
Acta Informatica 14, 243-255 (1980)

/mid
�9 by Springer-Verlag 1980

On Alternation*

Wolfgang J. Paul, Ernst J. PrauB, Rtidiger Reischuk,

Fakultgt ftir Mathematik, Universit~it Bielefeld, 4800 Bielefeld 1, Germany (Fed. Rep.)

Summary. Every alternating t(n)-time bounded multitape Turing machine
can be simulated by an alternating t(n)-time bounded 1-tape Turing machine.
Every nondeterministic t(n)-time bounded 1-tape Turing machine can be
simulated by an alternating (n+(t(n))l/z)-time bounded 1-tape Turing ma-
chine. For wellbehaved functions t(n) every nondeterministic t(n)-time bound-
ed 1-tape Turing machine can be simulated by a deterministic ((nlogn) 1/2
+(t(n))I/z)-tape bounded off-line Turing machine. These results improve or
extend results by Chandra-Stockmeyer, Lipton-Tarjan and Paterson.

1. Introduction

We investigate alternation. Alternation is at the same time a generalization of
nondeterminism and a mechanism to model parallel computation. It was
introduced independently in [3] and [10]. In 2 we repeat the basic definitions.

In the real world neither nondeterministic nor unbounded parallel machines
exist, but although these machines are purely artificial constructs they help us to
understand facts and to prove theorems about the real world. This is well known
for nondeterministic machines. Similarly alternating machines have served to
characterize the complexity of Presburger Arithmetic [1] and to derive lower
bounds for the complexity of modal logic [5] and certain games [3]. Also they
help to unify the theory and to design deterministic algorithms.

Exploring what can be done with the help of alternation we derive some
simulation results. In [2] it was shown that every nondeterministic t(n)-time
bounded multitape Turing machine (TM) can be simulated by a nondeterminis-
tic t(n)-time bounded 2-tape TM. In [3] the authors noted that the same result
holds for alternating machines and that by the usual step by step simulation
reduction to 1 tape can be achieved at the expense of squaring the time bound.
Adapting the proof from [2] and exploiting in addition the power of alternation

* A preliminary version of this paper was presented at the 19th IEEE-FOCS

0001 - 5903/80/0014/0243/$02.60

244 w.J. Paul et al.

we show in 3, that alternating multitape TM's can be simulated by alternating 1-
tape TM's without loss of time.

In [13] it is shown that for t(n)> n 2 every nondeterministic t(n)-time bound-
ed 1-tape TM can be simulated by a deterministic (t(n))l/Z-tape bounded TM.
In [11] the authors announced that every nondeterministic t(n)-time bounded 1-
tape TM can be simulated by an alternating (t(n))C-time bounded TM. This hints
a simulation in the spirit of [9] and c = 2/3. In 4 we turn the divide-and-conquer
simulation from [13] in a straight-forward way into a parallel simulation such
that the space bound from [133 translates directly into a bound for alternating
time, i.e. we obtain c = 1/2. Using moreover a lemma from [6] we can weaken
the hypothesis t(n)>n 2 in [-13] to t(n)>nlogn.

2. Definitions

One can describe all possible computations of a nondeterministic machine given
some input as a tree: all nodes are instantaneous descriptions (ID's), the root is
the initial ID of the machine for the given input and the sons of an ID c are
exactly those ID's which can be reached from c in one move allowed by the
transition relation. Leaves of the tree are the final configurations, they may be
accepting or rejecting. Of course certain paths in the tree may be infinite.

(2.1) One can define an interior node of the tree to be accepting if at least one
of its sons is accepting; the machine accepts the input iff the root is accepting.

Thus we may imagine the computat ion tree being built up level by level each
time the machine makes a step and once there is an accepting leaf the
information about this fact flows from that leaf to the root in a very simple way.

One may define a nondeterministic machine to be t(n)-time bounded if for
every input of size n accepted by the machine there is an accepting node whose
distance from the root is at most t(n). All the above definitions are equivalent to
the usual ones.

For alternating machines the mechanism for the flow of control from the
leaves to the root is made more powerful. The states of a machine are
partitioned into two classes: existential states and universal states. Depending on
the class of a state ID's and hence nodes of computat ion trees may now be
called existential or universal.

(2.2) An existential interior node is defined to be accepting if at least one of its
sons is accepting, a universal interior node is defined to be accepting if all its
sons are accepting.

An alternating machine M is defined to be t(n)-time bounded if for every
accepted input w of length n the computat ion tree of M started with w stays
accepting if it is pruned at depth t(n). Clearly alternating machines without
universal states are just nondeterministic machines.

For convenience denote by ATIMEk(t(n)) the set of languages accepted by
alternating O(t(n))-time bounded k-tape TM's and by ATIME(t(n)) the union of

On Alternation 245

the classes ATIMER(t(n)). In the same spirit we use the nota t ions NTIMEk(t(n)),
NTIME(t(n)), DTIMEk(t(n)) , DTIME(t(n)) for nondeterminis t ic and determin-
istic machines and DTAPE(t(n)) for determinisi tc tape bounded machines. The
latter no ta t ion remains meaningful for t(n)<n if we refer to off-line machines.

3. Tape Reduction

It is well known that determinist ic as well as nondeterminis t ic 1-tape Tur ing
machines cannot test quickly the equali ty of strings which are posi t ioned
somewha t apar t on the tape [8]. This difficulty can be overcome by al ternat ing
machines.

L e m m a 1. Let A be a finite alphabet and ~ q~ A a marker.
Let

L1 = {x # y#z [x , y , z eA* ,x=z} .

7hen

L1 cA TIME l (n).

Proof We describe an a lgor i thm for an al ternat ing 1-tape TM.
Given input w with [wl = n (Iw[denotes the length of w) accept if (3.1) to (3.3)

hold.

(3.1) w has the format x # y # z , x,y, z6A*

(3.2) x is a prefix of z

(3.3) z is a prefix of x

(3.1) can be tested determinist ical ly in t ime O(n). We say how to test (3.2); (3.3) is
tested in a similar way.

Use 4 tracks, copy the input on t rack 1.
Universally (i.e. in universal states) choose a tape square under x and print a

ma rke r b on t rack 2.
Then choose existentially (i.e. in existential states) a tape square under z and

print a ma rke r c on t rack 2. Accept iff (3.4) and (3.5) hold.

(3.4) The symbol above b equals the symbol above c.

(3.5) The distance d b f rom the left end of x to b equals the distance d c f rom the
left end of z to c.

Clearly x is a prefix of z iff for all choices of the posit ion for b there is a choice
for the posi t ion of c such that (3.4) and (3.5) hold. (3.4) can be tested de-
terministically in t ime O(n). It remains to show how to test (3.5).

Existentially guess on t rack 3 nonover lapp ing binary representat ions m 1,
m 2 m t of na tura l numbers where t < n is arbi t rary, such that m I = 1, ml stands
under the first symbol of x and the first symbol of mt stands under the last
symbol of z. Similarly guess existentially on t rack 4 nonover lapp ing binary

246 W.J. Paul et al.

" I
b c

m 1 m 2 M t

A 1 N 2 N t

Fig. 1

representations n 1 n t of numbers such that for all i the first symbol of n i
stands under the first symbol of ml (see Fig. 1).

There will be subtrees of the computation tree, where the m i and n~ have all
length O(log n) and where the m~ are guessed at distance O(n/log n) from each
other. Call such subtrees good.

Let [mg] denote the number represented by ml. Choose universally
ie{2 , t}. Test deterministically if [m J - [m~_ 1] equals the distance between
the left ends of m~ and m~ 1 (this can be done by moving a counter over the
distance [m i] - [m i_ 1]; in good subtrees the counter has length O(log n) and is
moved over a distance O(n/logn)), if not reject. Otherwise each mi begins on cell
[mi] of the tape inscription, thus the ml may be used then as "milestones" to test
(3.5):

Compute deterministically with the help of the milestones the binary repre-
sentations of d b and d c. Compare each of these with some n~ nearby; if any of
them differs from the n~ nearby reject. Otherwise choose universally ie{2 ,t},
test deterministically ni=n~ 1, accept iff n~=n~ 1. Clearly the part of the
algorithm described last accepts iff (3.5) holds. Moreover if some input of length
n is accepted, then any good accepting subtree of the computation tree has
depth O(n). []

Alternating 1-tape TM's can also quickly convert the binary representation
of a number into its unary representation or vice versa. As the machines can
guess the new representation and then verify the guess it suffices essentially to
show

Lemma 2. Let # CA be a marker and

L2 = {x # y[x, yeA*, y is the binary representation of Ix i}.

7hen L2eATIMEI(n).

The proof is implicit in the last part of the proof of L e m m a l : guess the
milestones below x, verify their correctness, compare the last one with y.

We remark that Lemma 1 gives us a fast way of copying a string (guess the copy
and try to verify the correctness using Lemma 1) and Lemma 2 gives by the same
method a fast way to determine the binary representation of the length of a string.

Theorem 1. ATIME(t(n))= ATIMEI(t(n)) for all t(n).

Proof Let M be an alternating k-tape Turing machine with alphabet A and set
of states Z. We describe an 1-tape Turing machine Q, which simulates M. A

On Alternation 247

path of length t in a computat ion tree of M defines in an obvious way a
sequence of configurations C = C~ C t of M (this sequence looks like a
computat ion of a conventional Turing machine). A pro toco l of this sequence of t
en t r ies e i ~ Z • A k • Z • A k • { f , r, 0} k where

e i = (z (i), a 1 (i) a k (i), z'(i), b 1 (i) b k (i), s i (i) s k (i))

iff in configuration C i M is in state z(i), reads a~(i) ak(i), goes into state z'(i),
prints b l(i) bk(i) and makes the headmovements specified by s l (i) ,Sk(i),
where (= left, r = right, 0 = no movement (1 < i < t).

A sequence of entries ei is a protocol of some sequence of configurations in
the computat ion tree of M, iff (3.6) and (3.7) hold.

(3.6) the ez are consistent with the transition relation of M.

(3.7) Let p (i , v) = [{ u [s ~ (u) = r , u < i } [- [{ u [s ~ (u) = E , u<i}[=headpos i t ion on tape
v before step i.

For all i~{1 t} and all vs{1 k} holds:
a) if i' is the largest number < i such that p (i , v) = p (i ' , v) , then a , (i)=b~(i ') .
b) if no such i' exists then

,., (the p(i, v)th symbol of the input if v = 1 and 1 <=p(i, v) <= [input[

a A t) =] B otherwise

In order to simulate M, Q first ignores the input and guesses successively a
sequence of entries ez with z (i) = z ' (i - 1) for all i. For each i a~(i) ak(i) are
guessed existentially. If z(i) is an existential state, then M guesses the rest of e i
consistent with the transition relation of M existentially, otherwise M guesses
the rest of e i consistent with the transition relation of M universally.

Every time Q has guessed an entry el, it checks if z'(i) is a final state. If z'(i) is
not a final state, Q generates one more entry. If z'(i) is rejecting, Q rejects. If z'(i)
is accepting Q tries to verify (3.7) for the generated sequence of entries. If it fails
it rejects, if it succeeds it accepts.

Assuming the test for (3.7) is correct and fast we show the correctness and
derive the time bound for this part of the simulation. For an input w let T be the
computat ion tree of Q.

Let T 1 be the part of T which consists of all paths from the root of T to
nodes, where Q has just guessed an entry ei such that z'(i) is a final state and (3.7)
holds for the generated sequence of entries.

The paths from the root of T to the leaves • of T~ correspond in a natural
way to the finite paths from the root to leaves in the computat ion tree of M. Let
T z be the subgraph of T consisting of T 1 and the (finite) subtrees of T whose
roots are leaves of T1. If T would be equal to T z then Q would accept the input
iff M accepts the input. But all paths in T which do not belong to T 2 meet T 2 in
existential nodes. Moreover all these paths are infinite or lead to rejecting leaves
of T. Thus the paths in T outside T 2 have no influence on whether Q accepts the
input or not.

If the input has length n and the input is accepted, then the computat ion tree

248 w.J. Paul et al.

of M cut at depth t(n) and evaluated by rule (2.2) is accepting. The protocols for
this part of the computation tree of M have length O(t(n)) and are generated in
O(t(n)) steps. The time bound follows if we show how to test (3.7) for a sequence
of entries of length O(t) in time O(t).

This is done in the following way:

(3.8) On an extra track Q chooses existentially some entries ei~, eis and
marks them. Q also marks e~o=e 1.

(3.9) For each marked entry %Q guesses existentially the binary represen-
tation of numbers q(ij, 1) q(ij, k) and writes these down on k further extra
tracks, beginning at %. These are candidates for head positions.

We say a subtree of the computation tree of Q is good if the marked entries %
are at a distance of at most O(t/logt) and the numbers q(ij, v) have length
O(log t). In good subtrees (3.9)contributes depth O(t). In the sequel our estimates
for the runtime Q will only hold for parts of the computation belonging to good
subtrees, but the construction will be such that if Q accepts input w, then there is
a good accepting subtree.

Next Q chooses universally one of the marked entries % as well as a number
v~{1 k} and tests

(3.10) q(io,v)=O if j = 0

q(ij, v)=q(ij 1,v)

+l{ulsv(u)=r, ij l <u<ij}

-I{ul sv(u)= A ij_ ~ <__u<i~}.

This is done deterministically. In order to test (3.10) it is only necessary to move
a counter of length O(log t) over a distance of length O(t/log t). If (3.10) does not
hold, Q rejects. Thus in accepting subtrees (3.10) must hold for all j and v, i.e. the
numbers q(ij, v) are the headpositions p(ij, v) as defined in (3.7).

Q chooses universally an entry e~ (1 <i<t) as well as a number re{1 k}.
Then Q chooses existentially an entry e c with i '< i or a fictitious entry %. In the
first case Q tests (3.7a), in the second (3.7b) and rejects if the outcome of the test
is negative.

Obviously a~(i)=b~(i') from (3.7a) can be tested in O(t) steps. The correctness
of (3.7b) is tested in the following way: by moving a counter Q determines p(i, v)
from a q(ij, v) nearby. As indicated in the remark after Lemma 2 Q determines
the representation of the length n of the input and copies it on an extra track
below the representation of p(i, v). If n<p(i, v) only a~(i)=B has to be checked.
Otherwise Q chooses existentially a position (of the input and erases symbols E
+ 1 n of the input. The binary representation of E (= length of the rest of the
input) is determined and copied below the representation of p(i, v). If ~+p(i, v)Q
rejects, otherwise Q checks if a~(i) equals the last symbol of the rest of the input.
It remains to show, how to verify, that i' is the largest number < i such that
p(i', v)=p(i, v) or (in the second case) that no such number exists.

Q chooses universally an entry ec,,i' <i" <i (i"<i in the second case),

On Alternation 249

computes p(i',v), p(i" ,v)and p(i ,v) - these can easily be computed from the
numbers q(ij, v) - and tests p(i ' ,v)=p(i ,v)#p(i",v) using Lemmal . If the out-
come of this test is negative, Q rejects, otherwise (3.7) holds. []

We remark that with the same techniques a proof in [12] can be adapted to
show, that every alternating t(n)-time bounded random access machine with
logarithmic cost measure can be simulated by an alternating t(n)-time bounded
TM.

4. Simulation of 1-Tape Machines

Let M be a nondeterministic 1-tape Turing machine with set of states Z,
alphabet _Y', starting state qo, accepting state ql and rejecting state q2 (if there is
one). B denotes the blank symbol. Let w be an input and [w[=n.
w.l.o.g, we may assume

(4.1) w stands originally on the tape squares 1 n, the head of M stands
originally on square 0. M starts by going in state q0 to square 1 and visits square
0 again only if it is in a final state and after erasing the inscription of the tape.

For a computation of M with input w the (oriented) crossing sequence (CS)
between tape square i and i+1 is the string c 1 c r over {S,S[S~Z} where c~
= S(S) if the f t h crossing between the tape cells is from left to right (right to left)
and immediately after the crossing the machine is in state S. As the first crossing
is always from left to right, the second from right to left and so on, orienting a
crossing sequence is unnecessary if only entire sequences are considered, but
later we will chop up the sequences.

Lemma 3. I f M started with input w accepts w, but the computation produces two
identical crossing sequences on tape squares to the right of the input, then there is
an accepting computation of M started with input w, which uses less time and
space.

The proof is almost immediate from Fig. 2.
If the crossing sequences C and D are identical, then the computation which

is obtained by deleting A' and pasting the remaining parts of the computation
together at the common crossing sequence gives the desired computation.

Lemma 4. For t(n) > n log n every nondeterministic t(n)-time bounded 1-tape Turing
machine M is O(t(n)/log t(n)) tape bounded; moreover the time- and space-bounds
are achieved on the same computations.

Proof. Similar to [-6], where this result is proven for deterministic machines:
Consider any minimum space accepting computation of a t(n)-time bounded

1-tape machine M started with some input w of length n. Let s be the space used by
the computation, let z equal the number of states of M and for each i let a i be
the number of crossing sequences of length i generated on the originally blank
part of the tape. Then Ziai<=t(n), s - n = ~ a ~ and for each iai<=z i by Lemma3.
Hence

t(n)/(s - n) > (• i ai/Z ai).

250 W.J. Pau l et al.

I w 1 o B I
tape originally

C D

Fig . 2

The right hand side is minimal if there are as many short crossing sequences as
possible. In this case it can be estimated from below by f2(log t(n)) by an easy
calculation. []

A CS-stenogram of a computation of M started with w is a string of the form
(bin r t, Ct bin rp, Cp) 1, where for 1 < i < p C i is the crossing sequence between
the rith and the (ri+ 1)th tape cell and q <= . . . ~ r p .

Lemma 5. Let t(n)> n log n, [wl = n and M accept w. 7hen there is a CS-stenogram
of length O(ta/2(n)) of an accepting computation of M started with input w, such
that Cp=A=the empty word (i.e. M never visits the tape square rp+ l) and
r i - ~ _ 1 <=2tl/2(n) for 1 <=i<__p (take ro=0).

Proof By Lemma 4 for input w there is an accepting computation of M of length
O(t(n)) which uses only O(t(n)/log t(n)) tape squares. Partition the tape squares
used into p=O(t~/2(n)/logt(n)) blocks B~ each of length tl/2(n) and choose in
each block B~ C~ as the shortest crossing sequence in this block. Then

Also

P P

i = 1 S i s a C S i = 1
inBi

P p

Ibin ri[< ~ (log t(n) + 1)= O(tl/Z(n)).
i = 1 i = l

[]

Theorem 2.

N TIME ~ (t (n)) ~_ A TIME(n + t 1/2 (n))

for all t(n).

The proof is - except for the obvious modifications and some simplifications
by Lemma5 - almost copied from 1-133. Let M be a nondeterministic 1-tape
machine as described above.

A finite computation of M started with input w can be described as a matrix
A with entries ~ Z ~ (Z x S ,) . Here au=b means: before the i'th step of the
computation square j of the tape contains symbol b.

bin r deno te s the b i n a r y r e p r e s e n t a t i o n o f r

On Alternation 251

aij = (z, b) means: before the i'th step of the computation M is in state z, the
head visits square j and reads b. Consecutive rows correspond to subsequent
ID's of M. Time and tape complexity correspond to the number of rows and
columns of A. If A is a t • - computation matrix and O < t ~ < t E < t ,
0 ~ $ 1 ~ $ 2 ~ S , then the (t E - - t l) X(SE- -S1) - matrix A' with a'ij=at,+i,s,+ j de-
scribes what happens in the computation from step t~ to step t 2 between the slth
and SEth tape square. A' is called a submatrix. The perimeter of A' is the tupel
(R1,RE,S1,S2) , where R 1 and R E are the first and last rows of A' and $1($2) is
the part of the crossing sequence between cell s l - 1 and s 1 (s E and s 2 + 1) which
corresponds to crossings between step t~ and step t 2. We say, that the predicate
comp(R1 ,RE ,S1 ,SE) holds, iff (R1,R2,SI,SE) is the perimeter of any submatrix
of any computation matrix of M.

Proposition 6 (formula C in [11]).
comp(R1 ,RE ,S1 ,SE) iff (4.2) or (4.3) hold:

(4.2) 3(R,S'I,S';,S'2,S'~) s.t. (4.2a) to (4.2d) hold.

(4.2 a) S'1 S'; = S,

(4.2b) S E S E = S 2

(4.2 c) comp (R 1, R, S't, SE)

(4.2 d) comp(R, R E, S'~, $2)

(4.3) 3(S ,R ' I ,R~ ,Rz ,R~) s.t. (4.3a) to (4.3d) hold.

(4.3 a) R'1R'; = R 1

(4.3 b) g E R 2 = R E

(4.3 c) comp (R' 1 , R E, S~, S)

(4.3 d) comp (R';, R~, S, $2).

Figure 3 illustrates this proposition. Clearly there are in general many possibil-
ities for cutting a matrix.

If M is t(n)-time bounded, Iwl=n and (4.1) holds then M accepts w iff
comp(R 1, RE, $1, SE) holds for

R 1 = w B c" t(n)/logt(n) - - n

R2 = Bc't(n)/l~

S~ =0oql
S 2 = A

where the constant c is chosen according to Lemma4.

Now in order to prove Theorem2 we may assume w.l.o.g, t(n)>=n 2, for if
Theorem 2 holds for such t(n), then it follows for all t(n) by

N T I M E ~ (t (n)) ~_ N T I M E ~ (n 2 + t (n))

~_ A T I M E (n + (n 2 + t (n)) 1/2) ~ A T I M E (n + t 1/2 (H)).

252 W.J. Paul et al.

s;
$1

S~'

R 1

R 2

L.2 R- cut

s2

s~ I S2 $I

R(

R~

R 1

s l R;'

R 2

&..3 S - cut

$2

Fig. 3

We describe how an alternating machine AM simulates M such that AM is
O(tl/2(n))-time bounded if M is t(n)-time bounded. Given input w AM works in
the following way:

(4.4) AM guesses existentially a CS-stenogram (bin r 1, C 1 bin r,, Cp)

(4.5) AM chooses universally a number qe{1 p}.

(4.6) Let r0=0, C0=00ql and # = w B ct(n)/l~ n.

AM tests
c~ ,+1 ...#rq, Brq rq-l, Cq 1,Cq).

If the outcome of the test is positive, AM accepts, otherwise AM rejects. Thus
AM accepts w~=>there is a CS-steonogram such that comp (...) holds for all q
r accepts w.

If M accepts w, then there is a CS-stenogram of length O(tl/2(n)) of an
accepting computation for w as in Lemma 5. AM can guess this CS-stenogram
in O(tl/2(n)) steps. Also observe that for this CS-stenogram the length of each
perimeter (R1 ,R2 ,S1 ,S2) of the comp-clauses tested in (4.6) is bounded by
O(tX/Z(n)).

Let T(r, s, t) be the time in which AM can verify

c o m p (R 1 , R 2 , S 1 , S z) for IR l l= lRz l=r , IS]§

where (R1,R2,S1,S2) is the perimeter of a submatrix of at most t rows (i.e. at
most t computation steps of M are performed "inside" the perimeter). In order
to prove Theorem 2 it now suffices to prove

Lemma 7. There is a constant k I such that for all r, s and t

T(r, s, t) <=kl (r + s + ta/2).

Proof. In order to test comp(R 1,R 2, $1, $2) AM works recursively. AM decides
existentially to perform an R-cut or an S-cut or to verify by direct simulation of
M.

R-cut. AM guesses existentially R,S'I ,S '; ,S2,S~ and verifies IRI=IRll, (4.2a) and
(4.2b). This can be done in k2(r+s) steps. AM then chooses universally to test
(4.2c) or (4.2d)

S-cut. AM guesses existentially S, R' 1 , R'l', R~, R 2 and verifies (4.3 a) and (4.3 b).

On Alternation 253

This can be done in k2(r+s+lS[) steps. AM then chooses universally to test
(4.3c) or (4.3d). In any accepting computation tree of M there will be an
accepting subtree, where AM works in the following way.

(4.7) For small t AM verifies directly.

(4.8) If r <s AM makes an R-cut such that s is halved.

(4.9) If r>s and r + s < T t 1/2 AM makes an R-cut such that t is halved (ifs or t
are odd they can only be approximately halved; the resulting modifications in
the analysis which follows are routine).

(4.10) Otherwise AM guesses in the middle third of R 1 a crossing sequence
S(S-cut) such that ISI _-< 3 t/r (such a crossing sequence exists, otherwise more than
t computation steps belong to the perimeter (R1, R z, $1, $2)).

Now Lemma7 is proven by induction: by choosing k 1 large enough it is made
true for t small. Now we get

for (4.8)"

for (4.9):

for (4.10):

T(r, s, t) = k2(r + s) + T(r, s/2, t)

=k2(r + s)+ kl(r + s/2 + t 1/2)

< 2 k 2 s - k l S/2 +k l (r + s +t 1/2)

< k l (r + s + t 1/2) for k l > 4 k 2.

T(r, s, t) = k 2 (r + s) + T(r, s, (t/2) 1/2)

<=k2(r + s) + kl(r + s + tX/e/2 Uz)

< 7 k 2 t 1 /2 -k I t1/2(1-(1/2)l/2) + k1(r + s + t 1/2)

<=kl(r+s+t 1/2) for k l>7k2/ (1- (1 /2)1 /z) .

T(r, s, t) = k 2 (r + s + 3 t/r) + T(2 r/3, s + 3 t/r, t)

< k2(2r + 3t/r) + ka (2r/3 + s + 3t/r + tl/2).

Now s < r and 7tl/2 < r + s implies 49 t / r<4r .
Thus

T(r, s, t) < k 2 (2 r + 12 r/49) + k i 12 r/49 + k 1(2 r/3 + s + t 1/2)

< r(110 k2/49 + 12 k 1/49) + k1(2 r/3 + s + t 1/2)

< k l r / 3 + k l (2 r / 3 + s + t 1/2) for k1=>125k 2

=kl (r+s+t l /2) . []

Call t(n) well behaved if the binary representation of t(n) can be computed from
the unary representation of n by a deterministic off-line TM using tl/2(n) tape
cells

254 W.J. Paul et al.

Theorem3. I f t(n) is well behaved, then

NTIMEI(t(n)) ~_ DTAPE((n log n) w2 + tl/Z(n))

for all well behaved t(n).

Proof For t(n)>n 2 this follows of course from Theorem2 and Theorem3.1 in
[3]. W.l.o.g. assume t (n)>nlogn and let M be a t(n)-time bounded nonde-
terministic 1-tape Turing machine as above. We describe a tl/Z(n)-tape bounded
off-line Turing machine OM which simulates M.

Given an input w of length n OM first computes the binary representation of
t(n) and from this the binary representation of tl/2(n), OM lays off c. tl/2(n) tape
squares, where c is chosen such that for every accepting computat ion of M
which has t(n) steps there is a CS-protocol of length c. tx/Z(n) with the properties
stated in Lemma 5. OM enumerates in lexicographical order all CS-protocols of
this length. For every CS-protocol OM tests all the comp-clauses (4.6). OM is
O(tt/Z(n))-tape bounded, if every comp-clause can be verified on O(tW2(n)) tape
squares.

OM verifies comp(R1, R2, St, $2) by systematically enumerating R-cuts or S-
cuts which are consistent with the rules (4.7) to (4.10). For each enumerated cut,
the subproblems (4.2c), (4.2d) or (4.3c), (4.3d) are recursively treated one after
another on the same portion of the tape. The recurrence equations for the tape
used in this simulation are the same as the equations for the time used in the
proof of Theorem2. []

The above proof is of course nothing but the original proof from [13]
simplified and extended to t(n)< n 2 by Lemma 5.

Corollary 1. Every deterministic t(n)-time bounded 1-tape Turing machine M can
be simulated by a deterministic O((n log n)t/2 + tl/Z(n))-tape bounded off-line Turing
machine M'.

Proof Let q2 be the rejecting state of M. M accepts or rejects w after t steps iff
for i = 1 or i = 2 (4.11) holds

(4.11) comp(w B' ", B', qo qi, A).

There is not by hypothesis given an easy way to compute t(n) given n. Thus M'
tries succesively for t = I wl, I wl + 1 to verify (4.11) for i= 1 or i = 2. This is done
using the method described above. As M is t(n)-time bounded, the simulation
succeeds for inputs of length n for t = O(n + t(n)/log t(n)) or earlier. []

References

1. Bermann L (1977) Precise bound for Presburger arithmetic and the reals with addition. 18th
IEEE-FOCS, 95-99

2. Book RV, Greibach SA, Wegbreit B (1970) Time and tape bounded Turing acceptors and AFL's.
J Comput System Sci 4:606-621

3. Chandra A, Stockmeyer L (1976) Alternation, 17th IEEE-FOCS, 98-108

On Alternation 255

4. Erdfs P, Graham R, Szemeredi E (1975) Sparse graphs with dense long paths. STAN-CS-75-504,
Computer Science Dept, Stanford MA

5. Fischer M J, Ladner RE (1977) Propositional modal logic of programs. 9th ACM-STOC, 286-
294

6. Hartmanis J (1965) Size arguments in the study of computation speeds. Symp on Computers and
Automata, Polytechnic Inst of Brooklyn, 1-18

7. Hartmanis J, Lewis PM, Stearns RE (1965) Hierarchies of memory limited computations. 6th
IEEE Symposium on Switching Circuit Theory and Logical Design, 179-190

8. Hennie FC (1965) One-tape off-line Turing machine computations. Information and Control
8:553-578

9. Hopcroft JE, Paul WJ, Vailant LG (1977) On time versus space. J ACM 24:332-337
10. Kozen D (1976) On parallelism in Turing machines. 17th IEEE-FOCS, 89-97
11. Lipton R, Tarjan R (1977) Applications of a planar separator theorem. 18th IEEE-FOCS, 162-

170
12. Monien B (1977) About the derivation languages of grammars and machines. Proc. 3rd ICALP,

Lecture notes in Computer Science
13. Paterson M (1972) Tape bounds for time-bounded Turing machines. J Comput System Sci

6:116-124
14. Pippenger N, Fischer M (1979) Relations among complexity measures, J. ACM 26:361-381

Received February 14, 1979;RevisedMarch 18, 1980

