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Summary. We present a new version of Hoare 's  logic that correctly handles 
programs with aliased variables. The central proof rules of the logic (pro- 
cedure call and assignment) are proved sound and complete. 

1. Introduction 

One of the most discredited features common to many programming languages 
is aliasing, the practice of associating more than one name with a piece of 
storage in a program. Since explicitly changing the value of one variable may 
implicity change the values of other variables, it is widely argued that aliasing 
makes writing, debugging and understanding programs more difficult. 

The major technical argument against aliasing is that it makes devising 
intelligible proof  rules for reasoning about programs extremely difficult - that 
programming languages admitting aliasing cannot be satisfactorily axiomatized. 
The problem is most acute for assignment rules and procedure call rules. None 
of the assignment or procedure call rules published to date admit aliasing (see 
for example [9, 17, 3, 7, 11, 5, 12]). 

Although the prohibition of aliasing is the most severe limitation imposed by 
existing proof rules, all place additional restrictions on procedures and pro- 
cedure calls 1. For instance, the most comprehensive procedure call rule pro- 
posed to date (for E U C L I D  by [12]) must: 

An earlier version of this paper appeared in the Proceedings of the Fifth ACM Symposium on 
Principles of Programming Languages, 1978. This research has been partially supported by National 
Science Foundation grants MCS 76-14293 and MCS 76-000327 

1 Apt and de Bakker [1] have proposed procedure call and assignment rules which eliminate all 
of these restrictions, except 2. However, their proof rules nullify an important property of Hoare's 
logic: that proof rules not modify program text. Their procedure call rule rewrites the entire 
procedure body, destroying the direct relationship between asserted programs and the structure of 
proofs in Hoare's logic. Further, the Apt-de Bakker rules force the correctness of a procedure body 
to be separately proved for every possible aliasing relationship 
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1. Prohibit aliasing in procedure calls. 
2. Disallow passing procedures and functions as parameters. 
3. Require that value parameters be read-only (that is, constant parameters). 
4. Prohibit declareing a procedure within a procedure of the same name. 
5. Require that (relatively) global variables accessed by a procedure be 

accessible at every point of call. 

Our purpose in this paper is to develop a new version of Hoare's logic that 
handles unrestricted aliasing. We therefore concentrate on rules for assignment 
and for procedure calls. The proof rules we give are no more complex than 
existing rules of comparable scope that prohibit aliasing. The tradeoff is that 
proofs are more tedious when aliasing is actually used. 

First we give a simple simultaneous assignment rule (similar to that given by 
Gries [8]) and then a simple procedure call rule (patterned after Hoare's rule 
[10] along lines similar to the EUCLID rule by London et al. [12]) for calls where 
no aliasing is present. Next, we propose generalized assignment and procedure 
call rules for contexts where aliasing is permitted. Both generalized rules 
collapse to the corresponding simple rules if no aliasing exists. 

All the rules that we propose in this paper are proved sound and relatively 
complete (in the sense of Cook). Although this may seem a tedious and 
unnecessary exercise, we believe that it is essential to give formal justifications 
for proof rules. The semantics of procedure calls in "real" programming 
languages (such as PASCAL) are so complicated that none of the proposed 
axiomatizations for such languages in Hoare's logic [17, 12] is sound. We too 
made mistakes in our first attempts at axiomatizing aliasing, and we discovered 
our errors only when trying to formally justify our axiomatization. 

The rules we give in this paper are more formally stated than is common in 
the literature. Since we wished to prove our rules sound, we had to state 
explicitly what assumptions our rules require. Consequently, our rules will 
appear longer and more complicated than comparable rules in the literature. 

2. Mathematical Foundations 

Before we can formulate and justify our proof rules, we must establish the 
mathematical foundations for our version of Hoare's logic. We introduce three 
sets of definitions. 

2.1. State Vectors and Abstract Addresses 

From an informal viewpoint, a state vector is a sequence of bindings of program 
variable names to data values, and procedure names to procedure bodies (as in 
a LISP association list). An abstract address is a sequence of data values 
(including variable names) serving as a canonical name for an entry in a state 
vector. For example, the abstract address for the variable x is ( 'x ) .  Since x 
typically means the value of the variable x, we use the notation 'x to refer to the 
name of the variable. The abstract address for the array element a[1]  is ( 'a, 1). 
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More formally, we let N denote the set of data values that program variables 
may assume, and let J and f denote the set of program identifiers a, b, c . . . . .  
and quoted program identifiers 'a, 'b, 'c, ..., respectively. We let ~ denote the set 
of procedure bodies. A variable is any legal left-hand side of an assignment 
statement. A simple variable is a variable consisting of a single identifier. For  
example, a[x] and x are both variables; x is a simple variable, but a[x] is not. 

For the sake of simplicity, we limit our attention to a subset of PASCAL 
restricting the set of variables to simple variables and singly subscripted arrays. 
We assume the data value domain for our PASCAL dialect has the form 

~J~jw U ( ~ j ~ k )  where ~j , j~J ,  are disjoint sets of primitive data objects 
j e J  j ,  ked 

(for example, integers, characters, booleans) and ( ~ - - ~ k )  denotes the set of 
mappings (arrays) from ~j  into ~k- We call each set ~ and (~--*~k) a type. 
These restrictions are made only for explanatory purposes. All of our results 
generalize to arbitrary PASCAL data domains. 

We define the abstract address corresponding to the simple variable v as the 
singleton sequence ( 'v) .  For  a variable of the form a [e] (where a is an array and 
e is an expression), the abstract address is ('a, %)  where e o e ~  is the value of e. 
We define two abstract addresses to be disjoint if and only if neither is an initial 
segment of the other. 

Let H be a finite set of variable declarations v: T (where v is a program 
identifier and T is a type) and procedure declarations procedure p(a); imports 
fl; g loba l  z; B (where p is a program identifier, ~ is a sequence of var and value 
parameter  declarations, fl is a list of the procedures imported by p, z is a list of 
the variables imported by p, and B is an optional procedure body). We call H a 
declaration set. H is closed if and only if every procedure or variable name 
imported by a procedure in H is declared in H. Henceforth, we will assume that 
all declaration sets are closed. A state vector s consistent with H is a mapping 
from J (identifiers) into ~ (data v a l u e s ) u ~  (procedure bodies) such that each 
identifier in H is bound to a data value or procedure body compatible with its 
declaration. 

Note that closed declaration sets can contain multiple bindings to the same 
program identifier unless restriction 5 in Sect. 1 holds. For this reason we 
require restriction 5 in all our procedure call rules. As discussed in Sect. 7, this 
restriction may be eliminated if we allow rules to rewrite program text. 

Typically, we are only interested in a finite restriction of the state vector s - 
the bindings of the variables and procedure names declared in H. In this case, 
we can think of s as a finite sequence of ordered pairs (x, d) where x is a program 
identifier declared in H and d is its binding. 

We let sr and 5 P denote the set of abstract addresses and the set of state 
vectors respectively. 

2.2. [~blue and Update Functions 

We introduce two functions Value and Update to access and modify states, 
analogous to the array access and update functions defined by McCarthy [13]. 
Value maps a state vector s and an abstract address e into the binding of c~ in s. 
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Update maps a state vector s, an abstract address e, and a value d into the state 
vector s', where s' is identical to s except that the entry within s' specified by c~ 
has the new value d. 

In more formal terms, Value is a mapping form 5" x d into N u N  and 
Update is a mapping from 5`, x d x ( @ u N )  into 5" satisfying the following 
axioms: 

1. Value (Update (s, e, e), c~)= e for arbitrary state vector s, abstract address e, 
and value e, provided the entry specified by c~ exists in s. 

2. Value (Update (s, ~1, e), ct2)= Value (s, e2) if el and c~ 2 are disjoint abstract 
addresses and the entries specified by cq and ~2 exist in s. 

3. Let Select be the standard array access function mapping ( N i ~ N j ) x  ~i  
into Nj for all i,j. (See for instance [-14].) Then Value (Update (s, ('v), d), ('v, e)) 
=Select (d, e) for arbitrary state vector s, identifier v, array value d, and data 
value e, provided e is in the domain of d. 

4. Let Store be the standard array update function mapping (~i~Dj) x N i x  Nj 
into (~i--*N) for all i,j. Then Value (Update (s,( 'v,e),d), ( ' v ) ) =  
Store (Value (s, ('v)), e, d) for arbitrary state vector s, identifier v, and data values d 
and e, provided e and d belong to the domain and range of Value (s, ('v)) 
respectively. 

We extend Value and Update to apply to sequences of disjoint abstract 
addresses as follows: 

1. Value* (s, (cq . . . . .  c~n))= (Value (s, (X1)  , . . . ,  Value (s, c~,)) for arbitrary state 
vector s and abstract addresses e I . . . .  , C % ,  provided the entries specified by 
cq . . . .  c~, exist in s. 

2. Update* (s,(cq . . . . .  e,) ,  (d 1 .. . .  ,d , ) )=Update  (...Update(s,~l,dx) .... c%d,) 
for arbitrary abstract addresses ~1 . . . . .  a n and values dx . . . . .  d, provided the 
specified updates are well-defined. 

3. Let ~1 . . . .  , ~, be disjoint abstract addresses such that c~il, ~2 . . . .  , egk have 
the form ('v, ev), p = 1, 2, ..., k, where 'v is an identifier; and ep is a data value. 
Let ctjl, c~j2 . . . . .  ~j. k be the remaining abstract addresses, and let d denote 
Value (s, ('v)). Then Update* (s, (cq . . . . .  c%), (d  1 . . . . .  d,)) = Update* (s, (C~jl, 
ctj2 . . . . .  e j , -k) ,  (Store (... Store (d, e 1 , diO... ,  ek, dik), djl . . . .  , dj,_k)) provided the 
specified updates are well-defined. 

The final axiom above merely collects updates to various elements of the 
same array and combines them into a single update of the entire array. We can 
use this axiom to convert an arbitrary sequence of disjoint updates to an 
equivalent set of simple updates (that is, updates of simple variables rather than 
array elements). For example, 

Update* (s, (('a, 1), ( 'b) ,  ('a, 4), ( ' c ) ) ,  (1, 2, 3, 4)) 

= Update* (s, ( ( 'a} ,  ( 'b) ,  ( ' c ) ) ,  (Store (Store (Value (s, ('a}), 1, 1), 4, 3), 2, 4)). 

We denote the set of sequences of abstract addresses by sr 

2.3. Definition of Truth 

In this section, we define the syntax and meaning of statements in our version of 
Hoare's logic. 
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2.3.1. The Base Logic. Assume we are given a base first order theory (2", ~ ' )  (for 
the program data domain), consisting of a logical language 2 '  with equality and 
a model s / / fo r  2", with the following properties: 

1. The domain of the model J /  includes @ (data values), d '  (quoted 
identifiers), ~r (abstract addresses), d *  (sequences over d ) ,  and N (procedure 
bodies). 

2. The variables of 2" include two disjoint sets: d (programming language 
identifiers) and ~,, a set of logical variables which may not appear within 
programs. 

3. The logic includes the binary function | and the unary function Seq. The 
| operator concatenates two sequences; that is, (u~ . . . . .  Um>|  ...,I)n> 
=(u~ . . . .  ,u,,, vl . . . .  ,v,>. Seq maps a data object d (specifically a quoted 
identifier, a data value, or an abstract address) into the singleton sequence (d>. 
With the functions | and Seq, we can construct arbitrary members of ~r and 
d * .  

4. The logic includes all the primitive functions of the programming lan- 
guage including array access and update functions Select and Store. We let 
a I-el, where a is an identifier and e is a term, abbreviate the term Select (a, e). 

5. The logic includes a characteristic predicate PT for each data type T in 9 .  
We will use the familiar Pascal notation x: T to abbreviate PT(x). 

6. The logic includes the predicates Disjoint and Pair-Disjoint with domains 
~r and d *  x d *  respectively. Disjoint ( ( ~  . . . .  ,~,>) is true if and only if 
abstract addresses ~i and ~j are disjoint for all i, j such that i#j .  Pair-disjoint 
(<~ . . . . .  ~,,>, (/3~ . . . . .  ft,>) is true if and only if every pair (%/3j) is disjoint. 

Given an arbitrary variable v, we can mechanically construct a term v* in 2" 
such that the meaning of v* is the abstract address for v. If v is a simple variable 
x, then v* is simply Seq('x). If v is an array element a[e], then v* is 
Seq ('a)| (e). We will frequently employ this construction in our proof rules. 

2.3.2. Extended Terms and Formulas. For the sake of clarity, we prohibit 
formulas of 2" from using program identifiers as bound (quantified) variables. In 
addition, to conveniently handle updates to the state vector, we extend the 
logical language 2" to include updated formulas and terms. We define an 
extended formula (term) of 2" as follows. An extended formula (term) has a 
recursive definition identical to that of an ordinary formula (term) [6] except 
that there is an additional mechanism (called an update) for building new 
formulas and terms from existing ones. Given an extended formula (term) ~, the 
form I[v~t]]a is also an extended formula (term), where v is a sequence of 
disjoint variables and t is a corresponding sequence of ordinary (not updated) 
terms in 2". We will call I [v~ t ]  a simultaneous update. Henceforth, we will 
simply use the term formula (term) to refer to an extended formula (extended 
term). We will abbreviate 

[ v l ~ t t ] ] . . . [ ] v . ~ t . ] ] P  by [[Vl*--tl; . . . ;v,*--t.]lP. 

Simultaneous updates are closely related to the modalities of dynamic logic 
[16 3 and the weakest precondition transformer in Dijkstra's program calculus 
[4 3. When a program segment S is a sequence of assignments where all program 
operations are totally defined, the relation corresponding to S is the function 
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2e. Eval [S, e] where Eval is the interpreter for the programming language. In 
this case, ( S )  P - [S] P -  w p (S, P) - [[S]] P. 

2.3.3. Hoare Assertions and Statements. Let Q be an arbitrary formula in s  and 
let x 1 . . . .  , x,  be the program identifiers which occur in Q. Let H be a declaration 
set including declarations for Xl, .. . ,  x,. A Hoare assertion has the form 

HIQ. 

Let A be a program segment and P and Q be formulas in s Let H be a 
declaration set including declarations for all the free program variables and 
procedure names in A, P, and Q. A Hoare statement has the form 

HIP{A}Q. 

We define the meaning of Hoare  assertions and statements as follows. Let 
H IQ be an arbitrary Hoare  assertion. The definition of truth for H IQ is 
identical to the standard first-order definition of truth for Q [6] except: 

1. H IQ is vacuously true for states inconsistent with H. 
2. The meaning of the updated formula (term) I v ~ t ] ] e  for state s is the 

meaning of the formula (term) e for state Update* (s, v* ts) where v* denotes the 
sequence of abstract addresses corresponding to v, and ts denotes the in- 
terpretation of t under state s. 

Let HIP{A}Q be an arbitrary Hoare  statement and let Eval be an in- 
terpreter (a partial function) mapping states x program-segments into states. 
Then HIP{A} Q is true if and only if for all states s either 

1. HIP  is false for s. 
2. Eval (s, a) is undefined. 
3. Q is true for Eval (s, A). 

2.3.4. Standard Proof Rules. The standard simple Hoare  proof  rules have 
obvious analogs in our version of the logic. The most fundamental rules 
- consequence, composition, and substitution - have the following form: 

H I P ~ Q , H [ Q { A }  R, H I R ~ S  
H IP{A}S 

2. Composit ion 
HIP{A}Q, HIQ{B}R 

HIP{A;B}R  
3. Substitution 

H]P{A}Q 
H IP(t/x) {A} Q(t/x) 

where x is a logical variable and Q(t/x) denotes Q with every free occurrence of 
x replaced by t (renaming bound variables when necessary). 

The other standard rule that we take as given is: 

1. Consequence 
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4. Declaration 
H(x'/x, p'/p)w {x :X, p:B} [ P(x'/x){A} Q(x'/x) 

H I P { b e g i n  x : T ;  p : B ; A  end}Q 

where x : T and p : B are sequences of variable and procedure declarations, and x' 
and p' are sequences of fresh program variables and procedure names corre- 
sponding to x and p. As Apt (personal communication) has observed, this rule 
is incomplete because it does not allow one to deduce the values of new 
variables on block entry. There are several possible solutions to this technical 
problem but they are beyond the scope of this paper. 

2.3.5. Reasoning about  Updated Formulas.  In order to prove Hoare assertions 
involving updated formulas, we need special axioms about updates. For  disjoint 
updates modifying entire formulas, the following axioms (derived from the 
corresponding axioms for Update*) are sufficient: 

1. [Ix ~ t]] Q -  Q (t/x) where x is a sequence of distinct simple variables, and Q 
is a formula containing no updates. 

2. Let v 1 . . . . .  v, be disjoint variables where vil . . . . .  vik have the form a[et],  
l = 0  . . . . .  k, and a is a particular array identifier. Let Via . . . . .  vj, k be the 
remaining variables. Let v' denote the sequence of variables a, v~ ,  . . . ,  v j ,_  k and 
let t' denote the sequence of terms (S tore  ( . . .S tore  (a, e l ,  t iO. . .  , ek, tik), 
t j l ,  "" ,  tjn k)" Then 

[Iv <- t]] Q = [Iv' ~ t']] Q. 

Given an arbitrary disjoint simultaneous update ~-v,,-t~, we can eliminate it 
from a formula of the form [[w-t~ Q where Q is update free by using axiom 2 
to eliminate all assignments to array elements and then applying axiom 1. We 
can similarly eliminate all updates from a formula of the form H-...] [[v<-t]] Q 
where Q is update free by repeatedly applying the same simplification pro- 
cedure. 

3. Simple Simultaneous Assignment 

Given the concept of simultaneous updates within formulas, it is easy to give a 
simple simultaneous assignment rule. Let v ~-t be a simultaneous assignment to 
disjoint variables v, let v* be the abstract address terms in ~q corresponding to v, 
and let P be an arbitrary formula in s The rule is: 

H ] [Iv ~ t]] P ~ Disjoint (v*) 

H I n-v ~- t] P { v ~  t} P 

The soundness and relative completeness of this rule follows immediately 
from the definition of meaning of statements in the logic and the definition of 
simultaneous assignment. 



372 R. Cartwright and D. Oppen 

4. Simple Procedure Call Rule 

In this section we assume that our PASCAL subset: 

1. Prohibits aliasing in procedure calls. 
2. Disallows passing procedures and functions as parameters. 
3. Requires that the global variables accessed by a procedure be explicitly 

declared at the head of the procedure and that these variables be accessible at 
the point of every call. 

Assumption 3 guarantees that dynamic scoping and static scoping are 
equivalent. 

Under these assumptions, it is straightforward to formulate a procedure call 
rule by treating procedure calls as simultaneous assignments to the variables 
passed to the procedure. The assigned values are any values consistent with the 
input-output assertions for the procedure. 

Let p be declared as p rocedu re  p ( v a r x : T x ; v a l y : T y ) ;  impor t s f l ;  
g lobal  z; B in the declaration set H. B may not access any global variables 
other than z. Let H' be H augmented by the declarations x :T x and y :T r (prior 
declarations of x and y are replaced). Let P and Q be formulas containing no 
free program variables other than x, y, z and x, z respectively. Let v be the free 
logical variables of P and Q, and let x' and z' be fresh logical variables 
corresponding to x and z. Then the (non-recursive) simple procedure call rule 
has the following form: 

HI R ~ Disjoint (a* | H' I P {B} Q 
H I V v [P(a/x, b/y) ~ Q (x'/x, z'/z)] ~ [R ~ ~a, z ~ x', z']] S] 

n lR{p(a; b)} S 

It is important to note that the free logical variables x' and z' in the third 
premise are implicitly universally quantified. The rule forces R = I[a, z ~ x', z']] S 
to be true for arbitrary x' and z' consistent with Vv[P(a/x, b/y)~Q(x'/x, z'/z)]. 
In contrast, the EUCLID procedure call rule explicitly omits the corresponding 
quantifier - permitting false deductions. Like the EUCLID rule, our rule 
generalizes Hoare's original rule [10] to apply to a richer programming lan- 
guage. The main difference is between our rule and its predecessors (Hoare's 
original rule and the EUCLID rule) is that our rule precisely states the 
assumptions left implicit by the earlier rules. 

4.1. Soundness 

If Eval is properly defined, it is easy to prove the soundness of the simple 
procedure call rule. Let s be an arbitrary state, consistent with H such that H IR 
is true for s and Eval(s,p(a;b)) is defined. We must show S is true for 
Eval (s, p(a; b)). Let s' be [Ix', z ' ~ x  o, Zo]]S where Xo, z o are the output values of 
x and z in the call p(a;b) (that is, the values of x and z in the state 
Eval ([[x,y*--a,b]s,B)). By the second premise, s' satisfies Vv[P(a/x,b/y) 
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=Q(x'/x,z'/z)]. Hence, by the final premise, s' must also satisfy [[a,z~x',z']] S. 
From the definition of Eval, the following states are equivalent 

Eval (s, p(a, b)) = [[a, z *- x 0, z0] s = [[a, z ~ x', z']] s'. 

Consequently, Eval(s, p(a, b)) satisfies S. Q.E.D. 

Although the soundness of the procedure call rule does not depend on the 
third assumption listed above (the accessibility of the procedure globals at the 
point of every call), the assumption is necessary to prove that Eval obeys static 
scoping. The natural definition of Eval (which we used in the soundness proof) 
employs dynamic scope rules. If the third assumption holds then static and 
dynamic scope rules are semantically equivalent. 

4.2. Relative Completeness 

It is also reasonably straightforward to prove that the simple procedure call rule 
is relatively complete for non-recursive programs in the sense of Cook [3]. 
Since our base logic includes such a rich collection of logical primitives for 
describing abstract addresses, the incompleteness results of Clarke [2] do not 
apply to our version of Hoare's logic. We assume that the assertion language 
50 is expressive; that is, that given an arbitrary assertion P in 5 ~ and a 
program segment A the strongest postcondition Q of A given precondition P is 
definable in 50. To show that the rule is complete relative to the completeness 
of the other proof rules and the axiomatization of the extended base logic, it 
suffices to show that for any program segment A and postcondition S the 
weakest liberal pre-condition R is provable, i.e. H I R { A } S  is provable. The 
proof proceeds by contradiction. 

Assume if(W; b') is a procedure call for which the rule is not complete. Let 
p(a; b) be the deepest procedure call in the calling tree of p' for which the simple 
procedure call rule is not complete. Let H be the declaration set at the point of 
the call, and let p be declared as procedure  p(var x:Tx; valy:Ty); globalz;  B in 
H. Let S be an arbitrary true postcondition for p(a; b). We define Q' as the 
strongest postcondition for B given the precondition x , y , z = x i ,  y/,z i. By as- 
sumption H'IP{B} Q' is provable. We define Q to be ~y'Q'(y'/y). By the rule of 
consequence, HIP {B} Q must be provable. Let R be 
Vx', z' [Q(a/x i, b/yi, z/z i, x'/x, z'/z) ~ l[a, z ~ x', z'~ S]. Then the last premise is prov- 
able by ordinary first order deduction, implying that HIR{p(a; b)}S is prov- 
able. 

Assume R is not the weakest liberal precondition. Then there exists a state s 
consistent with H such that R is false and such that either Eval(s,p(a; b)) is 
undefined or S is true for Eval(s,p(a;b)). Let s' be [[x, y .-- a, b]] s. Either 
Eval (s, B) is undefined or Q is true for Eval (s', B). In the former case, Q(a/x i, 
b/y i, z/z i, x'/x, z'/z) must be false for all x', z' since Q(a/x i, b/y i, z/zi) is false for 
all x, z. Hence R is true, generating a contradiction. In the other case, Q(a/x i, 
b/yz, z/z/, x'/x, z'/z) is true only for states with x' and z' equal to the values of x 
and z in Eval(s',B). But for such x' and z', Eval(s,p(a;b))=l[a,z~x',z ']]s.  
Consequently, [[a, z ~ x ' ,  z ' ]S is true for all states satisfying Q(a/x i, b/y i, z/z i, 
x'/x, z'/z) implying R is true. Again, we have a contradiction. Q.E.D. 
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4.3. A Sample  P r o o f  

Let's consider a simple example that most procedure call rules cannot handle. 
Let p be a standard integer variable swap procedure defined as follows: 

procedure p(var x, y: integer); 
begin 

pre x = x i A y =  yi; 
x, y ~  y, x; 
post y =x~/x x =Yi 

end; 

By the simultaneous assignment rule, we must show x, y: integer [ x = x  i/x 
Y = Yi ~ [Ix, y ~ y ,  x]] (y = xi/x x = y~) to establish the declared pre and postassertions 
for the swap. By the [[ ]1 substitution axiom (axiom 1 in 2.3.5). 

~x ,y~- . -y , x]] (Y=XiAX=Yi )  -- X = X i A  y = y  i 

which is precisely the preassertion. Q.E.D. 

Now let us consider a sample application of the procedure call rule. Assume 
we want to prove: 

a: array integer of integer, i: integer I 

aEi] = a  o/~ i = i o { p ( a [ i  ], i)} a[io] = i  o/x i-=jo. 

Let H denote {a:array integer  of integer,  i: integer};  P' denote the 
substituted precondition a[ i ]=x~ /x  i = y  4 Q' denote the substituted postcon- 
dition y ' = x  i / x x ' = y i ;  R denote a[i] = a  0/x i=i0;  and S denote a[io] =io/x i = a  o. 
By the simple procedure call rule, we must show 

1. H l R ~ D i s j o i n t  (( 'a, i ) ,  ( ' i ) ) .  
2. The correctness of the input-output assertions for the procedure body. 
3. H I v Xo, yo [P' = Q'] = [R = [[a [i], i *-- x', y']] S]. 

Since 1 is trivial, and we have already proved 2, it suffices to prove 3. First 
we transform I[a [i], i,--x', y']] S into Ira, i ,--Store (a, i, x'), y']] S - 
Store (a, i, x') [io] = io/x y' = %. Since i = i o by hypothesis in R, 

S' - S tore(a,  io, x ' ) [ i o ] = i  o A y ' = a  o - x ' = i  o/x y ' = % .  

By applying the equality hypothesis in R, we transform x ' =  i o/x y '=  a o into 
x ' =  i A  y' =a[ i ] ,  which is an immediate consequence of P' = Q'  when x~, y~ are 
instantiated as a[i]  and i respectively. Q.E.D. 

4.4. Handl ing Recursion 

Our simple rule can be extended to handle mutually recursive procedures by 
generalizing Hoare's original approach to the problem rio].  However, we must 
impose the following additional restriction on our PASCAL subset to ensure the 
soundness of the rule: 
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No procedure named p may be declared within the scope of another 
procedure named p. 

Our rule is not unique in this respect. Every other proposed procedure call 
rule (with the exception of Apt and de Bakker [1]) requires an equivalent 
restriction. The restriction is necessary because the input-output specifications 
for a procedure p may be assumed for any procedure call within a procedure 
declared in the scope of p. 

Let procedure pi(varxi:Tx,; valyi:Ty,); imports fl~; globalz~; Bi, 
i = 1, 2 . . . . .  n be a sequence of procedure declarations at the head of some block. 
Let P~ and Qi, i=  1 . . . .  , n be assertions containing no free program variables 
other than x i, y~, zi and xi, z~ respectively. Let v~ be the free logical variables in P~ 
and Q~. Let H be a declaration set containing the declarations of Pl . . . . .  p, and 
let H' denote H with these declarations replaced by "forward" procedure 
declarations which only specify the procedures' formal parameters. Let HI 
denote H' augmented by the declarations x~: Tx,, yi: Ty, (prior declarations of xl 
and Yl are replaced). For  i=  1 . . . . .  n we define the recursion hypothesis I~ as the 
rule: 

HI 0 1 D  Disjoint (c*| 
HI V v i [P/(e/xi, d/Yi) = Qi(x' /xi ,  z'/zi)] = [O,  ~ lie, z i ~ x' i, z'i]] O2] 

HI 01 {Pi(e; d)} O 2 

where O j, 02,  c, d and H are arbitrary. Then the recursive version of the rule 
has the form: 

H'  r e ~ Disjoint (a* | 

I 1 . . . . .  I ,  ~ HjlPi{Bj} Qi,J = 1 . . . . .  n 

H'IVv i [Pi(a/x i, b/y/) ~ Qi(x']xi,  z']zi)] ~ [R ~ I[a, z i 4--x'i, Zi~ S] 

HI R {pi(a; b)} S 

where 11, 12 . . . . .  I , ~ - H j l P j { B j } Q j  means we may use the rules li to prove 
H~I P1 {B j} 0j.  

Unlike Hoare's original rule and the EUCLID rule, our recursive rule is 
relatively complete, even for programs utilizing mutual recursion. Of the rules 
previously proposed in the literature, our rule most closely resembles that of [7]. 
Gorelick uses a more complex set of potentially mutually recursive procedures 
instead of Pl . . . .  , p, and divides the procedure call rule into two parts: a rule of 
modification and a rule of invariance. We originally formulated our procedure 
call rules in two-part form, but abandoned the approach after we failed to devise 
a complete two-part rule. Gorelick achieves relative completeness by restricting 
actual vat parameters to simple variables. 

We can prove that the recursive version of the simple procedure call rule is 
sound by generalizing the argument we used for the non-recursive rule. First, we 
construct the sequences of procedures Poi, Pli . . . . .  Pk~ . . . .  ; i=  1 . . . . .  n as follows. 
We let Po~ be a non-terminating procedure with parameters identical to pi. For  k 
=1 ,2  . . . . .  we let Pki be defined by the procedure Pkl (varx /Tx , ;  vaiy~:Ty,); 
global zi; B~(P~k_l/pi, j = 0  . . . . .  n), that is, by the same declaration as p~ except 
each call pj(e; d) within the body of p~ is replaced by the call Pk- l i (e ;  d). Clearly, 



376 R. Cartwright and D. Oppen 

if the evaluation of an arbitrary call p~(a; b) requires less than k levels of nested 
calls on Pl, P2 . . . .  , p,, then the call pki(a ;  b) is equivalent to Pi(a; b). (Note that 
this statement does not hold if the restriction on procedure names is violated.) 
By the soundness of the non-recursive rule and simple induction on k, we know 
that the recursive rule is sound if we interpret pj in the premises by Pk-lj, J 
= 1 . . . .  , n and pi in the conclusion by Pki" Without loss of generality we may 
assume Pi(a;h) terminates; otherwise, the rule is vacuously true. Let k be an 
integer greater than the maximum recursion calling depth on PI, ' . . ,  Pn in the 
evaluation of p~(a; b). By assumption, the premises are true for any interpretation 
of p j, j =  1, ..., n consistent with H'. Hence they must hold for pj interpreted as 
Pk-lj, implying the conclusion of the rule holds for Pki(a; h). Since pki (a ;  h) is 
equivalent to pi(a;b), the conclusion of the rule must be true. Q.E.D. 

The relative completeness of the recursive rule can be established by a 
similar inductive generalization of the proof for the non-recursive rule. We 
assume ~r is expressive. The proof proceeds by induction on the structure of a 
program. For every lorocedure p(varx; valy) globalz;  B in the program, we 
let the lore and loost assertions be x,y,Z=Xo,Yo,Z o and 3y'Q'(y'/y) respectively, 
where Q' is the strongest postcondition for the program segment B given the 
precondition x,y, Z=Xo, y o, z 0. Let Pl, . . . ,P ,  be a sequence of procedures 
declared at the head of a block B such that the lore and post  assertions for every 
procedure declared within Pl . . . . .  p, are provable. We must show 

1. The lore/post assertion pair for the body of each procedure pi is provable, 
and 

2. The weakest precondition for any procedure call in the body of B is 
provable. 

For each procedure p~, we let P~ denote the lore assertion x~,y~,z~ 
=xo~,Yoi,Zol and let Q~ denote the post  assertion ~y'Q'(y'/y), where Q' is the 
strongest post condition of B~ given pre-condition P~. 

Let q(c;d) be an arbitrary call in the body Bg of p~. If q is internal to p~, then 
the lore and loost assertion of q are provable by assumption. If q is not internal to 
p~, then the recursion hypothesis for q is available. In either case, by the same 
argument we used in the non-recursive case, the weakest precondition of q(e; d), 
given an arbitrary postcondition S, is provable. Hence, since the remaining rules 
of the logic are complete by assumption, P~{B~}Qi, i=1  . . . . .  n is provable. By 
applying the same argument again, we conclude that the weakest liberal pre- 
condition of any procedure call in the body of B is provable. 

By induction on the structure of a program, we can repeatedly apply the 
previous argument to derive that the procedure call rule is complete for all calls 
appearing in the program. Q.E.D. 

5. Rules for Programs with Aliasing 

We now extend our version of Hoare's logic to handle aliasing. The modifi- 
cations required are surprisingly minor. 
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Hoare's original assignment axiom has the form: 

P(e/x) {x ,,-- e} P 

where x is a simple variable, e is an expression (term in the logical language L~ ~ 
and P is a formula. This axiom is invalid if x is a reference parameter or an 
array reference, since there may be syntactically distinct variables in P with 
abstract addresses identical to x. While Hoare's substitution style axiom can be 
patched to handle array assignment (by viewing the assignment a [e l i  ~ e 2 as an 
abbreviation for the simple assignment a*--Store(a, e 1, e2)), it breaks down in 
the case of aliasing. 

In contrast, our assignment call rule does not rely on the concept of 
substitution (although it collapses to that form in trivial cases). As a result, our 
rule is able to handle array assignment and aliasing without any modification. 

5.1. Reference Parameters 

In a programming language with unrestricted reference parameters like PAS- 
CAL, we interpret procedure calls as passing the abstract addresses of the 
actual reference parameters to the procedure. In other words, the interpreter 
(Eval) binds a formal reference parameter to the abstract address of the 
corresponding actual parameter. For  example, if p is a procedure with the 
single reference parameter x, then the procedure call p(~), where ~ is a variable, 
binds x to the abstract address for e and evaluates the procedure body. In a 
language like PASCAL, every reference to a formal reference parameter is 
automatically dereferenced. 

If x is a formal reference parameter bound to an actual parameter e, an 
assignment to x in the procedure body changes the binding of e (the variable to 
which x is bound); it does not change the binding of x. The binding of the 
formal reference parameter x is unchanged for the duration of the call. 

Consequently, we consider PASCAL's notation for referring to formal 
reference parameters misleading. To remedy the situation in our PASCAL 
dialect, we require that every reference to a formal reference parameter x in the 
body of the procedure have the form x T instead of x. (We have taken the T 
operator from Pascal, where it serves as a "dereferencing" operator for pointers.) 
For  instance, if x is a reference parameter, then the standard Pascal statement 
x , , - - x + l  is (implicitly) written as xT+--xT+l  in our dialect. We also require 
formal reference parameter declarations to have the form x : r e f T  instead of 
x : r .  

To accommodate aliasing within our logic, we must extend the set of Hoare 
assertions to include terms of the form x T where x is declared in the declaration 
set H as x: ref T for some type T. We prohibit the dereferencing operator from 
appearing in other contexts. The meaning of xT, given state s consistent with H, 
is Value (s, Value (s, ( 'x))). The abstract address for xl' is the Value of x. Con- 
sequently, the abstract address term for x1" is simply x. 
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Our  p roof  rule for assignments to dereferenced formal  reference pa ramete r s  
is identical to our ordinary  ass ignment  rule: 

[[x T ~-e] P {x T ~ e} P 

where we extend the definition of the s imul taneous  update  [Iv ~ t[] a as follows. 
Let  a be a te rm or formula  in 5~; let v be a sequence of variables,  possibly 
including dereferenced formal  reference paramete rs ;  and let t be a corresponding 
sequence of te rms (not containing updates).  The  meaning  of [Iv ~ t]] a for s is the 
meaning  of a for Update* (s, v* t) where Update* is extended to over lapping 
abst ract  addresses. Update* is defined by exactly the same axioms as before, 
except that  ax iom 2 (Sect.2.2.) no longer requires the abst ract  addresses 
(~1 . . . . .  % )  to be disjoint. Informally ,  a s imul taneous  upda te  [ v~ t ] ]  with 
over lapping variables is pe r fo rmed  in left-to-right order. 

The  soundness and relative completeness  of the ass ignment  rule stated above  
are an immedia te  consequence of the fact that  

Eval (s, x ~ ~-e)= Update (s, x, e~) 

where e, is the in terpre ta t ion of e under  state s. 
In  order  to reason abou t  upda ted  formulas  containing updates  to deref- 

erenced variables,  we need the following axioms abou t  updates.  Let  P and Q be 
arbi t rary  formulas,  u~ . . . . .  u k be arbi t rary  terms, and [[v~t]]  be an arbi t rary  
s imul taneous update.  Then:  

1. [ [v~ - t ] (n  A Q ) - [ [ v ~ t ] ]  P n [ [ v ~ t ] Q .  
2. [Iv ~ t]  (P v Q ) -  [Iv ~ t]] P v [Iv ~- t]] Q. 
3. [v~t ] ]  (P ~ Q) -- [[v ~ t]  P ~ [ [ v ~ t ] ]  Q. 
4. [[v~-t]] --qP---q[[v~-t]lP. 
5. [[v~t]] V x P - V x [ [ v ~ t ] ] P  where x not free in t. 
6. [[v~t]] S x P - 3 x [ v ~ t ] l P  where x not  free in t. 
7. [ [v~-t]  P/(ul, . . . ,  Uk)--=P/([[V ~--t]] Ul, . . . ,  [IV ~ t ] ]  Uk) for every predicate  sym- 

bol  P/(including equality). 
8. [[v~-t]]f/(ui,  . . . ,  Uk)=fi([[v~t]] Ul, . . . ,  ~v~--t~ Uk) for every function sym- 

bol f/. 

These  axioms enable us to move  updates  inside a formula  to the point  where 
they apply only to p r o g r a m  and logical variables. We  also need ax ioms for 
updates  to p rog ram and logical variables.  Let  v 1 . . . .  , v, be variables and 
t l ,  . . . ,  t n be corresponding terms. Let  [[...] ~/)1' " " ,  Un'~-- t l ,  " " ,  tn]] (Z be an arbi-  
t rary updated  variable.  Then:  

1. []-...]](v,--a ) ~ [[. . .]] [[v *-- t]] a = [[. . .]l t,. 
2. [...]](v*| ~t]] ~=[[...]] Select (t 1, d). 
3. [[...]](v* =~*| a =[[...]][[v 1, . . . ,  v,_ 1 ~ t  1 . . . .  , t ,_l]] 

Store (~, d, t,). 
4. [[...]] Disjoint (Seq (v*)@Seq (~*))=[[. . .]][[v~t]] ~=[]-...]] [Iv 1 . . . .  , v,_ 1 

Since updates  do not  affect logical variables,  the following ax iom holds for 
arbi t rary  upda ted  logical var iable  [[...] x ' :  

5. Ir...ll x ' = x ' .  
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The soundness of all the axioms for updates is an immediate consequence of 
the definition of truth for updated formulas. 

We can use the axioms for updates to convert an arbitrary formula to 
update-free form. To accomplish this transformation, we repeatedly apply the 
following procedure. First, we push all updates inside the formula so that they 
apply only to variables and logical variables. We eliminate all updates to logical 
variables by applying axiom 5 above. Then for each updated variable [[...]] 

* and a* and [Iv ~ t]] a, we perform a case split on the relationship between [[...]] v, 
apply the appropriate reduction (axioms 1, 2, 3, or 4 above) to each case, 
reducing the complexity of the updates involved. 

While the update elimination procedure is of dubious practical value (since it 
can exponentially increase the size of a formula), it demonstrates that our 
axioms for updates are complete relative to the unextended base theory. 

5.2. Generalized Simultaneous Assignment Rule 

Given the generalized concept of update described in the previous section, we 
can generalize the simultaneous assignment axiom to permit overlapping vari- 
ables on the left-hand side of the statement. The new simultaneous assignment 
axiom is identical to the old one except that the disjointness premise is omitted. 
Let v ~ t  be a simultaneous assignment statement; P be a formula; and H be a 
declaration set declaring all the program variables appearing in P, v, or t. Then 
the generalized assignment rule states 

H I [Iv ~-t]] P{v ~-t} P. 

The soundness and completeness of the rule are an immediate consequence 
of the fact that Eval (s, v ~ t) = [Iv ~ t]] s and the definition of truth for statements 
in the logic. 

5.3. Generalized Procedure Call Rule 

Assume our PASCAL subset satisfies the restrictions listed in Sect. 3. Our 
generalized procedure call rule is nearly identical to the simple rule. Let p be 
declared as procedure  p ( v a r x : r e f  Tx; valy:T~.); o loba lz ;  B in the de- 
claration set H; let P and Q be formulas containing no quoted identifiers and 
no program variables other than x, xT, y,z and x, xT, z respectively; let v be the 
free logical variables in P and Q; let x' and y' be fresh logical variables 
corresponding to x and y; let R and S be formulas; and let H' denote H 
augmented by x:refTx, y:Ty, and Pair-Disjoint (x, x* | (where prior de- 
clarations of x and y are replaced). Then: 

H'IP{B}Q 

HIM v [P(a*/x, a/xT, b/y) ~ Q (x'/xT, z'/z)] ~ [U ~ [[a, z *-- x', z']] S] 

H IR{p(a; b)}S 
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The disjointness hypothesis in H' asserts that the abstract addresses for the 
formal parameters are disjoint from the passed actual reference parameter 
abstract addresses. From this hypothesis we can deduce that the dereferenced 
formal reference parameters do not have any of the formal parameters as aliases. 
We must add an analogous hypothesis to the declaration rule given in 
Sect. 2.3.4. 

5.3.1. Soundness and Relative Completeness. The soundness and relative com- 
pleteness proofs for the generalized procedure call rule differ only in minor 
details from the corresponding proofs for the simple rule. The only complication 
concerns the definition of Eval. We must not let Eval be confused by formal 
parameter names. The simplest solution is to force Eval to rename the actual 
parameters conflicting with formal parameter names before evaluating the 
procedure body. After evaluating the procedure body, Eval performs the appro- 
priate simultaneous assignment. 

5.3.2. A Sample Proof Involving Aliasing. Let swap be the standard integer swap 
procedure defined by 

procedure swap (var x, y ref integer): 
begin 

pre xT =xi/xyT =yi; 
xT, yT *--yT, xl"; 
post YT=xiAx T=yi 

end;. 

First we prove the correctness of the pre and post assertions. Let H be a 
declaration set including the declaration of swap. Let H i be H augmented by the 
formal parameter declarations of swap and the disjointness hypothesis. By the 
simultaneous assignment rule, proving the pre and post assertions for swap 
reduces to proving the verification condition: 

H' [ xT =xi A yT=yi~[[xT, y~ *-yT, xT]] (yT =Xi AXT =Yi)" 

Moving the update inside generates the equivalent assertion: 

H' I xT=xiA yT=yi~[fxT, yT +-yT, xT]] yT=xiAI[xT, yT ~ yT, xTllxT=yi 

which immediately reduces to: 

H' l xT=xiA yT=yi~xT=xiAIgxT, yT +- yT, xT]lxT=yi. 

Since x and y are both ref integers we know that H'[x=yvDisjoint 
(Seq(x)| In the former case (x=y), [fxT, y ' f~yT,  xT]lxT equals xT 
reducing the verification condition to 

H' l xT=xi2<yT=yi~xT=x~AxT=y i 

which is true since x=y. In the other case (x and y disjoint), [[xT, yT *--yT, xT]l xT 
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equals yT, reducing the verification condition to 

H' l x T = x i A  y ' ~ = y i D x T = x i A  yT=yi  

which is an obvious tautology. Q.E.D. 

Now let us examine a sample application of the generalized procedure call 
rule involving aliasing. Let H include the declarations a: array integer of in- 
teger, i: integer, j:  integer. Assume we want to prove: 

H la[ i ]=a  1 Aa[j]=aE{swap(a[i],  a [j])} a[j] = a l  Aa[i]=a2.  

By the generalized procedure call rule, we must show 

H [ VXoYo[a[i] = x  0 Aa[j]  = y o ~ y ' = x o / x  x '=yo]  

[-a [i] = a  I/x a [j] =a2~[[a[i], a[j] ~ x ' ,  y']] (a [j] = a  a/xa[i] =a2) ]. 

Let S' denote the consequent of the final implication. Moving the updates 
within S' further inside yields 

[[ a[ i], a[j] *-- x', y'~ (a[j]) = a 1/x [[ a[ i], a[j] ~ x', y']] (a[ i]) =a 2 

which reduces to 

y' =a 1/x [[a[i],a[j] ,.- x', y']] (a[i])=a 2 . 

We instantiate the logical variables Xo, Yo in the major hypothesis as a 1 and 
a 2 respectively, giving us the hypothesis 

a[ i]=a 1 A a [ j ] = a 2 ~ y ' = a  1 A x ' = a  2. 

Since the premise of this hypothesis is identical to the minor hypothesis, we 
deduce the new hypothesis 

y ' = a  1 A x ' = a  2 . 

If i ~ j  then S' reduces precisely to this formula. On the other hand, if i=j  
then S' reduces to 

j = a  I A y ' = a  z 

which is a simple consequence of the hypotheses i=j, a[ i ]=a 1/xa[j]=a z, and 
y '  = a  1 A x ' = a  2. Q.E.D. 

5.3.3. Handling Recursion. The recursive form of the generalized procedure call 
rule is completely analogous to the recursive generalization of the simple 
procedure call rule. The soundness and relative completeness proofs are also 
nearly identical to those for the simple rule. 

6. Reducing the Complexity of Proofs Involving Aliasing 

Although our rules for procedures with aliasing are no more complicated than 
comparable rules prohibiting aliasing, they are more cumbersome to use in 
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practice, because they force all variable parameters to be passed by reference. 
Most procedures exploiting aliasing are designed to work only for a small subset 
of the possible aliasing configurations. If all variable parameters are 
passed by reference, the pre and post  assertions for such a procedure must 
include a long list of disjointness assumptions. 

We believe that a procedural programming language should provide two 
distinct classes of formal variable parameters: those that can have aliases and 
those that cannot. The explicit syntactic differentiation between these two 
classes greatly reduces the number of possible aliasing configurations, simplify- 
ing reasoning about updates. 

To incorporate this modification into our PASCAL dialect, we establish the 
following new syntax for procedures: 

procedure p(var w : ref Tw, 
aliased global zl; 

global z2; 
B 

x:Tx;  val y:Ty); 

where w are reference parameters (as described in Sect. 4.1.), x are variable 
parameters that have no aliases within the procedure, y are standard val 
parameters, Zx are global variables that may have aliases in the procedure and 
z 2 are global variables that may not. 

Within the procedure code block B, an assignment to any parameter v other 
than a reference parameter has the standard form: 

V ~-- e .  

In contrast, all references to a reference parameter must be explicitly 
dereferenced. Hence, an assignment to a reference parameter w has the form: 

WT ~--e. 

The generalized procedure call rule (without recursion) for this extension of 
PASCAL has the following form. Let p be declared as shown above in a 
declaration set H; let P and Q be formulas in LP containing no quoted 
identifiers and no program variables other than w, wT, x, y, z 1, z 2 and w, wT, x, 
z 1, z 2 respectively; let v be the free logical variables in P and Q; let w', x', z'l, 
z~ be logical variables corresponding to w]', x, z~, z 2 respectively; let R and S 
be arbitrary formulas; and let H' be H augmented by w:ref T w, x :T  x, y:Ty, and 
Pair-Disjoint (w, w * | 1 7 4 1 7 4  (with prior declarations of w, x, y deleted). 
Then 

H [ R ~ [Disjoint (b* | z* | z*)/x Pair-Disjoint (a*, b* | z*)] 

H ' I P { B }  Q 

H [ Vv[V(a*/w,a/wT, b/x,e/y)~Q(w'/wT, x'/x,z'l/Zx,Z'e/Z2) ] ~ IN[[a, b, z 1, z2 +- w', x', z' l, z~i 

H[R{p(a, b, r Q 

The soundness and relative completeness proofs for the modified rule are 
essentially unchanged from before. 
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7. Eliminating the Remaining Restrictions 

Our most general procedure call rules still require the following restrictions: 

1. No parameters or functions may be passed as parameters. 
2. Every global variable accessed in a procedure must be accessible at the 

point of every call. 
3. No procedure named p may be declared within the scope of a procedure p. 

As Donahue [5] has pointed out, restriction 2 can be eliminated by making 
the declaration rule rename new variables within program text. A similar 
strategy can be used to eliminate restriction 3. In essence, this approach makes 
the rules rename program identifiers so that restrictions 2 and 3 hold after the 
renaming. We dislike the idea, however, because it modifies the text of a 
program (and any embedded assertions) in the course of a proof. 

Fortunately, neither of these restrictions handicaps the programmer in any 
way. They simply force him to unabiguously name his variables and procedures. 
For  this reason, we believe these two restrictions are a reasonable part of a 
practical programming language definition. 

In contrast, the remaining restriction - the prohibition of procedures and 
functions as parameters - prevents the programmer from using an important 
language construct. In some application areas (such as numerical analysis), 
procedures and functions as parameters are nearly indispensable. We intend to 
extend Hoare's logic to handle this language construct in a subsequent paper. 

Acknowledgements. We are grateful to Hans Boehm and David Gries for helpful discussions. 
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