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Deleting the Root of a Heap* 

Ernst E. Doberkat  1 

Department of Mathematics and Computer Science, Clarkson College of Technology, 
Potsdam, N.Y. 13676, USA 

Summary. The average behavior of the familiar algorithm for root deletion 
is considered, when every heap has the same probability to occur. The 
analysis centers around the notion of a viable path in the tree repre- 
sentation, i.e. such a path the label which replaces the label of the root may 
be allowed to travel when the heap is reconstructed. In case the size of the 
heap is a power of 2 it is shown that both the expected number  of 
comparisons and of interchanges are asymptotically equal to the respective 
numbers in the worst case. 

1. Introduction 

In this paper some aspects of root deletion of a heap are investigated from an 
expected performance point of view. This algorithm is well known and works 
as follows: suppose you have a heap of size N such that the label of the root is 
the smallest element in this heap. If you want to extract this smallest element, 
then you will copy it elsewhere, and the label of the rightmost node at the 
bot tom will be placed at the root. Since the heap property is violated in doing 
this, this label will percolate the tree down, until it has reached a position in 
which the heap property is reconstructed. This process implies that the second 
smallest element is now on top of the heap, and if the process of deleting the 
root and reconstructing the heap property is repeated until all elements in the 
heap are processed, the elements of the heap are arranged in ascending order. 
Thus root deletion is at the heart of the selection phase of heapsort and of the 
use of heaps as priority queues. Let us pick two applications in which root 
deletion occurs in a natural way. 

* Some results were presented at the 19th Allerton Conference on Communications, Control, and 
Computing, University of Illinois, 1981, and the Second World Conference on Mathematics at the 
Service of Man, Las Palmas, Canary Islands, Spain, 1982 
1 Some of this work was done at the Fernuniversit~it, Hagen, West Germany 
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Following a suggestion due to Aho, Hopcroft, and Ullman ([1], p. 174), 
heaps underly the classical algorithms to construct minimal spanning trees, 
and shortest paths, respectively, due to Dijkstra. Both algorithms require the 
knowledge of that edge in the graph which has the lowest cost, and hence 
which has to be processed next. Thus deleting the root in this situation means 
that the next edge will be investigated, and joined the spanning tree, or the 
path constructed so far. 

In his discussion on the implementation of priority queues Habermann 
suggests to realize these queues as heaps ([7], Sect. 6.5). Hence if we are given 
a set of jobs awaiting service from some processor, all of them endowed with a 
priority, the root of the heap corresponds to that job which will be served next. 
In this context root deletion means that the job in question receives its service, 
and that the remaining jobs are arranged in such a manner that the job next 
to be processed is readily available. 

In this paper it is assumed that the heap that serves as an input to the 
algorithm is chosen at random in the sense that every heap has the same 
probability to occur. In the combinatorial approach (see [-9]) this would be 
realized by considering all permutations of {1,...,N} that have the heap 
property and assigning equal probability to each of them. The analysis then 
would proceed by combinatorial means. However, it turns out in this case that 
a continuous model has some technical advantages. Here one considers a 
subset of all real vectors with the heap property and works with e.g. the 
uniform distribution. The algorithm is represented as a map, and the effect of 
the algorithm on the originally given distribution is represented then as an 
image measure with respect to this representing map. The evaluation of this 
image measure is done by the Change of Variables Formula of classical Real 
Analysis. This approach works well, too, in case of heap construction, and in 
inserting a new element into a heap (see [-4, 5]). 

The main idea in the present analysis is to characterize those paths in the 
heap, the element replacing the originally given root of the heap may travel in 
order to reconstruct the heap property; call such a path a viable one. After 
having done this characterization, it turns out to be necessary to compute the 
probabilities witl~ which the element in question does indeed follow such a 
viable path. These probabilities are computed explicitly in terms of the binary 
expansion of N and of some intrinsic properties of the viable path, viz., the 
height of the subtree which is rooted at the first node on the path that is not 
on the some particular path, and the number of nodes that are on the path in 
question, but not on the path leading from node N to the root of the tree. 
Using these probabilities and the length of the paths, the expected numbers of 
interchanges, and of comparisons necessary for the algorithm may be com- 
puted. This is done in case N is a power of 2, say N=2",  and in this case the 
following is shown: the expected number of interchanges equals n - l + o ( 1 ) ,  
and the expected number of comparisons equals 2n -1+o(1 ) .  Note that the 
worst case is n, resp. 2 n. 

The plan of the paper is as follows: in Sect. 2 some preparations for the 
analysis are made, in particular some anatomical details of heaps are quoted 
from the corresponding chapter in [-9], the algorithm is given more formally 



and the probabilistic assumptions are made explicit. Section 3 deals with distri- 
butional aspects, it is shown how root deletion affects the uniform distribution, 
and how the resulting distribution looks like. In Sect. 4 we calculate the 
probabilities with which the replacement of the root follows a given viable 
path, and in Sect. 5 the leading terms of the asymptotic expansions for the 
expected numbers of interchanges and of comparisons are computed in case N 
is a power of 2. The concluding remarks in Sect. 6 discuss some other distri- 
butions than the uniform one, and give some suggestions for further work. 

2. Preparations 

Fig. 1 

A N-dimensional real array b[1 ... N] is said to be a heap iff b[[i/2J] <=bill 
holds for any i such that 2_<i<N. If {1, . . . ,N} is represented as a tree such 
that 1 is the root, and [i/2] is the father of node i, and if furthermore b[i] 
serves as a label for node i, then b is a heap iff no node has a smaller label, 
than its father. The tree representation will be important in the sequel, and 
some notation will be used with respect to it, cp. [9]. 

To begin with, if 1 <_i<_N, let g(N, i) denote the size of the subtree rooted at 
i, i.e., the number of descendants of i in the tree corresponding to {1,. . . ,N} 
including i; 

G(N, i):=I-[{g(N,j); j is a node in the subtree rooted at i} 

denotes the product of the respective subtree sizes. A special node in the tree is 
a node which is on the path from N to the root 1; define t(N,O):=N, and 
t(N,i+l):=[t(N,i)/2J for 0 < i < [ l o g z N J ,  then {t(N,i); 0 < i < [ l o g z N J }  con- 
stitutes the special path. Assume that N equals 43, then the following figure 
displays the representing tree. The special path is shown with heavier lines. Let 
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N have the binary representation ( lb ,_  1...bo)2, then it is easily seen that 
t(N, i )= ( lb ,_  1 . . .  bi)2 holds, and from [9], Exercise 5.2.3.20 it is derived that we 
have 

g(N, t(U, i))=(1 b i_ 1 ... bo)2. (1) 

The following algorithm will be investigated in the sequel: 
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Algorithm Rootdeletion 

Input: a heap b[l  ... N] 
Output: x, the smallest element of the heap, and the heap b [ 1 . . . N - 1 ]  

which is the originally given heap with its root deleted and the 
heap property reconstructed 

Method: 1. [Copy the root] 
x . '=b[1];  bE1]:=bEN]; 

2. [Reconstruct] 
i :=1;  
loop: /f i is no leaf and a son of i contains a smaller 

label than i does 
then 

k :=son  of i with the smallest label; 
interchange b [i] and b [k] ; 
i:=k; 
goto loop 

endif. 

This algorithm is a variation of Floyd's method to construct heaps ([1], p. 90), 
and if repeated N times, it returns the array sorted in ascending order. The 
question which will be investigated below is the expected number of in- 
terchanges and comparisons that are necessary in the execution of this algo- 
rithm. In order to calculate these expectations, some preparations are needed. 

It will be assumed that every heap has the same probability to occur, but 
rather than doing so for permutations, we take the heaps to be chosen at 
random from 

H(N):=  {(xl,..., xN); O<x i < 1, the vector is a heap}. 

Then to say that every heap has the same probability to be considered as an 
input to the algorithm means that for any Borel set A ~_H(N) 

Prob(A): = ZN" 2U(A) (2) 

defines the probability in question. Here ~(u denotes the product of all subtree 
sizes, i.e. 

Zu:=y[{g (N , i ) ; l< i<N}  (=G(N, 1)), 

and 2 N is N-dimensional volume or, more technical, Lebesgue measure re- 
stricted to (the Borel sets of) H(N). It is shown in [4], Theorem 1 that if heaps 
are constructed with Floyd's algorithm, and the inputs are uniformly distribut- 
ed, the resulting heaps are, thus have a distribution according to Eq. (2). Note 
that with probability 1, every heap has mutually different components since 

2N({x~H(N); x i = xj for some i ~j}) = 0. 

Thus we may and do neglect heaps in which some components are equal. In 
Sect. 6 we will discuss how this model is related to the usual assumption of 
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randomness, in which the inputs are permutations of {1,. . . ,N} having the 
heap property, every of these occurring with probability Z~ 1. 

A helpful tool for the subsequent investigations will be the Change of 
Variables Formula from Integral Calculus as a generalization of the familiar 
situation in case N = 1, in which variables of integration are substituted. It is 
stated here for the reader's convenience and reads as follows: let U and V be 
open subsets of Ru, such that U=g[-V] for some continuously differentiable 
homeomorphism g, then we have for any integrable map 4): U ~ R  the equality 

~ c~dA N= f c~ og. Idet g'l dA N, (3) 
U V 

see [10], 8.27. This formula will be applied below in the following way: g will 
represent the action of the algorithm, transforming some part V of the input 
domain in a unique way to an output range U. Then the formula describes 
how the underlying distribution will be transformed by the algorithm. 

Finally it will be convenient to describe the way b[N] percolates the tree 
by a word vs{0, 1}*, where 0 means that it is interchanged with a left son, and 
1 denotes an interchange with a right son. Let for such a v be vj the prefix of 
length j, i.e. if v=c  1 ... % 1 <j<k,  then vj=c 1 ... cj; for the sake of complete- 
ness v 0 is defined as the empty word e. Given such a word v, let Z(v) be the 
endnode of the path represented by v, i.e., if s(v) is the value of the binary 
number corresponding to v (e.g. s(000101)=(101)2 = 5), then Z(v): =2  Ivl + s(v). 

3. Distributional Aspects 

Let for vs{0, 1}* as the path to be followed H(N,v) be the set of all xEH(N) 
such that the N-th component x N does indeed follow v. Hence xeH(N,  v) holds 
iff 

x N > min {Xz(vj_, o), Xz(vj-, 1)} = Xz(vj) 

holds for l < j < l v l .  Thus if xeH(N,v) ,  then x u will be interchanged with Xz(vj ) 
for 1 <j<lvl,  but it will not be interchanged with any son of Xz(v), provided 
there is one. Now call v a viable path for x u iff H(N,v)*O, and denote the set 
of all viable paths by ~ .  Note that not every path in the tree corresponding to 
{1,. . . ,N} starting at 1 can be a viable path for N: any part b ,_ ,  . . .bj  of the 
special path excluding IN/2] must not be a viable path. This is so because the 
heap property implies that 

X N > X( 1 bn - 1 . . .b j )2  

is true for l < j < n - 1 ,  hence if x N would stop at ( lb,_l . . .bj)2,  this would 
imply 

X N ~ X ( l b n  l . . , b j b j -1 )2  ~ 

which is clearly a contradiction. On the other hand, b,_ 1 ... b 1 constitutes a 
viable path, and it is easily seen that v e ~  holds iff both Z ( v ) < N - 1 ,  and 
vr 1... bi; 2 <_iNn-1}  are true. Note that H(N) equals the disjoint union 
of H(N, v) for v ~ .  
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The action of the algorithm on H(N,v) is described above; denote this 
action as T N, hence T N maps H(N) into R ( N -  1), where 

g ( s - 1 ) : =  {(xt, ...,xN_ l, y); (xl ..... xN_ OeH (N-1) ,  O< y< xl}. 

In order to describe the distributional effects of T N, some subsets of R ( N - 1 )  
will be needed; these subsets will depend on viable paths for N and will shown 
to be the bijective images of the sets of the form H(N, v). To begin with, let 

R(N - 1, b,_ t. . .  bx)" = R(N - 1), 

and if v is a viable path which does not stop in [N/2J, then 

R (N - 1, v):= {(x 1 .... , XN- t, Y) ~ R (N - 1); Xz(v)> X[N/Ej} 

is defined. Consider for example the case N = 6 ,  and X:=(1/5 ,  1/3, 1/4, 1/1, 1/2, 
1/6), then XeR(5,v) for v=0,  00, 01, 1 (note that R(5, I)=R(5)). X is displayed 
in the following figure with the mentioned paths indicated by heavier lines. It 

1/3 j 1 / 5 ~ 1 / 4  

/ \  / 
1/1 1/2 1/6 

Fig. 2 

will be seen in a moment that X lies in the image of exactly the classes 
H(N,O), H(N, O0), H(N,01), and H(N, 1) under T N. 

3.1 Lemma. Given v ~ ,  TN: H(N, v)-oR(N-1,  v) is a bijection. 

Proof. 1. It is easily seen that T N is one to one, when restricted to H(N, v) since 
T N operates on all elements in H(N, v) as the same permutation of coordinates. 
The crucial step is to show that T N is onto, and this is done by constructing a 
preimage for an arbitrarily chosen y~R(N-1 ,v )  and showing that xeH(N,v). 
Define x in the following manner: 

X1 : =YN, 

Xz~j+o:=yz(~j); O ~ j ~ ] v ] - - l ,  

XN : = YZ(v) 

xl." = yl, otherwise. 

Then Ts(x)=y, and x is a member of H(N). For if there exists an index i such 
that XtvEj>X,, at least one of the indices must be in A:={Z(vj); 
0 < j< lv l}w{N} ,  since outside of this set nothing is changed. Now working 
through all possible combinations (viz., {[i/2J, i}~A,  Li/2JeA~i, iEA~Li/2J) 
demonstrates that the assumption leads to a contradiction, hence shows that 
xeH(N). Moreover x is easily seen to be a member of H(N,v), since 
yzlv)> YtN/21 iff XN> XtN/2I, provided v:~b._~ ... b r 
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An immediate consequence of 3.1 is that we may say for every z e R ( N - 1 )  
how many inverse images it has under T N. If M(z) counts the number of viable 
paths v e ~  such that z ~ R ( N -  1, v), thus if 

M(z) : = card({v~ ~UN; z~g(N - 1, v)}), 

then z has exactly M(z) inverse images. From this observation the distribution 
of T N is derived. Note that M(z) may be written as 

M (z)= ~ { I ( R ( N -  1, v); z); v~UN}, 

where I(A; ") is the indicator function for the set A. 

3.2 Proposition. Given a Borel set A c R ( N - 1 ) ,  let 

p(A)." = Prob(TNeA) 

be the probability that the output of the algorithm is an element of A. Then 

/~(A) = •N" S M(z) dz (4) 
A 

holds. 

Proof 1. We demonstrate a seemingly sharper result, viz., that 

fd#=zN" ~ f(z)M(z)dz (5) 
R ( N -  1) R ( N -  1) 

holds for any f :  R ( N - 1 ) ~ P ,  which is measurable and bounded. Since the 
indicator function I(A;.) of the Borel set A has these properties, and since 
plainly 

~I(A; ")d#=p(A), 

the desired equality (4) is obtained from (5). 

2. We have postulated that 

Prob(B) =ZN' 2~(B) 

holds for every Borel set B c H(N), and from this we have 

fdP=zN" ~ f(TN(x))dx 
R(N-- 1) H(N) 

=~{XN" S f(TN(x))dx;ve~lrN} 
H ( N -  1,v) 

=~{XN" ~ f(z)dz;ve~KN}, 
R ( N -  1,v) 

since by Lemma 3.1 TN[H(N,v)]=R(N-I ,v  ). Hence the Change of Variable 
Formula implies 

f(TN(x))ldetT/v(x)ldx= f f(z)dz. 
H(N,v) R ( N -  1,v) 
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Now [detT~(x)] is always equal to 1, because T N only permutes coordinates, 
thus has the determinant of a permutation matrix as its Jacobian. Observing 

f ( z ) d z =  ~ f ( z ) l ( R ( N - l , v ) ; z ) d z  
R(N-- 1,v) R(N-- 1) 

and taking the definition of M as well as the additivity of the integral into 
account, the equality (5) is proved. 

Denote by J-(x) the number of interchanges which are necessary to recon- 
struct the heap property when the root of x~H(N)  is deleted. Thus J-(x) 
equals [v[ whenever x~H(N,  v), and we have for the expectation IE(J)  

1E(J-) = •N" ~ {1 v l 2 N(H (N, v)); v ~ ~UN}. (@-) 

If 5~(x) is the number of comparisons which are done in reconstructing the 
heap property for x~H(N),  and if x~H(N,v)  for v ~ ,  such that Z(v) has i 
sons (0< i<2)  in the tree corresponding to {1 . . . . .  N - I } ,  then 5P(x)=2]vl+i 
holds. Hence Eq. (6~) implies 

IE(5 v) = 2. IE(J)  + b o "XN" 2N(H( N, b , -1""  bl)) 

+2 .  Z," ~{2N(H( N, v)); Z(v) has two sons w.r.t. {1, . . . , N -  1}}. (6s~) 

The second summand comes from the observation that b,_l ... b~ is the only 
viable path which ends in a node with exactly one son, provided b o = 1; in case 
bo=0, i.e. if N is even, this path ends in a leaf with respect to {1, . . . , N - 1 } .  

From Eqs. (6) it is seen that it will be necessary to compute 2N(H(N, v)) for 
rerUN. This will be done in the next section. 

4. Computing Path Probabilities 

Fix for the moment a viable path v E ~ .  Then from Lemma 3.1 and from the 
proof of Proposition 3.2 it is clear that 

2N(H(N, v)) = 2N(R(N - 1, v)) 

holds. Now fix ye[0, 1], and define the set R ( N - 1 , v ) ( y )  by 

(Xl, ..., x N_ 1)eR(N - 1, v)(y) 
iff 

(xl .... ,x  N_ 1, y ) e R ( N -  1, v). 

Fubini's Theorem ([-10], p. 150f) implies 

1 

2N(H (N, v)) = ~ 2 N- ~ (R ( N -  1, v)(y)) d y. 
0 

Let 
K ( N -  1, v) = {(x 1 .... , xN- 1) e l l ( N -  1); Xz(v) > xtm2j } 
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be the set of all (N-1)-heaps in which the label of node Z(v) is greater than 
the label of [N/2J ; for the sake of completeness 

K ( N -  1, b,_ 1 ... bl): = H ( N -  1) 
is defined. Then 

K ( N -  1, v) ~ R ( N -  1, v)(y) 

(x 1 . . . .  ,XN_l)~--~(y+xl(1 - y )  . . . .  , y + xN_ 1 (1 -y) )  

constitutes a differentiable homeomorphism with Jacobian (1 _y)N-1. 
Thus we have 

1 

2 N (R (N - 1, v)) = A N-a (K (N - 1, v)). ~ (1 - y)N-1 d y 
0 

= L ~N- I(K(N _ 1, v)), 
N 

and the task of computing 2N(R(N -1,v)) is reduced to that of computing 
2 N - a ( K ( N - I , v ) ) .  In case v = b , _  1 ... b 1 (or b,_ a ... bl0, provided N is odd) this 
is done easily, since the respective sets equal H ( N - 1 ) ,  which has Z~-~I as its 
(N-1)-dimensional volume. In the general case, however, some hairy com- 
putations will be needed. We will proceed as follows: to begin with, we fix 
labels on the special path with respect to N, but excluding N, and on the 
nodes of v. With these fixed labels in mind we have a look at the probability 
for all heaps which may have these labels at the respective nodes; then we will 
integrate over all possible values which have been fixed and obtain in this way 
the ( N -  1)-dimensional volume of K ( N -  1, v) by means of Fubini's Theorem. 

By the latter Theorem, we have 

2 N- I ( K ( N  - 1, v)) 

= ~ 2 N - l - " ( { x ~ K ( N - l , v ) ; x t ( N . i ) = Y i  for l_<i<n}). (7) 
l>=yl>_,..~yn>=O 

Thus for a fixed chain 1 >Yl =>... > y , > 0  the (N-1-n) -d imens iona l  volume 

2N- 1 -.({X ~ K ( N  -- 1, v); x,(N,i) = Yi for 1 _< i < n}) 

of all those heaps in K ( N - 1 ,  v) that are labeled on their special path by this 
chain should be known. 

Let us have a look at a possibility to obtain a heap labeling in K ( N -  1, v), 
when the special path { t (N, i ) ;  l < i < n }  (thus excluding N, of course) has 
already a label. First, we cut the path { t (N, i ) ;  l<i<_n}  out of the tree 
representing {1, . . . , N - l }  and are left with a forest of smaller trees. These 
trees are all rooted at brothers of the special nodes t (N, n -  1) . . . .  , t (N,  1), and 
of t (N,  0), if N is odd. The following figure might help to clarify things (the 
nodes t (N,  1) . . . .  , t (N, n) are marked by heavier dots, the respective brothers by 
asterisks, and the path v in question by heavy lines). Now consider a tree in 
this residual forest with the property that no part of v is in it. This tree may be 
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It m 

Fig .  3 

labeled as a heap under no other constraint, than that the label of its root is 
not smaller, than the label of its father (in the 'big' tree). All trees but one are 
labeled in this manner. The remaining one contains that part of the path v 
which lies not on the special path. In order not to come in conflict with the 
heap property the root is labeled as are the roots of the other trees, viz., with a 
number not smaller than the label of its father. But in order not to come into 
conflict with the requirement that the heap thus produced is a member of 
K(N) - I , v ) ,  the endnode is assigned a number that is not smaller than Yl. 
Having in mind these restrictions and repeating the considerations from above, 
this yields a labeling of this subtree, too. Now we must make sure that the 
described labeling procedure may be traced probabilistically. 

It will be helpful to have the following formulae at our disposal 

(1 - z) k 
2k({(Xl, ..., Xk) eH(k); z < x l } ) - - -  (8) 

Zk 

with 0 < z < 1. In case z = 0, Eq. (8) reflects the fact that heap construction with 
Floyd's algorithm preserves uniform distribution, in case z =  1 both sides are 
zero, hence the case 0 < z <  1 must be considered. Since the set in question is 
the image of H(k) under the map 

(xt, ..., xk)~--,(z + (1 - z ) . x  1 . . . .  , z+(1 - z ) .  xk) , 

the Jacobian of which is ( 1 - z )  k, the equality follows immediately from the 
Change of Variables Formula. 

If e(i)>O, g(i).. =e( i )+ 1, 0 < e ,  f l< 1, we have 

1 xl  xk-  I k 

I I ... I Fl  
/~ ~t a i = 1  

= ~ ( - 1)"- 1(1 - f l ) ~ ( 1 ) +  ...+e(a)(1 _ 0~)*(a + 1)+ . . .  +~(k) 

a = l  

This formula may be proved by induction on k. 

(9) 
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In carrying out the program sketched above, it will be necessary to com- 
pute the contribution of certain subtrees to the measure 2N-~(K(N-  1, v)). This 
is done in the next lemma. 

4.1 Lemma. Let P1 . . . . .  P~ be a path in a complete binary tree J-  of depth s 
(hence Y has m : = 2  s - 1  nodes) such that P1 is the root of J-. Then the m- 
dimensional Lebesgue measure of all those heap labelings for J such that the 
label for P1 is not smaller, than a prescribed 111 �9 [0, 1] and the label for 1~ is not 
smaller, than a given Y2 �9 [0, 1] equals 

I (2s+ 1 - i __  1) 
i = 1  

~m a= I 

(1 -- Y2)2 . . . . . .  1 . (1 _ y1)2--,'<2,'_ 2. ) 

(2 ' - ' + "  - 1) 2 ~' -r)~'- 1) 151 (2 ' -  2") 
t = l  
t#:a 

Proof. 1. Remember that heaps must not have components outside the closed 
interval [0, 1]. Let Yl be a label to node Pi such that 0_<y 1 __<... __<y,<__l, and let 
Qi be the brother of Pi, 2<_i<_r. Then the Lebesgue measure of all possible 
heap labels which respect Yl, ..., Y, equals 

r - - 1  

H (1 _yi)gtm.Q,+,) 
f i  g(m, Pi) i=l .(l_y,)gtm, e,)_l (.) 

i= 1 G(m,  P1) 

This is easily deduced from Eq. (8), since only the subtrees of ~-, which are 
rooted at the nodes Qi, and the subtrees of J -  which are rooted at the left, or 
the right son of P~, have to be taken into consideration. Moreover it is noted 
that 

r - - 1  

G(m, P1)= H g(m, P1)" f i  G(m, Qi) " G(m, P~) 
i=1  i=2  

holds�9 
2. The equality in question is now proved by an application of Eq. (9) with 

fl= Y2, ix= Y1, x i : Y r + l - i ,  e(i)=g(m, Qr+2-i) if i->_2 and e(1)=g(m, P , ) -  1. The 
looked for measure equals the integral over (,) with respect to all Yl . . . .  , Yr, 
which satisfy 

YE_-<y~_-< 1, 

Y , - t ~ Y , ,  

Yl < Y2, 
v l  <-S y l  , 

or, equivalently 

Y2 <=y,< I, 
Yl <yr_l  <=y,, 

I11 <=Yr-2 <Y , -  1, 

Yl=<yl =<y2 �9 
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In evaluat ing sums involving g(i), it is to be noted that  

g(m, P i ) = g ( m , Q , ) = 2 s + ~ - i - 1 .  [] 

N o w  let us return to our  fixed pa th  v, and let us state some characterist ics 
associated with it: 

�9 P(v) is the smallest  index j such that  b,_ 1... b~ is a prefix of  v, 

�9 p(v) is the number  of  nodes which are on v but  not  on the special pa th  
b,_ 1-.. bo, 
�9 R(v) is the n u m b e r  of  nodes which are on the pa th  f rom the endnode  of v to 
a leaf including that  endnode.  

Hence  we see that  

R (v) = P (v) - p (v) + be(v)_ 1" 

The  viable pa th  v m a y  be wri t ten as 

v = b,_ 1... bP(v)dl.., do(v), 

where d 14:be(v)_ 1. No te  that  the case P(v)= n is not  excluded. Moreove r  

a(v).. = R(v) + p(v)- 1 

is the number  of  nodes in a pa th  s tar t ing f rom ( lb,_~. . .bp(v)dO2 to a leaf 
(including its s tart  node), thus the tree rooted  at ( l b , _  1...bP~v)dl) 2 has 2 ~(v)- 1 
nodes. Consider  as an example  N = 52 and the pa th  v = 1001: 

Fig. 4 

In  the displayed tree, the special pa th  10100 is character ised by small dots, 
the pa th  v by heavier  lines. We have n = 5, P(v) = 3 (since 10 is a prefix of  v, but  
101 is not), R(v )=2 ,  a (v )=3 ,  p (v )=2 .  

N o w  let T~ be that  son of the special node t(N, i) which is different f rom 
t(N, i - 1 ) ,  2<=i<=n; in case N is odd, the node t(N, 0) has a brother ,  too, hence 
T 1 is defined. In case N is even, however,  care must  be observed since T 1 is not 
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defined, but for the sake of convenience 

g(U, 7"1).'=0, 

G(N, T1):= 1 

is defined in this case. 
Now let Yi be a fixed label of t(N,i)  for l_<i_<n such that 

l ~ y  1 => ... =>yn>=O. The contribution of the subtree rooted at the node T/to the 
volume of all those heaps which have Yl, ..., Yn as the labels is 

(1 - -  y i )  g ( N -  1, Ti) 

G ( N -  1, T~) ' 

in case i4:P(v), and 

p(v) 

i =  1 z 4  \ 2 * ( v )  p ( v ) + a  1 z ~  x2a (v ) -p (v ) (2p (v ) - -2  a) [ I  ( 2"(v)+ 1 - i _  1) o(v) t_* -YO- ____it  I -Yew))- 

G ( N - 1 ,  TP(~)) ,=IE (2"(v)-P(v)+"- l) . 2("(v)-p(v))(~ l)" I ]  (2'-2") 
t = l  

in case i=P(v).  In the latter case the subtree rooted at Tp(v) takes over the r61e 
of f in Lemma 4.1, and the path mentioned there is that part of v which is 
not on b._ 1...b1�9 Consequently the heap labelings that are considered must 
satisfy the condition that the label of the root Tvw ) is not smaller, than Ye(v) 
(otherwise the heap condition would be violated), and that the label of the 
endnote (1 b,_ 1... be(v) dl�9 dp(v))2 is not smaller, than yl (otherwise the defining 
condition for K ( N - I , v )  would be violated)�9 The case i . P ( v )  is treated by 
means of Eq. (8), since any labeling of the subtree rooted at T~ which satisfies 
the heap condition is constrained only by the property that the label of T~ 
must not be smaller than Yl is. In passing note that 

g ( N -  1, T~) =g(N, T~), 

G(N - 1, T~) = G(N, T~) 

holds for all i, since no T i is a special node with respect to {1, ..., N}. 
From Fubini's Theorem now it is inferred that 

p(v) 
I-[ ( 2"(v)+ a - i _  1) 

2 u-  I ( K ( N -  1, v)) =i= 1 

i = 1  

. P'~) [(2(~(v)-P(v)+a--1) . 2(a(v) 
a = l  

-p(v))(p{v)-l). ~2 (2,_2 a 
t =  1 
l * a  

1 i i 

�9 IdY. I dy.-x"" I dy, h (1-Yi) "r176 
0 Yn Y2 i= 1 
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where the exponents ~/(a, i) are defined by 

g(N, T1)+2~(o)-~ 1, if i=1  

~l(a, i):= 2"w)-P(~176 if i= P(v) 
g(N, T/), otherwise 

Now it is not difficult to see that 

1 1  1 f i  f i  i~_~ 1-1 Ictx. [, dx._,... I dx, 0-x) '" '= 90) 
0 x .  x2 i= 1 i = 1  j =  1 

holds, where y(i)>0, 9(i)=?(i)+1, as above. In order to evaluate the integral 
above, note that 

g(N, T/)=2 i-I+b . . . .  1 

and 

holds. Since 

k 

E 21-1+b'-1 =( lbk-1  "'" b l b o ) a -  1 
i=1 

�9 , (2"( ' ) -P(o+a+(lb,_l  ... bo )2 -2  , if t<P(v) 
~(a'o=~2"(v)+(lbt 1 ...bo)z-l-2e(v)-l(lq-bP(v)-l), if t>P(v), i = l  

the Lebesgue measure in question equals 

p(v) 

I-I ( 2~w)+ 1 - i _  1) 
i=1 

2 ~(v~-p(~)~pw~-I~. f i  G(N, Ti) 
i=1 

f i  [2~(~ bt_ 1 ... bo) 2 -  1 - 2  e(~- 1 �9 (1 +bv(~)_ 1)] -1 
t= P(v) 

p(v) [ p(v) 

�9 2 ( 2"(v)-o{~)+a-1)" I-I (2 ' -2"/  
a= 1 t= 1 

P(v) - 1 "1 -- 1 

I-[ ( 2'rw)-o(v)+a + (1 b,_ 1"" bo)z-  2) l 
t= 1 

This expression may be simplified a little bit by noting that both 

zN = ~ G(N, ~). H g(N, t(N, i)), 
i=1 i=1 

and 

hold. 
a(v)=P(v)- 1 +bp(v)_ 1 
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Substituting these values, we see that the probability for the path v to be 
followed does depend only on its characteristics a(v) and p(v), and not on, say, 
the number of times it turns left of right or an another geometrical characteri- 
zation relative to the tree. 

5. Computing the Expectations in Case N = 2" 

We will assume in this section that N=2",  i.e. that N is the leftmost node on 
level n. Denote by p(r, s) the probability that x N follows a path v that has the 
characteristics a(v)= s and p(v)= r, hence 

p(r ,s )=N -1 f i 2  i. lLI (2s+ l - i -1 ) ,  f i  (2J - l )  -1 
i = 1  i = 1  j = s + l  

�9 2-(s+ 1).(,- ~). (2~+1-,+2J_2) ( 2 - t -  2 -.)  
a = l  j = 0  t = l  

t * a  

holds, since b~=0, 0<i_< n - 1 .  There are 2'-1 paths with these characteristics 
and any of them has length n - s - l + r .  Thus the expected number IE(3-) of 
interchanges equals 

IE(~-) = ~ 2 " - ~ . ( n - s - l + r ) . p ( r , s ) + O  
s = l  r = l  

since r may take values between 1 and s, and s may range from 1 to n - 1 .  The 
O(N -~) term takes that parts of the special path with respect to N that are 
viable paths into account. 

Fix s for the moment, and abbreviate the product 

= j = s + l  

by f(t), then it is not difficult to establish that 

equals 

where 

and 

• 2"-l(n--s+r--1)p(r,s) 
r =  1 

Bl(s, n)-B2(s,  n), 

BI(S , n ) : = N  - 1 .  f i  (1--2--/) -1" (2  s -  1). f i  (1 -2 - J )  �9 (n -1)  
i=1 j=l 

B2 N I 2i  2 i) a 2• 
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In establishing this, we have made use of the equalities 

k_ l  ( I  
2 t 1- -2-k2 j 

t=0  j = l  l _ 2 J  --ill.k, 

H (i i ) t .  2 t 1 - -2-k2 j - 

,=o  j=~ 1 - 2 ~  - - ( 1 - 2 - 0  ( 1 - 6 1 , k )  

(6 denoting Kronecker's symbol), which may be proved by means of [8], 
(89.18.2). Now 

n--1 

Bz(S, n)=0(1) 
S = l  

is not difficult to prove, thus 
n--1 

Z B~(s, n) 
s = l  

remains to be evaluated. For this, the generating function 

n--1 

n = l  s = l  

will be explored where 
n--1 

/~1( S' g / ) : =  2 ( 2 s - l )  I~I ( 1 - z - j ) ,  
s = l  j = l  

and in order to investigate N, we consider the generating function 

s = l  j = l  

for ( 1 - 2  -j) . ~ is a special case of a basic hypergeometric series, in 
s>__l 

Bailey's notation ~(z)=14~0(�89 z) with q=�89 (see [2], Chapter VIII), and our 
considerations will give an analytic continuation of this basic hypergeometric 
series into the complex plane with {2s; s>0} omitted. Applying the equations 
(89.18.4) and then (89.18.2) from [8] and using Euler's partition formula ([9], 
Exercise 5.1.1.16), we infer that 

~ ( z ) = ~ "  z' - -  f i  ( l _ z 2 _ J ) _ l  
t ~ 0  (2t--z) 2'(t-1)/2 I-[ ( 2 j - l )  j = t + l  

j = l  

holds, provided ]z] < 1. In case z + 2  s, s e IN u {0}, the quotient criterion shows 
that this series converges. 

Now 
Z 

if(z) = 1 - z  ( ~ ( 2 z ) -  ~(z)), 



Deleting the Root of a Heap 261 

hence ~ has simple poles at z = 2 s, s ~ N { -  1, 0} (what looks like a double pole 
at z = 1 turns out to be a simple one); and Darboux's theorem ([3], Theorem 4) 
implies that 

n- -1  

B1(s ,n)=F-12"-F- l+o(1) ,  as n ~o o  
S= 1 

holds, where 

F : =  f l  ( 1 - 2 - J )  -1. 
j = l  

By means of the identities [8], (89.18.3) and 
k 

I~ ( 1 - 2 - i )  -1 may be expressed using F, viz. 
j = l  

k 

r ]  ( 1 -2 -~ )  - '  = F .  (1--Tk), 
j = l  

where 

Thus 

(89.18.2) the product 

~;k ' =  L [ 2k;" 1 . 3 - . . . .  (2 - / -  1 ) ] -  1. 
j = l  

n - - 1  

BI(s , n ) = n -  1 + o(1), 
s=  1 

and we have proved 

5.1 Theorem. In case N = 2 "  the algorithm Rootdeletion requires 

n - l + o ( 1 )  

interchanges on the average, as n--* oo. 

Let us turn our attention to the number ~ of necessary comparisons. The 
Eq. (6) above tells us that we should have a look at the probabilities for those 
paths which end in a node that has exactly two sons with respect to the tree 
representing { 1, ..., N -  1}. No such path v will have the characteristic a(v)-- 1, 
or p(v) = a(v), thus 

n - 1  s - 1  

~ 2"-lp(r,s) (10) 
s = 2  r = l  

should be known. An argumentation very close to that dealing with the 
divided difference above shows that 

S--1  

2r-lp(r ,s)=N -1" f i  2 j 
r = l  j = l  

"{ f(1)'(2~-l)-Lf(s+l-a)a=l 

s _ 1 1  { 1 2 , ,  ] .0, 
t~ca  
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holds, where f is as above. The evaluation of the latter sum requires the 
knowledge of 

f [j__I~o ( fi )1-1 2-"  2~+1-"+2J -2 )  �9 ( 1 - 2 ' - "  
a=l t=l 

o [ ]_1 
--2~i!z" (2~+l 'z) ~ 1-[ (1--2t-z)  dz 

, =  1 

(for some real 0, [0[<1) (11) 

where the contour F of integration is given in the following figure. Here e > 0 is 
arbitrary, and 0 < q < 2- ~+ 1) holds. By making M-o ~ ,  applying Jordan's Lemma 

i 

Fig. 5 

([-11], 6.222, p. 115) together with the additivity of the integral, we see that the 
latter integral reduces to 

2rci ~ 2-(*+1)'~-z -(~-1) ( 1 - 2 ' . z )  dz. 

Since 0 is the only singularity of the integrand (in fact, it is a pole of order s 
-1 ) ,  the integral equals the residuum of it at zero. From [8], (89.18.2), it is 
seen that 

s+l k 2 s + i -  1 
I-I (1 - 2' .  z ) - i  = Z 2k zk I-I 

, = 1  k>=O j=l 2J--1 ' 
holds and from the Cauchy-d'Alembert test ([11], p. 30) we infer that the series 
converges in ]z[ < 2-(2 + 1). Consequently, the integral 

1 s+l 
2*ti I z--(s-X) H (1-2'z) -xdz 

t=l=. ,= 1 
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equals 

sl:-[ 2 ( 1 -  ?s)(1--T,-2).  2s2-~_ 2. 2~_2 2 ~+j-. 1 = F .  
j= 1 2 J -  1 (1 - - ' ~ 2 s - 2 )  

Hence the sum in Eq. (11) is 0(2-29 .  Plugging this into Eq. (10), it is now clear 
that this sum equals 

N -~ .  ( 1 - ? ~ ) - ~ . ( 1 - y , ) .  (2 ~ - I ) + N - ' .  O(2-~). 

This implies that we have for the sum in Eq. (10) 

n - 1  s - I  
~ T - '  .p(r ,s )=N- ' .  ( 1 - ? , ) .  (N+0(1) )  

s = 2 r = l  

Since the latter sum equals the contribution of the probabilities for all those paths 
which have exactly two endnodes in the tree corresponding to {1 .. . .  , N - l } ,  
we may conclude from Eq. (6s~) and Theorem 5.1 : 

5.2 Theorem. In case N =2", the algorithm Rootdeletion requires 

2 n - 1 + o ( 1 )  

comparisons on the average. D 

An attempt to do a similar asymptotic analysis for other heapsizes than 
that of powers of two seems to be worthwhile, but shows considerable techni- 
cal difficulties. In order to get an impression of the size of the numbers 
involved, the following table lists some expected values for interchanges. 

N IE(~-) N 1E(~-) N IE(,~) 

120 5.639309 128 5.701212 255 6.636096 
121 5.531967 129 5.597580 256 6.764067 
122 5.646428 130 5.729245 257 6.682071 
123 5.538227 250 6.717618 258 6.765042 
124 5.668911 251 6.631717 259 6.681986 
125 5.561248 252 6.735185 260 6.787195 
126 5.671459 253 6.648512 
127 5.563767 254 6.722797 

6. Concluding Remarks 

It has been assumed so far that the inputs for the algorithm Rootdeletion 
come from all vectors with components in the closed unit interval that have 
the heap property, and that these vectors are uniformly distributed. In calculat- 
ing the path probabilities the corresponding measure has been used exten- 
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sively. Hence it is surprising to see that a large class of probability distribution 
will display the same expected behavior, when used as input distributions. In 
order to make this statement more precise, let us introduce a symmetric model 
(cp. [6]). Such a model consists of a base set A and of a distribution # with the 
following properties 

(a) A c F, N is a Borel set 

(b) if x~A,  then (xp~l), ..., xp~m)~A for every permutation p of {1 . . . . .  N} 

(c) # is a probability measure on (the Borel sets of) A such that 

#(B) = ~ F(x) dx, 
B 

where the density F has the property that F(xl, . . . ,  XN)=F(Xp(1) . . . .  , xpcm) for 
every xEA and every permutation p of {1, ..., N}. 

Examples for symmetric models include 
N 

(i) A =]a, b[ N, F(x 1 . . . .  , XN)= I ]  g(xi) 
i=1 

b 

for some - oo < a < b < + c~, 5 g(x) dx = 1 (this corresponds to the case of inde- 
a 

pendent and identically distributed random variables), 

(ii) A is the unit simplex, and # is a multivariate Dirichlet distribution, 

(iii) A = R N, and # is a multivariate Cauchy distribution. 

On the finite side, we have the usual model of all permutations of 
{1 . . . .  ,N} that enjoy the heap property, assigning every of these permutations 
the probability Z~71 (cp. [9], Theorem 5.2.3.H, Eq. (16) on p. 154). It turns out 
that the following holds. 

6.1 Theorem. Let A, # be a symmetric model, HA(N):={x~A; x is a heap}. 

a) #(HA(N))=Z; ~ 
b) taking the inputs to Rootdeletion either from HA(N ) with input distribution 

ZN" # or from the set of all permutations of {1, ..., N} having the heap property 
under uniform distribution will result in the same expected number of inter- 
changes and comparisons. 

Proof. See [9], Corollary 4.9, Sect. 5. [7 

Finally, some further work is to be suggested. Since Rootdeletion affects 
uniform (or symmetric) distribution, the way to tackle the problem pursued 
here can be only the first step in analyzing the selection phase of heapsort. 
Thus a suggestion for further work in this area along the lines sketched here 
might be to study the probability distributions arising in iterated rootdeletion 
carefully and to derive from these distributions informations concerning the 
expected performance of heap selection. Another and more immediate sugges- 
tion addresses the higher moments of the random variables involved. 
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