
Acta Informatica 21,251-269 (1984)

mrmlim
�9 Springer-Verlag 1984

A Logic Covering Undefinedness in Program Proofs

H. Barringer, J.H. Cheng, and C.B. Jones

Department of Computer Science, University of Manchester, Manchester M13 9PL, GB

Summary. Recursive definition often results in partial functions; iteration
gives rise to programs which may fail to terminate for some imputs. Proofs
about such functions or programs should be conducted in logical systems
which reflect the possibility of "undefined values". This paper provides an
axiomatization of such a logic together with examples of its use.

1. Background

Many approaches have been developed to proving programs correct - most
can also be applied to developing programs so that they are correct. Prop-
ositional and predicate calculus are used in nearly all such methods. The
standard texts on mathematical logic (e.g. [21]) assume that formulae denote
one of two truth values (true, false). The approach considered here is to accept
that certain formulae do not have such a denotation. A term such as factorial
of - 1 can be thought of as not denoting an integer; a formula, which contains
such a term, as not denoting a truth value. The logic which is presented below
copes with such situations.

This section contains some introductory examples of the problems caused
by partial functions. Section 2 contains a description of a model theory for a
logic of partial functions; the corresponding proof theory is discussed in Sect. 3.
The full axiomatization is given in the appendices. Example proofs comprise
the fourth section of this paper; these are followed by a final section which
reviews alternative approaches and draws some conclusions.

Partial functions occur commonly in computing, both in actual programs (or
parts thereof) and in functions used to reason about the effect of programs.
Partial functions arise quite naturally with recursive definitions. There are, of
course, classes of recursive functions which are constructed in such a way that
it is obvious that they are defined over their stated domain. In other cases, the
set of values for which a function is defined is not obvious. For example, a
subtraction function over the natural numbers might be written:

subp(i,j) ~-if i=j then 0 else subp(i + 1,j)+ 1

252 H. Barringer et al.

Thinking operationally, it might be said that the result of an application of
subp, where the value of i is greater than that for j, is undefined - the function
recurses infinitely. Although this example is small, it is indicative of the way in
which recursion can give rise to partial functions. The example is also simple
enough to show a formal p r o o f - cf. Sect.4. Formalising the above statement,
it is claimed that, assuming that i and j are natural numbers:

providing:
subp(i,j) = j - i

i<=j.

The problem of undefined terms arises, however, if this is written as:

Vi,j . i<_<j ~ s u b p (i , j) = j - i .

When the antecedent of the implication is false, the term subp(i,j) is undefined.
Consider, as another example of a partial function, the following definition

of 'maxs ' a function which yields the maximum of a set of integers. Given a
function ' m a x ' whose result is the larger of its two integer arguments:

maxs(s) ~ le t e~s in
i f c a r d s = 1 t h e n e

e l s e max(e, maxs(s-{e})) .

The choice of an element e in set s can only be made if s is not empty. The
fact that maxs is partial gives rise to formulae like:

Vs.s4={ } ~ maxs(s)6s.

Here again, the consequent contains a term which is not defined if the ante-
cedent is false. In the context of specification languages (e.g. VDM [-4]), partial
functions arise for data types such as mappings and lists. The basic list

operators for head h(~_), tail (tl) and indexing are partial in an obvious way.
Thus the problem with "undefined values" recurs with:

t = () v t = append(hd t, tl t).

A similar problem is seen with application of mappings; [4] uses expressions
like:

id~domp A p(id)c Proctype.

If id is not in the domain of the mapping p, then p(id) is undefined.
Predicates themselves can be defined recursively and this introduces new

problems. Consider a mapping:

M = X ~ X
m

with a function:

path: X x M--*X-set

path(x, m)

{x} w(if xCdomm t h e n { } else path(m(x),m)).

A Logic Covering Undefinedness in Program Proofs 253

This is partial in that it will " loop" if the mapping does not represent a well-
founded relation. One way of writing the well-founded predicate is:

is-wf: M--* Bool

is-wf(m) ~ Vx. noloop(x, m)

noloop: X x M ~ B o o l

noloop(x, m)

xCdomm v noloop(m(x), m).

The difficulty with such a definition is that it fails to denote a truth value for
reflexive mappings. Thus:

is-wf(m) ~ Vx. x~path(x, m)

does not hold for reflexive mappings. However, by writing:

is-wf(m) ~ Vx. xspath(x, m)

it is possible to express the required idea. The model theoretic interpretation of
such a statement is that in those "worlds" where every assumption clause is
(both defined and) true, the conclusion is (defined and) true; if any clause in
the list of assumptions is either undefined or false, the statement vacuously
holds. Koletsos - in [22] - gives this as his "weak" interpretation; a "strong"
form, in which some assumption must be false if the conclusion is false, is also
given. The "strong" form can be inverted in an obvious way and is used in [5].

Computer scientists have adopted various measures to cope with the prob-
lem of proofs about partial functions. Leaving aside those who simply ignore
the problem, the most popular approach appears to be to introduce special
propositional operators. Thus, [17] uses the conventional two-valued "and"
operator (A) as well as using conditional expressions to define:

p & q ~ if p then q else false

Dijkstra [11] uses cand in the same way. The use of the two operators is
mildly inconvenient (what, for example, are the distributive rules?) and rarely
supported by a proof theory; the fact that the sequential "& " operator is, in
general, non-commutative brings an unfortunate computational consideration
into the logic. The operational semantics work called " V D L " (see [23]) defined
all logical operators via conditional expressions. This has the disadvantage that
it is not then clear when operands can be commuted.

In [18] an attempt was made to cope with "undefined values" without
special propositional operators. To a large extent, bounded quantifiers con-
strained function arguments; where this was insufficient, conditional ex-
pressions were written. Some of the expressions which resulted were clumsy.

Other approaches are reviewed in Sect. 5.

2. Model Theory

The basic problem under consideration is undefined values which arise from
recursive functions. Following the work on denotational semantics, such "val-

254 H. Barringer et al.

ues" are considered to be ' bo t t om " (• elements. The application of any
"strict" predicate (including weak equality) to bot tom will not yield a truth
value. Blarney [5] views this as a "gap" in the truth values. If this "gap" is
written as a bo t tom element, truth tables - with values abbreviated as "t", " f " ,
" 1 " - can be drawn which provide a model theory for the propositional
calculus. These truth tables are presented to convey an intuitive idea of the
logic which is defined in Sect. 3 by a proof theory. In that theory, "_L" is
viewed as a "gap" and is never written. The obvious way to make the
operators as "generous" as possible is to extend the standard two-valued truth
tables by giving a result whenever enough information is available. This gives
rise to the table (as in [20]) for "or" :

V

t

f
•

t f •

t t

t f
t •

As observed by McCarthy [24], this result
operator by conditional expressions: the
always be evaluated; undefinedness of the
in an undefined value for the conditional
appears to require some form of parallel
" and" is:

A t f

t t f

f f f
• _1_ f

t
•

•

cannot be achieved by defining the
variable in the conditional must

"inevitable" variable always results
expression. The symmetrical table
elaboration. The related table for

•

.l_

f
•

McCarthy also makes the interesting observation that the employment of the
axiom:

(i f p then a e l s e a) = a

where p can be undefined, gives rise to a system in which the conditional
expression definition given above for " & " yields this symmetrical truth table.

These truth tables are symmetric and thus the operators defined are com-
mutative. For "not" , the table is:

t f

f t
l •

Notice that the law of the "excluded middle":

is not a tautology.

p v ~ p

A Logic Covering Undefinedness in Program Proofs 255

The table chosen for implication is that derived from defining:

as:
p ~ q

thus:
~ p v q

= t f

t t f

f t t

• t A_

•

•

r

1

There is some controversy about this decision (see [32]). It might be argued
that:

p ~ p

should be a tautology. However, the given table treats:

mod(5, 0) = mod(5, 0) ~ mod(5, 0) = mod(5, 0)

as undefined. The reduction of the implication to the law of the "excluded
middle" is an argument against the proposed tautology.

More importantly, the truth-tables given above are monotonic in the fol-
lowing ordering on truth values:

t f
\ /

•

It can be shown that the operators ,-~ and v , with the constants t and • are
expressively complete for monotone truth-tables. Notice some constants are
needed since they can not otherwise be formed by formulae.

The quantifiers of predicate calculus are V and 3. As in 2-valued logic, V
can be treated as a generalised conjunction and ~ as generalised disjunction.
All of the conventions such as definitions of bound and free variables still
apply. However, as the domains have been augmented with an improper
element, it is stipulated that the quantifiers range only over the proper ele-
ments. This is a crucial difference from LCF (cf. discussion in Sect. 5) where the
propagat ion of undefined elements can be inconvenient.

The discussion above relates to the monotone part of the logic. The proof
system given here can normally be used to prove functions correct without
discussing "undefined values". However, where it is necessary to distinguish
the defined truth values (t and f) and the undefined one (_1_), an operator A
[16, 33] has been introduced. Its truth table is:

E

t

f
•

AE

t

t

f

256 H. Barringer et al.

Note that A is not monotone. Thus the connectives of the propositional
calculus (in descending order of precedence) are A, ~ , A and v . It can be
proved that, with the addition of A, any operator can be defined.

The system used here has two equality predicates: ' = ' is "weak equality"
[25]; it is strict and will give • as a value for s l = s 2 if either (or both) of s l
and s2 are the improper element; for s l and s2 both proper, s l = s 2 gives t if
they denote the same (proper) element, and f otherwise. The "strong equality"
predicate ' = = ' is two-valued and gives t if both s l and s2 denote the same
element (proper or improper) and f otherwise. Thus, for a simple flat domain
with elements 0, 1, 2, A_,:

= 0

0 t

1 f

2 f
A_, •

1 2 •

f f •
t f •

f t •
• • •

0

1

2 f
• f

Notice that "weak" equality is (strict
not monotonic.

0 1 2 I ,

t f f f
f t f f

f t f
f f t

and) monotone while "s t rong" equality is

3. Proof Theory

In order to give formal proofs, axioms and inference rules must be given. The
axiomatization chosen for the logic used in this paper is given in full in the
appendices. Appendix I contains the monotone system expressed in terms of
basic operators, definitions of other operators and derived rules; Appendix II
characterizes the non-monotone connectives.

The proof style known as "natural deduction" can be used to provide
proofs which are easy to view from a general overview down to the particular
details. The proof system given here adopts a natural deduction style - certain
important modifications to the standard form (cf. [13]) of such proofs are
discussed below.

In order to be useful, a proof theory must be consistent and, if possible,
complete. The given axiomatization is both consistent and complete with
respect to the truth-table model of the preceding section. The proof theory
given here is a natural decuction system originating from two sequent calculi
by Koletsos [22] and by Hoogewijs [16]. Guidelines for the transformation
from the sequent calculi to natural deduction can be found in Prawitz [28].

A Logic Covering Undefinedness in Program Proofs 257

Many formulae which are tautologies in two-valued logic are not tautol-
ogies in the system presented here because of the need for definedness; under
the assumption of definedness (6) the system here becomes the same as con-
ventional predicate calculus. The "axiomat izat ion" here consists almost en-
tirely of deduction rules. Examples of deduction rules (with assumptions -
separated by commas - above the line, and conclusions below) are those which
permit the introduction and elimination of propositional operators:

Ei
v -I (1 < i < 2)

E l v E 2

v - E
E l v E2, E I I - E , E 2 ~ E

E

E l , E 2
A-I

E 1 A E 2

E 1 A E 2
A-E

Ei
(1 < i < 2) .

The v - E rule is "indirect" because not everything above the line is a formula.
EI~-E2 represents a deduction with E1 as its assumption and E2 as con-
clusion. This is the same as the model theoretic notion (~) thus when E1 is
true, E2 is also true; when E1 is false or undefined, E2 can have any value.

Similarly, deduction rules for the quantifiers can be given (see Appendix I
for notation used in substitution):

p(x)
g-I (x is arbitrary)

Vx.p(x)

V x . p (x) , s = s
V-E

p(s/x)

These rules are, in fact, the only ones used in the examples of proofs given
below.

These deduction rules are all valid in a two-valued logic. The crucial
differences are in the omissions. In the logic given here, there are no rules
which permit proof by contradiction - or, equivalently, the law of the "ex-
cluded middle" does not hold. As a consequence, special rules are required
which permit the introduction and elimination of negations of terms.

~E1 , ~ E 2
v - I

~(E1 r E 2)

~(E1 r E 2)
v - E

~ E i
(1 < i<2) .

The key difference between the natural deduction scheme used here and the
conventional (2-valued) system can now be seen to result from the fact that the
"deduction theorem" does not hold in the logic presented here. Although

258 H. Barringer et al.

(El ~ E2) is defined as (~ E 1 rE2) , a different rule for " ~ - I " is needed. The
reason is that it is trivially true that:

E

E

but one cannot conclude E ~ E as this is equivlent to HE r E , which holds
only when E is defined. A formula E is defined if:

E v H E

is true. The abbreviation 6E is introduced for this formula. Notice that, unlike
AE, 6E is monotone, Thus the relevant rule for introducing implication is:

EI~-E2,c3E1
:=>-I

E1 ~ E2

Substitution is an important step in proofs. (The syntactic expression p[s2/s l]
represents the expression p with s2 replacing some occurrence of s l - see
Appendix I.) The following rule holds:

s l = s 2 , p
= -subs

p[s2/s l] "

With the given basic rules, it is possible to derive rules which facilitate proofs.
An example of a proof of one of the distributive laws is:

(El v E2)/x (El v E3) t -E1 v E2/x E3

1. E l v E 2 A-E, prO

2. E1 r E 3 A-E, prO

3. E I ~ E l v E 2 A E 3
3.1 E l v E 2 / x E 3 v - I , pr3

4. E 2 t - E I v E 2 / x E 3

4.1 E2 pr4

4.2 E 3 ~ - E l v E 2 A E 3
4.2.1 E 2 / x E 3 A-I,4.1,pr4.2
4.2.2 E I v E 2 A E 3 v-I,4.2.1

4.3 E1 v E 2 A E 3 v-E , 2,3,4.2

5. E I v E 2 A E 3 v-E, 1, 3,4

A common proof of this law in two-valued natural deduction uses the law of
the "excluded middle" (see [13] for example). The proof as presented here is, of
course, quite acceptable in two-valued systems. As might be expected, this
proof was harder to obtain.

A Logic Covering Undefinedness in Program Proofs 259

4. Example Proofs

In order to present proofs about programs, results must be used about the
problem domains (e.g. natural numbers, trees). Here, such results are brought
in by axioms whose justification is not the purpose of this paper. It is also
necessary to develop a "style" of using the proof system which minimizes the
use of arguments about undefined; several observations are made below in this
connection.

The first example shows how a simple property of real numbers can be
deduced in spite of the fact that one of the terms might be undefined.

~ - V x . x = O v x / x = l

1. ~ x = O v x / x = l

1.1 x = 0 vx:t=0

1.2 x = O ~ x = O v x / x = l

1.3 x + O F - x = O v x / x = l
1.3.1 x/x = 1
1.3.2 x = O v x / x = l

1.4 x = O v x / x = l

2. V x . x = O v x / x = l

pr 1, numbers

v -I, pr 1.2

pr 1.3, numbers
v -I, 1.3.1

v -E, 1.1, 1.2, 1.3

V-l, 1

Notice, however, that it would not be possible to prove that:

x/O= 1 v ~(x/O= 1).

For the next example, a proof is given of the "obvious" property about the
partial function subp mentioned in Sect. 1. Given:

subp(i,j) ~ i f i=j then 0 else subp(i + 1,j)+ 1.

The desired property can be stated as:

Vi,j.j--i>=O ~ subp(i , j)= j - i .

This property is proved by induction. The basic facts about natural numbers
are introduced by an induction schema:

~- w(O/k)

k < O, w(k) ~ w(k + 1/k)
Vk . k>O ~ w(k)

This form of the rule hides both "=~-I" and a "V-I"; the reason for using the
turnstile in the inductive step is discussed in Sect. 5.

In order to reason about subp in the following proof, the following axiom
and inference rule are used:

dl
subp(n, n) = 0

nl 4=n2, subp(nl + 1, n2) = n3
d2

subp(nl, n2) = n 3 + 1

260 H. Barringer et al.

Informally, these are properties which follow from the definition. These rules
could be read more directly from other ways of presenting recursive de-
finitions. Notice that the problem of the recursion not yielding a result is
covered by the hypothesis of d2. The use of these rules will establish that the
result of subp is defined. There is clearly a need to establish that such
"reformulations" are consistent with some semantics for recursive functions
and this is addressed after the main proof.

The following is the proof of the required property by natural deduction:

k-Vi,j.j-i>=O ~ subp(i , j)=j-i

1. ~-Vk.k>=O ~ subpO'-k,j)=k
1.1 subp(j -0 , j) =0 dl

1.2 k__>0, s u b p (j - k , j) = k t - s u b p (j - (k + 1) , j)=k+ 1
1.2.l k=>0 pr 1.2
1.2.2 k + 1 > 0 integers
1.2.3 j - (k + 1) @j integers
1.2.4 subp(l'-k,j)=k pr 1.2
1.2.5 j - k = j - (k + 1)+ 1 integers
1.2.6 subp (j - (k+ l)+ l , j)=k =-subs., - 1 , - 2
1.2.7 subp(j - (k+l) , j)=k+l d 2 , - 1 , - 4

1.3 Vk.k>O ~ subp(j-k , j)=k indn, l . l , l .2

2. j-i>=O ~ s u b p (j - (j - i) , j) = j - i V-E, 1

3. j-i>=O ~ subp(i , j)=j- i 2, integers

4. V i , j . j - i>O ~ subp(i , j)=j-i V-I twice, 3

The proof rules used about subp (dl and d2) serve to insulate the logical
system given here from the extra-logical facts about the functions. It is, how-
ever, possible to show how such rules are justified. There are two ways of
giving a semantics to recurslve functions: denotational and operational.

A function like subp can be taken to denote the least fixed point (cf. [25])
of:

subp =/~F

F=2f. 2i,j. i f i=j then 0 e lse f (i+ 1,j)+ 1.

If subp is read as an operational description of how to compute a result, it is
possible to justify rules d l and d2 by natural deduction. The operational
interpretation results in reading the definition symbol (~-) as strong equality
(==) . The proof also relies upon the following elimination rules for conditional
expressions:

i f - then-E

i f -e l se -E

E,(if E then s l e lse s2)==s

s l = = s

~ E, (if E then s 1 e l se s 2) = = s

s 2 = = s

A Logic Covering Undefinedness in Program Proofs 261

The proofs follow. (Notice that these proofs involve the - n o n - m o n o t o n e -
" s t rong" equality.):

b- subp (n, n) = 0

1. subp(n, n) = = if n = n then 0 else subp(n + 1, n) + 1
2. r /=g/

3. subp(n, n) = = 0
4 . 0 = 0
5. subp(n,n)=O

nl + n 2 , subp(n l + 1,n2)=n3~-subp(nl, n2)=n3+ 1

definition of subp
integers
i~then-E, 1,2
= -cons
= = - - * = , 3 , 4

1. subp(nl , n 2) - -
if n l = n 2 then 0 else subp(nl + 1, n 2) + 1 definition of subp

2. nl::t=n2 pr
3. ~ (n 1 = n 2) integers
4. subp(n 1, n 2) = = subp(n 1 + 1, n 2) + 1 if-else-E, 1, 3
5. subp(n l + 1, n2) = n3 pr
6. subp(nl , n2) = = n3 + 1 =-subs , 4, 5
7. n 3 = n 3 = -var
8. 1 = 1 = - c o n s
9. (n 3 + 1) = (n 3 + 1) integers, 7, 8

10. subp(nl , n2) = n3 + 1 - - to = , 6, 9

In [19], proofs are given about algori thms which use binary trees to represent
mappings from Keys to Data. The interesting feature of those proofs is the use
of structural induction. Here, a much simplified problem is used only to
illustrate such induct ion over tree-like objects.

Suppose:
Tree = Node w Data

N o d e = {ink - Node(l, r)ll r~Tree}

and selector functions are available such that :

L: N o d e ~ Tree

R: Node ~ Tree

L(mk - N o d e (l , r))= !

R(mk - Node(l, r)) = r.

The relevant induct ion axiom is:

t eDa ta~ - p(t)

t e Node, p(L(t)), p(R(t)) ~ p(t)

t eTree ~- p(t)
The function:

collect(t) ~ if te Da ta then {t}

else collect(L(t)) w collect(R(t))

262 H. Barringer el al.

is only defined over Trees. Here again the knowledge abou t the function can
be isolated in two rules:

d4

t ~ Data
d3

collect(t) = {t}

t e Node, collect(L(t)) = s 1, collect(R(t)) = s 2

collect (t) = s 1 w s 2

It might be necessary to show:

t eT ree ~ collect (t) + { }.

Such a p roof is quite s t ra ightforward:

tEYree~-collect(t)~: { }

1. t s Da ta t- collect (t) # { }
1.1 col lect (t)= {t}
1.2 col lect (t)+ { }

2. t e N o d e , col lect (L(t))# { }, col lec t (R(t))# { } k-
2.1 collect(t) = collect(L(t)) w collect(R(t))
2.2 co l lec t (t)#{ }

3. co l lec t (t)# { }

p r l , d 3
- 1 , p r l

co l lec t (t)# { }
p r 2 , d 4
- 1, pr2, set

indn, pr, 1, 2

5 . D i s c u s s i o n

This section begins with a review of other relevant work. J e a n - R a y m o n d
Abrial (see [1,2]) uses a logic in which the law of the "excluded middle"
holds; his t r ea tment of functions, however, avoids the p rob lem of "undef ined"
values. This is achieved by viewing the results of all functions as sets and
ar ranging that appl ica t ion outside what might be thought of as the actual
domain yields an arb i t ra ry set value - any predicate is either true or false but
it is not possible to show which.

An elegant and theoretically sound app roach has come from the work on
denota t iona l semantics (see references in [25]). Extensions are made to the
domains of part ial functions so that an undefined appl icat ion of a partial
function will result in the imprope r e lement (bottom). Thus, for partial pre-
dicates, the natural ly extended co-domain is exactly three-valued - true, false
and b o t t o m [3]. Unfor tunate ly , no p roof theory is given f rom this approach.

L C F [12] handles undefinedness explicitly. However , its underlying logic is
still two-valued. In effect, two levels of truth values are used. The " te rms" ,
which represent values computed , can be undefined - thus there are three
values for the Boolean type - TT, FF, UU. " F o r m s " , which are assert ions
abou t values (terms), are two-valued (T R U T H and FALSITY) . The bridge
between these two levels is through a s t rong equality (= =) which is not
monotone . The decision to make the quantifiers range over undefined as well

A Logic Covering Undefinedness in Program Proofs 263

as "proper" elements complicates proofs by requiring that extra cases be
considered.

In PL/CV2, two other solutions can be adopted and neither changes the
underlying 2-valued logic. As mentioned in both [8] and [9], one solution
introduces some anomaly as both mod(5,0)=mod(5,0) and rood(5,0)~mod(5,0)
can be false, whereas ~(mod(5,0) = mod(5,0)) and ~ (rood(5,0) :~ mod(5,0)) are
both true. The other solution allows mod(5,0)=mod(5,0) to be true. This
decision, to bend the logic to suit such trivial cases, while its usefulness is in
doubt, may result in some risks; in practice, it is more likely the case that a
programmer has written such a term by mistake.

Another possible approach, similar to those in PL/CV2, is to force partial
predicates into total ones by not extending the target domain, e.g. using strong
equality [25] [3]. The annoying aspect is that it will destroy the monotonici-
ty, which is a pre-requisite for application of the fixed point theorem, and
hence may render some difficulties when reasoning about partial function using
the "forced total predicates".

Owe's P-logic is designed specifically to deal with partial functions [26].
For every formulae e, "e" denotes its well-definedness; "e" is total in Owe's
formalization. This "well-definedness" predicate is not dissimilar to A as used
in the logic presented in this paper. The key difference is the separation in
Owe's logic of truth and definedness. Two proofs are needed: one for e the
other for "e". This is the result of the concept of "partial implementation" in
which a mathematically true formula may become undefined in an implemen-
tation.

Logicians (philosophers and mathematicians) have studied the problem of
what truth value should be given to a sentence containing a term "which has
no denotation"? An example given by Russell is the sentence:

"The present King of France is bald".

Logicians have proposed various solutions to this problem. Many of these
solutions give rise to non-classical logics (see [14, 15] for an account of many
of the documented approaches). Non-classical logics dealing with three values
date from the 1920's. The differences among three-valued logics depend on the
interpretation of the third truth value (see [29]). In Kleene's system, the third
value is to model the undecidable predicates ([20], cf. [15]). Based on Kleene's
system, variations can still be found. These can be classified as monotone
logics ([22, 30, 5, 6]) and non-monotone logics ([33, 16]). These logics have
influenced the work presented here but the most direct source is [22].

Turning now to comments on the logic presented here. The natural de-
duction style of proof appears to result in proofs which are easy to follow at
different levels of detail. Thus, it is possible to both read and sketch proofs
without going to a level where each step is reduced to the use of a single proof
rule. Because the law of the "excluded middle" does not hold in this three-
valued logic, some care is necessary in providing a natural deduction proof
style. It is possible to sketch proofs by making deductions which are known to
be valid in the model theory (derived rules can, if necessary, be proved later).

264 H. Barringer et al.

Even given the basic set of axioms, it was not immediately apparent how to
avoid clouding proofs with case distinctions concerning undefined. Key steps
towards this goal include the chosen style of the induction axiom (as opposed
to one using implication in the inductive step) and the rules (d 1 and d2) for the
recursive function subp.

The example in which the predicates can be undefined (path, i s - w f) has
not been taken further in this paper. It does look as though it could result in
the use of more general bounded quantifiers of the form:

V x s t p(x) . q(x).

Such a theory would not be difficult to formalize in the style adopted in this
paper.

An objection which could be raised against the use, in specifications, of the
(non-strict) logical connectives is that they are not realizable in programming
languages. This problem occurs with any non-strict operators: the conditional
logical operators with their sequential interpretations are not always available
either. In fact, many programming languages are defined so that the question
of whether a compiler evaluates the second operand of a conjunct with a first
operand which evaluates to false is left open. There is then a problem of
implementing programs developed using the logic presented here. There is a
similar situation which is already well-known: the (unbounded) arithmetic
operators are also not available in any programming language. In fact, the
situations are similar. In both cases it is necessary to undertake a last step of
development in which the "ideal" operators are mapped onto those of the
programming language. Clearly, it will normally be necessary to use con-
ditional expressions to realize the non-strict propositional connectives.

Work on algebraic presentations of data types also has to be concerned
with questions of weak and strong equality - see, for example, [7]. Other
important treatments are based on intuitionism [10, 27, 31].

It is believed that the logic presented here will make it easier to present
proofs of programs. For brevity, this paper has been confined to recursive
functions. Rules for program proofs and their integration with this logic are
presented in [19].

Acknowledgements. HB and CBJ are grateful to the SERC for support via research grants and JHC
wishes to express his thanks to the Croucher Foundation of Hong Kong for a scholarship
supporting his post-graduate studies. Mrs Julie Hibbs typed and patiently revised this text on
Vuwriter. Valuable comments were received from the referees, Peter Aczel, Stephan Blamey, Ole-
Johan Daht, Edsger W. Dijkstra, Ian Hayes, A. Hoogewijs, Berndt Krieg-Bruckner, Carroll
Morgan, Olaf Owe, Gordon Plotkin, Dana Scott, Stephan Sokolowski and Michael Spivey.

Appendix I. Monotone Operators

Convent ions

(1) E, E1 denote logical expressions
(2) x, y,... denote variables over proper elements in a universe

A Logic Covering Undefinedness in Program Proofs 265

(3) c, c l denote constants over proper elements in a universe
(4) s, s 1 denote terms which m a y contain partial functions
(5) p(x) denotes a formula in which x occurs free
(6) p(s/x) denotes a formula obtained by substituting all occurrences of x

by s in p. If a clash between free and b o u n d variables would occur, suitable
renaming is performed before the substitution.

(7) p[s2/sl] denotes a formula obtained by substituting some occurrence of
s l by s2. If a clash between free and b o u n d variables would occur, then
suitable renaming is performed before the substitution.

Basic Operators

Name

v - I

v - E

~ v - I

~ v - -E

contr.

3 - 1

3 - E

~ 3 - I

~ 3 - E

= -subs .

= -contr.

---cons.

Rule

Ei
(1__<i__<2)

E l v E 2

E1 r E 2 , EI~-E, E2~-E

E

~ E 1 , ~ E 2

,-,(El v E2)

,-~ (El v E2)
~Ei (1 < i < 2)

E

~ E

~ E

E

E l , ~ E 1

E2

p (s / x) , s = s

3x.p(x)

~x.p(x), p(y/x) ~- E

E

~ p (x)
(x is arbitrary)

~ 3 x . p (x)

~3x.p(x), s=s
~p(s/x)

sl = s 2 , p

p[s2/sl]

~(s=s)
E

(y is arbi t rary and not free in E)

C ~ C

266

= -var.

consts.

X = X

~ t U ~ U

E t E E

sl =s2
=-reflx. (1 =<i=<2)

si=si

(sl = s2)
=-reflx. (1 <i=<2)

s i=s i

= -2-val.
sl =sl , s2=s2

s l = s 2 v ~(s l =s2)

H. Barringer et al.

Definitions of Other Connectives

~ t
f-defn.

f
~ (~ E l v ~ E 2)

A -defn.
E 1 A E 2

~ E l v E 2
-defn.

E l s E 2

E I ~ E 2 A E 2 ~ E 1
r162

EI<=>E2
3x. ~ p(x)

V-defn.
Vx. p(x)

E v HE
6-defn.

6E

Derived Rules

A - -]

A - - E

H A - - I

~ A - - E

c o m m .

ass.

El , E2

E 1 A E 2

E 1 A E 2
(1 < i < 2)

Ei

~ E i
(1 < i < 2)

~(E1 A E2)

~(E1 AE2), ~E1} -E , ~ E 2 t - E

E

E1 r E 2 E 1 A E 2

E 2 v E 1 E 2 A E 1

(E l v E 2) v E 3 (E lAE2) AE3

E1 v(E2 r E 3) E1 A(E2 AE3)

A Logic Covering Undefinedness in Program Proofs 267

It is now legitimate to use n-fold versions of v - I / E , etc. For example:

El , E2 En
A - - I

E 1 A E 2 A . . . A E n

El v (E 2 A E3)
v A-dist.

(El v E 2) A(E1 r E 3)

E1 A(E2 V E3)
A V-dist.

(El A E2) v(E1 AE2)

deM. ~ (E I AE2) ~(E1 r E 2)
~ E l v ~ E 2 ~ E 1 A ~ E 2

E 1 } - E 2 , 6E1 El}--E2, 6E1
- I or

~ E 1 r E 2 E l s E 2

""El r E 2 , E1 E l s E 2 , E1
~ - E or

E2 E2

E2 ~ E 1
=~-vac.

E l s E 2 E l s E 2

E l s E 2
=~-contrp. ~ E 2 ~ E1

(El ~*-E 2).*~E 3
<:~-ass.

E I "**" (E 2 "*~ E 3)

v - I p(x) (x is arbitrary)
vX.p(x)
Vx . p(x), s = s

V - E
p(s/x)

V - I ~p(s/x) , s = s

~ Vx . p(x)

,.~ Vx . p(x), ,~ p(y/x) ~ E
~ V - E

E

Vx .p (x) ~ 3 x . p (x)

p(y/x) ~p (y / x)

sl = s 2
-- -comm.

s 2 = s l

s l ---s2, s 2 = s 3
= -trans.

s l - -s3

(y is arbitrary and bound in E)

Appendix II. Non-Monotone Operators

Name Rule

E ~ E
A - I

AE AE

268 H. Barringer et al.

A - E

~ A - I

~A - E

Definition of - -

- - -defn.

Derived Rule

- - t o = - -

AE, E~-EI, ~ E t - E 1

E1

AE~-E1, AEt-- ~E1

~ A E

~ A E t - E 1 , ~dEt-- ~E1

dE

s l = = s 2

(s 1 = s2/x A (s 1 = s 1/x s2 = s2)) v ~ (A (s 1 = s 1) v A (s2 = s2))

s l = = s 2 , s i=si
s l = s 2 (1-_<i=<2)

References

1. Abrial, J.R.: Formal Programming. Privately circulated, March 1982
2. Abrial, J.R.: A Theoretical Foundation to Formal Programming. Privately circulated, May

1982
3. Bird, R.: Programs and Machines. New York: John Wiley, 1976
4. Bjorner, D., Jones, C.B.: Formal Specification and Software Development. New York: Pren-

tice-Hall, 1982
5. Blarney, S.R.: Partial-Valued Logic. Ph.D. Thesis, Oxford University, 1980
6. Blarney, S.R.: Partial Logic. In: Handbook of Philosophical Logic. (To appear)
7. Broy, M., Wirsing, M.: Partial Abstract Types. Acta Informat. 18, 47-64 (1982)

8. Constable, R.L., O'Donnell, M.J.: A Programming Logic. Cambridge, MA: Winthrop Pub-
lishers, 1978

9. Constable, R.L., Johnson, S.D., Eichenlaub, C.D.: An Introduction to the PL/CV2 Pro-
gramming Logic. Berlin, Heidelberg, New York: Springer 1982

10. Constable, R.L.: Partial functions in Constructive Formal Theories. Lecture Notes in Com-
puter Science, Vol. 145. Berlin, Heidelberg, New York: Springer, 1983

11. Dijkstra, E.W.: A Discipline of Programming. New York: Prentice-Hall, 1976
12. Gordon, M.J., Milner, R., Wadsworth, C.P.: Edinburgh LCF. Lecture Notes in Computer

Science, Vol. 78. Berlin, Heidelberg, New York: Springer, 1979
13. Gries, D.: Science of Programming. Berlin, Heidelberg, New York: Springer, 1981
14. Haack, S.: Deviant Logic. Cambridge: Cambridge University Press, 1974
15. Haack, S.: Philosophy of Logics. Cambridge: Cambridge University Press, I978
16. Hoogewijs, A.: On a Formalization of the Non-definedness Notion. Z. Math. Logik 25, 213-

221 (1979)
17. Jones, C.B.: Formal Development of Correct Algorithms: An Example Based on Earley's

Recognizer. SIGPLAN 7, (1972)
18. Jones, C.B.: Software Development: A Rigorous Approach. London: Prentice-Hall, 1980
19. Jones, C.B.: Systematic Program Development. Talk given at CWI Amsterdam December

1983. (In press)
20. Kleene, S.C.: Introduction to Metamathematics. Princeton: Van Nostrand, 1952
21. Kleene, S.C.: Mathematical Logic. New York: John Wiley, 1967
22. Koletsos, G.: Sequent Calculus and Partial Logic. M.Sc. Thesis, Manchester University, 1976
23. Lucas, P., Walk, K.: On the Formal Description of PI/1. Ann. Rev. Automatic Progr. 6, 105

182 (1969)

A Logic Covering Undefinedness in Program Proofs 269

24. McCarthy, J.: A Basis for a Mathematical Theory of Computation, In: Computer Pro-
gramming and Formal Systems. P. Braffort, D. Hirschberg (eds.). Amsterdam: North-Holland,
1967

25. Manna, Z.: Mathematical Theory of computation. New York: McGraw Hill, 1974
26. Owe, O.: Program Reasoning Based on a Logic for Partial Functions. Privately circulated,

1982
27. Plotkin, G.D.: Types and Partial Functions. Seminar, University of Manchester, 1984
28. Prawitz, D.: Natural Deduction. Stockholm: Almgrist and Wiksell, 1965
29. Rescher, N.: Many-valued Logic. New York: McGraw Hill, 1969
30. Scott, D.S.: Combinators and Classes. In: Lecture Notes in Computer Science, Vol. 37. B6hm,

C. (ed.). Berlin, Heidelberg, New York: Springer, 1975
31. Scott, D.S.: Identity and Existence in Intuitionistic Logic. In: Lecture Notes in Mathematics,

Vol. 735. Berlin, Heidelberg, New York: Springer, 1979
32. Wang, H.: The Calculus of Partial Predicates and Its Extension to Set Theory I. Math. Logik

7, 283-288 (1961)
33. Woodruff, P.: Logic and Truth-Value Gaps in Philosophical Problems in Logic. Lambert, K.

(ed.). Reidel, 1970

Received September 27, 1983 / June 18, 1984

