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Summary.  Recursive definition often results in partial functions; iteration 
gives rise to programs which may fail to terminate for some imputs. Proofs 
about  such functions or programs should be conducted in logical systems 
which reflect the possibility of "undefined values". This paper provides an 
axiomatization of such a logic together with examples of its use. 

1. Background 

Many approaches have been developed to proving programs correct - most  
can also be applied to developing programs so that they are correct. Prop- 
ositional and predicate calculus are used in nearly all such methods. The 
standard texts on mathematical  logic (e.g. [21]) assume that formulae denote 
one of two truth values (true, false). The approach considered here is to accept 
that certain formulae do not have such a denotation. A term such as factorial 
of - 1  can be thought of as not denoting an integer; a formula, which contains 
such a term, as not denoting a truth value. The logic which is presented below 
copes with such situations. 

This section contains some introductory examples of the problems caused 
by partial functions. Section 2 contains a description of a model theory for a 
logic of partial functions; the corresponding proof  theory is discussed in Sect. 3. 
The full axiomatization is given in the appendices. Example proofs comprise 
the fourth section of this paper; these are followed by a final section which 
reviews alternative approaches and draws some conclusions. 

Partial functions occur commonly in computing, both in actual programs (or 
parts thereof) and in functions used to reason about  the effect of programs. 
Partial functions arise quite naturally with recursive definitions. There are, of 
course, classes of recursive functions which are constructed in such a way that 
it is obvious that they are defined over their stated domain. In other cases, the 
set of values for which a function is defined is not obvious. For  example, a 
subtraction function over the natural numbers might be written: 

subp(i,j) ~-if i=j  then 0 else subp(i + 1,j)+ 1 
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Thinking operationally, it might be said that the result of an application of 
subp, where the value of i is greater than that for j, is undefined - the function 
recurses infinitely. Although this example is small, it is indicative of the way in 
which recursion can give rise to partial functions. The example is also simple 
enough to show a formal p r o o f -  cf. Sect.4. Formalising the above statement, 
it is claimed that, assuming that i and j are natural numbers: 

providing: 
subp(i,j) = j  - i  

i<=j. 

The problem of undefined terms arises, however, if this is written as: 

Vi,j .  i<_<j ~ s u b p ( i , j ) = j - i .  

When the antecedent of the implication is false, the term subp(i,j) is undefined. 
Consider, as another example of a partial function, the following definition 

of 'maxs '  a function which yields the maximum of a set of integers. Given a 
function ' m a x '  whose result is the larger of its two integer arguments: 

maxs(s) ~ le t  e~s in 
i f  c a r d  s = 1 t h e n  e 

e l s e  max(e, maxs(s-{e})) .  

The choice of an element e in set s can only be made if s is not empty. The 
fact that maxs is partial gives rise to formulae like: 

Vs.s4={ } ~ maxs(s)6s. 

Here again, the consequent contains a term which is not defined if the ante- 
cedent is false. In the context of specification languages (e.g. VDM [-4]), partial 
functions arise for data types such as mappings and lists. The basic list 

operators for head h(~_), tail (tl) and indexing are partial in an obvious way. 
Thus the problem with "undefined values" recurs with: 

t = ( ) v t = append(hd t, tl t). 

A similar problem is seen with application of mappings; [4] uses expressions 
like: 

id~domp A p(id)c Proctype. 

If id is not in the domain of the mapping p, then p(id) is undefined. 
Predicates themselves can be defined recursively and this introduces new 

problems. Consider a mapping:  

M = X ~ X  
m 

with a function: 

path: X x M--*X-set 

path(x, m) 

{x} w(if xCdomm t h e n  { } else path(m(x),m)). 
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This is partial in that it will " loop"  if the mapping does not represent a well- 
founded relation. One way of writing the well-founded predicate is: 

is-wf: M--* Bool 

is-wf(m) ~ Vx. noloop(x, m) 

noloop: X x M ~ B o o l  

noloop(x, m) 

xCdomm v noloop(m(x), m). 

The difficulty with such a definition is that it fails to denote a truth value for 
reflexive mappings. Thus: 

is-wf(m) ~ Vx. x~path(x, m) 

does not hold for reflexive mappings. However, by writing: 

is-wf(m) ~ Vx. xspath(x,  m) 

it is possible to express the required idea. The model theoretic interpretation of 
such a statement is that in those "worlds" where every assumption clause is 
(both defined and) true, the conclusion is (defined and) true; if any clause in 
the list of assumptions is either undefined or false, the statement vacuously 
holds. Koletsos - in [22] - gives this as his "weak" interpretation; a "strong" 
form, in which some assumption must be false if the conclusion is false, is also 
given. The "strong" form can be inverted in an obvious way and is used in [5]. 

Computer  scientists have adopted various measures to cope with the prob- 
lem of proofs about partial functions. Leaving aside those who simply ignore 
the problem, the most popular approach appears to be to introduce special 
propositional operators. Thus, [17] uses the conventional two-valued "and"  
operator (A) as well as using conditional expressions to define: 

p & q ~ if p then q else false 

Dijkstra [11] uses cand in the same way. The use of the two operators is 
mildly inconvenient (what, for example, are the distributive rules?) and rarely 
supported by a proof theory; the fact that the sequential "& "  operator is, in 
general, non-commutative brings an unfortunate computational consideration 
into the logic. The operational semantics work called " V D L "  (see [23]) defined 
all logical operators via conditional expressions. This has the disadvantage that 
it is not then clear when operands can be commuted. 

In [18] an attempt was made to cope with "undefined values" without 
special propositional operators. To a large extent, bounded quantifiers con- 
strained function arguments; where this was insufficient, conditional ex- 
pressions were written. Some of the expressions which resulted were clumsy. 

Other approaches are reviewed in Sect. 5. 

2. Model Theory 

The basic problem under consideration is undefined values which arise from 
recursive functions. Following the work on denotational semantics, such "val- 
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ues" are considered to be ' bo t t om "  (• elements. The application of any 
"strict" predicate (including weak equality) to bot tom will not yield a truth 
value. Blarney [5] views this as a "gap"  in the truth values. If this "gap"  is 
written as a bo t tom element, truth tables - with values abbreviated as "t", " f " ,  
" 1 "  - can be drawn which provide a model theory for the propositional 
calculus. These truth tables are presented to convey an intuitive idea of the 
logic which is defined in Sect. 3 by a proof  theory. In that theory, "_L" is 
viewed as a "gap"  and is never written. The obvious way to make the 
operators as "generous" as possible is to extend the standard two-valued truth 
tables by giving a result whenever enough information is available. This gives 
rise to the table (as in [20]) for "or" :  

V 

t 

f 
• 

t f •  

t t 

t f 
t • 

As observed by McCarthy [24], this result 
operator  by conditional expressions: the 
always be evaluated; undefinedness of the 
in an undefined value for the conditional 
appears to require some form of parallel 
" and"  is: 

A t f 

t t f 

f f f 
• _1_ f 

t 
• 

• 

cannot be achieved by defining the 
variable in the conditional must 

"inevitable" variable always results 
expression. The symmetrical table 
elaboration. The related table for 

• 

.l_ 

f 
• 

McCarthy also makes the interesting observation that the employment  of the 
axiom: 

( i f  p then a e l s e  a) = a 

where p can be undefined, gives rise to a system in which the conditional 
expression definition given above for " & "  yields this symmetrical truth table. 

These truth tables are symmetric and thus the operators defined are com- 
mutative. For  "not" ,  the table is: 

t f 

f t 
l • 

Notice that the law of the "excluded middle": 

is not a tautology. 

p v  ~ p  



A Logic Covering Undefinedness in Program Proofs 255 

The table chosen for implication is that derived from defining: 

as: 
p ~ q  

thus: 
~ p v q  

= t f 

t t f 

f t t 

• t A_ 

• 

• 

r 

_1_ 

There is some controversy about  this decision (see [32]). It might be argued 
that: 

p ~ p  

should be a tautology. However, the given table treats: 

mod(5, 0) = mod(5, 0) ~ mod(5, 0) = mod(5, 0) 

as undefined. The reduction of the implication to the law of the "excluded 
middle" is an argument against the proposed tautology. 

More importantly, the truth-tables given above are monotonic  in the fol- 
lowing ordering on truth values: 

t f 
\ /  

• 

It can be shown that the operators ,-~ and v ,  with the constants t and • are 
expressively complete for monotone  truth-tables. Notice some constants are 
needed since they can not otherwise be formed by formulae. 

The quantifiers of predicate calculus are V and 3. As in 2-valued logic, V 
can be treated as a generalised conjunction and ~ as generalised disjunction. 
All of the conventions such as definitions of bound and free variables still 
apply. However, as the domains have been augmented with an improper  
element, it is stipulated that the quantifiers range only over the proper ele- 
ments. This is a crucial difference from LCF (cf. discussion in Sect. 5) where the 
propagat ion of undefined elements can be inconvenient. 

The discussion above relates to the monotone  part  of the logic. The proof  
system given here can normally be used to prove functions correct without 
discussing "undefined values". However, where it is necessary to distinguish 
the defined truth values (t and f )  and the undefined one (_1_), an operator  A 
[16, 33] has been introduced. Its truth table is: 

E 

t 

f 
• 

AE 

t 

t 

f 
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Note that A is not monotone. Thus the connectives of the propositional 
calculus (in descending order of precedence) are A, ~ ,  A and v .  It can be 
proved that, with the addition of A, any operator can be defined. 

The system used here has two equality predicates: ' = '  is "weak equality" 
[25]; it is strict and will give • as a value for s l  = s 2  if either (or both) of s l  
and s2 are the improper  element; for s l  and s2 both proper, s l = s 2  gives t if 
they denote the same (proper) element, and f otherwise. The "strong equality" 
predicate ' = = '  is two-valued and gives t if both s l and s2 denote the same 
element (proper or improper) and f otherwise. Thus, for a simple flat domain 
with elements 0, 1, 2, A_,: 

= 0 

0 t 

1 f 

2 f 
A_, • 

1 2 •  

f f • 
t f • 

f t • 
• • • 

0 

1 

2 f 
• f 

Notice that "weak"  equality is (strict 
not monotonic. 

0 1 2 I ,  

t f f f  
f t f  f 

f t f 
f f t 

and) monotone while "s t rong" equality is 

3. Proof  Theory 

In order to give formal proofs, axioms and inference rules must be given. The 
axiomatization chosen for the logic used in this paper is given in full in the 
appendices. Appendix I contains the monotone system expressed in terms of 
basic operators, definitions of other operators and derived rules; Appendix II 
characterizes the non-monotone connectives. 

The proof  style known as "natural  deduction" can be used to provide 
proofs which are easy to view from a general overview down to the particular 
details. The proof  system given here adopts a natural deduction style - certain 
important  modifications to the standard form (cf. [13]) of such proofs are 
discussed below. 

In order to be useful, a proof  theory must be consistent and, if possible, 
complete. The given axiomatization is both consistent and complete with 
respect to the truth-table model of the preceding section. The proof theory 
given here is a natural decuction system originating from two sequent calculi 
by Koletsos [22] and by Hoogewijs [16]. Guidelines for the transformation 
from the sequent calculi to natural deduction can be found in Prawitz [28]. 
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Many formulae which are tautologies in two-valued logic are not tautol- 
ogies in the system presented here because of the need for definedness; under 
the assumption of definedness (6) the system here becomes the same as con- 
ventional predicate calculus. The "axiomat izat ion"  here consists almost  en- 
tirely of deduction rules. Examples of deduction rules (with assumptions - 
separated by commas - above the line, and conclusions below) are those which 
permit the introduction and elimination of propositional operators:  

Ei 
v -I  (1 < i < 2 )  

E l v E 2  

v - E  
E l  v E2, E I I - E ,  E 2 ~ E  

E 

E l , E 2  
A-I  

E 1 A E 2  

E 1 A E 2  
A-E 

Ei 
(1 < i < 2 ) .  

The v - E  rule is "indirect" because not everything above the line is a formula. 
EI~-E2  represents a deduction with E1 as its assumption and E2 as con- 
clusion. This is the same as the model theoretic notion ( ~ )  thus when E1 is 
true, E2  is also true; when E1 is false or undefined, E2 can have any value. 

Similarly, deduction rules for the quantifiers can be given (see Appendix I 
for notation used in substitution): 

p(x) 
g-I  (x is arbitrary) 

Vx.p(x)  

V x . p ( x ) , s = s  
V-E 

p(s/x) 

These rules are, in fact, the only ones used in the examples of proofs given 
below. 

These deduction rules are all valid in a two-valued logic. The crucial 
differences are in the omissions. In the logic given here, there are no rules 
which permit proof  by contradiction - or, equivalently, the law of the "ex- 
cluded middle" does not hold. As a consequence, special rules are required 
which permit the introduction and elimination of negations of terms. 

~E1 ,  ~ E 2  
v - I  

~(E1 r E 2 )  

~(E1 r E 2 )  
v - E  

~ E i  
(1 < i<2 ) .  

The key difference between the natural deduction scheme used here and the 
conventional (2-valued) system can now be seen to result from the fact that the 
"deduction theorem" does not hold in the logic presented here. Although 
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(El ~ E2) is defined as ( ~ E 1  rE2 ) ,  a different rule for " ~ - I "  is needed. The 
reason is that it is trivially true that: 

E 

E 

but one cannot conclude E ~ E as this is equivlent to HE r E ,  which holds 
only when E is defined. A formula E is defined if: 

E v  H E  

is true. The abbreviation 6E is introduced for this formula. Notice that, unlike 
AE, 6E is monotone, Thus the relevant rule for introducing implication is: 

EI~-E2,c3E1 
:=>-I 

E1 ~ E2 

Substitution is an important  step in proofs. (The syntactic expression p[s2/s l]  
represents the expression p with s2 replacing some occurrence of s l - see 
Appendix I.) The following rule holds: 

s l  = s 2 , p  
= -subs 

p[s2/s l]  " 

With the given basic rules, it is possible to derive rules which facilitate proofs. 
An example of a proof  of one of the distributive laws is: 

(El v E2)/x (El v E3) t -E1  v E2/x E3 

1. E l v E 2  A-E, prO 

2. E1 r E 3  A-E, prO 

3. E I ~ E l v E 2 A E 3  
3.1 E l  v E 2 / x E 3  v - I ,  pr3 

4. E 2 t - E I  v E 2 / x E 3  

4.1 E2 pr4 

4.2 E 3 ~ - E l v E 2 A E 3  
4.2.1 E 2 / x E 3  A-I,4.1,pr4.2 
4.2.2 E I v E 2 A E 3  v-I,4.2.1 

4.3 E1 v E 2 A E 3  v-E ,  2,3,4.2 

5. E I v E 2 A E 3  v-E,  1, 3,4 

A common proof of this law in two-valued natural deduction uses the law of 
the "excluded middle" (see [13] for example). The proof as presented here is, of 
course, quite acceptable in two-valued systems. As might be expected, this 
proof  was harder to obtain. 
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4. Example Proofs 

In order to present proofs about programs, results must be used about the 
problem domains (e.g. natural numbers, trees). Here, such results are brought 
in by axioms whose justification is not the purpose of this paper. It is also 
necessary to develop a "style" of using the proof system which minimizes the 
use of arguments about undefined; several observations are made below in this 
connection. 

The first example shows how a simple property of real numbers can be 
deduced in spite of the fact that one of the terms might be undefined. 

~ - V x . x = O v x / x = l  

1. ~ x = O v x / x = l  

1.1 x = 0  vx:t=0 

1.2 x = O ~ x = O v x / x = l  

1.3 x + O F - x = O v x / x = l  
1.3.1 x/x  = 1 
1.3.2 x = O v x / x = l  

1.4 x = O v x / x = l  

2. V x . x = O v x / x = l  

pr 1, numbers 

v -I, pr 1.2 

pr 1.3, numbers 
v -I, 1.3.1 

v -E, 1.1, 1.2, 1.3 

V-l, 1 

Notice, however, that it would not be possible to prove that: 

x/O= 1 v ~(x/O= 1). 

For  the next example, a proof is given of the "obvious" property about the 
partial function subp mentioned in Sect. 1. Given: 

subp(i,j) ~ i f  i=j  then 0 else subp(i + 1,j)+ 1. 

The desired property can be stated as: 

Vi,j.j--i>=O ~ subp( i , j )= j - i .  

This property is proved by induction. The basic facts about natural numbers 
are introduced by an induction schema: 

~- w(O/k) 

k < O, w(k) ~ w(k + 1/k) 
Vk . k>O ~ w(k) 

This form of the rule hides both "=~-I" and a "V-I"; the reason for using the 
turnstile in the inductive step is discussed in Sect. 5. 

In order to reason about subp in the following proof, the following axiom 
and inference rule are used: 

dl  
subp(n, n) = 0 

nl 4=n2, subp(nl + 1, n2) = n3 
d2 

subp(nl, n2) = n 3 + 1 
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Informally, these are properties which follow from the definition. These rules 
could be read more directly from other ways of presenting recursive de- 
finitions. Notice that the problem of the recursion not yielding a result is 
covered by the hypothesis of d2. The use of these rules will establish that the 
result of subp is defined. There is clearly a need to establish that such 
"reformulations" are consistent with some semantics for recursive functions 
and this is addressed after the main proof. 

The following is the proof of the required property by natural deduction: 

k-Vi,j.j-i>=O ~ subp(i , j )=j-i  

1. ~-Vk.k>=O ~ subpO'-k,j)=k 
1.1 subp( j -0 , j )  =0  dl  

1.2 k__>0, s u b p ( j - k , j ) = k t - s u b p ( j - ( k +  1) , j )=k+ 1 
1.2.l k=>0 pr 1.2 
1.2.2 k + 1 > 0 integers 
1.2.3 j - ( k  + 1) @j integers 
1.2.4 subp(l'-k,j)=k pr 1.2 
1.2.5 j - k = j  - ( k +  1)+ 1 integers 
1.2.6 subp ( j - ( k+ l )+ l , j )=k  =-subs., - 1 , - 2  
1.2.7 subp( j - ( k+l ) , j )=k+l  d 2 , - 1 , - 4  

1.3 Vk.k>O ~ subp(j-k , j )=k indn, l . l , l .2  

2. j-i>=O ~ s u b p ( j - ( j - i ) , j ) = j - i  V-E, 1 

3. j-i>=O ~ subp(i , j )=j- i  2, integers 

4. V i , j . j - i>O ~ subp(i , j )=j-i  V-I twice, 3 

The proof rules used about subp (dl and d2) serve to insulate the logical 
system given here from the extra-logical facts about the functions. It is, how- 
ever, possible to show how such rules are justified. There are two ways of 
giving a semantics to recurslve functions: denotational and operational. 

A function like subp can be taken to denote the least fixed point (cf. [25]) 
of: 

subp =/~F 

F=2f.  2i,j. i f  i=j then 0 e lse  f ( i+  1,j)+ 1. 

If subp is read as an operational description of how to compute a result, it is 
possible to justify rules d l and d2 by natural deduction. The operational 
interpretation results in reading the definition symbol (~-) as strong equality 
(==) .  The proof also relies upon the following elimination rules for conditional 
expressions: 

i f - then-E 

i f -e l se -E 

E,(if E then s l  e lse  s2)==s 

s l = = s  

~ E, ( if  E then s 1 e l se  s 2) = =  s 

s 2 = = s  
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The proofs follow. (Notice that  these proofs involve the - n o n - m o n o t o n e  - 
" s t rong"  equality.): 

b- subp (n, n) = 0 

1. subp(n, n) = =  if n = n then 0 else subp(n + 1, n) + 1 
2. r /=g/  

3. subp(n, n ) = =  0 
4 . 0 = 0  
5. subp(n,n)=O 

nl  + n 2 ,  subp(n l  + 1,n2)=n3~-subp(nl, n2)=n3+ 1 

definition of  subp 
integers 
i~then-E, 1,2 
= -cons 
= = - - * = , 3 , 4  

1. subp(nl ,  n 2 ) - -  
if n l  = n 2  then 0 else subp(nl  + 1, n 2 ) +  1 definition of  subp 

2. nl::t=n2 pr 
3. ~ (n 1 = n 2) integers 
4. subp(n 1, n 2) = =  subp(n 1 + 1, n 2) + 1 if-else-E, 1, 3 
5. subp(n l  + 1, n2) = n3 pr  
6. subp(nl ,  n2) = =  n3 + 1 =-subs ,  4, 5 
7. n 3 = n 3 = -var 
8. 1 = 1 = - c o n s  
9. (n 3 + 1) = (n 3 + 1) integers, 7, 8 

10. subp(nl ,  n2) = n3 + 1 - -  to = ,  6, 9 

In [19], proofs are given about  algori thms which use binary trees to represent 
mappings  from Keys to Data.  The  interesting feature of  those proofs is the use 
of  structural  induction. Here, a much  simplified problem is used only to 
illustrate such induct ion over tree-like objects. 

Suppose:  
Tree = Node  w Data  

N o d e  = {ink - Node(l,  r)ll r~Tree} 

and selector functions are available such that :  

L:  N o d e  ~ Tree 

R:  Node  ~ Tree 

L(mk - N o d e ( l ,  r ) )=  ! 

R(mk - Node(l,  r)) = r. 

The relevant induct ion axiom is: 

t eDa ta~ -  p(t) 

t e Node,  p(L(t)), p(R(t)) ~ p(t) 

t eTree  ~- p(t) 
The function:  

collect(t) ~ if  te Da ta  then {t} 

else collect(L(t)) w collect(R(t)) 
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is only defined over  Trees. Here  again the knowledge abou t  the function can 
be isolated in two rules: 

d4 

t ~ Data  
d3 

collect(t) = {t} 

t e Node,  collect(L(t)) = s 1, collect(R(t)) = s 2 

collect (t) = s 1 w s 2 

It  might  be necessary to show: 

t eT ree  ~ collect (t) + { }. 

Such a p roof  is quite s t ra ightforward:  

tEYree~-collect( t)~:  { } 

1. t s Da ta  t- collect (t) # { } 
1.1 col lect ( t )= {t} 
1.2 col lect ( t )+ { } 

2. t e N o d e ,  col lect (L( t ) )#  { }, col lec t (R( t ) )#  { } k- 
2.1 collect(t) = collect(L(t)) w collect(R(t)) 
2.2 co l lec t ( t )#{  } 

3. co l lec t ( t )#  { } 

p r l , d 3  
- 1 , p r l  

co l lec t ( t )#  { } 
p r 2 , d 4  
- 1, pr2, set 

indn, pr, 1, 2 

5 .  D i s c u s s i o n  

This section begins with a review of other  relevant  work. J e a n - R a y m o n d  
Abrial  (see [1,2])  uses a logic in which the law of  the "excluded middle"  
holds;  his t r ea tment  of  functions, however,  avoids the p rob lem of "undef ined"  
values. This is achieved by viewing the results of  all functions as sets and 
ar ranging  that  appl ica t ion outside what  might  be thought  of as the actual  
domain  yields an arb i t ra ry  set value - any predicate  is either true or  false but 
it is not  possible to show which. 

An elegant and  theoretically sound app roach  has come from the work on 
denota t iona l  semantics  (see references in [25]). Extensions are made  to the 
domains  of  part ial  functions so that  an undefined appl icat ion of a partial  
function will result in the imprope r  e lement  (bottom). Thus,  for partial  pre- 
dicates, the natural ly  extended co-domain  is exactly three-valued - true, false 
and b o t t o m  [3]. Unfor tunate ly ,  no p roof  theory is given f rom this approach.  

L C F  [12] handles undefinedness explicitly. However ,  its underlying logic is 
still two-valued.  In effect, two levels of  truth values are used. The  " te rms" ,  
which represent  values computed ,  can be undefined - thus there are three 
values for the Boolean type - TT, FF,  UU.  " F o r m s " ,  which are assert ions 
abou t  values (terms), are two-valued ( T R U T H  and FALSITY) .  The  bridge 
between these two levels is through a s t rong equality ( = = )  which is not 
monotone .  The  decision to make  the quantifiers range over  undefined as well 
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as "proper"  elements complicates proofs by requiring that extra cases be 
considered. 

In PL/CV2, two other solutions can be adopted and neither changes the 
underlying 2-valued logic. As mentioned in both [8] and [9], one solution 
introduces some anomaly as both mod(5,0)=mod(5,0) and rood(5,0)~mod(5,0) 
can be false, whereas ~(mod(5,0) = mod(5,0)) and ~ (rood(5,0) :~ mod(5,0)) are 
both true. The other solution allows mod(5,0)=mod(5,0) to be true. This 
decision, to bend the logic to suit such trivial cases, while its usefulness is in 
doubt, may result in some risks; in practice, it is more likely the case that a 
programmer has written such a term by mistake. 

Another possible approach, similar to those in PL/CV2, is to force partial 
predicates into total ones by not extending the target domain, e.g. using strong 
equality [25] [3]. The annoying aspect is that it will destroy the monotonici- 
ty, which is a pre-requisite for application of the fixed point theorem, and 
hence may render some difficulties when reasoning about partial function using 
the "forced total predicates". 

Owe's P-logic is designed specifically to deal with partial functions [26]. 
For every formulae e, "e"  denotes its well-definedness; "e"  is total in Owe's 
formalization. This "well-definedness" predicate is not dissimilar to A as used 
in the logic presented in this paper. The key difference is the separation in 
Owe's logic of truth and definedness. Two proofs are needed: one for e the 
other for "e". This is the result of the concept of "partial implementation" in 
which a mathematically true formula may become undefined in an implemen- 
tation. 

Logicians (philosophers and mathematicians) have studied the problem of 
what truth value should be given to a sentence containing a term "which has 
no denotation"? An example given by Russell is the sentence: 

"The present King of France is bald". 

Logicians have proposed various solutions to this problem. Many of these 
solutions give rise to non-classical logics (see [14, 15] for an account of many 
of the documented approaches). Non-classical logics dealing with three values 
date from the 1920's. The differences among three-valued logics depend on the 
interpretation of the third truth value (see [29]). In Kleene's system, the third 
value is to model the undecidable predicates ([20], cf. [15]). Based on Kleene's 
system, variations can still be found. These can be classified as monotone 
logics ([22, 30, 5, 6]) and non-monotone logics ([33, 16]). These logics have 
influenced the work presented here but the most direct source is [22]. 

Turning now to comments on the logic presented here. The natural de- 
duction style of proof appears to result in proofs which are easy to follow at 
different levels of detail. Thus, it is possible to both read and sketch proofs 
without going to a level where each step is reduced to the use of a single proof 
rule. Because the law of the "excluded middle" does not hold in this three- 
valued logic, some care is necessary in providing a natural deduction proof 
style. It is possible to sketch proofs by making deductions which are known to 
be valid in the model theory (derived rules can, if necessary, be proved later). 
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Even given the basic set of axioms, it was not immediately apparent how to 
avoid clouding proofs with case distinctions concerning undefined. Key steps 
towards this goal include the chosen style of the induction axiom (as opposed 
to one using implication in the inductive step) and the rules (d 1 and d2) for the 
recursive function subp. 

The example in which the predicates can be undefined (path, i s - w f )  has 
not been taken further in this paper. It does look as though it could result in 
the use of more general bounded quantifiers of the form: 

V x s t  p(x)  . q(x). 

Such a theory would not be difficult to formalize in the style adopted in this 
paper. 

An objection which could be raised against the use, in specifications, of the 
(non-strict) logical connectives is that they are not realizable in programming 
languages. This problem occurs with any non-strict operators: the conditional 
logical operators with their sequential interpretations are not always available 
either. In fact, many programming languages are defined so that the question 
of whether a compiler evaluates the second operand of a conjunct with a first 
operand which evaluates to false is left open. There is then a problem of 
implementing programs developed using the logic presented here. There is a 
similar situation which is already well-known: the (unbounded) arithmetic 
operators are also not available in any programming language. In fact, the 
situations are similar. In both cases it is necessary to undertake a last step of 
development in which the "ideal" operators are mapped onto those of the 
programming language. Clearly, it will normally be necessary to use con- 
ditional expressions to realize the non-strict propositional connectives. 

Work on algebraic presentations of data types also has to be concerned 
with questions of weak and strong equality - see, for example, [7]. Other 
important treatments are based on intuitionism [10, 27, 31]. 

It is believed that the logic presented here will make it easier to present 
proofs of programs. For brevity, this paper has been confined to recursive 
functions. Rules for program proofs and their integration with this logic are 
presented in [19]. 
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Appendix I. Monotone Operators 

Convent ions  

(1) E, E1 . . . .  denote logical expressions 
(2) x, y,... denote variables over proper elements in a universe 
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(3) c, c l  . . . .  denote constants  over proper  elements in a universe 
(4) s, s 1 . . . .  denote terms which m a y  contain partial functions 
(5) p(x) denotes a formula  in which x occurs free 
(6) p(s/x) denotes a formula obtained by substituting all occurrences of x 

by s in p. If  a clash between free and b o u n d  variables would occur,  suitable 
renaming is performed before the substitution. 

(7) p[s2/sl] denotes a formula  obtained by substituting some occurrence of 
s l  by s2. If  a clash between free and b o u n d  variables would  occur, then 
suitable renaming is performed before the substitution. 

Basic Operators 

Name 

v - I  

v - E  

~ v  - I  

~ v  - -E  

contr. 

3 - 1  

3 - E  

~ 3  - I  

~ 3  - E  

= -subs .  

= -contr. 

---cons.  

Rule 

Ei 
(1__<i__<2) 

E l v E 2  

E1 r E 2 ,  EI~-E, E2~-E 

E 

~ E 1 ,  ~ E 2  

,-,(El v E2) 

,-~ (El  v E2) 
~Ei  ( 1 < i < 2 )  

E 

~ E  

~ E  

E 

E l ,  ~ E 1  

E2  

p ( s / x ) ,  s = s 

3x.p(x) 

~x.p(x), p(y/x) ~- E 

E 

~ p ( x )  
(x is arbitrary) 

~ 3 x . p ( x )  

~3x.p(x), s=s 
~p(s/x) 

sl  = s 2 ,  p 

p[s2/sl] 

~(s=s) 
E 

(y is arbi t rary  and not  free in E) 

C ~ C  
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= -var. 

consts. 

X = X  

~ t  U ~ U  

E t E E 

sl =s2  
=-reflx. (1 =<i=<2) 

si=si  

(sl = s2) 
=-reflx. (1 <i=<2) 

s i=s i  

= -2-val. 
sl =sl ,  s2=s2 

s l = s 2 v  ~(s l  =s2) 

H. Barringer et al. 

Definitions of Other Connectives 

~ t  
f-defn. 

f 
~ ( ~ E l v ~ E 2 )  

A -defn. 
E 1 A E 2  

~ E l v E 2  
-defn. 

E l s E 2  

E I ~ E 2 A E 2 ~ E 1  
r162 

EI<=>E2 
3x. ~ p(x) 

V-defn. 
Vx. p(x) 

E v  HE 
6-defn. 

6E 

Derived Rules 

A - - ]  

A - - E  

H A  - - I  

~ A  - - E  

c o m m .  

ass. 

El ,  E2 

E 1 A E 2  

E 1 A E 2  
( 1 < i < 2 )  

Ei 

~ E i  
(1 < i < 2 )  

~(E1 A E2) 

~(E1 AE2), ~E1} -E ,  ~ E 2 t - E  

E 

E1 r E 2  E 1 A E 2  

E 2 v E 1  E 2 A E 1  

( E l v E 2 )  v E 3  (E lAE2)  AE3 

E1 v(E2  r E 3 )  E1 A(E2 AE3) 
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It is now legitimate to use n-fold versions of v - I / E ,  etc. For  example: 

El ,  E2 . . . . .  En 
A - - I  

E 1 A E 2 A . . .  A E n  

El v ( E 2  A E3) 
v A-dist. 

(El v E 2 )  A(E1 r E 3 )  

E1 A(E2 V E3) 
A V-dist. 

(El A E2) v(E1 AE2) 

deM. ~ ( E I  AE2) ~(E1 r E 2 )  
~ E l v ~ E 2  ~ E 1 A ~ E 2  

E 1 } - E 2 ,  6E1 El}--E2,  6E1 
- I  or 

~ E 1  r E 2  E l s E 2  

""El  r E 2 ,  E1 E l s E 2 ,  E1 
~ - E  or 

E2 E2 

E2 ~ E 1  
=~-vac. 

E l s E 2  E l s E 2  

E l s E 2  
=~-contrp. ~ E 2 ~ E1 

(El ~*-E 2).*~E 3 
<:~-ass. 

E I "**" ( E 2 "*~ E 3 ) 

v - I  p(x) (x is arbitrary) 
vX.p(x) 
Vx .  p(x), s = s 

V - E  
p(s/x) 

V - I  ~p(s/x) ,  s = s 

~ Vx .  p(x) 

,.~ Vx .  p(x), ,~ p(y/x) ~ E 
~ V - E  

E 

Vx .p (x )  ~ 3 x . p ( x )  

p(y/x) ~p (y / x )  

sl  = s 2  
-- -comm. 

s 2 = s l  

s l  ---s2, s 2 = s 3  
= -trans. 

s l  - -s3 

(y is arbitrary and bound in E) 

Appendix II. Non-Monotone Operators 

Name Rule 

E ~ E  
A - I  

AE AE 
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A - E  

~ A  - I  

~A - E  

Definition of - -  

- -  -defn.  

Derived Rule 

- - t o = - -  

AE, E~-EI,  ~ E t - E 1  

E1 

AE~-E1, AEt-- ~E1 

~ A E  

~ A E t - E 1 ,  ~dEt-- ~E1 

dE 

s l  = = s 2  

(s 1 = s2/x  A (s 1 = s 1/x s2  = s2)) v ~ (A (s 1 = s 1) v A (s2 = s2)) 

s l  = = s 2 ,  s i=si  
s l  = s 2  (1-_<i=<2) 
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