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One of the popular methods for retrieving information by its “name” is to
store the names in a binary tree. To find if a given name is in the tree, we com-
pare it to the name at the root, and four cases arise:

1. There is #o root (the binary tree is empty): The given name is not in the
tree, and the search terminates unsuccessfully.

2. The given name mafches the name at the root: The search terminates
successfully.

3. The given name is Jess than the name at the root: The search continues
by examining the left subtree of the root in the same way.

4. The given name is greater than the name at the root: The search continues
by examining the right subiree of the root in the same way.

Special cases of this method are the binary search and its variants (uncentered
binary search; Fibonacci search) and the search-sort scheme of Wheeler-Berners
Lee-Booth-Hibbard-Windley, et al. (see (1, 3, 7, 10]).

When all names in the tree are equally probable, it is not difficult to see
that a best possible binary tree from the standpoint of average search time is
one with minimum path length, namely the complete binary tree (see {9,
Pp. 400—401]). This is the tree which is implicitly present in one of the variants
of the binary search method.

But when some names are known to be much more likely to occur than
others, the best possible binary tree will not necessarily be balanced. For example,
consider the following words and frequencies,

a 32
an 7
and 69
by 13
effects 6
for 15
from 10
high 8
in 64
of 142
on 22
the 79
to 18
with 9
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showing words to be ignored in a certain KWIC indexing application [6, p.124].
The best possible tree in this case turns out to be

an with
by, from

effects Digh
In this paper we discuss the question of finding such “ optimal binary trees”,
when frequencies are given. The ordering property of the tree makes this problem
more difficult than the standard “Huffman coding problem” (see [9, Sec-
tion 2.3.4.5]).
For example, suppose that our words are A4, B, C and the frequencies are
«, B, . There are 5§ binary trees with three nodes:

A 4 B c C
N Ne SN /
B Y 4 T N B
c B B 4
I II I11 v Vv

The following diagram shows the ranges of («, §, ) in which each of these trees
is optimum, assuming that « 44y =1:
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Note that it is sometimes best to put B at the root even when both A and C
occur more frequently. And on the other hand, it is not sufficient simply to choose
the root so as to equalize the left and right search probabilities as much as

possible, contrary to a remark of Iverson [8, p.144; 2, p.318].
1

n+1
exhaustive search for the optimum is out of the question. However, we shall

show below that an elementary application of “dynamic programming,” which
is essentially the same idea used as the basis of the Cocke-Kasami-Younger-
Earley parsing algorithm for context-free grammars[4], can be used to find an
optimum binary search tree in order #* steps. By refining the method we will
in fact cut the running time to order #2.

In practice we want to generalize the problem, considering not only the fre-
quencies with which a successful search is completed, but also the frequencies
where unsuccessful searches occur. Thus we are given # names 4,, 4,, ..., 4,
and 2% 41 frequencies oy, oy, ..., &,; Py, P2, .-, B, Here f; is the frequency of
encountering name 4, and «; is the frequency of encountering a name which
lies between A; and A4,,,; o, and «, have obvious interpretations.

The key fact which makes this problem amenable to dynamic programming
is that all subtrees of an optimum tree are optimum. If 4; appears at the root,
then its left subtree is an optimum solution for frequencies a, ..., «;_; and
Bi, ..., Bi—y; its right subtree is optimum for «;, ..., «, and B,,,, ..., B,. There-
fore we can build up optimum trees for all ““frequency intervals” «;, ..., a; and
Bit1, ---, B; when ¢ <7, starting from the smallest intervals and working toward
the largest. Since there are only (#--2)(n+1)/2 choices of 0 =<7 <7<wn, the
total amount of computation is not excessive.

In general, there are (2:) ~ 4"[n)/mn binary trees with # nodes, so an

Consider the following binary tree:

(Square nodes denote empty or terminal positions where no names are stored.)
The “weighted path length” P of a binary tree is the sum of frequencies times
the level of the corresponding nodes; in the above example the score is

3ag + 2By + 30 + By + 40y + 3+ 4o+ 26, + 3.
In general, we can see that the weighted path length satisfies the equation

P=B +B+W,
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where F; and F; are the weighted path lengths of the left and right subtrees,
and W oz0+oc1+ <o +a,+ P+ - +8, is the “weight” of the tree, the sum
of all frequencies. The weighted path length measures the relative amount of
work needed to search the tree, when the a’s and §’s are chosen appropriately;
therefore the problem of finding an optimum search tree is the problem of finding
a binary tree of minimum weighted path length, with the weights applied from
left to right in the tree.

The above remarks lead immediately to a straightforward calculation proce-
dure for determining an optimum search tree. Let P;; and W,; denote the weighted
path length and the total weight of an optimum search tree for all words lying
strictly between 4; and A4;,,, when ¢ <j; and let R;; denote the index of the
root of this tree, when ¢<<j. The following formulas now determine the desired
algorithm:

P, =W,=a;, for 0=i<mn;
I/V” 17 1+ﬂ;+a7: (**)

Pz’,Ru—1+PR¢;,i*'iI<r}}£j(i,k—1+Pk;’)=Pﬁ—Wi7‘» for 0=i<j=mn.

The problem of finding “best alphabetical encodings,” considered by Gilbert
and Moore in their classic paper [5], is easily seen to be a special case of the
problem considered here, with 8, =8, = --- =g, =0. Another closely related (but
not identical) problem has been discussed by Wong [12]. In both cases the
authors have suggested an algorithm for finding an optimum tree which is
essentially identical to (x#); Gilbert and Moore observe that the algorithm takes
about #3/6 iterations of the inner loop (choosing R;, from among j —7 possibilities).

By studying the combinatorial properties of optimum binary trees more care-
fully, we can refine the algorithm somewhat.

Lemma. If «, =f, =0, an optimum binary tree may be obtained by replacing
the rightmost terminal node

of the optimum tree for o, ..., «,_, and §,, ..., §,_, by the subtree

Proof. By the formulas above, W, ,=W,, _, for 0=si<#n; B,,=a,=0;
R,_yn=n; F,_,,=2a, ,. We want to prove that F,,=F,, ,+a, , and
R,,=R;,_; for 0=7=#n—2, and the proof is by inductlon on 7 —i. Consider
the sums

Pc', i +1)i+1,n; cens B,n—2+ Bt—l,n; 1)1',”—1 +Bl
By induction, these are respectively equal to

Bit+Pynatay bt B a1 Py,
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Let R;,_, =7; since
B,1=F, +F . +I/Vi,n—1 =P, +F o,

the minimum value in the above set of numbers is F;,_, +F,,, hence we may
take R,,=7.

Theorem. Adding a new name to the tree, which is greater than all other
names, never forces the root of the optimum tree to move to the left. In other
words, there is always a solution to the above equations such that

Ro,n—-l é RO,n»
when # = 2.

Proof. We use induction on #, the result being vacuous when # =1. Since
the optimum tree is a function of «,, -+ f,, we may assume that 8, =0. The method
of proof is to start with e,=0; in this case the above lemma assures us of a
matrix R;; satisfying the desired condition. We will show that this condition
can be maintained as «, increases to arbitrarily high values.

Let « be a value such that the optimum tree is 4 when «, =a —e¢, but it
is ' =+J when «, =a +¢, for all sufficiently small ¢ >0. Assume further that
the root of 7 is less than (i.e., to the left of) the root of 4. The weighted path
length of  is a linear expression of the form

Lowg) ot +2 (o) oty + -+ +2(x) o, +-2(By) B+ -+ +2(Ba) B

where /(x) denotes the level associated with x; and the corresponding formula
for I is

V(oo) o+ (ag) oy + -+ + (o) ot +0(Br) B+ -+ +1(B,) Ba-
These two expressions become equal when o, =a, and

V(a,) <Zer)
so that J is better when «, >«. When «, =«, both trees are optimum.
Consider now the following diagrams:

() ()
2 )

N
I
N
|

By our assumptions, f; <<%;; &) =/i(e,) = #- Since j; < 4,, we can use induction
and left-right symmetry of the theorem to conclude that 7, <7,. If j,<<17,,
similarly, we have 7; =4;. But since !'(e,) <Z(a,), fram =% > (s, hence 7, =1,
for some k. Therefore we can replace the right subtree of 4,, in 7 by the similar
subtree in 7, obtaining a binary tree 7" whose weighted path length is equal
to that of J for all ,. Since 7" has the same root as .7, this argument shows
that we need never move the root to the left as « increases.
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Corollary. There is always a solution to conditions (x*) above satisfying
R,; y=R;; and R, ;=R ; for 0=i<j—1<u.

Proof. This is simply the result of the theorem applied to all subtrees, and
using left-right symmetry.

The corollary suggests an algorithm which is much faster than the previous
one, since we usually will not have to search the entire range ¢ <7 <4 when
determining R;;. In fact, only R, , ;—R,;;_,+1 cases need to be examined
when R;; is being calculated; summing for fixed j —1 gives a telescoping series
which shows that the total amount of work is at worst proportional to #2

Summary, and Open Problems

The formulas above amount to a systematic method for finding optimum
search trees, given the frequency of occurrence of each name in the tree as well
as the frequencies of occurrence of names not in the tree. The number of steps
is essentially proportional to the square of the number of names. An ArLgoL
program for the algorithm appears in the appendix, together with a detailed
example from a compiler application.

Several open problems remain to be solved. Perhaps the most interesting is
to obtain the best possible bound on the weighted path length in the optimum
tree as a function of #, given arbitrary frequencies such that

a0+ o+ + o+ =1,

For example, when # =2 the weighted path length is =<3, and the worst case
occurs when oy =1, ay =0y =p; =f, =0. The same bound applies when » =3,
since the tree

obviously has weighted path length =< 3. It is not obvious what the best possible
bounds are when # >3, although it is easy to see that the optimum weighted
path length never exceeds [log,(n +1)] +1.

Another problem concerns the efficiency of the algorithm. Our »2 algorithm
essentially finds all of the optimal trees for 0 <7 <7 <#x. But if we discover by
some means that R,,_,=25, it is unnecessary to determine R;, for 1=/<4
when we compute R, ,. There may be some way to arrange the calculation so
that the method is less than order #2 on the average.

A harder problem, but perhaps solvable, is to devise an algorithm which keeps
its own frequency counts empirically, maintaining the tree in optimum form
depending on the past history of the searches. Names that occur most frequently
gradually move towards the root, etc. Perhaps some such updating method could
be devised which would save more time than it consumes.

2%
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Another interesting problem is related to our first example. The optimum
in the ““of-and-the”’ case turned out to be obtainable by the following ““ top-down ™’
rule: Place the most frequently occurring name at the root of the tree, then
proceed similarly on the subtrees. Another plausible rule is to choose the root
s0 as to equalize the total weight of the left and right subtrees as much as possible.
Our example for n =3 shows that neither of these rules will produce an optimum
tree in all cases, but it might be possible to give some quantitative estimate of
how far from the optimum these methods can be.

The solution to any of these problems should provide further insight into
the nature of optimum search trees.

I wish to thank Ronald L. Rivest for formulating a conjecture which led to the
theorem in this paper, and John Bruno for correcting an error in my original proof
of the lemma.

Appendix

The program below is written in ALGcoL W, a refinement of ALGOL 60 due
to Wirth and Hoare [11]. More than half of the code (the procedure display)
is actually devoted to printing out the optimum tree in a reasonable pictorial
fashion, one it has been found.

In order to try the algorithm on a fairly complicated test case, a count was
made of all identifiers in about 25 example ALGoL W programs prepared by the
author for an introductory programming course. The frequency of each reserved
word was counted, as well as the frequency of occurrence of identifiers lying
between adjacent reserved words. This led to the following data (n =36):

33 113

5 abs 1 2 null 8
and 6 of 5
22 array 9 38 or 5
37 begin 77 38 procedure 16
case 5 real 29
;i comment 95 g record 2
0 div 12 o reference 13
do 50 rem 9
3 else 16 ° result 0
0 d 7 23 short 0
15 " 7 11
0 false 2 0 step 5
36 for 35 09 string 5
0 et 1 2 G
5; if 34 ;1 true 8
142 integer 37 4 until 34
0 logical 2 o value 8
113 long 5 11 while 16

For example, any identifier starting with the letter J, K, or L would fall
between integer and logical. The R matrix computed by the program is shown
on the next page. The average search length for this fairly large tree came to
less than 5.
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The optimum tree printed out by the program appears below, as well as the
quite different optimum tree obtained when the frequencies a,, oy, ..., agg Were
set to zero. This shows that the ‘“‘betweenness” frequencies can profoundly in-
fluence the nature of the optimum tree, so it is important to consider them.

ALGOL W Program
begin comment Finding an ‘optimum’ search tree;
string(10) array wd(1:: 100); integer array a, 5(0:: 100);
integer %;
record node(string(10) info; integer col; reference(node) left, right);
procedure display(integer value »; reference(rode) value roof);
begin comment Draw a picture of binary tree referenced by ‘root’;
reference(node) array active, waiting(1:: n); string(132) line;
integer %, newk; comment The number of nodes on the waiting list;
reference(node) p;
integer j; comment Counter used in colro procedure;
procedure colno(reference(node) value 7);
begin comment Assign a column number to each node of the binary
tree referenced by 7;
if » 3= null then
begin colno(left(r));
col(r) : = round(123%j/(n —1)) +4; 7:1=7+1;
colno (right(r))
end
end colno;
7:=0; colno(root);
waiting(1) 1= root; k:=1;
while >0 do
begin line : =" ";
for j:= 1 until & do
begin comment Move waiting node to active area, and draw “|”’ lines
down to it;
active(f) : = p := waiting (7} ;
line(col(p)|1) :=“|"";

end;
write(line, line);
newk 1= 0;

for j:= 1 until 2 do
begin comment Put nodes descended from active nodes onto the
waiting list, and prepare an appropriate line containing the ‘info’
of active nodes;
integer ¢/, cr;
P 1= active(j); cl:= cr:= col(p);
if left () == null then
begin ¢l := col(left(p)); newk:= newk +1;
waiting (newk) : = left(p)
end;
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if right(p) == null then
begin cr : = col(right(p)); newk:= newk+1;
waiting (newk) := right (p)
end;
for i:= cl until cr do line(i|1) := “-";
begin comment Center info(p) on line, about col(p);
integer s; s:=0; while info(p) (s +1{1) = “ " dos:=s+1;
cl = col(p) —s div 2;
for ¢ := 0 until s do line(cl +i[1) := info(p) (E|1);
end;
end;
write(line);
k= newk
end
end display;
n:=0; intfieldsize:=5;
write(“ THE GIVEN FREQUENCIES ARE:");
rioop: read(a(n), wd(n +1), b(n +1));
write(* 7, an));
if wd(n+1) (0[1) = “-” then
begin n:=#n1;
write(" ”, wd(n), b(n));
go to rloop
end;

begin comment Find an #-node optimal tree, given relative frequency &(s) of
encountering wd(¢) and frequency () of being between wd (i) and wd (7 --1);
integer array p, w,7(0::#,0::xn); comment (7, j), w(3,7), 7(¢, §) denote
respective the weighted path length, the total weight, and the root of the
optimal tree for the words lying between wd (1) and wd(j + 1), when ¢<<j--1.
The average search length in this tree is $(s, j)/w(, 7);
reference(rode) procedure createtree(integer value ¢, g);
if 2 5= 7 then node(wd(r (¢, 1)), 0),
createtree(s, (1, j) — 1), createtree(r(i, 7), 7)) else null;
for i:= 0 until » do $(¢, %) : = w(i, i) := a(i);
for ::= 0 until # do for j:=17 {1 until » do
(i, 1) 1= wi, j —1) + () + a();
for 2:=1 until » do for i:= 0 until » —% do
begin integer %, mn, mx; tk:=1+k;
mx:= if k=1thenik elser(i, ik—1); mn:= p(i, mx—1)+p(mx, ik);
if £#>1 then for j:= mx +1 until »(z +1, /%) do
ifp(5,7—1)+ 2, ik) <mn then
begin mn := p(i,j —1) + (7, ¢k); mx:=7 end;
P, k) i=mn - w(i, ik); r(i, k) 1= mx
end;
write(""AVERAGE PATH LENGTH IS”, $(0, #)/w(0, n));
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tocontrol(3);
display(n, createiree(0, n));
tocontrol(3); intfieldsize:= 2;
for i := 0 until » do
begin iocontrol(2);
for 7 := 0 until » do writeon(if i <j then 7(i, j) else 0)
end;

end

end.

Note Added in Proof. T.C. Hu and A.C. Tucker have recently discovered a

completely different way to find optimum binary search trees, in the special case
that the f’s are all zero. Their algorithm requires only O(n) units of memory and
O (n log n) units of time, when suitable data structures are employed.

O %o
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