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A Synthesis of Several Sorting Algorithms 

John Darlington 
Imperial College of Science and Technology, Department of Computing and Control, 
180 Queen's Gate, London SW7 2BZ, United Kingdom 

Summary. We synthesise versions of six well known sorting algorithms from 
a common specification using program transformation techniques. On the 
way to the sorting algorithms we synthesise three algorithms for generating 
permutations thus building up a family tree for the sorts exposing certain 
relationships between them. 

1. Introduction 

Where do algorithms come from? Existing techniques of algorithm analysis by 
and large treat algorithms as "pre-existing" immutable objects; in this paper 
we investigate an alternative approach concentrating more on the origins of 
algorithms. For a class of algorithms we study the nature of each algorithm and 
their relationships to one another by attempting to synthesise the algorithms 
systematically from a common high level definition of the task to be performed, 
constructing a family tree of algorithms. 

In this paper we look at the sorting algorithms, starting with a common 
high level mathematical definition of what it means to sort an array or list we 
synthesise six well-known sorting algorithms: Quick Sort, Merge Sort, Insertion 
Sort, Selection Sort, Exchange Sort and Bubble Sort. 

This approach has grown out of our work on automatic program transfor- 
mation and synthesis, and while we admit that the mechanisation of the syntheses 
detailed here is impracticable at present, this approach has strongly influenced 
our methodology. The basis for each synthesis is a small set of formal program 
transformation rules and a set of reduction rules for set expressions. We aim 
to divide the syntheses into (i) the mathematical kernels, the key reductions 
that allow the synthesis to proceed and are the basic ideas behind each algorithm 
and (ii) a lot of trivial, obviously correct, applications of the program transfor- 
mation and set reduction rules. Thus the syntheses could be machine checked 
if not machine generated, and we hope that our mechanical approach will high- 
light the decisions and mathematical facts that lie behind each algorithm. 
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2 J. Darlington 

This constructive approach to algorithm analysis and design has been ad- 
vocated by Dijkstra, [4] and others. We differ mainly in adopting a more mathe- 
matical approach, in particular a more mathematical programming language, 
and in attempting to cover a whole class of algorithms. Manna and Waldinger 
in their work on automatic programming [-6] have independently developed 
rules similar to our program transformation rules and we have benefited greatly 
from interactions with them, as we have with members of Cordell Green's auto- 
matic programming group who have developed a totally rule-driven system that 
is able to automatically generate several sorts [5]. 

In Sect. 2 we use a small example to illustrate our style of high level definition, 
target programming language, program transformation rules and set reduction 
rules. In Sect. 3, we describe the notation needed for the synthesis of the sorting 
algorithms. Sect. 4 gives an outline of the structure of the syntheses and Sects. 5 
and 6 contain the detailed syntheses. 

The style of language we use and the program transformation rules are 
described fully in Burstall and Darlington [1] and their application to program 
synthesis is outlined in Darlington [3]. 

2. Basic Rules and an Example of Synthesis 

In this section we give the program transformation rules and the basic set reduction 
rules we will use. Our language is a simple equational one. At the top, definition, 
level the right hand sides will consist mainly of set and predicate logic constructs 
while at the target language level the right hand sides will be recursively defined 
expressions. 

2.1. Program Transformation Rules 

Given a set of equations we may add to them using the following inference rules. 

(i) Definition. Introduce a new recursion equation whose left hand expression 
is not an instance of the left hand expression of any previous equation. 

(ii) Instantiation. Introduce a substitution instance of an existing equation. 

(iii) Unfolding. If E ~  E' and F ~ F '  are equations and there is an occurrence 
in F' of an instance of E, replace it by the corresponding instance of E' obtain- 
ing F" then add the equation F ~ F " .  

(iv) Folding. If E ~ E '  and F ~ F '  are equations and there is some occurrence 
in F' of an instance of E', replace it by the corresponding instance of E obtain- 
ing F", then add the equation F ~  F". 

(v) Laws. We may transform an equation by using on its right hand expression 
any laws we have about the primitives obtaining a new equation. 

The new equations obtained by these rules may be taken as a definition of 
the function appearing on the left provided we take a disjoint and exhaustive set 
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of them (the notion of disjointness and exhaustiveness depend on the data 
domain; we do not attempt an explicit definition but they are clear enough for 
integers, lists and sets). 

In the above rules unfolding corresponds to the symbolic evaluation of 
recursively defined functions. In the case where we have set-constructs on the 
right hand side that have no immediate expansion, we use a set of reduction 
rules for such constructs which we give below. These are used via rule (v). 

The novel rules is (iv), folding. This is the way that new recursions are intro- 
duced into a system of equations. We use this rule to replace non-executable 
set-expressions by recursively defined functions. A set-expression on the right 
hand side of an equation is reduced until an appropriate instance re-occurs 
and folding is then used to introduce a recursion. 

2.2. Basic Set Reduction Rules for Set-Expressions 

The following reduction rules are used repeatedly. Other reduction rules also 
used will be detailed when needed. The form of the rules will be set-expression~ 
set-expression indicating that the expression of the left hand side can be reduced 
to the expression on the right. 

(i) Membership 
RM1 {f(x)lxeq5 and P(x)} 
RM2 {f(x)lxes+Sand P(x)} 

RM3 {f(x)lx~S1 uS2 and P(x)} 

(ii) Subset 
RS1 { f(X)IX ~_eb and P(X)} 

RS2 

{f(s)} ~ {f(x)lx~ S and P(x)} if P(s) 
{f(x)lxeS and P(x)} otherwise 

(s + S is {s} ~ S) 
{ f(x) lx e $I and P(x)} 

u {f(x)lx~S2 and P(x)}. 

{~} if P(~) 
otherwise 

{f(X)lXc_s+S and P(X)} ~ { f ( X ) I X z S  and P(X)} 
w {f(s+X)IX~_S and P(s+X)} 

RS3 {f(X)IX~_S1 ~$2 andP(X)}~{f(X1 uX2)lX1 =_sIx2=_s2 and 
P(X1 u X2)}. 

(iii) Cartesian Product 
RC1 ~ x  T ~ 
RC2 (SlwS2) x T ~ S I x T ~ S 2 x T .  

2.3. Synthesis 

We will now give a preview of our syntheses by outlining the synthesis of a 
program to calculate the set of all functions between two sets. We define it thus 

1. Funcs(S, T ) ~  { f [ f  ~_S x T and Isfunc(f)} 
2. Isfunc(f) .r yl>ef,  (x2y2>ef. x l = x 2 ~ y l = y 2 .  
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Notice the style of our definition. It is of the "generate and test" form. Even 
if this definition could be directly interpreted or compiled it would result in very 
inefficient computat ion as the large set 2 s• would be formed first and then 
many of its members  filtered out by the lsfunc test. Our synthesis will use folding 
to promote  this filter into the generation process producing a recursive definition 
for Funcs in which only acceptable candidates are produced at each level. 

We start by using instantiation to derive from equation 1. 

3. Funcs(eb, T ) ~ { f I f  % ~  x r a n d  lsfunc(f)} 
~ { f l f  ceb and Isfunc(f)} Using rule RC1 

{~} if Isfunc(Cb) 
~b o therwise  Using rule RS1 

{~} Unfolding using definition of lsJunc. 
We need to consider another base case, viz. Funcs({s}, r). This is fairly ob- 

viously {{(s t>}lte T} u {4~} but we will synthesise a recursion for this as it 
illustrates a technique we will use often later. 

First we have 

4. Funcs({s}, ~) "~{q~} as above 

5. Funcs({s}, t + r ) ~  { f l f  c_ {s} x t + r and Isfunc(f)} 
~ { f l f ~ _ { s }  x {t}w{s} x r a n d  Isfunc(f)} Rule RC2 
~ { f l  w f21 f l  _{s} x {t} f2~_{s} x r a n d  lsfunc(f l  u f2)} 

Rule RS3. 

We now examine what values f l  and f2  can take. f l  is either �9 or {(s t>}. 
In the latter case unless f2  is empty it will map s onto a t 'ET such that t#:t' 
and we will have q Isfunc(f l  w f2). Thus we can rewrite the above as 

~ { { ( s  t>}} 
{ f2  If2 ~- {s} x T and Isfunc( f2)} 

~ { { ( s  t)}} uFuncs({s},  T) Folding with 1. 

Finally we synthesise the main recursion, which we get by letting S be $1 ~ $2 
where $1 and $2 are disjoint. 

6. Funcs(S1 w $2, r ) ~  { f l f ~ ( S 1  w $2) x T and Isfunc(f)} Instantiating 1 
~ { f l f ~ S 1  x T u S 2  x r a n d  Isfunc(f)} Using RC2 
~ { f l  wf21f l  =_Sl • r 

f2~_$2 x T 
and IsJunc(fl w f2)} Using RS3. 

Our aim is to get a fold so we can introduce a recursion. We see that 6 is 
almost in a form that will fold twice with 1. To  achieve this it is necessary to 
decompose the test Isfunc(f l  u f2) into a form involving Isfunc(fl)  and Isfunc(f2). 
In this case it is simple as we can see that f l  and f2  having disjoint domains 
f l u  f2  will be functional iff both f l  and J2 are functions i.e. ls func(f l  w f 2 ) ~  
Is func(f l )  and Isfunc(f2). Thus we can rewrite the above as 

{ f l  w f2  Lfl ~- S1 x T and ls func(f l )  
J2c_$2 x r a n d  Isfunc(f2)} 

~ { f l  ~ f 21 f l  E {f3lf3=_S1 x r a n d  Isfunc(fl)} 
f2  e { f4  If4 ~- $2 x r and Isfunc(f2)} } 

~ { f l  u f 2 l f l  e Funcs(S1, r )  
f 2 e  Funcs(S2, T)} Folding with 1. 
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Equations 3-6 define a recursion that computes Funcs  ensuring that no 
unacceptable sets are produced at any level. 

This process of applying set reductions, checking how the property of the 
constructed object depends on the properties of each of its components and 
then folding will re-occur repeatedly in our syntheses, and we give it the name 
"filter promotion".  

3. Notation and Representation 

Our basic notation will be that of informal set-theory, most of whose symbols 
have been used in the previous section. In addition we will use U to denote 
union over a family of sets a n d - t o  denote set subtraction, i.e. X - Y =  { z l z ~ X  
and z r  Y} .  Our other data types will be sequences and functions. We will often 
use sets and sequences interchangeably where the context makes it clear what 
is meant. In particular sets with a natural order over them, in our case always 
the non-negative integers will often be treated as sequences. Conversely certain 
set operation symbols (E, + ,  ~, etc.) will be used to denote the equivalent operation 
on sequences. Additional operations solely on sequences are. 

f i rs t :  sequence ~ element 
�9 - takes the first element of the sequence 

f i r s t ( x  + X )  = x 
rest: sequence-~  sequence 

�9 -- returns the rest of the sequence 
res t (x  + X )  -= X 

[ ] : set ~ sequence 
�9 - the initial sequence of integers up to the cardinality of the set 

[X] - (1 ,  2 . . . . .  cardinality o f  X )  
N k: sequence x integer ~ sequence 

�9 - the initial segment of the sequence with length equal to the integer 
( n l ,  n2 . . . . .  n~) k -  ( n  1, n2 . . . . .  nk) 

N k: sequence • integer ~ sequence 
�9 -- the rest of the sequence 

(nl,  n2 . . . . .  nl) k -  ( nk + l . . . .  , n l ) .  

Functions are sets of ordered pairs, and we use the following operations 
on them. 

Domain, Image:  func t ion  ~ set 

�9 - D o m a i n ( f ) =  { x [ ( x  y ) ~ f }  
�9 - I m a g e ( f )  - { y [ ( x y ) E f }  

--Ira : func t ion  X element ---,function 
"-- f - - t , ,  yI  -- { ( x  y ) [ ( x  y ) e f  and y l  +y}.  

The objects we will sort will be functions from a sequence of the integers 
into a set of atoms with some total order, __<, over them. We will often treat 
these sets of ordered pairs as sequences of ordered pairs, the order determined 
by the natural order over the domain (the integers). These functions can be 
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thought of as representing the more usual computer arrays or lists, thus the 
function {(1 b), (2 a) ,  (3 c)} represents the array [b a c]. 

The use of such a "mathemat ica l"  representation for the more normal data 
structures makes our algorithms much more amenable to formal manipulation. 
The final algorithms could easily be translated into a more familiar form by 
the use of a "representation relationship" (see Burstall and Darlington [1]) 
mapping sets of ordered pairs into lists or arrays. 

4. Structure and Presentation 

4.1. Structure of the Syntheses 

We first define Perm, the set of all permutations of a set. Using functions to 
represent arrays enables us to define Perm(X) simply as the set of all bijective 
(one to one and onto) functions from IX]  to X. As we saw earlier, functions 
are easily defined as a filter on the set of all subsets of the Cartesian product, 
thus we have 

Perm(X)~  { f l  f ~-[X] x X and Bijective(f, [X], X)} 

where 

Bijective(f, Y, X ) ~  f is a total one to one function from Y onto X. 

Notice that this definition is in the generate and test form. From this high 
level definition, which we call P, we can synthesise recursive algorithms that 
compute Perm much more efficiently. Three different ways of proceeding with 
these syntheses give us three different algorithms for generating permutations 
which we call P1, P2, P3. 

We then define Sort which takes a set and returns the function representing 
the ordered array. We do this by filtering out of Perm all the unordered functions 
i.e. those functions whose range elements are not in the order established by 
the natural order on the domain. 

Thus 

Sort( X ) ~  Ordered( P erm( X)) 

where 

Ordered(X)~ {fl  f e  X and Ord(f)} 

and 

O r d ( f ) ~ V ( n l  x l ) e f ,  (n2 x2)~f .  
nl < n 2 ~ x l  <x2. 

We again take this generate and test definition and seek to promote  the 
filtering. For each of the 3 permutation algorithms P1, P2 and P3 we synthesise 
two sorting algorithms deriving versions of Quick Sort, Selection Sort, Merge 
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Sort, Insertion Sort, Bubble Sort and Exchange Sort respectively. The structure 
of our syntheses is thus 

P 

P1 P2 P3 

Quick Selection Merge Insertion Exchange Bubble 
Sort Sort Sort Sort Sort Sort 

The derivation of the first four sorts shows a pleasing symmetry, with the 
derivation of P3 and Exchange Sort and Bubble Sort being different in character. 
The difference in the synthesis for P1 and P2 is that in P1 the "work"  necessary 
to ensure that the bijective filter is satisfied is done by decomposition, going 
down the recursion, while in P2 it is done on reconstruction, coming up the 
recursion. The difference between Quick Sort and Selection Sort and Merge Sort 
and Insertion Sort is the same viz. for Quick Sort and Selection Sort we recurse 
by decomposing a set S into two disjoint sets $1, $2 while for Selection Sort 
and Insertion Sort is the same viz. for Quick Sort and Merge Sort we recurse 
and Bubble Sort are very similar. P3 is intrinsically an infinite algorithm that 
cycles through the space of all permutations. Exchange Sort and Bubble Sort 
differ in the way they move through this space towards the ordered permutation. 

The idea of defining sorting as selecting the ordered permutation has been 
used previously by Bob Kowalski and Maarten van Emden in their work on 
Predicate Logic programming. 

4.2. Presentation of the Syntheses 

This paper has two, perhaps conflicting, aims. Firstly, we would like to show 
that program transformation methods can be used for the complete derivation 
of non-trivial algorithms and, secondly, we would like to present the syntheses 
in such a way that the structure of the derivations is easily assimilated and the 
relationships between the various algorithms becomes apparent. The first ap- 
proach leans to the eventual mechanisation of this process, while the second 
is more inclined towards using program transformation for manual program 
development or analysis. Thus we would like to base our deductions on as 
small a set of transformation rules as possible, but present them in a high level 
or structured manner. We are, therefore, building up a catalogue of higher level 
transformation types which can be used to discover and express the transfor- 
mations in, and which, if needed, can be further expanded to a series of applications 
of the fundamental transformation rules. Filter promotion is one such high level 
transformation. Thus we have adopted a two level approach to the presentation 
of the syntheses. Section 5 gives a top level view of the syntheses. Each derivation 
is presented as an initial "inspiration step" or lemma which hopefully gives 
the basic fact underlying the particular algorithm and then a series of high level 



8 J. Darlington 

transformations that improve efficiency. These high level transformations are 
almost all filter promotions. In Sect. 6 each of these high level transformations 
is expanded out into more fundamental transformations. 

5. The Syntheses 

5.1. 

Our top level definition defines the set of all permutations of a set. 

P P e r m ( X ) ~ { f l f ~  [X] x X and Bijective(f, [X], X)} 

where 

Bijective(f, Y, X ) ~  f is a total one to one function from Y onto X.  

5.2. Synthesis of PI, Quick Sort and Selection Sort from P 

5.2.1. P1 from P 

Repeating P we have 

1. Perm(X)~  { f l f  ~_[X] x X and Bijective(f, IX], X)} 

which we generalise to 

2. Perml(N, X ) ~ { f ] f  ~_N x X and Bijective(f, N, X)}. 

The first lemma we need for this synthesis is that X--  U Y. In fact we do 
g c X  

not need to take all subsets of X, all those of equal size will do. We will denote this 
by writing X =  ~) Ymeaning all subsets Y o f X  of cardinality k, l < k <  Card(X). 

g c k x  

Given this it is easily shown that N x X = (.9 ( Nkx Y )u (N  k x (X-Y) ) ,  thus we 
rewrite 2 as u 

3. Perm(N, X ) ~ { f l f ~ _  U ( Nk • Y)u(Nk • ( X -  Y)) and Sijective(f, N, X)}. 
Y c k X  

In 6.1 we will show how the Bijective filter can be promoted before the union. 
We get 

4. Perml(N, X ) ~  ~) { f l  u f 2 ] f l  ~_N k x Yand Bijective(fl, N k, Y) 
r =kx f2 ~ N k • (X - -  Y) and Bijective(f2, Nk, X - Y)} 
U { f l  w f 2 l f l  e Perml(N k, Y ) , f2ePerml (N  k, X -  Y)} 

rc~x Folding with 2. 

As for any call of Perml(N, Y), Card(N)= Card(X) the base cases we need 
to consider are 

5. Perm(Cb, (b)~{tb} Instantiating 1 and rule RS 1. 
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. 

P1 

Perm({n}, {n})~{{(n x)}} 

Thus we have algorithm P1. 

Perm(X)~ Perml ([ X], X) 
Perml(~, r  {r 
Perml({n}, {x})~{{(n x)}} 
Perml(N,X)~ U {flwf2lflePerm1( Nk, Y) 

r = k x  f2aPermI(Nk, X -  g)}. 

Instantiating 1 and evaluating. 

5.2.2. Quick Sort from PI. We define Sort by 

1. Sort(X)~Ordered(Perm(X)) 

where Ordered: 2 x~ r ~ 2 x~ Y (filters out unordered permutations). 

2. Ordered(X)~{f[fEX and Ord(f)} 
3. Ord( f )~V(nI  x l )~ f ,  @2 x 2 ) e f  

nl <n2.*~xl <x2. 
Thus 

4. Sort(X)~ Ordered(Perm(X)) 
~Ordered(Perml([X],X)) Unfolding using P1 

and we define 

5. Sortl(N, X)~Ordered(Perml (N, X)). 
Thus 

6. Sortl(~,q~)~{r Instantiating 5 and unfolding using P1 and 2. 
7. Sortl({n}, {x})~{{(n x)}} Instantiating 5 and unfolding using P1, 2 and 3. 
8. Sortl(X, X)~Ordered( U { f l  wf2]fIenerml(N k, Y) f2ePerml(Nk,X-- y)}) 

r ~ x  Instantiating 5 and unfolding PI. 

A straightforward promotion of the Ordered filter (6.2) gets us 9 below. 

( Y < X -  Y means rye  Y, x e X -  Y. y<x). 

9. Sortl(N,X) 
~j { f l  u f2[fI~Perml(N k, Y) and Ord(fl) f2~Perml(Nk, X--  Y) 

r=~x and Oral(f2)} Y < X - Y  

U { f lu f2 l f l eSor t l (N* ,  Y) 
r = ~ x  f2~Sortl(Nk, X -  Y)} Folding with 2 and 4. Y < X - Y  

The conditions on Y, Y c k X  and Y < X -  Y, mean that for any k there is just 
one such Y. Thus we can rewrite the above as 

{ f l u  f2[ f l  ~ Sort1 (N k, Y) 
f2eSortl(N,, X -  Y)} 

where k=  Card(Y) 
for s o m e  Y c X  s u c h  that Y < X -  Y. 

In the full Quick Sort algorithm Y is chosen by selecting an element from X 
and then dividing X into two sets one all less than the chosen element and one 
all greater than the chosen element. We can synthesise this by defining. 
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10. Filter(X)~ Y such that Y c X  and Y < ( X -  Y). 
11. Filterl(x, X ) ~  Y such that Y c X  and Vy~ Y. y<x.  

If we consider the case x + X  where xq~X we have 

12. Filter(x + X ) ~  Y such that Y c x  + X and Y<(x + X -  Y). 

Now as xeX ,  Y c X  and Vy~ Y . y < x  implies Y < X - Y  we can rewrite this as 

~ Y  such that Y ~ X  and Vye Y. y < x  
~Fi l ter l (x ,X)  Folding with 11. 

The other cases needed are 

13. Filter(~) ~ Instantiating 10 and rule RS1 
14. Filterl(x, q~) ~ �9 Instantiating 11 and rule RS 1 
15. Filterl(x, xl + X ) ~  xl + Filterl(x,X) if xl < x 

Filterl(x, X) otherwise Rule RS2 and folding with 11. 

Thus we have algorithm $1 (Quick Sort) 

S1 Sor t (X)~Sor t l ( [X] ,X)  
Sortl(~, ~) ~ { ~} 
Sortl({n}, {n})~{{(n x)}} 
Sortl (N, X) ~ { f l  w f2 If1 ~ Sortl (N k, Y) 

f2ESortl(Nk, X -  Y)} 
where k =  Card(Y) 

where Y= Filter(X) 
Filter(~)~ 
Filter(x + X ) ~  Filterl(x, X) 
Filterl(x, ~ ) ~  
Filter1(x, xl  + X ) ~  xl + Filterl (x, X) if xl < x 

Filterl(x, X) otherwise 

Of course there are many more improvements that can be made to this 
algorithm, for instance the computation of X - Y  can be interwoven with the 
computat ion of Y=Filter(X) but we hope that we have at least captured the 
"essence" of the algorithm. 

5.2.3. Selection Sort from P1. The derivation of Selection Sort is straightforward. 
It can be derived "horizontal ly"  from $1 by always choosing Y to be a singleton. 
We choose to derive it from P1 to push the decision points as high in the syn- 
thesis as possible. Thus we have 

1. P e r m l ( N , X ) ~  U { f l w f 2 l f l ~ P e r m l ( N t ,  Y) 
rc ,x  f2EPerml(N1, X -  Y)} 

U {f l  ~f2l f l~Perml({ f irs t (N)} ,  {y}) 
y~x f 2E Perml (rest(N), X - {y})} 
U {(first(N), y> +f[fePerml(rest(N),  X -  {y})}. 

yeX 

Thus we have a permutation algorithm PI' 
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PI '  Perm(X)~ Perml([X], X) 
Perml (4~, ~O) ~ { ~} 
Perml({n}, {x})~{{(n x>}} 
Perml ( N, X ) ~  0 { < frs t (  N), y> + f l f e Perml (rest( N), X -  {y})} 

y~X 

Again we define 

2. Sort(X)~Ordered(Perm(X)) 
Ordered( P erml ([ X], X)) 

and let 

3. Sortl(N, X)~Ordered (Perml (N, X)) 
4. Sortl(~, ~) ~ { ~ }  Unfolding using PI' and 5.2.2, 2. 
5. Sort(N,X) ~Ordered(Perm(N,X)). 

Pushing the Ordered filter inside (6.3) gives us, 

6. Sortl (N, X ) ~  { < first(N), y> + f i f e  Petrol(rest(N), S -  {y}) 
and Ord(f)} 

for some y such that y ~ X  and V x e X - { y } . y < x  
{ (first(N), y)  + f i f e  Sortl (rest(N), X -  {y})} 

for  s o m e  y such  tha t  y e X  and V x e X - { y }  . y < x  
Folding with 5.2.2, 2 and 3. 

We now define 

7. Least(X)~y such  tha t  yeXand V x E X - { y } .  y<x .  

Thus 

8. Sortl(N, X)~{( f irs t (N) ,  y)  + flfeSortl(rest(N), X -  {y})} 
w h e r e  y=Leas t (X)  Folding 6 with 7. 

9. Least({x})~x Instantiating 7 and reducing. 
10. Least(xl + X) 

~ x l  if V x e X . x l  <x 
y such  tha t  y e X  and u  

otherwise 
Instantiating 7 and rule RM1. 

But as xI < yl where yl ~ X and V xE X -  yl - yl < x implies Vxe X .  xl < x we 
can rewrite this as 

~ x l  if xl < y where y e X  and V x e X - y . y < x  
y such that y e X  and V x e X - y . y < x  

otherwise 
~ x l  if xl <Least(X) 

Least(X) o t h e r w i s e  
Folding with 7. 

Thus we have algorithm $2 (Selection Sort) 
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$2 Sort ( X ) ~  Sort l ([ X ], X) 
Sortl(cl), cI)) ~ { ~ }  
Sortl(N, X) ~ { (first(N), y)  + f i f e  Sortl (rest(N), X - {y})} 

w h e r e  y = Least(X) 
Least({x})~ x 
Least(x1 + X ) ~ x l  if xl < Least(X) 

Least(X) otherwise 

J. Darlington 

5.3. P2, Merge Sort and Insertion Sort from P 

5.3.1. P2 from P. Repeating our definition from P we have 

1. Perm(X)~ { f [ f  ~_ [X]  x X and Bijective(f, IX] ,  X)} 

and we can immediately derive 

2. Perm(cb)~{~} Instantiating 1 rules RC1, RS1. 

and 

3. Perm({x})~{{(1 x)}} Unfolding. 

To  set ourselves on the path to Merge Sort we choose to decompose X into 
two distinct non-empty sets getting 

4. Perm(X1 w X 2 ) ~ { f l f ~ _ [ X 1  wX2] x(X1 wX2)  
and Bijective(f, IX1 w X2], X1 wX2)}. 

The insight required is that from the definition of Perm and Bijective we 
know that for any f lEPerm(X1) and any f2ePerm(X2) Image( f l )=Xl  and 
Image(f2) = X2 thus we have Perm(X1 w X2) = Perm(Image(fl) w Image(f2)). 
Thus we could re-express the above and produce an algorithm of the form 
Perm(X1, X 2 ) = f ( f l , f 2 )  for any f lEPerm(X1), f2ePerm(X2) where f forgets 
all the structure built into f l  and f2 and computes Perm all over again from 
Image(fl)  and Image(f2). To get an algorithm closer to the familiar one we 
define an f that computes a subset of Perm, viz. those permutations are attain- 
able from f l  and f2 without disturbing the internal order of f l  and f2. We 
will call this f Merge! 

More exactly 

5. Merge ( f l ,  f2) ~ { f I f ~- Elmage ( f l )  w Image (f2)] 
x Image(f1) w Image(f2) 
and Bijective(f, [Image(f1) w Image(f2)], 

Image(fl) w Image(f2)) 
and Regular(f f l )  
and Regular(f, f2)} 

where 

6. Regular(f, f l ) m V x l , x2 E Image( f l ) . 
f l - l ( x l ) <  f l - l ( x2 )  

~ f - l ( x l ) <  f - l (x2) .  
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We shall see later in 6.4 where this restriction of Perm arises from. 
To get Perm(X1 uX2) it is now no longer sufficient to take a n y f l  ePerm(X1), 

f2ePerm(X2) we need to take all such f l  and f2, i.e. 

7. Perm(Xl ~ X2)~  U Merge(fl, f2). 
fl~Perm(X 1) 
f2ePerm(X2) 

We, of course, need to justify this equation but we will postpone its (informal) 
�9 justification until we see where the Regular filter arises from. 

We have to produce a recursion for Merge. We first generalise 5 defining 

8. Mergel(f l , f2,  N ) ~  { f l f  ~ N  x Image(fl)u lmage(f2) 
and Bijective(f N, Image(fl) u Image(f2)) 
and Regular(f, f l )  
and Regular(f, f2)}. 

Thus 

9. Merge(f1, f 2 ) ~  Mergel(fl,  f2, [Image(f1) w Image(f2)]) 
Folding 5.3.1, 5 with 5.3.1, 8 

~ Mergel(fl,  f2, If1 u f2]) .  

We first synthesise the main recursion for Merge1. 

10. MergeI((nl x l ) +  f l ,  (n2 x2)+ f2, n+ N) 
~ { f l f  ~_n+ N x lmage((nl x l ) +  f l ) •  Image((n2 x2)+ f2) 

and Bijective(f, n + N, Image((nl xl ) + f l )  
w Image((n2 x2) +f2)) 

and Regular(f, (nl x l )  + fI) 
and Regular(f, (n2 x2) + f2)} Instantiating 8. 

The filter promot ion in this case is more complicated as we have two filters, 
for details see 6.4, but eventually we can rewrite 10 as 

~ { < n  xl> + f l ' l f l '  ~_N x 
and 
and 
and 

u {<n x e > + f e ' l f e ' ~ N x  
and 
and 

Image(f1) ~ Image((n2 x2) + f2) 
Bijective(fl', N, Image(f1) w Image((n2 x2) + f2)) 
Regular(f1', f l )  
Regular(fl', (n2 x2) + f2)} 
Image((nl xl)  + f l )  u Image(f2) 
Bijective(f2', N, Image( (nl xl ) + f l) w Image(f2)) 
Regular(f2', (nl x l ) +  f l )  

and Regular(f2', f2)} 
{(n xl ) + f l ' l  f l '  e Mergel(fl,  (n2 x2) + f2, N)} 
{(n x2) + f2'[f2' e mergel((nl x l )  + f l ,  f2, N)} Folding with 8. 

Now we have only the base cases of Merge1 to do. We notice from equation 9 
that when Merge1 ( f l ,  f2, N) is first called we have Card(N) = Card(f1) + Card(f2) 
and from equation 11 we see that at each recursive call one element is removed 
from N and one from either f1 or f2  so this relationship is maintained. So the 
base cases we need to examine are 

12. Mergel(O, O, 0 ) ~  {O} Instantiating 8 and unfolding 
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and 

13. Mergel({nl xl}  + f l ,~ ,  n+ N ) ~ { f l f  ~_n+ N x Image(fl)u lmage(CI)) 
and Bijective(f N, Image(f1)~ Image(~)) 
and Regular(f, {nl xl} + fl)  
and Regular(f 4~)} Instantiating 5.3.1,8. 

There is a corresponding case with f l  4~. We are again able to produce a 
recursion for those cases but as the synthesis is quite straightforward we will 
not bother to present it. We get 

14. Mergel({nl x l }+ f l ,  4~, n+N) 
{{n xl}  + f l f ~  Mergel(fl, ~, N)} 

and 

15. Mergel (q), @2 x2} + f2, n + N) 
{{n x2} + f l f ~  Mergel(q~, f2, N)}. 

These two base cases just return the original "array"  but shifted along so 
that it will fit on the end of the arrays produced by the main recursion. 

Thus we have algorithm P2 

P2 Perm(q)) ~{q~} 
Perm({x}) ~{{{1 x}}} 
Perm(X1 ~ X2)~ ~) Merge(f1, f2) 

f l  �9 Perm(X I ) 
f 2 e P e r m ( X 2 )  

Merge(fl, f2) ~Mergel( f l , f2 ,  [f l  w f2]) 
Mergel(~, ~, ~)~ {,/~} 
Mergel({nl x l }+ f l ,  ~, n+N) 

~ { { n  xl}  + f l f~Mergel( f l ,  ~, N)} 
Mergel (~, @2 x2} + f2, n + N) 

~ { { n  x2}+fl feMergel(~, f2,  N)} 
Mergel ({nl xl } + f l ,  @2 x2} + f2, n + N) 

{{n xl } + f l '  Ifl'e Mergel (fl ,  {n2 x2} + f2, N)} 
u {{n x2} +f2' If2'eMergel((nl xl}  +fl ,  f2, N)}. 

5.3.2. Merge Sort from P2. Again we define 

1. Sort(X)~Ordered(Perm(X)) 

where Perm is given by P2 and Ordered by 5.2.2, 2. Thus we have immediately 

2. Sort(q~) ~ { ~ }  Instantiating 1 and unfolding 
3. Sort({x}) ~{{(1  x)}} Instantiating 1 and unfolding 
4. Sort(X1 ~ X2)~ (.J Ordered(Merge(fl,f2)) Instantiating 1,unfolding 

f l e P e r m ( X l )  using 5.3.1, 7 and taking 
. f2e Perm(X2) 

Ordered inside the union. 

Examination of the filters (6.5) enables us to rewrite this as 

U Ordered(Merge(fl, f2)) 
f l ~Ordered(Perm(X I )) 
f 2 e  Ordered (Perm (X 2)) 
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Thus we have 

Sort(X1 w X2)~  . 

f l eSor t (X  l) 
f2cSort(X2)  

We now look at Ordered(Merge(fl,f2)), which is 
Ordered(mergel (f l ,  f2, [ f l  w f2])) so we define 

6. MergeS(fl, f2, N)~Ordered(Mergel(fl, f2, N)) 

and rewrite 5 as 

7. Sort(Xl ~ X 2 ) ~  U MergeS(fl,f2, If1 wf2]) 
f l e S o r t l X  l) 
f2~Sort(X2) 

U Ordered(Merge(fl,f2)) Folding with 1. 

Immediately we have 

MergeS(~, ~, cb)~ {~} 

Unfolding 5 
with 5.3.1, 9 
Folding with 6. 

8. Instantiating 6 and unfolding using 5.3.1, 2 
and 5.3.2, 2. 

We now look at 

9. MergeS((nI x l )+  f l ,  (n2 x2)+ f2, n+N) 
Ordered(Mergel((nI x l )  + f l ,  (n2 x2) + f2, n + N)) 

Instantiating 6. 

Promoting filters (6.6) gets us to 

10. MergeS((nl x l )+  f I ,  (n2 x2)+ f2, n+N) 
{(n x l )  + f l '  JfI'~Mergel(fl, (n2 x2) + f2, N) 

and Ord(fl')} 
if xI <x2 

{(n x2) + f2'l f2'~ Mergel((nl x l )  + f l ,  f2, N) 
and Ord(f2')} 

otherwise 
{(n xl ) + f l '  [fl'EMergeS(fl, (n2 x2) + f2, N)} 

if xI  < x2 
{(n x2) + f2'lf2'eMergeS((nl x l )  + f l ,  f2, N)} 

o t h e r w i s e  
Folding with 5.2.2, 2 and 6. 

Finally we have the other base cases to do. The synthesis of the recursions 
are straightforward and we omit  details. In fact as f l  and f2 are ordered and 
Merge1(fl, ~, N), say, does not rearrange f l  we could just continue to use 
Merge1 for these base cases, but we find it neater to write 

11. MergeS((nl x l )  + f l ,  cb, n+ N) 
{ ( n x I ) + f l  '1 f l '  ~ MergeS (fl ,  r U)} 

and 

12. MergeS(~, (n2 x2) + f2, n + N) 
{ (n x2) + f2'l f2'e MergeS(~, f2, N)}. 

Thus we have algorithm $3 (Merge Sort) 
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Sort(r {~} 
Sort({x})~ {{(1 x>}} 
Sort(X1 u X2)~  U MergeS(fl, f2, If1 uf2])  

f leSort(X l) 
f2eSort (X2)  

mergeS(eb, ~, ~) ~ {@} 
MergeS((nl x l )+  f l ,  cb, n+N) 

{ (n xl } + f l '  I f l ' e  MergeS(fl, ~, N)} 
MergeS(Oh, (n2 x2} + f2, n + N) 

{(n x2} + f2' If2'~MergeS(~, f2, N)} 
MergeS((nl x l }+ f l ,  (n2 x2}+ f2, n+ N) 

~{ (n  x l }+ f l '  Ifl'eMergeS(fl, (n2 x2} + f2, N)} 
if x l  < x2 

{ (n x2} + f2' [f2'e MergeS( (nl xl ) + f l ,  f2, N)} 
otherwise. 

5.3.3. Insertion Sort from P2. If in algorithm P2 instead of decomposing X 
to X1 w X2 we decompose it to x + X the equation for the main recursion becomes 

1. Perm(x+X)~ UMergel({(1 x)},f2, [{(1 x)}uf2])  
/2~Pe~mtX) Instantiating 5.3.1, 11 and unfolding using 5.3.1, 9. 

Thus we specialise Mergel getting new equations 

2. Mergel({(1 x)}, ~, n +~)~{{n x)}} Unfolding using 5.3.1, 14 and 5.3.1, 12 

and 

3. Mergel({(1 x)}, (n2 x2)+f2, n+N) 
{(n x) + fl 'l  f l '~ Mergel (q~, (n2 x2) + f2, N)} 

w {(n x2)+f2'lf2'~Mergel({(1 x)},f2, N)} 
Unfolding using 5.3.1, 11. 

We call this modified Perm algorithm P2', note that equation 5.3.1, 3 is no 
longer required. 

P2' Perm(cb) ~ {r 
Perm(x+X) ~ UMergel({(1 x}}, f [{(1 x}} vof]) 

f~Perm(X) 

Mergel (q~, ~, ~) ~ {~} 
Mergel({(1 x)}, cb, n+~) 

~{{<n x>}} 
Mergel (eb, <n2 x2> + f2, n + N) 

~{<n x2> + f l f ~  Mergel(~, f2, N)} 
Merge1({(1 x)}, (n2 x2)+f2, n+N) 

{ (n x) + fl'[ f l ' e  Mergel (cb, (n2 x2) + f2, N)} 
{ (n x2) + f2'] f2'e Mergel ( { (1 x) }, f2, N)}. 

To get Insertion Sort we as usual define 

4. Sort(X)~ Ordered(Perm(X)) 
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where Perm is now defined by P2'. We will restrict ourselves to outlining the 
synthesis of the main recursion, thus instantiating 4 we get 

5. Sort(x+X)~ UOrdered(Mergel({(1 x)},f,  [{(1 x )}wf ] ) )  
I~eermtX) Unfolding using 1 and taking Ordered inside the union. 

As with Merge Sort we can force a fold with 4 because examining the filters 
allows us to rewrite 5 as 

6. Sort(x+X)~ UOrdered(Mergel({(1 x)},f,  [{(1 x )}wf ] ) )  
f e Ordered (Perm (X)) 

00rdered(Mergel ({(1 x)}, f [{(1 x)} w f]))  
j~sor.x) Folding with 4. 

We now look at 

7. MergeS({(1 x) }, f N)~Ordered(merge1({ (1 x) }, f, N)) 

and in particular 

8. 

. 

$4 

MergeS({(1 x)}, (n2 x2)+ f2, n+N) 
Ordered(Mergel ({(1 x)  }, (n2 x2) + f2, n + N) 

Promoting (6.7) gets us to 

MergeS({(1 x)}, (n2 x2)+ f2, n +N) 
~ { ( n  x)+ f l '  [fl'eMergel(~, (n2 x2)+ f2, N) 

and Ord(fl')} 
if x<x2 

{(n x2) + f2' [f2'eMergel({(1 x)}, f2, N) 
and Ord(f2')} 
otherwise 

~ { ( n  x)+ f l '  Ifl'eMergeS(q~, (n2 x2)+ f2, N)} 
if x<x2 

{(n x2)+ f2'[f2'eMergeS({(1 x)}, f2, N)} 
otherwise 
Folding with 5.2.2, 2 and 7. 

The base cases go through smoothly and we have algorithm $4, Insertion Sort 

Sort(,~) ~{r 
Sort(x+X) ~ UMergeS({(1 x ) } , f  [{(1 x)}wf])  

f e S o r t ( X )  

mergeS(q~, q~, ~ )~  {~} 
MergeS({(1 x)}, cb, n+~) 

~{{(n x)}} 
MergeS(~, (n2 x2)+ f2, n+ N) 

{(n x2) + f2' [ f2'eMergeS(4~, f2, N)} 
MergeS({(1 x)}, (n2 x2)+f2, n+N) 

~ { ( n  x)+ f l '  [fl'eMergeS(@ (n2 x2)+ f2, N)} 
if x < x2 

{(n x2) + f2'lf2'e MergeS({(1 x)}, f2, N)} 
otherwise. 
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5.4. Synthesis of t"3, Exchange Sort and Bubble Sort from P 

In this section we consider the class of sorts that operate by swapping adjacent 
elements of the array whenever local inversions occur. We synthesise versions 
of the two best known algorithms in this class, Exchange Sort and Bubble Sort. 

5.4.1. 1"3 from P. In the previous two sections we took our definition of the 
set of all permutations of a set to be 

1. Perm(X)~ { f i f e_  [X] x X and Bijective(f [X], X)} 
2. Bijective(f Y,, X ) ~ f  is a total one to one function from Y onto X. 

In this section however we take a slightly different starting point. Perm now 
takes a function, representing an array, as argument and again produces the 
set of all permutations i.e. 

3. P e r m ( f ) ~ { f l ] f  It_Domain(f) x Image(f) 
and Bijective(fl, Domain(f), Image(f))} 

where Bijective is as before. 
The key to producing a recursion to compute Perm(f) lies in first synthesising 

another function Perml(f)  which will compute a subset of Perm(f). Informally 
Perml(f)  computes all those permutations of f that can be achieved by going 
along f and either swapping or not swapping adjacent elements. Elements can 
therefore move to the right freely but at most one place to the left. Thus we 
can characterise Perml ( f )  exactly. 

4. P e r m l ( f ) ~ { f l ] f l  ~_Domain(f) x Image(f) 
and Bijective(fl, Domain(f), Image(f)) 
and Close(f1, f)} 

5. C I o s e ( f i , f ) ~ V ( n  x )~ f i ,  l < f - l ( x ) < n +  l. 

We will see in (6.8) where this definition of Perml arises. 
We have 

6. Perml(eb)~{~} Instantiating 4 and unfolding. 
7. Perml((n x )  +@)~ { (n x )  +@} Instantiating 4 and unfolding. 
8. Verml((n 1 x l ) + { n  2 X2)+f)  

{fl[ f l  c Domain( ( n 1 xi)  + @2 x2) + f ) • Image( ( ni xi)  + @2 x2) + f )  
and Bijective(fl, Domain((n 1 xx) + (n 2 x2) + f ) ,  

Image((nl xl)  + (n2 x2) + f))  
and Close(L, (n i xl)  + @2 x2) +f)} .  

Promoting these two filters (6.8) gets us to (N = n 2 +Domain(f)). 

10. Perml((n 1 xl)  + ( n  2 x2) + f )  
~ { ( n l x l ) + f l  [ f l -~N x x  2 + x  

and Bijective(fl, N, x 2 + X) 
and Close(f1, (n 2 x 2 ) + f )  } 

~; {(n i x2)+f21f2~_N x x  1 + X  
and Bijective(f2, N, x 1 + X) 
and Close(f2, @2 xl)  +f )}  



A Synthesis of Several Sorting Algorithms 19 

~ { ( n l  X1) -[-fl Ill ~ Domain( ( n2 x2) + f )  x Image( (n z x2) + f )  
and Bijective(fl, Domain((n 2 Xe) + f), 

Image( ( nl x2) + f)) 
and Close(f1, (n z Xz) +f)} 

w {@1 x2) +f21 f2 -~ O~ xl) +f)  x Image((n 2 xt) +f) 
and Bijective(f2, Domain((n 2 xl) + f), 

lmage((n2 xl) + f)) 
and Close(f 1, (n z Xl) +f)} 
Using the definitions of Domain and Image 

{@1 x1) -[-A [fl e Perml((n2 x2) +f)} 
vo {@1 x2)+ f2]f2 ~ Perml((n2 xl) +f)} 

Folding with 4. 

How do we get Perm from Perml? A moment spent considering the target 
sorting algorithms gives us a clue. They both operate by closure repeatedly 
calling the swapping subroutine until the ordered list is achieved. 

Thus we first define Perm2 the extension of Perml over a set. 

11. Perm2(S)~ U Perml(f). 
f~S 

The crucial lemma we need to establish is that the fixed point of Perm2 is 
equal to Perm, that is Perm2(S)=S~S=Perm(f) for any f~S, but this is clear 
from the definitions of Perm, Perml and Perm2, 3, 4, 5 and 11. Thus we can 
modify 11 to 

12. Perm2(S)~ if ~ Perml (f) = S 
f~S 
then S 
else Perm2( ~ Perml (f)) 

f~S 
and write 

13. Perm(f)~Perm2({f}) 

and we have algorithm P3 

P3 Perm(f)~Perm2({f}) 
Perm2(S)~if u=S then  S 

e l s e  Perm2(u) 
w h e r e  u = U Perml ( f )  

PermI (~b)~ {~b} i~s 
PermI({(n x)})~{{(n x)}} 
PermI((n 1 xj) + @2 x2) + f )  

~{ (n l  xl) +f l  If1 ePerml((n2 x2) +f)} 
vo {@1 x2) + f2lf2~Perml((n2 xl) +f)}.  

5.4.2. Exchange Sort from P3. We define Sort as usual (only this time it takes 
an array as argument) 

1. Sort(f)~Ordered(Perm(f)) 

where ordered is given by 5.2.2, 2 and Perm by P3. 
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To produce Exchange Sort and Bubble Sort we constrain Perml so that 
only swaps that move towards the ordered list are made. For Exchange Sort 
we constrain Petrol so that it removes as many inversions as possible per call, 
for Bubble Sort we constrain it so that one inversion is removed per call. More 
exactly for Exchange Sort we have 

2. Sortl I ( f )~Best (Perml  (f)) 
3. Bes t (S )~ f  such that f ~S  

and V f l e S - {f} .  N oofinversions( f ) <= N oofinversions( f l ) 
4. Noofinversions(f)~ Card({xl I(nl x l )Ef ,  @2 x2)ef ,  

and nl < n2 and xl > x2}), 
Thus we have 

5. Sort11((nl x l ) + ( n 2  x 2 ) + f )  
~Bes t ({ (n l  x l )  + f l  If1 ~eerml((n2 x2) +f)}  

w {@1 x2) +f2[f2ePerml(@2 x l )  +f)})  
~Best ({ (n l  x l )  + f l  l f l  ePerml((n2 x2) +f)})  

if xl < x2 
Best({{nl x2) + f2 l f2ePerml(@2 x l )  +f)})  

otherwise 
~<nl  xl> + Best(Perml(<n2 x2> + f ) )  if xl <x2 

(nl x2> + Best(Perml(<n2 xl> + f ) ) o t h e r w i s e  
~<nl  x l )  + Sortll(<n2 x2> + f )  if xl <x2 

@1 x2> + SortlI (@2 xl ) + f )  o t h e r w i s e .  

When Sortll ( f ) =  fi we have Ord(f) thus we can write 

6. Sor t ( f )~ i f  u= f 
then f 
else Sort(u) 

where u = Sortl l ( f) .  

We now have a recursive sort program but we are not quite finished. In 
an Exchange Sort the termination test is interwoven with the main recursion. 
Here we still have it separate as the rest u - - f  requires an iteration along the 
array. We will only outline this interweaving process and assume that equality 
between arrays or functions is computed by =s whose main recursion is given by 

7. (n x ) + f l  =s{m y ) + f 2  
~ n = m  and y = x  and f l  =s f2. 

Thus we define 

8. Exchange ( f )  ~ ( f  =s Sort11 (f),  Sort11 ( f ) )  

and for the main recursion we have 

9. Exchange(@ x ) +  (m y ) + f )  
~ ( n = n  and x = x and (rn y) + f =sSort l l ( (m y) + f) ,  

n x ) + S o r t l l ( ( m y ) + f ) )  i f x < y  
(n=n  and x = y and (m y)  + f = fSort l l (Qn x)  + f),  

(n y)  + Sortl l((m x) + f ) )  otherwise. 
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Unfolding using 5, rearranging the conditional, and unfolding 
using 7 

~(True and (m y) + f =ySortll((m y) + f), 
(n x) + Sortl 1 ((m y) +f ) )  if x < y 

(False and (rn y) + f =fSortll((m x) + f ) ,  
(n y) + Sortl l((m x) + f ) )  o the rwise  

True and u, ( n x) + v) 
where  (u, v) = ( ( m  y)  + f = y  Sortl I ((m y) + f ) ,  

Sor t l l ( (my)+f ) )  i f x < y  
(false, (n y) +v))  

where  (u, v) = ( (m x) + f =iSort11((m x) + f), 
Sortl l((mx) + f ) )  otherwise. 

Abstracting. Notice that u is not used in the second abstraction 
and we use this to achieve a form that will fold 

(u, (n x) + v) 
where  (u, v) = Exchange((m y) + f)  if x < y 

(False, (n y} + v}} 
w h e r e  (u, v) = Exchange((m x) +f)  o the rwise  

Folding with 8. 

Finally we tie Sort up with Exchange 

10. Sort( f )~i f  u then f 
e l se  Sort(v) 

where  (u, v) = ( f  =s  Sort1 l(f), Sort1 l ( f ) )  
Abstracting 6 

~ i f  u then f 
e lse  Sort(v) 

where  (u, v) = Exchange(f) 
Folding with 8. 

We will not bother detailing the synthesis of the base cases and present 
algorithm $5 (Exchange Sort) 

$5 Sort( f )~i f  uthen f 
else Sort(v) 

where  (u, v) = Exchange(f) 
Exchange( ~ )~  (True, ~p ) 
Exchange({@ x ) } )~  ( True, {(n x )} )  
Exchange(@ x) + (m y) + f )  

~(u, (nx)+v) 
where  (u, v) = Exchange((m y) + f )  if x < y 

(False, (n y) + v) 
w h e r e  (u, v) = Exchange((m x) +f)  otherwise .  

5.4.3. Bubble Sort from P3. As mentioned in the previous section Bubble Sort 
is derived by choosing from Perml the permutation with just one inversion 
removed (if there is one). 
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1. Sort12(f)~Oneremoved(Perml(f), f )  
2. Oneremoved(S, f ) ~  f l �9 such that f l  e S 

and N oofinversions( f l ) + 1 = N oofinversions( f ) 
if such an f l  exists 

f otherwise. 

This produces a recursion 

3. Sort12((n1 x l )  + @2 x2) +f )  
~ ( n l  x l )  + Sort12((n2 x2) + f )  if xl < x2 

(nl x2) + @2 xl ) + f otherwise. 

Similarly we define 

4. B u b b l e ( f ) ~ ( f  =sSort12(f ), Sort12(f)) 

and the main recursion is 

5. Bubble(@ x)  + (m y) + f )  
~(u, (nx)+v) 

where (u, v) = ( (m y) + f =fSortl2( (m y) + f), 
Sortl2((m y )+ f ) )  if x < y 

(False, (n y) + (m x) + f ) )  otherwise 
Unfolding using 3, rearranging the conditional, 
unfolding using 5.4.2, 7, simplifying the conjunction 
and abstracting. 

~(u, (nx)+v) 
where  (u, v) =Bubble((m y) + f )  if x< y 

(False, ( n y) + ( m x)  + f ) otherwise  
Folding with 4 

and our version of Bubble Sort is algorithm $6 

S6 Sort ( f )~ i f  u then f 
else Sort(v) 

where (u, v) =Bubble(f) 
Bubble( q~)~ (True, cb ) 
Bubble({@ x)})~(True,  {(n x)} )  
Bubble(@ x) + (m y) + f )  

~(u, (n x)+v)  
where  (u, v)=Bubble((m y ) + f )  if x < y 
(False, (n y )+  (m x ) + f )  otherwise .  

6. Lower Level Details 

6.1. We have 

P e r m l ( U , X ) ~ { f l f  ~- U ( N k x Y ) w ( N k x ( X - Y ) )  
rckx and Bijective(f N, X)} 

~ { u f [ f ~ _ ( N  g x Y) u (N  k x ( X -  Y)), Y=k X 
and Bijective(w f, N, X)} Rule RS 3. 
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Consider any two subsets Y1, I72 ~k X such that Y1 :f Y2 and any f l , f 2  
f l  c_ (N k x Y1) vo (N k x (X - Y1)) and f2  ~_ (N k x I12) w (N k x (X - I12)). An element 
xl such that x lE Y1, x l  r Y2 is going to be mapped onto by an element of N k 
in f l  and by an element of N k in f2, therefore f l  vof2 cannot pass the bijective 
filter. Thus we can rewrite the above as 

~ { f [ f ~ - ( N  kx  Y ) U ( N k X ( X - Y ) )  
r=~x and Bijective(f, N, X)} 
U { f l w f 2 l f l ~ _ ( N  k x Y) 

r=~x f2  ~_(N k x ( X -  Y)) 
and Bijective(fl w f2, N, X)} Rule RS3. 

To achieve a fold and produce a recursion for Petrol we need to decompose 
Bijective(fl w f2, N, X). But we know that the union of two functions on disjoint 
domains and ranges will be bijective if and only if the two functions are bijective 
(N = N k u Nk). Thus we have 

Bijective(fl w f2, N, X)<=~ Bijective(fI, N k, Y) 
and Bijective(f2, Nk, X -  Y) 
for any Y~_X. 

This allows us to write the above as 

P e r m l ( N , X ) ~  U { f l  u f 2 [ f l  ~ N k x  Y and Bijective(fl, N k, Y) 
r c ~ x  f 2  ~_ N k • ( X  - Y )  and  B i j e c t i v e ( f 2 ,  Nk, X - Y)}. 

6.2. We have 

Sortl(N, X)~Ordered( U { f l  u f 2 [ f l E P e r m l ( N  k, Y) 
rc~x f2~  Verml(Nk, X - -  Y)} 

U { f l  ~ f 2 [ f l  e PermI(N k, Y) 
r~kx f2~Perml(Nk, X -  Y) 

and Ord(f l  u f2)} 
Using the fact that Ordered(X1 u X2)=  Ordered(X1)u Ordered(X2) 
and unfolding. 

In order to force a fold with 5.2.2, 5 we need to decompose Ord(f l  u f2). We 
note that 

(i) V n l c N  k, n2~Nk.nl  <n2 
(ii) V f l e Perml (N k, Y), f2  e Perml (Nk, X -  g). 

Image(f1) = Y, Image(f2)= X - Y 
Domain(f1) = N k, Domain(f2) = N k . 

Therefore unless Vye Y, x e X - Y ,  y < x  there will be a (nl  y l ) e f l ,  @2 y 2 ) e f 2  
such that nI <n2 and y l > y 2  i.e. not O r d ( f l u f 2 ) .  Given such a Y we have 
Ord(f l  w f2 )~ ,  Ord(fl)  and Ord(f2). We will write the condition Vye Y, x e X -  Y. 
y < x as Y< X -  Y and rewrite the above as 

~ { f l  t o f 2 1 f l e P e r m l ( N  k, Y) and Ord(f l)  
r ~ x  f2~  Perml(Nk, X -  Y) and Ord(f2)} Y < X - Y  
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6.3. We start with 

Sort(N, X ) ~  Ordered(Perm(N, X)) 
U {< first(N), y> + f l f~ Perm1(rest(N), X - {y}) 
y~x and Ord(<first(N), y> +f )}  

Unfolding using P1 and 5.2.2, 2. 

As we know that Vnerest(N), f irs t (N)<n,  by an argument similar to the 
one used in section 6.2 we can see that unless y is chosen such that g x e X - { y } .  
y < x  all components of the union will be q~. For such a y we also have 

Ord(<first(N), y> + f ) , ~ O r d ( f )  (as feVerml(rest(N),  X - { y } )  

so we have 

Sortl(N, X ) ~  {<first(N), y> + f l f ePerml(res t (N) ,  X -  {y}) and Ord(f)} 
for some y such that y e X  and V x ~ X - { y } . y < x .  

6.4. We have 

Mergel(<nl xl> + f l ,  <n2 x2> + f2, n + N) 
~ { f l f  c_n + N x Image(<nl xl> + f l ) u  lmage(<n2 x2> + f2) 

and Bijective(f, n + N, lmage(<nl xl  > + f l )  
to lmage(<n2 x2> + f2)) 

and Regular(f, <nl xl> + f l )  
and Regular(f, <n2 x2> +f2)}.  

Letting Image(f1)= X1 and Image( f2 )=X2 we can rewrite the above as 

~ { f l f c _ n + N  x x l  + X l u x 2 + X 2  
and Bijective(f, n + N, xl  + X1 vo x2 + X2) 
and Regular(f, <nl xl  > + f l )  
and Regular(f, <n2 x2> +f2)}.  

We are now faced with the task of reducing the Cartesian Product. The 
above reduces to 

{ f [ f  C_ <n xl> +({n} x X1)~o<n x2> +({n} x X 2 )  
u N x {xl } vo N • X l u N x {x2} vo N x X2 
and Bijective(f, n + N, x l  + X1 u x2 + X2) 
and Regular(f, <nl xl> + f l )  
and Regular(f, <n2 x2> +f2)} 

Using rule RC3. 
{ f l '  . f2 '  ~ fJ '  ~ f4' ~ f s '  ~ f6 '  ~ f7 '  u fS'l  
f l 'c_ {<n xl  >}, f2'c_ {n} • X1, f3'c_ {<n x2>}, f 4 ' ~  {n} x X2 
f5'  c_N x {xl}, f6'  c_N x X I, f7' ~ N x {x2}, f8' c_N x X2 
and Bijective(fl '  u f2 '  u f3 '  u f4'  u f5' w f6'  u f7'  vof8', 

n + N ,  xl  + X l w x 2 + X 2 )  
and R e gu lar ( f l ' vo f 2' u f Y w f 4' u f 5 ' vo f 6' vo f 7' vo f S', < n l x l > + f l ) 
and Regular(f1' u f2 '  vo f3'  u f4'  w fS' w f6'  u fT' vo fS', <n2 x2> +f2)} 

Using rule RS 3. 



A Synthesis of Several Sorting Algorithms 25 

We must now examine which combinations of f ' i ' s  will survive the three 
filters. It is easier if we present this in tabular form. In, the following table a 
row with ticks in the f ' i ' t h  column means that all the other f ' i ' s  must be �9 
for the total combination U f i '  to pass the filter in question. 

1 < i < 8  

We first consider the Bijective filter, this ensures that the compound relation 
is total on its Domain and Image and functional. These considerations ensure 
that only the following combinations pass the Bijective filter. 

Combination Component 

f r  f2' f3' f4' fs' f6' f7' f8' 

1 v v v v 

2 v v v v 
3 v v v 

4 v v v v 

Looking at the first Regular filter we see that this disqualifies combination 3 
because f2'  will ensure that n maps onto some xl '  from X1 =Image( f l )  while 
f5'  means xl  will be mapped onto by some n' from N and n<n'  whereas f1-1(x1) 
< f l -~(x1') .  Similarly the second Regular filter knocks out combination 4 and 
we are left with 1 and 2. 

Here we see the origin of the new definition introduced for Merge at equations 5 
and 6 in section 5.3, 1. Adding the extra, Regular, filters to the definition of Perm 
is exactly equivalent to omitting these combinations of the Cartesian Product. 
Purely for the purpose of the syntheses we need not have explicitly given the 
definition of Regular that we did in equation 5.3.1, 6. Instead we could have 
decided arbitrarily to discard these combinations and define Regular as the 
originally undefined extra filter established by these omissions. We shall en- 
counter a very similar pheonomena in our syntheses of Bubble Sort and Exchange 
Sort in section 5.4, 1. 

We can also now give some justification for the introduction of equation 5. 
Perm(X) requires that every element of X appears in the first place of some 
"ar ray" .  The Regular filters ensure that only xl  and x2 can appear in first positions 
in Mergel ( (n l  x l )  + f l ,  @2 x2)  + f2,  n+ N) so for Perm(X1 u X2) we have to 
take all f l e P e r m ( X 1 )  and all f2ePerm(X2)  to ensure that every member  of 
X1 u X2 gets a chance to be in first place. 

Thus the two expressions that survive are 

C l = ( n  x I )  + f6'  w f7 '  ~ f8'  
where f6 '  c_ N x X1, f7'  c_ N x {x2}, fS'  ~_ N x X2 

and 

C2 = (n x2)  + f5'  w f6 '  u f8'  
where f5 ' ~_ N • {xI}, f6 ' ~ N • X1, fS'  ~_ N • X2 

and we can recombine the Cartesian Product thus 

CI = (n x l )  + f l '  where fl '~_ N x (x2 + X I  u X2) 
C2= (n x2)  + f2'  where f2'  ~_N • (xl + X1 u X2).  
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Wi thout  going into tedious detail it should be clear to the reader that for 
these combinat ions  the filters decompose  smoothly,  i.e. 

Bijective((n x l )  + f l ' ,  n+ N, xl + X1 u x 2  + X2) 
~ Bijective(fl', N, X1 vo x2 + X2) 

Regular((n xl ) + f l ' ,  (nl xl ) + f l )  
r Regular(fl', f l )  

Regular((n x l )  + f l ' ,  (n2 x2) + f2) 
r (n2 x2) + f2) 

Bijective((n x2) + f2', n + N, xl + X1 u x2 + X2) 
r N, x1 + X1 vo X2) 

Regular((n x2) + f2', (nl x l )  + f l )  
~Regular(f2' ,  (nl x l )  + f l )  

Regular((n x2) + f2', (n2 x2) + f2) 
<=> Regular(f2', f2). 

Thus  we rewrite the above as 

merge((nl x l ) +  f l ,  (n2 x2 )+  f2, n+N)  
~ { ( n  xl ) + f l ' l  f l '  c_N x x2 + X1 u X2 

and Bijective(fl', N, x2 + X1 w X2) 
and Regular(f1', f l )  
and Regular(fl', (n2 x2) +f2)}  

u {(n x2 )+f2 ' l f2 ' c_N x xl +X1 voX2 
and Bijective(f2', N, xl + X1 vo X2) 
and Regular(f2', (nl x l )  + f l )  
and Regular(f2', f2)} 

Recalling that  X1 = Image(fl) and X2 = Image(f2) we can rewrite the above as 

{(n x l )  + f l '  I f l '  ~_N x Image(f l )w Image((n2 x2) + f2) 
and Bijective(fl', N, Image(f1) u Image((n2 x2) + f2)) 
and Regular(f1', f l )  
and Regular(f1', (n2 x2) + f2)} 

u {(n x2) +f2'lf2'~_ N x Image((nl xl ) + f l )  w Image(f2) 
and Bijective(f2', N, Image((nl x l )  + f l )  u Image(f2)) 
and Regular(f2', (nl x l )  + f l )  
and Regular(f2', f2)} 

6.5. We have 

Sort(X1 u X 2 ) ~  U Ordered(Merge(fl, f2)) 
f l ~ P e r m ( X  1) 
f 2~ Perm{X 2~ 

To force a fold with 5.3.2, 1 we rewrite this as 

U Ordered(Merge(fl, f2)). 
f 1 eOrdered(Perm(X 1)~ 
f 2 ~ Ordered (Perm ( X 2)) 

It is fairly easy to see that this rewrite is legitimate. We have to show that 
for any f l  ePerm(X1) and f l  ~Ordered(Perm(X1)) or 
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f2ePerm(X2) and f2r Ordered(Merge(fl, f2))=~. 

But this is straightforward if we remember that the Regular filter ensures that 
Merge does not disturb the internal order of f l  or f2 so if either f l  or f2 are 
not ordered Merge(f1, f2) cannot be ordered. More precisely we have 

@ not Ord(fl)=:,3(nl xI), (n2 x2)e f l  �9 
nl < n2 and x2 < xl 

@ VfeMerge(fl,  f2). 
=~ (Regular(f, f l)) i.e. V x3, x4e Image(f1). 

f l - l(x3)< fl-l(x4) 
~ f-a(x3)< f-l(x4) 

(~) a n d O ~ g  feMerge(fl ,  f2)- 3(nl xl),  (n2 x2)ef ,  nl <n2 and x2 <xI 
not Ord(f) 

i.e. Ordered(merge(fl,f2))=Ob [] 

6.6. MergeS( (nl xl ) + f l ,  (n2 x2) + f2, n + N) 
~Ordered(mergel((nl x l )  + f l ,  (n2 x2) + f2, n+ N)) 

Instantiating 5.3.2.6 
Ordered({ (n x l )  + fl'] f l ' e  mergel(fl, (n2 x2) + f2, N)} 

w {(n x2) +f2'[f2'e Mergel((nl x l )  +f l ,  f2, N)}) 
Unfolding using 5.3.1.11 

~Ordered( { (n xl ) + fl 'lf1'eMergel (fl ,  (n2 x2) + f2, N)}) 
u Ordered({(n x2) +f2' [f2'emergel((nl x l )  +fl ,  f2, N)}) 

Taking Ordered inside the union 
~ { ( n  xl )  + f l '  [fl'emerge1(fl, (n2 x2) + f2, N) 

and Ord((n x l )  + f I ' ) }  
u {(n x2)+f2'lf2'eMergel((nI x l ) + f l ,  f2, N) 

and Ord((n x2) +f2 ' )}  
Unfolding using 5.2.2.2. 

Now assume that xl <x2, looking at the second component  of the union 
and remembering that V n'e N .  n < n', it is easy to show that 

V f2'~Mergel((nl x l )  + f l ,  f2, N), 3(n '  xl)~f2 ' ,  n<n' 

i.e. not Ord((n x2) + f2') for any f2'E Mergel((nl xI)  + f l ,  f2, N). 
Thus in this case the second component  is ~b, similarly the first component  

is ~b if x2 < xl. Furthermore we have 

Ord((n x l )  + fl')cc.Ord(fl') (if xl <x2) 
and 

Ord((n x2) + f2')~Ord(f2') (if x2 <xl) 

and we can rewrite the above as 

MergeS((nl x l )  + fI, (n2 x2) + f2, n+N) 
{(n xl ) + fl'[ fl'~ Mergel (fl,  (n2 x2) + f2, N) and Ord(fl')} 

if xl < x2 
{ (n x2) + f2'lf2'c Mergel ((nl x l )  + f l ,  f2, N) and Ord(f2')} 

otherwise. 



28 J. Darlington 

6.7. We have 

MergeS({( I xS}, (n2 x25 + f2, n + N) 
~ { (n x)+fl ' l f l 'eMergel(Cb, (n2 x25 + f2, N) 

and Ord((n x )+f l ' ) }  
vo {(n x25 + f2' l f2 'e Mergel({ (1 x>}, f2, N) 

and Ord((n x25 +f2')} 
Unfolding 5.3.3, 8 using 5.2.2, 2. 

If x<x2 for any f2'eMergel({(1 x)} , f2 ,  N) there will be a (n' x)e f2 '  so 
that n<n' and x<x2 i.e. not Ord((nx2)+f2'),  thus the lower component  of 
the union will be 4. Similarly if x2<x we have not Ord((nx)+f l ' )  for any 
fl'eMergel(Cb, (n2 x2)+f2,  N) so the upper component  is 4. Furthermore in 
the case x(x2 we have 

Ord((n x S + f l ' )  ~Ord( f l ' )  and in the case x2<x we have 
Ord((n x25 + f2')c*.Ord(f2'). Thus we have 

MergeS({(1 x)}, (n2 x25 + f2, n+N) 
{(n x ) + f l '  [fl 'eMergel (4, (n2 x25 + f2, N) 

and Ord(fl')} 
if x<x2  

{(n x25 + f2'lf2'EMergel({(1 x)}, f2, N) 
and Ord(f2')} 
otherwise. 

6.8. We have 

Perml ((n 1 xl) + (n 2 x2) + f )  
{fl [ fl  ~- Domain((nl xl) + (rt2 x25 + f )  x Image((n 1 Xl) 

+ (n 2 x25 + f )  
and Bijective(fl, Domain((n I x 15 + (n 2 x 2) + f), 

Image((nl xl) + (n 2 x25 + f)) 
and Close(f 1, (n I x i)  + (n 2 x 25 +f )}  

We let Domain(f)=N' and n2+N'=N and Image(f)=X. Thus 
Oomain((n 1 Xl) + {n 2 x25 + f )  x Image({n 1 xl) + (n 2 x25 + f )  is 
(n 1 + N )  • (x  I + x 2 -b X). 
Expanding this out we get 

(H I XI> -~- ( n  1 X25 k..) {H1} X X 
w N  • {xl} ~ N • {x2} u N  • X 

which we rewrite as 

(n I xl> + ( n  1 x2> u {nl} •  
~ N x ( x l + X ) u N •  
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The definition of Petrol given by 5.4.1, 4 and 5.4.l, 5 arises from omitting 
{nl} x X from this expression, meaning that n I is allowed to map onto only 
xa or x 2. Thus as with Regular in the earlier section we need not have inter- 
preted Close by giving 5.4.1, 5. Rewriting 5.4.1, 8 with this restricted expression 
we get 

Perml( (n i  xl)  + (n2 x25 + f )  
~ { f l  If1 ~ (nl x i )  + (nl x25 

+ N  x (X 1 + X ) w N x  (x 2 --~- X) 
and Biject ive( f  1, n 1 + N ,  x I + x  2 +X )  
and Close(f l ,  (n 1 xl )  + (n 2 x 2) + f ) } .  

We are again in the familiar position of forcing a fold with 5.4.1, 5. The 
reader should be aware of the technique now so we will be brief. Both Bijective 
and Close (having omitted {nx} z X) decompose nicely and the various com- 
binations of the subsets (using rule RS3) mean that n I goes onto either x 1 or x 2 
which are combined with subsets from N • x 2 + X  and N x x l + X  respectively. 
Thus we have 

Perml((nx xl)  + (n 2 x25 + f )  
{(fll X1) "-[-fl Ifl ~ N  • x z + X  

and Bijective(fl,  N, x 2 + X)  
and Close( f  1, (n 2 x25 + f )}  

k_) {(n I x 2 ) + f 2 l f 2 ~ N •  
and Bijective(f2, N, x i + X)  
and Close( f  2, (n 2 x l )  +f )} .  

7. Conclusion 

We hope we have demonstrated the practically and usefulness of the synthesis 
approach and thrown some further light on the structure of the sorting algorithms. 
However, we see this as only a preliminary attempt at a very large task and feel 
that further attempts at regularising or even partly mechanising the syntheses 
would prove useful. Also we make no claim that we have exposed the structure 
for these sorting algorithms. The work reported in Green et al. [5] reveals interest- 
ing similarities and differences. In many ways we have made life more difficult 
by attempting to synthesise the permutation algorithms on the way. A sub- 
sequent smaller study attempting to synthesis only 4 of the sorts and using 
slightly richer syntax proved much simpler, Clark and Darlington [2]. 
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