be further expanded to a series of applications
of the fundamental transformation rules. Filter promotion is one such high level
transformation. Thus we have adopted a two level approach to the presentation
of the syntheses. Section 5 gives a top level view of the syntheses. Each derivation
is presented as an initial "inspiration step" or lemma which hopefully gives
the basic fact underlying the particular algorithm and then a series of high level

8 J. Darlington

transformations that improve efficiency. These high level transformations are
almost all filter promotions. In Sect. 6 each of these high level transformations
is expanded out into more fundamental transformations.

5. The Syntheses

5.1.

Our top level definition defines the set of all permutations of a set.

P P e r m (X) ~ { f l f ~ [X] x X and Bijective(f, [X], X)}

where

Bijective(f, Y, X) ~ f is a total one to one function from Y onto X.

5.2. Synthesis of PI, Quick Sort and Selection Sort from P

5.2.1. P1 from P

Repeating P we have

1. Perm(X)~ { f l f ~_[X] x X and Bijective(f, IX], X)}

which we generalise to

2. Perml(N, X) ~ { f] f ~_N x X and Bijective(f, N, X)}.

The first lemma we need for this synthesis is that X-- U Y. In fact we do
g c X

not need to take all subsets of X, all those of equal size will do. We will denote this
by writing X = ~) Ymeaning all subsets Y o f X of cardinality k, l < k < Card(X).

g c k x

Given this it is easily shown that N x X = (.9 (Nkx Y)u (N k x (X-Y)) , thus we
rewrite 2 as u

3. Perm(N, X) ~ { f l f ~ _ U (Nk • Y)u(Nk • (X - Y)) and Sijective(f, N, X)}.
Y c k X

In 6.1 we will show how the Bijective filter can be promoted before the union.
We get

4. Perml(N, X) ~ ~) { f l u f 2] f l ~_N k x Yand Bijective(fl, N k, Y)
r =kx f2 ~ N k • (X - - Y) and Bijective(f2, Nk, X - Y)}
U { f l w f 2 l f l e Perml(N k, Y) , f2ePerml (N k, X - Y)}

rc~x Folding with 2.

As for any call of Perml(N, Y), Card(N)= Card(X) the base cases we need
to consider are

5. Perm(Cb, (b)~{tb} Instantiating 1 and rule RS 1.

A Synthesis of Several Sorting Algorithms 9

.

P1

Perm({n}, {n})~{{(n x)}}

Thus we have algorithm P1.

Perm(X)~ Perml ([X], X)
Perml(~, r {r
Perml({n}, {x})~{{(n x)}}
Perml(N,X)~ U {flwf2lflePerm1(Nk, Y)

r = k x f2aPermI(Nk, X - g)}.

Instantiating 1 and evaluating.

5.2.2. Quick Sort from PI. We define Sort by

1. Sort(X)~Ordered(Perm(X))

where Ordered: 2 x~ r ~ 2 x~ Y (filters out unordered permutations).

2. Ordered(X)~{f[fEX and Ord(f)}
3. Ord(f)~V(nI x l)~ f , @2 x 2) e f

nl <n2.*~xl <x2.
Thus

4. Sort(X)~ Ordered(Perm(X))
~Ordered(Perml([X],X)) Unfolding using P1

and we define

5. Sortl(N, X)~Ordered(Perml (N, X)).
Thus

6. Sortl(~,q~)~{r Instantiating 5 and unfolding using P1 and 2.
7. Sortl({n}, {x})~{{(n x)}} Instantiating 5 and unfolding using P1, 2 and 3.
8. Sortl(X, X)~Ordered(U { f l wf2]fIenerml(N k, Y) f2ePerml(Nk,X-- y)})

r ~ x Instantiating 5 and unfolding PI.

A straightforward promotion of the Ordered filter (6.2) gets us 9 below.

(Y < X - Y means rye Y, x e X - Y. y<x).

9. Sortl(N,X)
~j { f l u f2[fI~Perml(N k, Y) and Ord(fl) f2~Perml(Nk, X-- Y)

r=~x and Oral(f2)} Y < X - Y

U { f lu f2 l f l eSor t l (N* , Y)
r = ~ x f2~Sortl(Nk, X - Y)} Folding with 2 and 4. Y < X - Y

The conditions on Y, Y c k X and Y < X - Y, mean that for any k there is just
one such Y. Thus we can rewrite the above as

{ f l u f2[f l ~ Sort1 (N k, Y)
f2eSortl(N,, X - Y)}

where k= Card(Y)
for s o m e Y c X s u c h that Y < X - Y.

In the full Quick Sort algorithm Y is chosen by selecting an element from X
and then dividing X into two sets one all less than the chosen element and one
all greater than the chosen element. We can synthesise this by defining.

10 J. Darlington

10. Filter(X)~ Y such that Y c X and Y < (X - Y).
11. Filterl(x, X) ~ Y such that Y c X and Vy~ Y. y<x.

If we consider the case x + X where xq~X we have

12. Filter(x + X) ~ Y such that Y c x + X and Y<(x + X - Y).

Now as xeX , Y c X and Vy~ Y . y < x implies Y < X - Y we can rewrite this as

~ Y such that Y ~ X and Vye Y. y < x
~Fi l ter l (x ,X) Folding with 11.

The other cases needed are

13. Filter(~) ~ Instantiating 10 and rule RS1
14. Filterl(x, q~) ~ �9 Instantiating 11 and rule RS 1
15. Filterl(x, xl + X) ~ xl + Filterl(x,X) if xl < x

Filterl(x, X) otherwise Rule RS2 and folding with 11.

Thus we have algorithm $1 (Quick Sort)

S1 Sor t (X)~Sor t l ([X] ,X)
Sortl(~, ~) ~ { ~}
Sortl({n}, {n})~{{(n x)}}
Sortl (N, X) ~ { f l w f2 If1 ~ Sortl (N k, Y)

f2ESortl(Nk, X - Y)}
where k = Card(Y)

where Y= Filter(X)
Filter(~)~
Filter(x + X) ~ Filterl(x, X)
Filterl(x, ~) ~
Filter1(x, xl + X) ~ xl + Filterl (x, X) if xl < x

Filterl(x, X) otherwise

Of course there are many more improvements that can be made to this
algorithm, for instance the computation of X - Y can be interwoven with the
computat ion of Y=Filter(X) but we hope that we have at least captured the
"essence" of the algorithm.

5.2.3. Selection Sort from P1. The derivation of Selection Sort is straightforward.
It can be derived "horizontal ly" from $1 by always choosing Y to be a singleton.
We choose to derive it from P1 to push the decision points as high in the syn-
thesis as possible. Thus we have

1. P e r m l (N , X) ~ U { f l w f 2 l f l ~ P e r m l (N t , Y)
rc ,x f2EPerml(N1, X - Y)}

U {f l ~f2l f l~Perml({ f irs t (N)} , {y})
y~x f 2E Perml (rest(N), X - {y})}
U {(first(N), y> +f[fePerml(rest(N), X - {y})}.

yeX

Thus we have a permutation algorithm PI'

A Synthesis of Several Sorting Algorithms 11

PI ' Perm(X)~ Perml([X], X)
Perml (4~, ~O) ~ { ~}
Perml({n}, {x})~{{(n x>}}
Perml (N, X) ~ 0 { < frs t (N), y> + f l f e Perml (rest(N), X - {y})}

y~X

Again we define

2. Sort(X)~Ordered(Perm(X))
Ordered(P erml ([X], X))

and let

3. Sortl(N, X)~Ordered (Perml (N, X))
4. Sortl(~, ~) ~ { ~ } Unfolding using PI' and 5.2.2, 2.
5. Sort(N,X) ~Ordered(Perm(N,X)).

Pushing the Ordered filter inside (6.3) gives us,

6. Sortl (N, X) ~ { < first(N), y> + f i f e Petrol(rest(N), S - {y})
and Ord(f)}

for some y such that y ~ X and V x e X - { y } . y < x
{ (first(N), y) + f i f e Sortl (rest(N), X - {y})}

for s o m e y such tha t y e X and V x e X - { y } . y < x
Folding with 5.2.2, 2 and 3.

We now define

7. Least(X)~y such tha t yeXand V x E X - { y } . y<x .

Thus

8. Sortl(N, X)~{(f irs t (N) , y) + flfeSortl(rest(N), X - {y})}
w h e r e y=Leas t (X) Folding 6 with 7.

9. Least({x})~x Instantiating 7 and reducing.
10. Least(xl + X)

~ x l if V x e X . x l <x
y such tha t y e X and u

otherwise
Instantiating 7 and rule RM1.

But as xI < yl where yl ~ X and V xE X - yl - yl < x implies Vxe X . xl < x we
can rewrite this as

~ x l if xl < y where y e X and V x e X - y . y < x
y such that y e X and V x e X - y . y < x

otherwise
~ x l if xl <Least(X)

Least(X) o t h e r w i s e
Folding with 7.

Thus we have algorithm $2 (Selection Sort)

12

$2 Sort (X) ~ Sort l ([X], X)
Sortl(cl), cI)) ~ { ~ }
Sortl(N, X) ~ { (first(N), y) + f i f e Sortl (rest(N), X - {y})}

w h e r e y = Least(X)
Least({x})~ x
Least(x1 + X) ~ x l if xl < Least(X)

Least(X) otherwise

J. Darlington

5.3. P2, Merge Sort and Insertion Sort from P

5.3.1. P2 from P. Repeating our definition from P we have

1. Perm(X)~ { f [f ~_ [X] x X and Bijective(f, IX] , X)}

and we can immediately derive

2. Perm(cb)~{~} Instantiating 1 rules RC1, RS1.

and

3. Perm({x})~{{(1 x)}} Unfolding.

To set ourselves on the path to Merge Sort we choose to decompose X into
two distinct non-empty sets getting

4. Perm(X1 w X 2) ~ { f l f ~ _ [X 1 wX2] x(X1 wX2)
and Bijective(f, IX1 w X2], X1 wX2)}.

The insight required is that from the definition of Perm and Bijective we
know that for any f lEPerm(X1) and any f2ePerm(X2) Image(f l)=Xl and
Image(f2) = X2 thus we have Perm(X1 w X2) = Perm(Image(fl) w Image(f2)).
Thus we could re-express the above and produce an algorithm of the form
Perm(X1, X 2) = f (f l , f 2) for any f lEPerm(X1), f2ePerm(X2) where f forgets
all the structure built into f l and f2 and computes Perm all over again from
Image(fl) and Image(f2). To get an algorithm closer to the familiar one we
define an f that computes a subset of Perm, viz. those permutations are attain-
able from f l and f2 without disturbing the internal order of f l and f2. We
will call this f Merge!

More exactly

5. Merge (f l , f2) ~ { f I f ~- Elmage (f l) w Image (f2)]
x Image(f1) w Image(f2)
and Bijective(f, [Image(f1) w Image(f2)],

Image(fl) w Image(f2))
and Regular(f f l)
and Regular(f, f2)}

where

6. Regular(f, f l) m V x l , x2 E Image(f l) .
f l - l (x l) < f l - l (x2)

~ f - l (x l) < f - l (x2) .

A Synthesis of Several Sorting Algorithms 13

We shall see later in 6.4 where this restriction of Perm arises from.
To get Perm(X1 uX2) it is now no longer sufficient to take a n y f l ePerm(X1),

f2ePerm(X2) we need to take all such f l and f2, i.e.

7. Perm(Xl ~ X2)~ U Merge(fl, f2).
fl~Perm(X 1)
f2ePerm(X2)

We, of course, need to justify this equation but we will postpone its (informal)
�9 justification until we see where the Regular filter arises from.

We have to produce a recursion for Merge. We first generalise 5 defining

8. Mergel(f l , f2, N) ~ { f l f ~ N x Image(fl)u lmage(f2)
and Bijective(f N, Image(fl) u Image(f2))
and Regular(f, f l)
and Regular(f, f2)}.

Thus

9. Merge(f1, f 2) ~ Mergel(fl, f2, [Image(f1) w Image(f2)])
Folding 5.3.1, 5 with 5.3.1, 8

~ Mergel(fl, f2, If1 u f2]) .

We first synthesise the main recursion for Merge1.

10. MergeI((nl x l) + f l , (n2 x2)+ f2, n+ N)
~ { f l f ~_n+ N x lmage((nl x l) + f l) • Image((n2 x2)+ f2)

and Bijective(f, n + N, Image((nl xl) + f l)
w Image((n2 x2) +f2))

and Regular(f, (nl x l) + fI)
and Regular(f, (n2 x2) + f2)} Instantiating 8.

The filter promot ion in this case is more complicated as we have two filters,
for details see 6.4, but eventually we can rewrite 10 as

~ { < n xl> + f l ' l f l ' ~_N x
and
and
and

u {<n x e > + f e ' l f e ' ~ N x
and
and

Image(f1) ~ Image((n2 x2) + f2)
Bijective(fl', N, Image(f1) w Image((n2 x2) + f2))
Regular(f1', f l)
Regular(fl', (n2 x2) + f2)}
Image((nl xl) + f l) u Image(f2)
Bijective(f2', N, Image((nl xl) + f l) w Image(f2))
Regular(f2', (nl x l) + f l)

and Regular(f2', f2)}
{(n xl) + f l ' l f l ' e Mergel(fl, (n2 x2) + f2, N)}
{(n x2) + f2'[f2' e mergel((nl x l) + f l , f2, N)} Folding with 8.

Now we have only the base cases of Merge1 to do. We notice from equation 9
that when Merge1 (f l , f2, N) is first called we have Card(N) = Card(f1) + Card(f2)
and from equation 11 we see that at each recursive call one element is removed
from N and one from either f1 or f2 so this relationship is maintained. So the
base cases we need to examine are

12. Mergel(O, O, 0) ~ {O} Instantiating 8 and unfolding

14 J. Darlington

and

13. Mergel({nl xl} + f l ,~ , n+ N) ~ { f l f ~_n+ N x Image(fl)u lmage(CI))
and Bijective(f N, Image(f1)~ Image(~))
and Regular(f, {nl xl} + fl)
and Regular(f 4~)} Instantiating 5.3.1,8.

There is a corresponding case with f l 4~. We are again able to produce a
recursion for those cases but as the synthesis is quite straightforward we will
not bother to present it. We get

14. Mergel({nl x l }+ f l , 4~, n+N)
{{n xl} + f l f ~ Mergel(fl, ~, N)}

and

15. Mergel (q), @2 x2} + f2, n + N)
{{n x2} + f l f ~ Mergel(q~, f2, N)}.

These two base cases just return the original "array" but shifted along so
that it will fit on the end of the arrays produced by the main recursion.

Thus we have algorithm P2

P2 Perm(q)) ~{q~}
Perm({x}) ~{{{1 x}}}
Perm(X1 ~ X2)~ ~) Merge(f1, f2)

f l �9 Perm(X I)
f 2 e P e r m (X 2)

Merge(fl, f2) ~Mergel(f l , f2 , [f l w f2])
Mergel(~, ~, ~)~ {,/~}
Mergel({nl x l }+ f l , ~, n+N)

~ { { n xl} + f l f~Mergel(f l , ~, N)}
Mergel (~, @2 x2} + f2, n + N)

~ { { n x2}+fl feMergel(~, f2, N)}
Mergel ({nl xl } + f l , @2 x2} + f2, n + N)

{{n xl } + f l ' Ifl'e Mergel (fl , {n2 x2} + f2, N)}
u {{n x2} +f2' If2'eMergel((nl xl} +fl , f2, N)}.

5.3.2. Merge Sort from P2. Again we define

1. Sort(X)~Ordered(Perm(X))

where Perm is given by P2 and Ordered by 5.2.2, 2. Thus we have immediately

2. Sort(q~) ~ { ~ } Instantiating 1 and unfolding
3. Sort({x}) ~{{(1 x)}} Instantiating 1 and unfolding
4. Sort(X1 ~ X2)~ (.J Ordered(Merge(fl,f2)) Instantiating 1,unfolding

f l e P e r m (X l) using 5.3.1, 7 and taking
. f2e Perm(X2)

Ordered inside the union.

Examination of the filters (6.5) enables us to rewrite this as

U Ordered(Merge(fl, f2))
f l ~Ordered(Perm(X I))
f 2 e Ordered (Perm (X 2))

A Synthesis of Several Sorting Algorithms 15

Thus we have

Sort(X1 w X2)~ .

f l eSor t (X l)
f2cSort(X2)

We now look at Ordered(Merge(fl,f2)), which is
Ordered(mergel (f l , f2, [f l w f2])) so we define

6. MergeS(fl, f2, N)~Ordered(Mergel(fl, f2, N))

and rewrite 5 as

7. Sort(Xl ~ X 2) ~ U MergeS(fl,f2, If1 wf2])
f l e S o r t l X l)
f2~Sort(X2)

U Ordered(Merge(fl,f2)) Folding with 1.

Immediately we have

MergeS(~, ~, cb)~ {~}

Unfolding 5
with 5.3.1, 9
Folding with 6.

8. Instantiating 6 and unfolding using 5.3.1, 2
and 5.3.2, 2.

We now look at

9. MergeS((nI x l)+ f l , (n2 x2)+ f2, n+N)
Ordered(Mergel((nI x l) + f l , (n2 x2) + f2, n + N))

Instantiating 6.

Promoting filters (6.6) gets us to

10. MergeS((nl x l)+ f I , (n2 x2)+ f2, n+N)
{(n x l) + f l ' JfI'~Mergel(fl, (n2 x2) + f2, N)

and Ord(fl')}
if xI <x2

{(n x2) + f2'l f2'~ Mergel((nl x l) + f l , f2, N)
and Ord(f2')}

otherwise
{(n xl) + f l ' [fl'EMergeS(fl, (n2 x2) + f2, N)}

if xI < x2
{(n x2) + f2'lf2'eMergeS((nl x l) + f l , f2, N)}

o t h e r w i s e
Folding with 5.2.2, 2 and 6.

Finally we have the other base cases to do. The synthesis of the recursions
are straightforward and we omit details. In fact as f l and f2 are ordered and
Merge1(fl, ~, N), say, does not rearrange f l we could just continue to use
Merge1 for these base cases, but we find it neater to write

11. MergeS((nl x l) + f l , cb, n+ N)
{ (n x I) + f l '1 f l ' ~ MergeS (fl , r U)}

and

12. MergeS(~, (n2 x2) + f2, n + N)
{ (n x2) + f2'l f2'e MergeS(~, f2, N)}.

Thus we have algorithm $3 (Merge Sort)

16

$3

J. Darlington

Sort(r {~}
Sort({x})~ {{(1 x>}}
Sort(X1 u X2)~ U MergeS(fl, f2, If1 uf2])

f leSort(X l)
f2eSort (X2)

mergeS(eb, ~, ~) ~ {@}
MergeS((nl x l)+ f l , cb, n+N)

{ (n xl } + f l ' I f l ' e MergeS(fl, ~, N)}
MergeS(Oh, (n2 x2} + f2, n + N)

{(n x2} + f2' If2'~MergeS(~, f2, N)}
MergeS((nl x l }+ f l , (n2 x2}+ f2, n+ N)

~{ (n x l }+ f l ' Ifl'eMergeS(fl, (n2 x2} + f2, N)}
if x l < x2

{ (n x2} + f2' [f2'e MergeS((nl xl) + f l , f2, N)}
otherwise.

5.3.3. Insertion Sort from P2. If in algorithm P2 instead of decomposing X
to X1 w X2 we decompose it to x + X the equation for the main recursion becomes

1. Perm(x+X)~ UMergel({(1 x)},f2, [{(1 x)}uf2])
/2~Pe~mtX) Instantiating 5.3.1, 11 and unfolding using 5.3.1, 9.

Thus we specialise Mergel getting new equations

2. Mergel({(1 x)}, ~, n +~)~{{n x)}} Unfolding using 5.3.1, 14 and 5.3.1, 12

and

3. Mergel({(1 x)}, (n2 x2)+f2, n+N)
{(n x) + fl 'l f l '~ Mergel (q~, (n2 x2) + f2, N)}

w {(n x2)+f2'lf2'~Mergel({(1 x)},f2, N)}
Unfolding using 5.3.1, 11.

We call this modified Perm algorithm P2', note that equation 5.3.1, 3 is no
longer required.

P2' Perm(cb) ~ {r
Perm(x+X) ~ UMergel({(1 x}}, f [{(1 x}} vof])

f~Perm(X)

Mergel (q~, ~, ~) ~ {~}
Mergel({(1 x)}, cb, n+~)

~{{<n x>}}
Mergel (eb, <n2 x2> + f2, n + N)

~{<n x2> + f l f ~ Mergel(~, f2, N)}
Merge1({(1 x)}, (n2 x2)+f2, n+N)

{ (n x) + fl'[f l ' e Mergel (cb, (n2 x2) + f2, N)}
{ (n x2) + f2'] f2'e Mergel ({ (1 x) }, f2, N)}.

To get Insertion Sort we as usual define

4. Sort(X)~ Ordered(Perm(X))

A Synthesis of Several Sorting Algorithms 17

where Perm is now defined by P2'. We will restrict ourselves to outlining the
synthesis of the main recursion, thus instantiating 4 we get

5. Sort(x+X)~ UOrdered(Mergel({(1 x)},f, [{(1 x)}wf]))
I~eermtX) Unfolding using 1 and taking Ordered inside the union.

As with Merge Sort we can force a fold with 4 because examining the filters
allows us to rewrite 5 as

6. Sort(x+X)~ UOrdered(Mergel({(1 x)},f, [{(1 x)}wf]))
f e Ordered (Perm (X))

00rdered(Mergel ({(1 x)}, f [{(1 x)} w f]))
j~sor.x) Folding with 4.

We now look at

7. MergeS({(1 x) }, f N)~Ordered(merge1({ (1 x) }, f, N))

and in particular

8.

.

$4

MergeS({(1 x)}, (n2 x2)+ f2, n+N)
Ordered(Mergel ({(1 x) }, (n2 x2) + f2, n + N)

Promoting (6.7) gets us to

MergeS({(1 x)}, (n2 x2)+ f2, n +N)
~ { (n x)+ f l ' [fl'eMergel(~, (n2 x2)+ f2, N)

and Ord(fl')}
if x<x2

{(n x2) + f2' [f2'eMergel({(1 x)}, f2, N)
and Ord(f2')}
otherwise

~ { (n x)+ f l ' Ifl'eMergeS(q~, (n2 x2)+ f2, N)}
if x<x2

{(n x2)+ f2'[f2'eMergeS({(1 x)}, f2, N)}
otherwise
Folding with 5.2.2, 2 and 7.

The base cases go through smoothly and we have algorithm $4, Insertion Sort

Sort(,~) ~{r
Sort(x+X) ~ UMergeS({(1 x) } , f [{(1 x)}wf])

f e S o r t (X)

mergeS(q~, q~, ~)~ {~}
MergeS({(1 x)}, cb, n+~)

~{{(n x)}}
MergeS(~, (n2 x2)+ f2, n+ N)

{(n x2) + f2' [f2'eMergeS(4~, f2, N)}
MergeS({(1 x)}, (n2 x2)+f2, n+N)

~ { (n x)+ f l ' [fl'eMergeS(@ (n2 x2)+ f2, N)}
if x < x2

{(n x2) + f2'lf2'e MergeS({(1 x)}, f2, N)}
otherwise.

18 J. Darlington

5.4. Synthesis of t"3, Exchange Sort and Bubble Sort from P

In this section we consider the class of sorts that operate by swapping adjacent
elements of the array whenever local inversions occur. We synthesise versions
of the two best known algorithms in this class, Exchange Sort and Bubble Sort.

5.4.1. 1"3 from P. In the previous two sections we took our definition of the
set of all permutations of a set to be

1. Perm(X)~ { f i f e_ [X] x X and Bijective(f [X], X)}
2. Bijective(f Y,, X) ~ f is a total one to one function from Y onto X.

In this section however we take a slightly different starting point. Perm now
takes a function, representing an array, as argument and again produces the
set of all permutations i.e.

3. P e r m (f) ~ { f l] f It_Domain(f) x Image(f)
and Bijective(fl, Domain(f), Image(f))}

where Bijective is as before.
The key to producing a recursion to compute Perm(f) lies in first synthesising

another function Perml(f) which will compute a subset of Perm(f). Informally
Perml(f) computes all those permutations of f that can be achieved by going
along f and either swapping or not swapping adjacent elements. Elements can
therefore move to the right freely but at most one place to the left. Thus we
can characterise Perml (f) exactly.

4. P e r m l (f) ~ { f l] f l ~_Domain(f) x Image(f)
and Bijective(fl, Domain(f), Image(f))
and Close(f1, f)}

5. C I o s e (f i , f) ~ V (n x)~ f i , l < f - l (x) < n + l.

We will see in (6.8) where this definition of Perml arises.
We have

6. Perml(eb)~{~} Instantiating 4 and unfolding.
7. Perml((n x) +@)~ { (n x) +@} Instantiating 4 and unfolding.
8. Verml((n 1 x l) + { n 2 X2)+f)

{fl[f l c Domain((n 1 xi) + @2 x2) + f) • Image((ni xi) + @2 x2) + f)
and Bijective(fl, Domain((n 1 xx) + (n 2 x2) + f) ,

Image((nl xl) + (n2 x2) + f))
and Close(L, (n i xl) + @2 x2) +f)} .

Promoting these two filters (6.8) gets us to (N = n 2 +Domain(f)).

10. Perml((n 1 xl) + (n 2 x2) + f)
~ { (n l x l) + f l [f l -~N x x 2 + x

and Bijective(fl, N, x 2 + X)
and Close(f1, (n 2 x 2) + f) }

~; {(n i x2)+f21f2~_N x x 1 + X
and Bijective(f2, N, x 1 + X)
and Close(f2, @2 xl) +f)}

A Synthesis of Several Sorting Algorithms 19

~ { (n l X1) -[-fl Ill ~ Domain((n2 x2) + f) x Image((n z x2) + f)
and Bijective(fl, Domain((n 2 Xe) + f),

Image((nl x2) + f))
and Close(f1, (n z Xz) +f)}

w {@1 x2) +f21 f2 -~ O~ xl) +f) x Image((n 2 xt) +f)
and Bijective(f2, Domain((n 2 xl) + f),

lmage((n2 xl) + f))
and Close(f 1, (n z Xl) +f)}
Using the definitions of Domain and Image

{@1 x1) -[-A [fl e Perml((n2 x2) +f)}
vo {@1 x2)+ f2]f2 ~ Perml((n2 xl) +f)}

Folding with 4.

How do we get Perm from Perml? A moment spent considering the target
sorting algorithms gives us a clue. They both operate by closure repeatedly
calling the swapping subroutine until the ordered list is achieved.

Thus we first define Perm2 the extension of Perml over a set.

11. Perm2(S)~ U Perml(f).
f~S

The crucial lemma we need to establish is that the fixed point of Perm2 is
equal to Perm, that is Perm2(S)=S~S=Perm(f) for any f~S, but this is clear
from the definitions of Perm, Perml and Perm2, 3, 4, 5 and 11. Thus we can
modify 11 to

12. Perm2(S)~ if ~ Perml (f) = S
f~S
then S
else Perm2(~ Perml (f))

f~S
and write

13. Perm(f)~Perm2({f})

and we have algorithm P3

P3 Perm(f)~Perm2({f})
Perm2(S)~if u=S then S

e l s e Perm2(u)
w h e r e u = U Perml (f)

PermI (~b)~ {~b} i~s
PermI({(n x)})~{{(n x)}}
PermI((n 1 xj) + @2 x2) + f)

~{ (n l xl) +f l If1 ePerml((n2 x2) +f)}
vo {@1 x2) + f2lf2~Perml((n2 xl) +f)}.

5.4.2. Exchange Sort from P3. We define Sort as usual (only this time it takes
an array as argument)

1. Sort(f)~Ordered(Perm(f))

where ordered is given by 5.2.2, 2 and Perm by P3.

20 J. Darlington

To produce Exchange Sort and Bubble Sort we constrain Perml so that
only swaps that move towards the ordered list are made. For Exchange Sort
we constrain Petrol so that it removes as many inversions as possible per call,
for Bubble Sort we constrain it so that one inversion is removed per call. More
exactly for Exchange Sort we have

2. Sortl I (f)~Best (Perml (f))
3. Bes t (S)~ f such that f ~S

and V f l e S - {f} . N oofinversions(f) <= N oofinversions(f l)
4. Noofinversions(f)~ Card({xl I(nl x l)Ef , @2 x2)ef ,

and nl < n2 and xl > x2}),
Thus we have

5. Sort11((nl x l) + (n 2 x 2) + f)
~Bes t ({ (n l x l) + f l If1 ~eerml((n2 x2) +f)}

w {@1 x2) +f2[f2ePerml(@2 x l) +f)})
~Best ({ (n l x l) + f l l f l ePerml((n2 x2) +f)})

if xl < x2
Best({{nl x2) + f2 l f2ePerml(@2 x l) +f)})

otherwise
~<nl xl> + Best(Perml(<n2 x2> + f)) if xl <x2

(nl x2> + Best(Perml(<n2 xl> + f)) o t h e r w i s e
~<nl x l) + Sortll(<n2 x2> + f) if xl <x2

@1 x2> + SortlI (@2 xl) + f) o t h e r w i s e .

When Sortll (f) = fi we have Ord(f) thus we can write

6. Sor t (f)~ i f u= f
then f
else Sort(u)

where u = Sortl l (f) .

We now have a recursive sort program but we are not quite finished. In
an Exchange Sort the termination test is interwoven with the main recursion.
Here we still have it separate as the rest u - - f requires an iteration along the
array. We will only outline this interweaving process and assume that equality
between arrays or functions is computed by =s whose main recursion is given by

7. (n x) + f l =s{m y) + f 2
~ n = m and y = x and f l =s f2.

Thus we define

8. Exchange (f) ~ (f =s Sort11 (f), Sort11 (f))

and for the main recursion we have

9. Exchange(@ x) + (m y) + f)
~ (n = n and x = x and (rn y) + f =sSort l l ((m y) + f) ,

n x) + S o r t l l ((m y) + f)) i f x < y
(n=n and x = y and (m y) + f = fSort l l (Qn x) + f),

(n y) + Sortl l((m x) + f)) otherwise.

A Synthesis of Several Sorting Algorithms 21

Unfolding using 5, rearranging the conditional, and unfolding
using 7

~(True and (m y) + f =ySortll((m y) + f),
(n x) + Sortl 1 ((m y) +f)) if x < y

(False and (rn y) + f =fSortll((m x) + f) ,
(n y) + Sortl l((m x) + f)) o the rwise

True and u, (n x) + v)
where (u, v) = ((m y) + f = y Sortl I ((m y) + f) ,

Sor t l l ((my)+f)) i f x < y
(false, (n y) +v))

where (u, v) = ((m x) + f =iSort11((m x) + f),
Sortl l((mx) + f)) otherwise.

Abstracting. Notice that u is not used in the second abstraction
and we use this to achieve a form that will fold

(u, (n x) + v)
where (u, v) = Exchange((m y) + f) if x < y

(False, (n y} + v}}
w h e r e (u, v) = Exchange((m x) +f) o the rwise

Folding with 8.

Finally we tie Sort up with Exchange

10. Sort(f)~i f u then f
e l se Sort(v)

where (u, v) = (f =s Sort1 l(f), Sort1 l (f))
Abstracting 6

~ i f u then f
e lse Sort(v)

where (u, v) = Exchange(f)
Folding with 8.

We will not bother detailing the synthesis of the base cases and present
algorithm $5 (Exchange Sort)

$5 Sort(f)~i f uthen f
else Sort(v)

where (u, v) = Exchange(f)
Exchange(~)~ (True, ~p)
Exchange({@ x) })~ (True, {(n x)})
Exchange(@ x) + (m y) + f)

~(u, (nx)+v)
where (u, v) = Exchange((m y) + f) if x < y

(False, (n y) + v)
w h e r e (u, v) = Exchange((m x) +f) otherwise .

5.4.3. Bubble Sort from P3. As mentioned in the previous section Bubble Sort
is derived by choosing from Perml the permutation with just one inversion
removed (if there is one).

22 J. Darlington

1. Sort12(f)~Oneremoved(Perml(f), f)
2. Oneremoved(S, f) ~ f l �9 such that f l e S

and N oofinversions(f l) + 1 = N oofinversions(f)
if such an f l exists

f otherwise.

This produces a recursion

3. Sort12((n1 x l) + @2 x2) +f)
~ (n l x l) + Sort12((n2 x2) + f) if xl < x2

(nl x2) + @2 xl) + f otherwise.

Similarly we define

4. B u b b l e (f) ~ (f =sSort12(f), Sort12(f))

and the main recursion is

5. Bubble(@ x) + (m y) + f)
~(u, (nx)+v)

where (u, v) = ((m y) + f =fSortl2((m y) + f),
Sortl2((m y)+ f)) if x < y

(False, (n y) + (m x) + f)) otherwise
Unfolding using 3, rearranging the conditional,
unfolding using 5.4.2, 7, simplifying the conjunction
and abstracting.

~(u, (nx)+v)
where (u, v) =Bubble((m y) + f) if x< y

(False, (n y) + (m x) + f) otherwise
Folding with 4

and our version of Bubble Sort is algorithm $6

S6 Sort (f)~ i f u then f
else Sort(v)

where (u, v) =Bubble(f)
Bubble(q~)~ (True, cb)
Bubble({@ x)})~(True, {(n x)})
Bubble(@ x) + (m y) + f)

~(u, (n x)+v)
where (u, v)=Bubble((m y) + f) if x < y
(False, (n y)+ (m x) + f) otherwise .

6. Lower Level Details

6.1. We have

P e r m l (U , X) ~ { f l f ~- U (N k x Y) w (N k x (X - Y))
rckx and Bijective(f N, X)}

~ { u f [f ~ _ (N g x Y) u (N k x (X - Y)), Y=k X
and Bijective(w f, N, X)} Rule RS 3.

A Synthesis of Several Sorting Algorithms 23

Consider any two subsets Y1, I72 ~k X such that Y1 :f Y2 and any f l , f 2
f l c_ (N k x Y1) vo (N k x (X - Y1)) and f2 ~_ (N k x I12) w (N k x (X - I12)). An element
xl such that x lE Y1, x l r Y2 is going to be mapped onto by an element of N k
in f l and by an element of N k in f2, therefore f l vof2 cannot pass the bijective
filter. Thus we can rewrite the above as

~ { f [f ~ - (N kx Y) U (N k X (X - Y))
r=~x and Bijective(f, N, X)}
U { f l w f 2 l f l ~ _ (N k x Y)

r=~x f2 ~_(N k x (X - Y))
and Bijective(fl w f2, N, X)} Rule RS3.

To achieve a fold and produce a recursion for Petrol we need to decompose
Bijective(fl w f2, N, X). But we know that the union of two functions on disjoint
domains and ranges will be bijective if and only if the two functions are bijective
(N = N k u Nk). Thus we have

Bijective(fl w f2, N, X)<=~ Bijective(fI, N k, Y)
and Bijective(f2, Nk, X - Y)
for any Y~_X.

This allows us to write the above as

P e r m l (N , X) ~ U { f l u f 2 [f l ~ N k x Y and Bijective(fl, N k, Y)
r c ~ x f 2 ~_ N k • (X - Y) and B i j e c t i v e (f 2 , Nk, X - Y)}.

6.2. We have

Sortl(N, X)~Ordered(U { f l u f 2 [f l E P e r m l (N k, Y)
rc~x f2~ Verml(Nk, X - - Y)}

U { f l ~ f 2 [f l e PermI(N k, Y)
r~kx f2~Perml(Nk, X - Y)

and Ord(f l u f2)}
Using the fact that Ordered(X1 u X2)= Ordered(X1)u Ordered(X2)
and unfolding.

In order to force a fold with 5.2.2, 5 we need to decompose Ord(f l u f2). We
note that

(i) V n l c N k, n2~Nk.nl <n2
(ii) V f l e Perml (N k, Y), f2 e Perml (Nk, X - g).

Image(f1) = Y, Image(f2)= X - Y
Domain(f1) = N k, Domain(f2) = N k .

Therefore unless Vye Y, x e X - Y , y < x there will be a (nl y l) e f l , @2 y 2) e f 2
such that nI <n2 and y l > y 2 i.e. not O r d (f l u f 2) . Given such a Y we have
Ord(f l w f2)~ , Ord(fl) and Ord(f2). We will write the condition Vye Y, x e X - Y.
y < x as Y< X - Y and rewrite the above as

~ { f l t o f 2 1 f l e P e r m l (N k, Y) and Ord(f l)
r ~ x f2~ Perml(Nk, X - Y) and Ord(f2)} Y < X - Y

24 J. Darlington

6.3. We start with

Sort(N, X) ~ Ordered(Perm(N, X))
U {< first(N), y> + f l f~ Perm1(rest(N), X - {y})
y~x and Ord(<first(N), y> +f)}

Unfolding using P1 and 5.2.2, 2.

As we know that Vnerest(N), f irs t (N)<n, by an argument similar to the
one used in section 6.2 we can see that unless y is chosen such that g x e X - { y } .
y < x all components of the union will be q~. For such a y we also have

Ord(<first(N), y> + f) , ~ O r d (f) (as feVerml(rest(N), X - { y })

so we have

Sortl(N, X) ~ {<first(N), y> + f l f ePerml(res t (N) , X - {y}) and Ord(f)}
for some y such that y e X and V x ~ X - { y } . y < x .

6.4. We have

Mergel(<nl xl> + f l , <n2 x2> + f2, n + N)
~ { f l f c_n + N x Image(<nl xl> + f l) u lmage(<n2 x2> + f2)

and Bijective(f, n + N, lmage(<nl xl > + f l)
to lmage(<n2 x2> + f2))

and Regular(f, <nl xl> + f l)
and Regular(f, <n2 x2> +f2)}.

Letting Image(f1)= X1 and Image(f2)=X2 we can rewrite the above as

~ { f l f c _ n + N x x l + X l u x 2 + X 2
and Bijective(f, n + N, xl + X1 vo x2 + X2)
and Regular(f, <nl xl > + f l)
and Regular(f, <n2 x2> +f2)}.

We are now faced with the task of reducing the Cartesian Product. The
above reduces to

{ f [f C_ <n xl> +({n} x X1)~o<n x2> +({n} x X 2)
u N x {xl } vo N • X l u N x {x2} vo N x X2
and Bijective(f, n + N, x l + X1 u x2 + X2)
and Regular(f, <nl xl> + f l)
and Regular(f, <n2 x2> +f2)}

Using rule RC3.
{ f l ' . f2 ' ~ fJ ' ~ f4' ~ f s ' ~ f6 ' ~ f7 ' u fS'l
f l 'c_ {<n xl >}, f2'c_ {n} • X1, f3'c_ {<n x2>}, f 4 ' ~ {n} x X2
f5' c_N x {xl}, f6' c_N x X I, f7' ~ N x {x2}, f8' c_N x X2
and Bijective(fl ' u f2 ' u f3 ' u f4' u f5' w f6' u f7' vof8',

n + N , xl + X l w x 2 + X 2)
and R e gu lar (f l ' vo f 2' u f Y w f 4' u f 5 ' vo f 6' vo f 7' vo f S', < n l x l > + f l)
and Regular(f1' u f2 ' vo f3' u f4' w fS' w f6' u fT' vo fS', <n2 x2> +f2)}

Using rule RS 3.

A Synthesis of Several Sorting Algorithms 25

We must now examine which combinations of f ' i ' s will survive the three
filters. It is easier if we present this in tabular form. In, the following table a
row with ticks in the f ' i ' t h column means that all the other f ' i ' s must be �9
for the total combination U f i ' to pass the filter in question.

1 < i < 8

We first consider the Bijective filter, this ensures that the compound relation
is total on its Domain and Image and functional. These considerations ensure
that only the following combinations pass the Bijective filter.

Combination Component

f r f2' f3' f4' fs' f6' f7' f8'

1 v v v v

2 v v v v
3 v v v

4 v v v v

Looking at the first Regular filter we see that this disqualifies combination 3
because f2' will ensure that n maps onto some xl ' from X1 =Image(f l) while
f5' means xl will be mapped onto by some n' from N and n<n' whereas f1-1(x1)
< f l -~(x1') . Similarly the second Regular filter knocks out combination 4 and
we are left with 1 and 2.

Here we see the origin of the new definition introduced for Merge at equations 5
and 6 in section 5.3, 1. Adding the extra, Regular, filters to the definition of Perm
is exactly equivalent to omitting these combinations of the Cartesian Product.
Purely for the purpose of the syntheses we need not have explicitly given the
definition of Regular that we did in equation 5.3.1, 6. Instead we could have
decided arbitrarily to discard these combinations and define Regular as the
originally undefined extra filter established by these omissions. We shall en-
counter a very similar pheonomena in our syntheses of Bubble Sort and Exchange
Sort in section 5.4, 1.

We can also now give some justification for the introduction of equation 5.
Perm(X) requires that every element of X appears in the first place of some
"ar ray" . The Regular filters ensure that only xl and x2 can appear in first positions
in Mergel ((n l x l) + f l , @2 x2) + f2, n+ N) so for Perm(X1 u X2) we have to
take all f l e P e r m (X 1) and all f2ePerm(X2) to ensure that every member of
X1 u X2 gets a chance to be in first place.

Thus the two expressions that survive are

C l = (n x I) + f6' w f7 ' ~ f8'
where f6 ' c_ N x X1, f7' c_ N x {x2}, fS' ~_ N x X2

and

C2 = (n x2) + f5' w f6 ' u f8'
where f5 ' ~_ N • {xI}, f6 ' ~ N • X1, fS' ~_ N • X2

and we can recombine the Cartesian Product thus

CI = (n x l) + f l ' where fl '~_ N x (x2 + X I u X2)
C2= (n x2) + f2' where f2' ~_N • (xl + X1 u X2).

26 J. Darlington

Wi thout going into tedious detail it should be clear to the reader that for
these combinat ions the filters decompose smoothly, i.e.

Bijective((n x l) + f l ' , n+ N, xl + X1 u x 2 + X2)
~ Bijective(fl', N, X1 vo x2 + X2)

Regular((n xl) + f l ' , (nl xl) + f l)
r Regular(fl', f l)

Regular((n x l) + f l ' , (n2 x2) + f2)
r (n2 x2) + f2)

Bijective((n x2) + f2', n + N, xl + X1 u x2 + X2)
r N, x1 + X1 vo X2)

Regular((n x2) + f2', (nl x l) + f l)
~Regular(f2' , (nl x l) + f l)

Regular((n x2) + f2', (n2 x2) + f2)
<=> Regular(f2', f2).

Thus we rewrite the above as

merge((nl x l) + f l , (n2 x2)+ f2, n+N)
~ { (n xl) + f l ' l f l ' c_N x x2 + X1 u X2

and Bijective(fl', N, x2 + X1 w X2)
and Regular(f1', f l)
and Regular(fl', (n2 x2) +f2)}

u {(n x2)+f2 ' l f2 ' c_N x xl +X1 voX2
and Bijective(f2', N, xl + X1 vo X2)
and Regular(f2', (nl x l) + f l)
and Regular(f2', f2)}

Recalling that X1 = Image(fl) and X2 = Image(f2) we can rewrite the above as

{(n x l) + f l ' I f l ' ~_N x Image(f l)w Image((n2 x2) + f2)
and Bijective(fl', N, Image(f1) u Image((n2 x2) + f2))
and Regular(f1', f l)
and Regular(f1', (n2 x2) + f2)}

u {(n x2) +f2'lf2'~_ N x Image((nl xl) + f l) w Image(f2)
and Bijective(f2', N, Image((nl x l) + f l) u Image(f2))
and Regular(f2', (nl x l) + f l)
and Regular(f2', f2)}

6.5. We have

Sort(X1 u X 2) ~ U Ordered(Merge(fl, f2))
f l ~ P e r m (X 1)
f 2~ Perm{X 2~

To force a fold with 5.3.2, 1 we rewrite this as

U Ordered(Merge(fl, f2)).
f 1 eOrdered(Perm(X 1)~
f 2 ~ Ordered (Perm (X 2))

It is fairly easy to see that this rewrite is legitimate. We have to show that
for any f l ePerm(X1) and f l ~Ordered(Perm(X1)) or

A Synthesis of Several Sorting Algorithms 27

f2ePerm(X2) and f2r Ordered(Merge(fl, f2))=~.

But this is straightforward if we remember that the Regular filter ensures that
Merge does not disturb the internal order of f l or f2 so if either f l or f2 are
not ordered Merge(f1, f2) cannot be ordered. More precisely we have

@ not Ord(fl)=:,3(nl xI), (n2 x2)e f l �9
nl < n2 and x2 < xl

@ VfeMerge(fl, f2).
=~ (Regular(f, f l)) i.e. V x3, x4e Image(f1).

f l - l(x3)< fl-l(x4)
~ f-a(x3)< f-l(x4)

(~) a n d O ~ g feMerge(fl , f2)- 3(nl xl), (n2 x2)ef , nl <n2 and x2 <xI
not Ord(f)

i.e. Ordered(merge(fl,f2))=Ob []

6.6. MergeS((nl xl) + f l , (n2 x2) + f2, n + N)
~Ordered(mergel((nl x l) + f l , (n2 x2) + f2, n+ N))

Instantiating 5.3.2.6
Ordered({ (n x l) + fl'] f l ' e mergel(fl, (n2 x2) + f2, N)}

w {(n x2) +f2'[f2'e Mergel((nl x l) +f l , f2, N)})
Unfolding using 5.3.1.11

~Ordered({ (n xl) + fl 'lf1'eMergel (fl , (n2 x2) + f2, N)})
u Ordered({(n x2) +f2' [f2'emergel((nl x l) +fl , f2, N)})

Taking Ordered inside the union
~ { (n xl) + f l ' [fl'emerge1(fl, (n2 x2) + f2, N)

and Ord((n x l) + f I ') }
u {(n x2)+f2'lf2'eMergel((nI x l) + f l , f2, N)

and Ord((n x2) +f2 ')}
Unfolding using 5.2.2.2.

Now assume that xl <x2, looking at the second component of the union
and remembering that V n'e N . n < n', it is easy to show that

V f2'~Mergel((nl x l) + f l , f2, N), 3(n ' xl)~f2 ' , n<n'

i.e. not Ord((n x2) + f2') for any f2'E Mergel((nl xI) + f l , f2, N).
Thus in this case the second component is ~b, similarly the first component

is ~b if x2 < xl. Furthermore we have

Ord((n x l) + fl')cc.Ord(fl') (if xl <x2)
and

Ord((n x2) + f2')~Ord(f2') (if x2 <xl)

and we can rewrite the above as

MergeS((nl x l) + fI, (n2 x2) + f2, n+N)
{(n xl) + fl'[fl'~ Mergel (fl, (n2 x2) + f2, N) and Ord(fl')}

if xl < x2
{ (n x2) + f2'lf2'c Mergel ((nl x l) + f l , f2, N) and Ord(f2')}

otherwise.

28 J. Darlington

6.7. We have

MergeS({(I xS}, (n2 x25 + f2, n + N)
~ { (n x)+fl ' l f l 'eMergel(Cb, (n2 x25 + f2, N)

and Ord((n x)+f l ') }
vo {(n x25 + f2' l f2 'e Mergel({ (1 x>}, f2, N)

and Ord((n x25 +f2')}
Unfolding 5.3.3, 8 using 5.2.2, 2.

If x<x2 for any f2'eMergel({(1 x)} , f2 , N) there will be a (n' x)e f2 ' so
that n<n' and x<x2 i.e. not Ord((nx2)+f2'), thus the lower component of
the union will be 4. Similarly if x2<x we have not Ord((nx)+f l ') for any
fl'eMergel(Cb, (n2 x2)+f2, N) so the upper component is 4. Furthermore in
the case x(x2 we have

Ord((n x S + f l ') ~Ord(f l ') and in the case x2<x we have
Ord((n x25 + f2')c*.Ord(f2'). Thus we have

MergeS({(1 x)}, (n2 x25 + f2, n+N)
{(n x) + f l ' [fl 'eMergel (4, (n2 x25 + f2, N)

and Ord(fl')}
if x<x2

{(n x25 + f2'lf2'EMergel({(1 x)}, f2, N)
and Ord(f2')}
otherwise.

6.8. We have

Perml ((n 1 xl) + (n 2 x2) + f)
{fl [fl ~- Domain((nl xl) + (rt2 x25 + f) x Image((n 1 Xl)

+ (n 2 x25 + f)
and Bijective(fl, Domain((n I x 15 + (n 2 x 2) + f),

Image((nl xl) + (n 2 x25 + f))
and Close(f 1, (n I x i) + (n 2 x 25 +f)}

We let Domain(f)=N' and n2+N'=N and Image(f)=X. Thus
Oomain((n 1 Xl) + {n 2 x25 + f) x Image({n 1 xl) + (n 2 x25 + f) is
(n 1 + N) • (x I + x 2 -b X).
Expanding this out we get

(H I XI> -~- (n 1 X25 k..) {H1} X X
w N • {xl} ~ N • {x2} u N • X

which we rewrite as

(n I xl> + (n 1 x2> u {nl} •
~ N x (x l + X) u N •

A Synthesis of Several Sorting Algorithms 29

The definition of Petrol given by 5.4.1, 4 and 5.4.l, 5 arises from omitting
{nl} x X from this expression, meaning that n I is allowed to map onto only
xa or x 2. Thus as with Regular in the earlier section we need not have inter-
preted Close by giving 5.4.1, 5. Rewriting 5.4.1, 8 with this restricted expression
we get

Perml((n i xl) + (n2 x25 + f)
~ { f l If1 ~ (nl x i) + (nl x25

+ N x (X 1 + X) w N x (x 2 --~- X)
and Biject ive(f 1, n 1 + N , x I + x 2 +X)
and Close(f l , (n 1 xl) + (n 2 x 2) + f) } .

We are again in the familiar position of forcing a fold with 5.4.1, 5. The
reader should be aware of the technique now so we will be brief. Both Bijective
and Close (having omitted {nx} z X) decompose nicely and the various com-
binations of the subsets (using rule RS3) mean that n I goes onto either x 1 or x 2
which are combined with subsets from N • x 2 + X and N x x l + X respectively.
Thus we have

Perml((nx xl) + (n 2 x25 + f)
{(fll X1) "-[-fl Ifl ~ N • x z + X

and Bijective(fl, N, x 2 + X)
and Close(f 1, (n 2 x25 + f)}

k_) {(n I x 2) + f 2 l f 2 ~ N •
and Bijective(f2, N, x i + X)
and Close(f 2, (n 2 x l) +f)} .

7. Conclusion

We hope we have demonstrated the practically and usefulness of the synthesis
approach and thrown some further light on the structure of the sorting algorithms.
However, we see this as only a preliminary attempt at a very large task and feel
that further attempts at regularising or even partly mechanising the syntheses
would prove useful. Also we make no claim that we have exposed the structure
for these sorting algorithms. The work reported in Green et al. [5] reveals interest-
ing similarities and differences. In many ways we have made life more difficult
by attempting to synthesise the permutation algorithms on the way. A sub-
sequent smaller study attempting to synthesis only 4 of the sorts and using
slightly richer syntax proved much simpler, Clark and Darlington [2].

This work has been supported by SRC grants to the Department of Artificial
Intelligence at the University of Edinburgh, and the Department of Computing
at Imperial College. We would like to thank all our colleagues there for their
help, in particular Rod Burstall and Jerry Schwarz for reading original drafts
and making very valuable suggestions.

30 J. Darlington

References

1. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs. J.
Assoc. Comput. Mach. 24, 44 67 (1977)

2. Clark, K., Darlington, J.: Algorithm classification through synthesis. Internal Report Department
of Computing and Control, Imperial College, London, 1978. Comput. J. (to appear)

3. Darlington, J.: Applications of program transformation to program synthesis. Proceedings of
Symposium on Proving and Improving Programs, pp. 133 144, Arc-et-Senans, France, 1975

4. Dijkstra, E.W.: A discipline of programming. Englewood Cliffs, N.J.: Prentice-Hall 1976
5. Green, C.C., et al.: Progress report on program-understanding systems. Stanford Memo AIM 240,

Stanford University, Computer Science Dept., 1974
6. Manna, Z., Waldinger, R.: Knowledge and reasoning in program synthesis. Artificial Intelligence

6, No. 2 (1975)

Received May 17, 1977

