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Summary. Every alternating t(n)-time bounded multitape Turing machine 
can be simulated by an alternating t(n)-time bounded 1-tape Turing machine. 
Every nondeterministic t(n)-time bounded 1-tape Turing machine can be 
simulated by an alternating (n+(t(n))l/z)-time bounded 1-tape Turing ma- 
chine. For wellbehaved functions t(n) every nondeterministic t(n)-time bound- 
ed 1-tape Turing machine can be simulated by a deterministic ((nlogn) 1/2 
+(t(n))I/z)-tape bounded off-line Turing machine. These results improve or 
extend results by Chandra-Stockmeyer, Lipton-Tarjan and Paterson. 

1. Introduction 

We investigate alternation. Alternation is at the same time a generalization of 
nondeterminism and a mechanism to model parallel computation. It was 
introduced independently in [3] and [10]. In 2 we repeat the basic definitions. 

In the real world neither nondeterministic nor unbounded parallel machines 
exist, but although these machines are purely artificial constructs they help us to 
understand facts and to prove theorems about the real world. This is well known 
for nondeterministic machines. Similarly alternating machines have served to 
characterize the complexity of Presburger Arithmetic [1] and to derive lower 
bounds for the complexity of modal logic [5] and certain games [3]. Also they 
help to unify the theory and to design deterministic algorithms. 

Exploring what can be done with the help of alternation we derive some 
simulation results. In [2] it was shown that every nondeterministic t(n)-time 
bounded multitape Turing machine (TM) can be simulated by a nondeterminis- 
tic t(n)-time bounded 2-tape TM. In [3] the authors noted that the same result 
holds for alternating machines and that by the usual step by step simulation 
reduction to 1 tape can be achieved at the expense of squaring the time bound. 
Adapting the proof from [2] and exploiting in addition the power of alternation 
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we show in 3, that alternating multitape TM's  can be simulated by alternating 1- 
tape TM's without loss of time. 

In [13] it is shown that for t(n)> n 2 every nondeterministic t(n)-time bound- 
ed 1-tape TM can be simulated by a deterministic (t(n))l/Z-tape bounded TM. 
In [11] the authors announced that every nondeterministic t(n)-time bounded 1- 
tape TM can be simulated by an alternating (t(n))C-time bounded TM. This hints 
a simulation in the spirit of [9] and c = 2/3. In 4 we turn the divide-and-conquer 
simulation from [13] in a straight-forward way into a parallel simulation such 
that the space bound from [133 translates directly into a bound for alternating 
time, i.e. we obtain c = 1/2. Using moreover a lemma from [6] we can weaken 
the hypothesis t(n)>n 2 in [-13] to t(n)>nlogn. 

2. Definitions 

One can describe all possible computations of a nondeterministic machine given 
some input as a tree: all nodes are instantaneous descriptions (ID's), the root is 
the initial ID  of the machine for the given input and the sons of an ID c are 
exactly those ID's  which can be reached from c in one move allowed by the 
transition relation. Leaves of the tree are the final configurations, they may be 
accepting or rejecting. Of course certain paths in the tree may be infinite. 

(2.1) One can define an interior node of the tree to be accepting if at least one 
of its sons is accepting; the machine accepts the input iff the root is accepting. 

Thus we may imagine the computat ion tree being built up level by level each 
time the machine makes a step and once there is an accepting leaf the 
information about this fact flows from that leaf to the root in a very simple way. 

One may define a nondeterministic machine to be t(n)-time bounded if for 
every input of size n accepted by the machine there is an accepting node whose 
distance from the root is at most t(n). All the above definitions are equivalent to 
the usual ones. 

For  alternating machines the mechanism for the flow of control from the 
leaves to the root is made more powerful. The states of a machine are 
partitioned into two classes: existential states and universal states. Depending on 
the class of a state ID's  and hence nodes of computat ion trees may now be 
called existential or universal. 

(2.2) An existential interior node is defined to be accepting if at least one of its 
sons is accepting, a universal interior node is defined to be accepting if all its 
sons are accepting. 

An alternating machine M is defined to be t(n)-time bounded if for every 
accepted input w of length n the computat ion tree of M started with w stays 
accepting if it is pruned at depth t(n). Clearly alternating machines without 
universal states are just nondeterministic machines. 

For convenience denote by ATIMEk(t(n)) the set of languages accepted by 
alternating O(t(n))-time bounded k-tape TM's  and by ATIME(t(n)) the union of 
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the classes ATIMER(t(n)). In the same spirit we use the nota t ions  NTIMEk(t(n)), 
NTIME(t(n)),  DTIMEk(t(n)) , DTIME(t(n)) for nondeterminis t ic  and determin-  
istic machines  and DTAPE(t(n)) for determinisi tc  tape bounded  machines.  The 
latter no ta t ion  remains  meaningful  for t(n)<n if we refer to off-line machines.  

3. Tape Reduction 

It is well known that  determinist ic  as well as nondeterminis t ic  1-tape Tur ing 
machines  cannot  test quickly the equali ty of  strings which are posi t ioned 
somewha t  apar t  on the tape [8]. This difficulty can be overcome by al ternat ing 
machines.  

L e m m a  1. Let A be a finite alphabet and ~ q~ A a marker. 
Let 

L1 = {x # y#z [x , y ,  z eA* ,x=z} .  

7hen 

L1 cA TIME l (n). 

Proof We describe an a lgor i thm for an al ternat ing 1-tape TM.  
Given  input w with [wl = n  (Iw[ denotes  the length of w) accept if (3.1) to (3.3) 

hold. 

(3.1) w has the format  x # y # z ,  x,y, z6A* 

(3.2) x is a prefix of  z 

(3.3) z is a prefix of  x 

(3.1) can be tested determinist ical ly in t ime O(n). We say how to test (3.2); (3.3) is 
tested in a similar way. 

Use 4 tracks, copy the input  on t rack  1. 
Universally (i.e. in universal  states) choose a tape square under  x and print  a 

ma rke r  b on t rack  2. 
Then choose existentially (i.e. in existential states) a tape square under  z and 

print  a ma rke r  c on t rack  2. Accept  iff (3.4) and (3.5) hold. 

(3.4) The  symbol  above  b equals the symbol  above  c. 

(3.5) The  distance d b f rom the left end of x to b equals the distance d c f rom the 
left end of z to c. 

Clearly x is a prefix of  z iff for all choices of  the posit ion for b there is a choice 
for the posi t ion of c such that  (3.4) and (3.5) hold. (3.4) can be tested de- 
terministically in t ime O(n). It remains  to show how to test (3.5). 

Existentially guess on t rack 3 nonover lapp ing  binary  representat ions  m 1, 
m 2 . . . . .  m t of  na tura l  numbers  where t < n is arbi t rary,  such that  m I = 1, ml stands 
under  the first symbol  of  x and the first symbol  of  mt stands under  the last 
symbol  of z. Similarly guess existentially on t rack 4 nonover lapp ing  binary  
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Fig. 1 

representations n 1 . . . . .  n t of numbers such that for all i the first symbol of n i 
stands under the first symbol of ml (see Fig. 1). 

There will be subtrees of the computation tree, where the m i and n~ have all 
length O(log n) and where the m~ are guessed at distance O(n/log n) from each 
other. Call such subtrees good. 

Let [mg] denote the number represented by ml. Choose universally 
ie{2 .. . .  , t}. Test deterministically if [ m J -  [m~_ 1] equals the distance between 
the left ends of m~ and m~ 1 (this can be done by moving a counter over the 
distance [ m i ] -  [m i_ 1]; in good subtrees the counter has length O(log n) and is 
moved over a distance O(n/logn)), if not reject. Otherwise each mi begins on cell 
[mi] of the tape inscription, thus the ml may be used then as "milestones" to test 
(3.5): 

Compute deterministically with the help of the milestones the binary repre- 
sentations of d b and d c. Compare each of these with some n~ nearby; if any of 
them differs from the n~ nearby reject. Otherwise choose universally ie{2 .. . .  ,t}, 
test deterministically ni=n~ 1, accept iff n~=n~ 1. Clearly the part of the 
algorithm described last accepts iff (3.5) holds. Moreover if some input of length 
n is accepted, then any good accepting subtree of the computation tree has 
depth O(n). [] 

Alternating 1-tape TM's can also quickly convert the binary representation 
of a number into its unary representation or vice versa. As the machines can 
guess the new representation and then verify the guess it suffices essentially to 
show 

Lemma 2. Let # CA be a marker and 

L2 = {x # y[x, yeA*, y is the binary representation of Ix i}. 

7hen L2eATIMEI(n ). 

The proof is implicit in the last part of the proof of L e m m a l :  guess the 
milestones below x, verify their correctness, compare the last one with y. 

We remark that Lemma 1 gives us a fast way of copying a string (guess the copy 
and try to verify the correctness using Lemma 1) and Lemma 2 gives by the same 
method a fast way to determine the binary representation of the length of a string. 

Theorem 1. ATIME(t(n))= ATIMEI(t(n)) for all t(n). 

Proof Let M be an alternating k-tape Turing machine with alphabet A and set 
of states Z. We describe an 1-tape Turing machine Q, which simulates M. A 



On Alternation 247 

path of length t in a computat ion tree of M defines in an obvious way a 
sequence of configurations C = C~ . . . . .  C t of M (this sequence looks like a 
computat ion of a conventional Turing machine). A pro toco l  of this sequence of t 
en t r ies  e i ~ Z  • A k • Z • A k • { f ,  r, 0} k where 

e i = (z (i), a 1 (i) . . . . .  a k (i), z'(i), b 1 (i) . . . . .  b k (i), s i (i) . . . . .  s k (i)) 

iff in configuration C i M  is in state z(i),  reads a~(i) . . . . .  ak(i  ), goes into state z'(i), 
prints b l(i ) . . . . .  bk(i ) and makes the headmovements specified by s l ( i  ) . . . .  ,Sk(i ), 
where ( = left, r = right, 0 = no movement  (1 < i < t). 

A sequence of entries ei is a protocol of some sequence of configurations in 
the computat ion tree of M, iff (3.6) and (3.7) hold. 

(3.6) the ez are consistent with the transition relation of M. 

(3.7) Let p ( i , v ) = [ { u [ s ~ ( u ) = r ,  u < i } [ - [ { u [ s ~ ( u ) = E ,  u<i}[=headpos i t ion  on tape 
v before step i. 

For  all i~{1 . . . . .  t} and all vs{1 . . . . .  k} holds: 
a) if i' is the largest number < i  such that p ( i , v ) = p ( i ' , v ) ,  then a , ( i )=b~( i ' ) .  
b) if no such i' exists then 

,., ( the  p(i,  v)th symbol of the input if v = 1 and 1 <=p(i, v) <= [input[ 

a A t ) = ]  B otherwise 

In order to simulate M, Q first ignores the input and guesses successively a 
sequence of entries ez with z ( i ) = z ' ( i - 1 )  for all i. For  each i a~(i) . . . . .  ak(i  ) are 
guessed existentially. If z(i)  is an existential state, then M guesses the rest of e i 
consistent with the transition relation of M existentially, otherwise M guesses 
the rest of e i consistent with the transition relation of M universally. 

Every time Q has guessed an entry el, it checks if z'(i) is a final state. If  z'(i) is 
not a final state, Q generates one more entry. If z'(i)  is rejecting, Q rejects. If  z'(i)  
is accepting Q tries to verify (3.7) for the generated sequence of entries. If  it fails 
it rejects, if it succeeds it accepts. 

Assuming the test for (3.7) is correct and fast we show the correctness and 
derive the time bound for this part  of the simulation. For an input w let T be the 
computat ion tree of Q. 

Let T 1 be the part of T which consists of all paths from the root of T to 
nodes, where Q has just guessed an entry ei such that z'(i) is a final state and (3.7) 
holds for the generated sequence of entries. 

The paths from the root of T to the leaves • of T~ correspond in a natural 
way to the finite paths from the root to leaves in the computat ion tree of M. Let 
T z be the subgraph of T consisting of T 1 and the (finite) subtrees of T whose 
roots are leaves of T1. If T would be equal to T z then Q would accept the input 
iff M accepts the input. But all paths in T which do not belong to T 2 meet T 2 in 
existential nodes. Moreover  all these paths are infinite or lead to rejecting leaves 
of T. Thus the paths in T outside T 2 have no influence on whether Q accepts the 
input or not. 

If  the input has length n and the input is accepted, then the computat ion tree 



248 w.J. Paul et al. 

of M cut at depth t(n) and evaluated by rule (2.2) is accepting. The protocols for 
this part of the computation tree of M have length O(t(n)) and are generated in 
O(t(n)) steps. The time bound follows if we show how to test (3.7) for a sequence 
of entries of length O(t) in time O(t). 

This is done in the following way: 

(3.8) On an extra track Q chooses existentially some entries ei~, .... eis and 
marks them. Q also marks e~o=e 1. 

(3.9) For each marked entry %Q guesses existentially the binary represen- 
tation of numbers q(ij, 1) . . . . .  q(ij, k) and writes these down on k further extra 
tracks, beginning at %. These are candidates for head positions. 

We say a subtree of the computation tree of Q is good if the marked entries % 
are at a distance of at most O(t/logt) and the numbers q(ij, v) have length 
O(log t). In good subtrees (3.9)contributes depth O(t). In the sequel our estimates 
for the runtime Q will only hold for parts of the computation belonging to good 
subtrees, but the construction will be such that if Q accepts input w, then there is 
a good accepting subtree. 

Next Q chooses universally one of the marked entries % as well as a number 
v~{1 . . . . .  k} and tests 

(3.10) q(io,v)=O if j = 0  

q(ij, v)=q(ij 1,v) 

+l{ulsv(u)=r, ij l <u<ij} 

-I{ul sv(u)= A ij_ ~ <__u<i~}. 

This is done deterministically. In order to test (3.10) it is only necessary to move 
a counter of length O(log t) over a distance of length O(t/log t). If (3.10) does not 
hold, Q rejects. Thus in accepting subtrees (3.10) must hold for all j and v, i.e. the 
numbers q(ij, v) are the headpositions p(ij, v) as defined in (3.7). 

Q chooses universally an entry e~ (1 <i<t)  as well as a number re{1 . . . . .  k}. 
Then Q chooses existentially an entry e c with i '<  i or a fictitious entry %. In the 
first case Q tests (3.7a), in the second (3.7b) and rejects if the outcome of the test 
is negative. 

Obviously a~(i)=b~(i') from (3.7a) can be tested in O(t) steps. The correctness 
of (3.7b) is tested in the following way: by moving a counter Q determines p(i, v) 
from a q(ij, v) nearby. As indicated in the remark after Lemma 2 Q determines 
the representation of the length n of the input and copies it on an extra track 
below the representation of p(i, v). If n<p(i, v) only a~(i)=B has to be checked. 
Otherwise Q chooses existentially a position ( of the input and erases symbols E 
+ 1 . . . . .  n of the input. The binary representation of E ( = length of the rest of the 
input) is determined and copied below the representation of p(i, v). If ~+p(i, v)Q 
rejects, otherwise Q checks if a~(i) equals the last symbol of the rest of the input. 
It remains to show, how to verify, that i' is the largest number < i  such that 
p(i', v)=p(i, v) or (in the second case) that no such number exists. 

Q chooses universally an entry ec,,i' <i" <i (i"<i in the second case), 
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computes p(i',v), p( i" ,v)and p( i ,v ) - these  can easily be computed from the 
numbers q(ij, v) - and tests p(i ' ,v)=p(i ,v)#p(i",v)  using Lemmal .  If the out- 
come of this test is negative, Q rejects, otherwise (3.7) holds. []  

We remark that with the same techniques a proof in [12] can be adapted to 
show, that every alternating t(n)-time bounded random access machine with 
logarithmic cost measure can be simulated by an alternating t(n)-time bounded 
TM. 

4. Simulation of 1-Tape Machines 

Let M be a nondeterministic 1-tape Turing machine with set of states Z, 
alphabet _Y', starting state qo, accepting state ql and rejecting state q2 (if there is 
one). B denotes the blank symbol. Let w be an input and [w[ =n. 
w.l.o.g, we may assume 

(4.1) w stands originally on the tape squares 1 . . . . .  n, the head of M stands 
originally on square 0. M starts by going in state q0 to square 1 and visits square 
0 again only if it is in a final state and after erasing the inscription of the tape. 

For a computation of M with input w the (oriented) crossing sequence (CS) 
between tape square i and i+1  is the string c 1 . . . . .  c r over {S,S[S~Z} where c~ 
= S(S) if the f t h  crossing between the tape cells is from left to right (right to left) 
and immediately after the crossing the machine is in state S. As the first crossing 
is always from left to right, the second from right to left and so on, orienting a 
crossing sequence is unnecessary if only entire sequences are considered, but 
later we will chop up the sequences. 

Lemma 3. I f  M started with input w accepts w, but the computation produces two 
identical crossing sequences on tape squares to the right of the input, then there is 
an accepting computation of M started with input w, which uses less time and 
space. 

The proof is almost immediate from Fig. 2. 
If the crossing sequences C and D are identical, then the computation which 

is obtained by deleting A' and pasting the remaining parts of the computation 
together at the common crossing sequence gives the desired computation. 

Lemma 4. For t(n) > n log n every nondeterministic t(n)-time bounded 1-tape Turing 
machine M is O(t(n)/log t(n)) tape bounded; moreover the time- and space-bounds 
are achieved on the same computations. 

Proof. Similar to [-6], where this result is proven for deterministic machines: 
Consider any minimum space accepting computation of a t(n)-time bounded 

1-tape machine M started with some input w of length n. Let s be the space used by 
the computation, let z equal the number of states of M and for each i let a i be 
the number of crossing sequences of length i generated on the originally blank 
part of the tape. Then Ziai<=t(n), s - n = ~ a ~  and for each iai<=z i by Lemma3. 
Hence 

t(n)/(s - n) > (• i ai/Z ai). 
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I w 1 o ....... B I 
tape originally 

C D 

Fig .  2 

The right hand side is minimal if there are as many short crossing sequences as 
possible. In this case it can be estimated from below by f2(log t(n)) by an easy 
calculation. [] 

A CS-stenogram of a computation of M started with w is a string of the form 
(bin r t, Ct . . . . .  bin rp, Cp) 1, where for 1 < i < p  C i is the crossing sequence between 
the rith and the (ri+ 1)th tape cell and q <= . . .  ~ r p .  

Lemma 5. Let t(n)> n log n, [wl = n and M accept w. 7hen there is a CS-stenogram 
of length O(ta/2(n)) of an accepting computation of M started with input w, such 
that Cp=A=the  empty word (i.e. M never visits the tape square rp+ l )  and 
r i - ~ _  1 <=2tl/2(n) for 1 <=i<__p (take ro=0  ). 

Proof By Lemma 4 for input w there is an accepting computation of M of length 
O(t(n)) which uses only O(t(n)/log t(n)) tape squares. Partition the tape squares 
used into p=O(t~/2(n)/logt(n)) blocks B~ each of length tl/2(n) and choose in 
each block B~ C~ as the shortest crossing sequence in this block. Then 

Also 

P P 

i =  1 S i s a C S  i =  1 
inBi 

P p 

Ibin ri[ < ~ (log t(n) + 1)= O(tl/Z(n)). 
i = 1  i = l  

[] 

Theorem 2. 

N TIME ~ (t (n)) ~_ A TIME(n + t 1/2 (n)) 

for all t(n). 

The proof is - except for the obvious modifications and some simplifications 
by Lemma5 - almost copied from 1-133. Let M be a nondeterministic 1-tape 
machine as described above. 

A finite computation of M started with input w can be described as a matrix 
A with entries ~ Z ~ ( Z x S , ) .  Here au=b means: before the i'th step of the 
computation square j of the tape contains symbol b. 

bin r deno te s  the  b i n a r y  r e p r e s e n t a t i o n  o f  r 
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aij = (z, b) means: before the i'th step of the computation M is in state z, the 
head visits square j and reads b. Consecutive rows correspond to subsequent 
ID's of M. Time and tape complexity correspond to the number of rows and 
columns of A. If A is a t •  - computation matrix and O < t ~ < t E < t ,  
0 ~ $ 1 ~ $ 2 ~ S  , then the ( t E - - t l )  X(SE- -S1)  - matrix A' with a'ij=at,+i,s,+ j de- 
scribes what happens in the computation from step t~ to step t 2 between the slth 
and SEth tape square. A' is called a submatrix. The perimeter of A' is the tupel 
(R1,RE,S1,S2) ,  where R 1 and R E are the first and last rows of A' and $1($2) is 
the part of the crossing sequence between cell s l -  1 and s 1 (s E and s 2 + 1) which 
corresponds to crossings between step t~ and step t 2. We say, that the predicate 
comp(R1 ,RE ,S1 ,SE)  holds, iff (R1,R2,SI,SE) is the perimeter of any submatrix 
of any computation matrix of M. 

Proposition 6 (formula C in [11]). 
comp(R1 ,RE ,S1 ,SE)  iff (4.2) or (4.3) hold: 

(4.2) 3(R,S'I,S';,S'2,S'~) s.t. (4.2a) to (4.2d) hold. 

(4.2 a) S'1 S'; = S, 

(4.2b) S E S E = S  2 

(4.2 c) comp (R 1, R, S't, SE) 

(4.2 d) comp(R, R E, S'~, $2) 

(4.3) 3(S ,R ' I ,R~ ,Rz ,R~)  s.t. (4.3a) to (4.3d) hold. 

(4.3 a) R'1R'; = R  1 

(4.3 b) g E R 2 = R E 

(4.3 c) comp (R' 1 , R E, S~, S) 

(4.3 d) comp (R';, R~, S, $2). 

Figure 3 illustrates this proposition. Clearly there are in general many possibil- 
ities for cutting a matrix. 

If M is t(n)-time bounded, Iwl=n and (4.1) holds then M accepts w iff 
comp(R 1, RE, $1, SE) holds for 

R 1 = w B c" t(n)/logt(n) - -  n 

R2 = Bc't(n)/l~ 

S~ =0oql 
S 2 = A  

where the constant c is chosen according to Lemma4. 

Now in order to prove Theorem2 we may assume w.l.o.g, t(n)>=n 2, for if 
Theorem 2 holds for such t(n), then it follows for all t(n) by 

N T I M E  ~ (t (n)) ~_ N T I M E  ~ (n 2 + t (n)) 

~_ A T I M E ( n  + (n 2 + t (n)) 1/2) ~ A T I M E ( n  + t 1/2 (H)). 
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Fig. 3 

We describe how an alternating machine AM simulates M such that AM is 
O(tl/2(n))-time bounded if M is t(n)-time bounded. Given input w AM works in 
the following way: 

(4.4) AM guesses existentially a CS-stenogram (bin r 1, C 1 . . . . .  bin r,, Cp) 

(4.5) AM chooses universally a number qe{1 . . . . .  p}. 

(4.6) Let r0=0, C0=00ql and # = w B  ct(n)/l~ n. 

AM tests 
c~ ,+1 ...#rq, Brq rq-l, Cq 1,Cq). 

If the outcome of the test is positive, AM accepts, otherwise AM rejects. Thus 
AM accepts w~=>there is a CS-steonogram such that comp (...) holds for all q 
r accepts w. 

If M accepts w, then there is a CS-stenogram of length O(tl/2(n)) of an 
accepting computation for w as in Lemma 5. AM can guess this CS-stenogram 
in O(tl/2(n)) steps. Also observe that for this CS-stenogram the length of each 
perimeter (R1 ,R2 ,S1 ,S2)  of the comp-clauses tested in (4.6) is bounded by 
O(tX/Z(n)). 

Let T(r, s, t) be the time in which AM can verify 

c o m p ( R 1 , R 2 , S 1 , S z )  for IR l l= lRz l=r ,  IS]§ 

where (R1,R2,S1,S2) is the perimeter of a submatrix of at most t rows (i.e. at 
most t computation steps of M are performed "inside" the perimeter). In order 
to prove Theorem 2 it now suffices to prove 

Lemma 7. There is a constant k I such that for all r, s and t 

T(r, s, t) <=kl (r + s + ta/2). 

Proof. In order to test comp(R 1,R 2, $1, $2) AM works recursively. AM decides 
existentially to perform an R-cut or an S-cut or to verify by direct simulation of 
M. 

R-cut. AM guesses existentially R,S'I ,S '; ,S2,S~ and verifies IRI=IRll, (4.2a) and 
(4.2b). This can be done in k2(r+s) steps. AM then chooses universally to test 
(4.2c) or (4.2d) 

S-cut. AM guesses existentially S, R' 1 , R'l', R~, R 2 and verifies (4.3 a) and (4.3 b). 
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This can be done in k2(r+s+lS[ ) steps. AM then chooses universally to test 
(4.3c) or (4.3d). In any accepting computation tree of M there will be an 
accepting subtree, where AM works in the following way. 

(4.7) For small t AM verifies directly. 

(4.8) If r <s  AM makes an R-cut such that s is halved. 

(4.9) If r>s  and r + s < T t  1/2 AM makes an R-cut such that t is halved (ifs or t 
are odd they can only be approximately halved; the resulting modifications in 
the analysis which follows are routine). 

(4.10) Otherwise AM guesses in the middle third of R 1 a crossing sequence 
S(S-cut) such that ISI _-< 3 t/r (such a crossing sequence exists, otherwise more than 
t computation steps belong to the perimeter (R1, R z, $1, $2) ). 

Now Lemma7 is proven by induction: by choosing k 1 large enough it is made 
true for t small. Now we get 

for (4.8)" 

for (4.9): 

for (4.10): 

T(r, s, t) = k2(r + s) + T(r, s/2, t) 

=k2(r + s)+ kl(r + s/2 + t 1/2) 

< 2 k 2 s - k l  S/2 +k l ( r  + s +t  1/2) 

< k l ( r + s + t  1/2) for k l > 4 k  2. 

T(r, s, t) = k 2 (r + s) + T(r, s, (t/2) 1/2) 

<=k2(r + s) + kl(r + s + tX/e/2 Uz) 

< 7 k 2 t 1 /2 -k  I t1/2(1-(1/2)l/2) + k1(r + s + t 1/2) 

<=kl(r+s+t 1/2) for k l>7k2/ (1- (1 /2)1 /z ) .  

T(r, s, t) = k 2 (r + s + 3 t/r) + T(2 r/3, s + 3 t/r, t) 

< k2(2r + 3t/r) + ka (2r/3 + s + 3t/r + tl/2). 

Now s < r  and 7tl/2 < r + s  implies 49 t / r<4r .  
Thus 

T(r, s, t) < k 2 (2 r + 12 r/49) + k i 12 r/49 + k 1(2 r/3 + s + t 1/2) 

< r(110 k2/49 + 12 k 1/49) + k1(2 r/3 + s + t 1/2) 

< k l r / 3 + k l ( 2 r / 3 + s + t  1/2) for k1=>125k 2 

=kl ( r+s+t l /2 ) .  [] 

Call t(n) well behaved if the binary representation of t(n) can be computed from 
the unary representation of n by a deterministic off-line TM using tl/2(n) tape 
cells 
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Theorem3. I f  t(n) is well behaved, then 

NTIMEI(t(n)) ~_ DTAPE((n log n) w2 + tl/Z(n)) 

for all well behaved t(n). 

Proof For t(n)>n 2 this follows of course from Theorem2 and Theorem3.1 in 
[3]. W.l.o.g. assume t (n)>nlogn and let M be a t(n)-time bounded nonde- 
terministic 1-tape Turing machine as above. We describe a tl/Z(n)-tape bounded 
off-line Turing machine OM which simulates M. 

Given an input w of length n OM first computes the binary representation of 
t(n) and from this the binary representation of tl/2(n), OM lays off c. tl/2(n) tape 
squares, where c is chosen such that for every accepting computat ion of M 
which has t(n) steps there is a CS-protocol of length c. tx/Z(n) with the properties 
stated in Lemma 5. OM enumerates in lexicographical order all CS-protocols of 
this length. For every CS-protocol OM tests all the comp-clauses (4.6). OM is 
O(tt/Z(n))-tape bounded, if every comp-clause can be verified on O(tW2(n)) tape 
squares. 

OM verifies comp(R1, R2, St,  $2) by systematically enumerating R-cuts or S- 
cuts which are consistent with the rules (4.7) to (4.10). For each enumerated cut, 
the subproblems (4.2c), (4.2d) or (4.3c), (4.3d) are recursively treated one after 
another on the same portion of the tape. The recurrence equations for the tape 
used in this simulation are the same as the equations for the time used in the 
proof  of Theorem2.  [] 

The above proof  is of course nothing but the original proof  from [13] 
simplified and extended to t(n)< n 2 by Lemma 5. 

Corollary 1. Every deterministic t(n)-time bounded 1-tape Turing machine M can 
be simulated by a deterministic O((n log n)t/2 + tl/Z(n))-tape bounded off-line Turing 
machine M'. 

Proof Let q2 be the rejecting state of M. M accepts or rejects w after t steps iff 
for i = 1  or i = 2  (4.11) holds 

(4.11) comp(w B' ", B', qo qi, A). 

There is not by hypothesis given an easy way to compute t(n) given n. Thus M'  
tries succesively for t = I wl, I wl + 1 .. . .  to verify (4.11) for i=  1 or i =  2. This is done 
using the method described above. As M is t(n)-time bounded, the simulation 
succeeds for inputs of length n for t = O(n + t(n)/log t(n)) or earlier. []  

References 

1. Bermann L (1977) Precise bound for Presburger arithmetic and the reals with addition. 18th 
IEEE-FOCS, 95-99 

2. Book RV, Greibach SA, Wegbreit B (1970) Time and tape bounded Turing acceptors and AFL's. 
J Comput System Sci 4:606-621 

3. Chandra A, Stockmeyer L (1976) Alternation, 17th IEEE-FOCS, 98-108 



On Alternation 255 

4. Erdfs P, Graham R, Szemeredi E (1975) Sparse graphs with dense long paths. STAN-CS-75-504, 
Computer Science Dept, Stanford MA 

5. Fischer M J, Ladner RE (1977) Propositional modal logic of programs. 9th ACM-STOC, 286- 
294 

6. Hartmanis J (1965) Size arguments in the study of computation speeds. Symp on Computers and 
Automata, Polytechnic Inst of Brooklyn, 1-18 

7. Hartmanis J, Lewis PM, Stearns RE (1965) Hierarchies of memory limited computations. 6th 
IEEE Symposium on Switching Circuit Theory and Logical Design, 179-190 

8. Hennie FC (1965) One-tape off-line Turing machine computations. Information and Control 
8:553-578 

9. Hopcroft JE, Paul WJ, Vailant LG (1977) On time versus space. J ACM 24:332-337 
10. Kozen D (1976) On parallelism in Turing machines. 17th IEEE-FOCS, 89-97 
11. Lipton R, Tarjan R (1977) Applications of a planar separator theorem. 18th IEEE-FOCS, 162- 

170 
12. Monien B (1977) About the derivation languages of grammars and machines. Proc. 3rd ICALP, 

Lecture notes in Computer Science 
13. Paterson M (1972) Tape bounds for time-bounded Turing machines. J Comput System Sci 

6:116-124 
14. Pippenger N, Fischer M (1979) Relations among complexity measures, J. ACM 26:361-381 

Received February 14, 1979;RevisedMarch 18, 1980 


