
Acta Informatica 22, 171-186 (1985)

�9 Springer-Verlag 1985

An Algorithm for Merging Heaps*

J6rg-R. Sack 1 and Thomas Strothotte 2

1 School of Computer Science, Carleton University, Ottawa, Ont. K 1S 5B6, Canada, USA
2 INRIA Rocquencourt, B.P. 105, F-78153 Le Chesnay, France

Summary. We present an algorithm to merge priority queues organized as
heaps. The worst case number of comparisons required to merge two heaps
of sizes k and n is O(log(n),log(k)). The algorithm requires O(k
+log(n) , log(k)) data movements if heaps are implemented using arrays
and O(log(n),log(k)) for a pointer-based implementation. Previous algo-
rithms require either O(n+k) data movements and comparisons, or
O (k �9 log(log (n + k))) comparisons and O (k * log (n + k)) data movements.
The algorithm presented in this paper improves on the previous algorithms
for the case when k > log (n).

1. Introduction

1.1. Priority Queues

One of the fundamental data-types in computer science is the priority queue. A
priority queue is a set Q of keys and an operation defined on Q; each key k in
Q has an associated priority p(k) in the set of integers. The operations defined
on priority queues are:

rain: returns the element or the address of the element with smallest
priority.
insert(k): adds the item containing the key k to the queue Q.
delete: removes the item containing the smallest key from the queue.
merge(Q, Q'): all elements of Q' are added to Q while Q' is destroyed.

Priority queues are called non-mergeable if merging is inefficient, i.e. merg-
ing should not require examining a positive fraction of the items in the queues
1-3]. Several organizations for mergeable and non-mergeable priority queues
have been proposed, see I-2, 3, 5, 8].

* This work was done while the authors were at McGill University, Montr6al, Canada

172 J.-R. Sack and T. Strothotte

Brown's results [3] show that:
(1) Sorted linear lists are the best implementation of small priority queues,

say less than 20 items.
(2) Heaps [4, 8, 11] are the best implementation of non-mergeable priority

queues.
(3) Binomial queues [10] are an efficient implementation of mergeable

priority queues.
(4) Pagodas [5] are efficient implementations of priority queues if the

measure of efficiency considered is average case time-complexity.
A heap [11] is a tree which has the following properties: a) it is heap-

ordered, that is, a key contained in any node is not greater than the keys of its
offspring, and b) all leaves are on at most two adjacent levels, and all leaves on
the last level are as far to the left as possible. A concise survey of known com-
plexity results is given in [6]. We will call a heap with n elements an nheap,
and restrict ourselves to heaps where each node has at most two siblings.

A remarkable feature of heaps is that they can be built in linear time using
an algorithm due to [4]. The complexity analysis of Floyd's algorithm can be
found in [1] and [7]. A worst-case performance and average case run-time study
given by [3] shows that heaps are the most efficient implementation of priority
queues when insertions and deletions are considered. When implemented using
arrays, heaps are non-mergeable. Tarjan [9] also observes that "heaps are not
easy to meld [merge]".

1.2. Merging Heaps

Two simple approaches to merging a heap of k elements, k heap, into a heap of
n elements, n heap, are:

Algorithm 1. Insert the k elements into the heap of n elements one by one.
Using the insertion algorithm of [7], this requires O(k*log(log(n+k))) com-
parisons and O(k, log(n + k)) data movements in the worst case. [Throughout
this paper, " log" will stand for the logarithm to the Base 2.]

Algorithm 2. Neglect the structure in the n heap and k heap and reconstruct a
new heap, requiring 2(n + k) comparisons and data movements.

Considering the total complexity, Algorithm 2 is better when

2n
k > approximately log (log (n))"

If k approaches n in size, is advantageous to ignore the initial heaps and to
construct a new heap of the n+ k elements from scratch. It is puzzling that a
method which ignores the structure already being created should be faster than
methods incorporating the initial heap. We will show that it is indeed possible
to merge two heaps, making use of their structure.

An Algorithm for Merging Heaps 173

t ~ t ~
t ~ t x

6 b 6
Fig. 1. Individually inserting 4 new elements into a heap with 15 elements. The positions to he
filled are joined to the existing heap by dashed lines. The paths taken by the bubble-up operations
is given in bold lines

1.3. Overview of Algorithm

Consider the task of sequentially inserting a small number of new elements
into a large heap stored in an array. In the worst case, each of these insertions
requires "bubbling up" the new element from the leaf-position to the root of
the heap. The situation is illustrated in Fig. 1 for inserting 4 elements into a
heap of 15 elements. Notice however, that the paths taken by bubbling up
processes have some arcs in common. In the first part of our algorithm, we
will ensure that when inserting k elements into the heap, this path will be
traversed only once.

We will define a perfect heap as a heap with 22-1 elements, in which all
leaves are on the same level, otherwise the heap is non-perfect. For the sake of
clarity we will develop the algorithm by first showing how to merge two
perfect heaps of equal sizes, then of unequal sizes. Next we will merge a perfect
heap into a non-perfect heap, and finally we will merge two non-perfect
heaps.

The algorithms will be based on an array implementation of heaps. The
notation used is to make an element, p, in a heap synonymous with the
subheap rooted at p. In the discussion, we will analyze the complexity of the
algorithm for a pointer-based implementation.

2. Merging Perfect Heaps

2.1. Merging two Perfect Heaps of Equal Sizes

The algorithm merge_equal_perfect_heaps takes two heaps, heap1 and heap2,
each of size k, and produces a new heap heap 1 with 2k elements.

procedure merge_equal_ perfect_heaps(heap l ,heap 2)

invoke simple_merge on heap 1 and heap2, taking
the last element of heap2 as the new root.

end merge_equal_perfect_heaps

174 J.-R. Sack and T. Strothotte

procedure simple merge(heapl,heapz,newroot)

copy heap1 ro temporary location t
place newroot at root of heap1
copy t to left son of heap1
copy heap2 to right son of heapl
tricke down heap1

end s imp le merge

The trickledown function restores the heap structure of its argument by
allowing the root, which may be larger than either of its sons, to "trickle"
down. Knuth [8, pp. 146-147] refers to this function as " s i f t u p " .

Lemma 2.1. Two perfect heaps of equal size k can be merged with O(log(k))
comparisons and O(k) data movements.

Proof The number of comparisons in the algorithm to merge two perfect heaps
of equal size is dominated by the t r i c k l e d o w n operation, which requires
O(log(k)) comparisons [8]. The number of data movements required is domi-
nated by the operation of copying the two small heaps and the resulting heap
(heap1), requiring O(k) data movements. The correctness follows
immediately. []

2.2. Merging Perfect Heaps of Different Sizes

We will consider the simple case of inserting a perfect heap of k elements,
kheap, into a perfect heap with n elements, n heap. Without loss of generality,
assume that k < n.

Referring to Fig. 1, recall that the b u b b l e u p operations of individual
insertions would share a common path. We proceed as follows: Begin with the
root of n heap, and compare it to the root of the k heap. If the root of k heap is
smaller than the root of n heap, exchange the two roots and perform the
t r i c k l e d o w n operation on the k heap. This step is then repeated for successive
elements on the path which all individual b u b b l e u p s would have in common.
This procedure is referred to as w a l k d o w n and the path is referred to as the
w a l k d o w n path. Although nheap and kheap are altered throughout the
execution of procedure w a l k d o w n , we will continue referring to these modi-
fied heaps as n heap and k heap, respectively.

procedure walk down(n heap, from,to,kheap)

if n heap(from) < kheap(root)
then

exchange(nheap(from),kheap(root))
t r i c k l e d o w n (kheap)

if from = to then return
else

next :={next node on path from from to to}
walk _ down (n heap, next, to, k heap)

end walk_down

An Algorithm for Merging Heaps 175

Fig. 2a-e. Algorithm for merging two perfect heaps, a The leftmost subheap of size k in n heap is
identified. It is referred to as Pheap. b Pheap is merged with k heap to make a new heap of size
2k. e The heap resulting from (b) is placed back into n heap

Notice that given the indices of the starting and finishing positions of the path,
the indices of the intermediate nodes (successive nexts on the path) can be
computed by examining the bits in the binary representation of to and from
(see for example [8, p. 154]).

Since kheap and n heap are perfect, there are exactly k elements in the
subheap rooted at p, which we will refer to as Pheap (see Fig. 2(a)).

Using procedure merge_equalperfect_heaps, we can now merge kheap
and Pheap to form a new subheap of n heap. The complete algorithm for
merging perfect heaps is given below and is illustrated in Fig. 2.

procedure merge_ perfect_ heaps(n heap, kheap)

p." = (common parent of positions in nheap to be filled}
walk_down(nheap,nheap(root),p, kheap)
(, now merge the subheap rooted at p with kheap *)
merge_ perfect_equal_ heaps(nheap(p),kheap)

end mergeperfect_heaps

Lemma 2.2. After execution of procedure walk_down: (a) all ancestors of p are
less than or equal to all elements in k heap, (b) the heap structure of n heap and
k heap are maintained.

Proof By induction, we will show that after the i'th element on the
walk_down path has been considered, all ancestors of i are less than or equal
to all elements in kheap and the heap structures of nheap and kheap are
maintained.

For i=1, the root of n heap, the result follows trivially. Let i> 1. By
induction the elements 1 to i - 1 on the path are less than or equal to the i'th
element and less than or equal to all elements in k heap. In processing the i'th
element two cases arise:

(1) i'th element>root(kheap): The walk_down procedure exchanges the
i'th and the root of k heap thereby replacing i by a smaller element, which by
induction is nonetheless > to the i - l ' s t element. This maintains the heap
structure of n heap. Using procedure trickle_down the heap structure of k heap
is subsequently restored.

176 J.-R. Sack and T. Strothotte

(2) i'th e lement<root(kheap): No exchange is performed and thus the
result follows trivially.

The proof is completed by letting i equal to p. []

Lemma 2.3. Two perfect heaps of sizes n and k can be merged with
O (log (n) �9 log (k)) comparisons and 0 (k + log (n) * log (k)) data movements.

Proof The correctness of the algorithm follows directly from Lemmas 2.1 and
2.2. The length of the path traversed by the walk_down procedure is at most
log(n). For each node on the path, restoring of k heap at a cost of log(k)
comparisons may be required (trickle_down). Thus the number of comparisons
as well as data movements for walk_down is O(log(n),log(k)). From Lemma
2.1 follows that the number of comparisons for the algorithm to merge two
perfect heaps of sizes n and k is dominated by the time it takes to execute the
walk_down procedure. Thus the total number of comparisons is
O(log(n),log(k)). The number of data movements is O(log(n),log(k)) for the
walk_down procedure and by Lemma 2.1, O(k) for merging equal sized heaps.
The total number of data movements is thus O(k + log (n) , log (k)). []

In this proof of Lemma 2.3, the length of the walk_down path was
approximated by O(log(n)). However, a better approximation is O(log(n)

- log(k)) which reduces to 0 (logn) . Analogously to the proof it follows that
\ t ~ /

two perfect heaps of sizes n and k can be merged with O ((l o g (n)

+ 1) , l og (k)) compar i sons and O (k + (l O g (k) + l) , l o g (k)) d a t a movements.\\ \h i

Thus for k=O(n), two perfect heaps of sizes n and k can be merged in
O(log(n)) time (see Lemma 2.1).

Up to now, we have seen how to merge two perfect heaps. The ideas
remain the same when the heaps are not perfect, although the details are
somewhat more complex.

3. Merging a Perfect Into a Non-Perfect Heap

We will now discuss how to merge a perfect k heap into a non-perfect n heap.
Let the size of a heap (or subheap) refer to the number of elements it contains,
and the height be defined as [log(size(heap))]. We will use a function h(heap) to
return the height of heap. We will define slots to be those leaf positions in
n heap which are to be filled by the merging process. We will say that a node p
covers a group of slots if all slots are descendents of p.

A problematic situation is illustrated in Fig. 3, where k = 3 and n = 22. Here
the lowest common ancestor of all k slots is the root of nheap. In some cases,
this common ancestor may be somewhere in the middle of the tree.

We first apply the walk_down procedure to the lowest common ancestor,
p, of all k slots. If the subheap, Pheap, rooted at p contains k or k + 1 elements,
then the merge is analogous to that for merge_perfect_heaps. The last element
of Pheap is taken as the root and then trickle_down operation applied. The
procedure is completed in this case.

An Algorithm for Merging Heaps 177

Fig. 3. Inserting 3 elements into a heap of size 22. The positions to be filled are joined to the
existing heap by dashed lines. In this case, the only common ancestor of the slots to be filled is the
root

If the subtree rooted at p is deeper than kheap, we perform the procedure
find 2 nodes as described below to find nodes p~ and Pr. The existence of p~
and p, will be established later in Lemma 3.1. They will be such that

(1) the subtree rooted at Pz has height h + 1,
(2) the subtree rooted at Pr has height h, and
(3) p~ and p, together cover all slots.
Note that in an array implementation p~ and p, lie in adjacent positions if k

=2~-1 . We will discuss only the case where nheap and merge(nheap, kheap)
have the same height. Otherwise a simple modification of exchanging the roles
of pr and Pz can be made to the algorithm.

function find 2 nodes(nheap,p,h)
(, function returns two subheaps of nheap ,)
(, each of size O(k) and which ,)
(, together cover all slots *)

if h(nheap(p)) <h + 1 then return(p,p)
left: = left son of p
right: =r ight son of p
while (h(left)>h + 1) do

left: = right son of left
right: =left son of right

repeat
return(left,right)

end find 2 nodes

An example is illustrated in Fig. 4. We will refer to the subheaps rooted at
Pz and pr as pzheap and p, heap, respectively. We now apply a
double_walk_down on the paths from p to p~ and p to p,. This consists of
using the procedure walk_down described earlier to traverse the paths from

(1) p to Pz, at each node on the path updating the kheap as necessary,
(2) p to p~ at each node on the path updating the prheap as necessary,
(3) p to p, at each node on the path updating the kheap as necessary,
(4) p to p, at each node on the path updating the ptheap as necessary.

178 J.-R. Sack and T. Strothotte

Fig. 4. For the case of k = 3 and n=22 , two subheaps p~ and Pr, both with O(k) elements, are
identified for subsequent insertions. Only the elements lying below these subheaps are affected by
the insertion of the k new elements

These four steps are necessary so that later in the algorithm we can
exchange the subheaps p~heap, prheap and kheap without violating the heap
condition.

procedure double walkdown(nheap,froml,tOa,fromz,to2,kheap)
walk_down(nheapfroml,toa,kheap)
walk_down(nheapfroml,tOa,t02)
walk_ down(nheapfromz,to z,kheap)
walk_down(nheapfrom2,tO z,tO 0

end

This procedure is invoked as

double _ walk _ down(nheap,p,p~,p,pr, kheap).

We now build two new heaps out of p~heap, prheap and kheap. As by
assumption of this section, k heap is perfect, it can be inserted into n heap
directly using the following procedure. Apply simple_merge to prheap and
kheap, this time taking the last element of p~heap as the extra node for the
new root. Recall that prheap and kheap both are of height h. The result is a
perfect heap rooted at pr of height h+ 1. We will refer to as k Pheap. Now
exchange the heaps rooted at Pt and p~. This fills up the leaves at the bottom
level under p~, and maintains the heap-structure under p~, with the empty
positions coming on the right side. The description of the procedure to merge
a perfect kheap into a non-perfect nheap is now complete.

procedure merge perfect into non perfect(nheap, kheap)
p." = {lowest common parent of slots in nheap to be filled}
walk_ down(nheap,nheap(root),p,kheap)

if (h(p) = h(k))
then

simple merge(p,kheap,{last element of k heap})
else if h(p) = h(kheap) + 1

then
simple merge(p, kheap,{last element of p})

An Algorithm for Merging Heaps 179

else
(Pl,P~)"=find 2 nodes(nheap(p),p,h(kheap))
simple exchangemerge(nheap,pt,p,,kheap)

end m e r g e p e r f e c t i n t o n o n _ p e r f e c t

procedure simple exchangemerge(nheap,pl,pr,kheap)
double_walk_down(nheap,p,pl,p,p r,kheap)
simple merge(nheap(pr),kheap,{last element of Pz})
exchange(pl,P~)

end simple_exchange_merge

Lemma 3.1. Let k <= n denote the size of a perfect heap and h its height. Then a
non-perfect heap of size n contains a subheap of height h+ 1 and a perfect
subheap of height h, together covering all k slots.

Proof As k<n, all slots are on at most two adjacent levels in nheap. We
assume all slots to be on the same level, as the argument is analogous in the
other case. Slots are consecutive, thus any single subheap Pheap of n heap
covering all k slots has height 0 at least as large h. As k heap is perfect, h
= l o g (k + l) - l . We distinguish between three cases: (a) O=h, (b) 0 - - h + l and
(c) O>=h+2.

(a) 0=h. In this case Pheap is perfect (no leaves of Pheap are on the same
level as the slots).

(b) 0 = h + 1. Let l > 0 denote the number of nodes of Pheap that are located
on the last level of nheap. As /+k=<2 h+l, it follows t h a t / = 1 . In this case there
is one leaf on the last level in Pheap and all remaining nodes on that level are
slots. Thus Pheap is non-perfect and of height h + l , while the right son of
Pheap is perfect and of height h.

(c) 0____h+2. As Pheap covers all slots, the left and right sons of p together
also cover all slots. The subheaps are of height 0 - 1 and 0 - 2 , respectively and
the right subheap is perfect. Let k~, k, be the number of slots covered by the
left subheap and the right subheap of p, respectively. As k~ is less than k, there
exists a node p~ in the right subheap of Pheap such that all k, slots are covered
by a perfect subheap of height h. Similarly, there exists some subheap Pl of
height h + 1 in the left subheap of Pheap such that all slots in k I are covered by
p~. Thus, there exist subheaps in n heap, one non-perfect of height h + 1, the
other perfect and of height h, which together cover all slots. []

Lemma 3.2. Let p be the root of a subheap Pheap of nheap covering all slots
and h be the height of kheap. The algorithm find 2 nodes finds 2 subheaps, Pl
and Pr of Pheap, such that

(1) both have height h or h + 1, and
(2) every slot is covered by either Pl or p~.
The algorithm runs in O(log(n)) steps.

Proof If the height of p is h + 1, the result follows trivially.
Therefore assume h (p) > h + 1. As p covers all slots, so do the left son l and

the right son r of p together. As p was the lowest common ancestor of all slots,
the right-most descendant plson, of l, and the leftmost descendant prsont of r,
are both slots. They are also adjacent. Because slots are in consecutive lo-

180 J.-R. Sack and T. Strothotte

cations, there are at most k - 1 slots to the left of plsonr, which are covered by
the h'th ancestor of plson r. This subheap, which has height h + l , will be
referred to this as Pl. A similar argument holds for prsonz, showing that there
exists a subheap of height h under prson t covering those slots not covered by
plson r.

The locations p~ and pr can be found without any key comparisons. The
length of the path from p to Pz or Pr is at most log(n) and thus the algorithm
runs in O(log(n)) steps. []

Lemma 3.3. After procedure double_walkdown in simple_exchange_merge is
executed (a) all ancestors of Pl and those of Pr are less than or equal to all
elements in kheap, plheap and prheap, (b) the heap structures of nheap and
kheap are maintained.

Proof After the first step in the algorithm, all ancestors of p~heap are less than
or equal to all elements in kheap (Lemma 2.2). In the second step, all ancestors
in pr heap become less than or equal to the elements of p~heap. By analogy, the
third step makes all ancestors of p~heap less than or equal to elements in
kheap. The final step then makes all ancestors of prheap less that or equal to
all elements in p~heap. []

Lemma 3.4. The d o u b l e w a l k d o w n procedure requires O(log(n),log(k)) com-
parisons and data movements.

Proof. The procedure uses at most 3 times as many comparisons as the
w a l k d o w n procedure, The result follows directly from Lemma 2.3. []

Lemma 3.5. A perfect heap of size k can be merged into a non-perfect heap with
O(log(n)* log(k)) comparisons and O(k + log(n), log(k)) data movements.

Proof. By Lemma 3.3, all ancestors of ptheap and p, heap are less than or equal
to the roots of each of p~heap, p~heap and kheap. Merging prheap and kheap
as described produces a perfect heap of height h + 1, which is also the height of
the non-perfect heap p~heap. The correctness of this Step follows from Lem-
ma 2.1. As a result of Lemma 3.3, kPheap and p~heap may be exchanged while
still maintaining the heap structure of n heap. The exchange operation fills all
slots on the left, restoring the heap structure of nheap.

The positions p~ and Pr can be found in O(log(n)) time (Lemma 3.2). By
Lemma 3.4, the d o u b l e w a l k down procedure costs O(log(n),log(k)) compari-
sons and data movements (Lemma 2.1). Merging two perfect heaps of sizes k
(kheap and p~heap) requires O(log(k)) comparisons and O(k) data movements,
and exchanging two heaps, Pt and p,, each of size O(k), requires O(k) data
movements (Lemma 2.1). Thus the total number of comparison is
O (log (n) , log (k)) and the total number of data movements is O(k
+ log (n) �9 log (k)). []

Note that once Ps and p, are found, we could ignore the structures of kheap
and the subheaps rooted at p~ and p~. Using Floyd's heap construction algo-
rithm, we would build two new heaps, one perfect to fit under p~ and another
possibly non-perfect to fit under p~. This would require O(k) data movements
and O(k) comparisons. Using this algorithm, the total complexity would not be

An Algorithm for Merging Heaps 181

altered, but the number of comparisons would increase from O(log(n)* log(k))
to O(k).

4. Merging two Non-Perfect Heaps

Initially we find p, the lowest common ancestor of all slots, as before and
perform w a l k d o w n from the root of nheap to p. We say that a heap kheap
fits under a subheap Pheap if Pheap has enough slots for each element in
kheap.

(1) Find the locations Pt and p, as before. The corresponding heaps are of
size O(k) and cover all slots.

(2) Split kheap into a perfect heap, A, and a possibly non-perfect heap, A §
This is done by removing the root r and placing it into the next available leaf
position, and restoring the heap (see Fig. 5). Alternatively, with no key compar-
isons, we can move all elements on the path from the available leaf position to
the root of the corresponding heap down one by one. Then we insert the
element r at the root position of the heap. The heap A § is of height one or two
less than the kheap.

(3) Merge d into p~ or Pr, depending on whether Pt has enough slots for
perfect_heap. The procedure is analogous to merging a perfect heap into a
non-perfect one filling up slots, beginning with the leftmost.

(4) Recursively merge A + using Pl and Pr.
More formally, the algorithm is as follows:

Preprocessing:
find p, the lowest common ancestor of all slots
walk_down(nheap, root(nheap),p,kheap)

procedure merge non_perfect(nheap,p, kheap)
(Pt, p,).-= find 2 nodes(nheap,p,h(kheap))
if kheap is perfect then

simple_exchange_merge(nheap,p~,p,,kheap)
return

split _ and _ insert(p z,pr, kheap)
procedure split and_insert(pz,p~,kheap)

d o u b l e w a l k d o w n to (p~, p~)
split kheap into A and d +
(* d denotes the perfect heap, and A + the possibly non_perfect one .)
(* if both parts are perfect, let A be the smaller .)

Fig. 5. Algorithm for splitting a heap. Step 1: The root is removed and placed into the next
available position. Step 2: The left heap is restored by bubbling up the former root

182 J.-R. Sack and T. Strothone

if A fits under p~
then

merge perfectintononperfect(nheap,pt,kheap)
if p~ is now perfect

then
merge _ non _ perfect(n heap, pr, A +)

else
if Pt 4 = P~

then
(. we can lower Pt and Pr because .)
(. h(A +) is exactly 1 smaller than h(kheap) w a s .)
double _ walk _ down(nheap,pt, &.right,p~,p~.left, A +)
Pt: = Pz-rig ht
Pr: = P~.left
split_and_insert(pt,p~,A +)

else
if left son of Pt is perfect

then
walk_down(nheap,pr,pr.right, A +)
merge_non_perfect(nheap,pr .r ight , A +)

else
merge_non_perfect(nheap,pr ,A +)

else
(, here p~=~pr otherwise A would have fit under p~.,)
(, now lower Pl and Pr *)
insertionpt: = pt.right;
insertionp~: = p~.left;
if h(A) = h(kheap) - 2

then
insertionpl .. = insertion&.right
insertionpr, = insertionpr.left

s imple_exchange_merge(nheap,insert ionp~,insert ionp t,A);
merge_non_perfect(nheap,pr ,A +)

end s p l i t a n d _ i n s e r t
end merge_non_per fec t

Before proving the correctness of the algorithm, we will first establish a
number of properties of the heaps to be merged. Recall that we say that if a
heap fits under another, then the second heap contains at least as many slots
as there are elements in the first heap.

L e m m a 4.1. I f the perfect heap, A, does not fit under Pt, then the left subheap of
Pl is perfect.

Proof Let h denote the height of kheap. The height h(A) is either h - 1 or h - 2
and thus the size of A is 2h--1 or 2 h-1 --1, respectively. Assume that h (A) = h
- 1 . The subheap rooted at Pt is of height h + 1 and has at most 2 h+ 1 leaves. If

A does not fit under Pt then the number of slots is less than 2 h - 1 and thus the

An Algorithm for Merging Heaps 183

left subheap of Pt is perfect. A similar argument holds for the case that h(A)=h
- 2 . []

Corollary 4.1. I f the perfect heap, A, does not f i t under Pt, the right subheap of Pl
contains at least one element.

Corollary 4.2. I f the perfect heap, A, does not fit under p~ and h(A)=h(kheap)
- 2 , the left subheap of Pl as well as the left subheap of the right subheap of Pt
are perfect.

Corollary 4.3. I f the perfect heap, A, does not fit under Pl and h(A)=h(kheap)
-2 , the right subheap of the right subheap of Pz contains at least one
element.

Lemma 4.2. The algorithm merge_non_perfect correctly merges two non-perfect
heaps.

Proof On entry to procedure split_and_insert, Pz and Pr cover all slots. We
will show that for each recursive call to split_and insert, this assumption
remains true, and that with each successive call, the height of the heap
remaining to be inserted decreases by at least one. Two cases arise:

(a) A fits under Pl, and
(b) A does not fit under Pz.
(a) A fits under p~: By Lemma 3.5, A is correctly merged under p~. Two

cases can now arise:
(1) p~ is perfect. All the remaining slots are now under p,, and the algo-

rithm recurses correctly.
(2) Pl is still not perfect. Now h (A +) = h (k h e a p) - l , so that Pz and Pr can be

lowered, so that if P~=Pr, the recursive step can be applied correctly. If p~=p,
then if the left son of Pz covers all slots, then Pt and pr may be lowered,
otherwise we require that p, is still the lowest node covering all slots.

(b) A does not fit under Pz: From Lemma 4.1 and Corollaries 4.1-4.3, we can
conclude that there exist two subheaps insertionp z and insertionp~ with the
following properties:

(1) insertionp t and insertionp r together cover all the leftmost size (A) slots,
and

(2) the subheap insertionp~ is perfect and of height h(A) while the subheap
insertionp~ is non-perfect and of height h(A)+ 1.

The algorithm identifies these subheaps insertionp~ and insertionpr.
Following this, the algorithm merges A using insertionp~ and insertionpr

with the procedure simple_exchange_merge, whose correctness was established
by Lemma 3.5. The result is that p~ is perfect. All remaining slots thus lie under
pr and are filled by recursively invoking the procedure merge_non_perfect. []

Lemma 4.3. The algorithm mergenonper fec t makes O(k + log(n) * log(k)) data
movements and O(log(n)* log(k)) comparisons.

Proof Walking down from the root of n heap to p~ and p, requires
O(log(n).log(k)) comparisons and data movements, as in merging a perfect

184 J .-R. Sack a n d T. S t r o t h o t t e

heap into a non-perfect heap. The remaining Steps are now independent of n.
(1) Splitting the kheap into 2 heaps is done with zero key comparisons and

O(log(k)) data movements.
(2) Let h denote the height of kheap. The algorithm merges the perfect

heap, of height h - 1 or h - 2 , with either ptheap or prheap, of heights h + l and
h, respectively. Thus the path length for the w a l k d o w n from Pt or Pr is
constant (at most 2), so that this w a l k d o w n costs O(log(k)) comparisons and
data movements. Then the actual merge requires a further O(log(k)) compari-
sons and O(k) data movements.

(3) As the height of the non-perfect heap to be inserted is decremented by
one with each level of recursion, Steps 1-3 are repeated log(k) times. Note that
the complexity is dominated by Step 3. The maximum number of elements in
the non-perfect heap to be inserted decreases by a factor of between 2 and 4
with every level of recursion. Therefore the worst case number of comparisons
is:

O { ~ log =O(log2(k)),
\ i = 0

and the number of data movements is:

(" O o~k~j = O(k).
i = 0

Thus the total number of comparisons to merge two non-perfect heaps is

O (log (k)*log(k)+log2(k)) , which reduces to O(log(n)*log(k)). The total

number of data movements is O(k+log(n)*log(k)). This result applies to the
array implementations of heaps. []

The description of the algorithm to merge two heaps is now complete.

5. Results

Theorem 5.1. 7~vo heaps with n and k elements, respectively, can be merged in
O(k + log(n) �9 log(k)) data movements and O(log(n) * log(k)) comparisons if imple-
mented using arrays.

Proof. The proof follows directly from Lemmas 4.2 and 4.3. []

Theorem 5.2. Two heaps with n and k elements, respectively, can be merged with
O(log(n), log(k)) data movements and comparisons if implemented using pointers.

Proof. From Theorem 4.1, the number of comparisons for merging two heaps is
O(log(n)* log(k)). It can be verified from the previous Lemmas that the number
of data movements is equal to the number of comparisons for all operations
performed by the algorithms for all operations except for exchanging heaps. In
an array implementation exchange operations require time linear in the num-
ber of elements to be moved. In a pointer-based implementation however, two

An Algorithm for Merging Heaps 185

heaps can be exchanged by reassigning the respective pointer values which
takes constant time. []

6. Comparison With Other Algorithms

The worst-case performance for previous algorithms for merging heaps of sizes
n and k is

(1) O(n + k) comparisons and data movements for rebuilding the heaps from
scratch, and

(2) O(k*log(log(n+k))) comparisons and O(k,log(n+k)) data movements
for individual insertions using Gonnet's algorithm.

The new algorithm presented here, using O(log(n), log(k)) comparisons and
O(k+log(n),log(k)) data movements, clearly performs better than Algorithm
(1) in all cases. Our algorithm also performs better than Algorithm (2) when

k log (n)
- - >
log (k) log (log (n + k))'

i.e., when
k > log (n),

roughly speaking.
Our algorithm for merging heaps is nonetheless not as good as algorithms

for merging other implementations of priority queues. For example, leftist-
trees, binomial queues and 2-3 trees can all be merged in O(log(n)) time [3,
p. 23].

7. Inserting k Elements to a Heap of n Elements

An interesting by-product of our algorithm is an algorithm to insert a batch of
k elements into a heap of n elements:

(1) Create a heap kheap of the k new elements; this costs O(k) comparisons
and data movements.

(2) Merge the kheap and the nheap; using our algorithm this costs
O (log (n) �9 log (k)) comparisons.

The total number of comparisons and data movements for this algorithm is
O(k +log(n), log(k)). This compares to a worst-case complexity of O(k+log(n
+k)) for other priority-queue organizations like leftist-trees, binomial queues
and 2-3 trees.

8. Discussion

Heaps can be efficiently stored in arrays, whereas a pointer-based implementa-
tion requires 2 pointers per node (left son and sight son). Thus more storage is
required in a pointer-based implementation of heaps. The path from the root
to an element is described by its binary representation. Associated with every

186 J.-R. Sack and T. Strothotte

heap is its size, and thus the n'th or (n+ 1)'st elements, needed for insertions
and deletions, can be found in O(log(n)) time. If only 2 pointers per node are
used, a stack of depth O(log(n)) is required for these operations. If 3 pointers
per node are used, then no extra stack is required. In any case, the time-
complexity for insertion and deletion remains the same for a pointer-based
implementation as for an array-based implementation.

From the theoretical point of view, it is important to observe that the
number of data movements is implementation dependent. A heap of size k can
be re-linked to another location in constant number of data movements if the
heaps are implemented using pointers, compared to O(k) movements for an
array implementation. Therefore the number of data movements required to
merge two heaps of sizes n and k is O(log(n)*log(k)) for a pointer-based
implementation as opposed to O(k+log(n)*log(k)) for an array implementa-
tion. The number of comparisons is implementation independent.

Using a pointer-based implementation, heaps are mergeable.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms, p. 99.
Reading, MA: Addison-Wesley 1974

2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data structures and algorithms. Reading, MA:
Addison-Wesley 1983

3. Brown, M.R.: The analysis of a practical and nearly optimal priority queue. New York:
Garland Publishing 1980

4. Floyd, R.W.: Algorithm 245, Treesort 3. CACM 7, 701 (1964)
5. Francon, J., Viennot, G., Vuillemin, J.: Description and analysis of an efficient priority queue

representation. Proc. 19 th Ann. Symp. Found. Comput Sci. MI: Ann Arbor, pp. 1-7 (1978)
6. Gonnet, G.H.: A handbook of algorithms and data structures. Reading, MA: Addison-Wesley

1984
7. Gonnet, G.H., Munro, IJ.: Heaps on Heaps. Proc. ICALP, Aarhus 9, pp. 282-291 (July 1982)
8. Knuth, D.E.: The art of computer programming. Vol. 3: Sorting and searching. Reading, MA:

Addison-Wesley 1973
9. Tarjan, R.E.: Data Structures and Network Algorithms. Philadelphia, PA: Soc. Ind. Appl.

Math. 1983
10. Vuillemin, J.: A data structure for manipulating priority queues. CACM 21, 309-315 (1978)
11. Williams, J.W.J.: Algorithm 232, heapsort. CACM 7, 347-348 (1964)

Received August 1, 1983/March 8, 1984

