Acta Informatica 2, 110 —142 (1973)
© by Springer-Verlag 1973

On Correct Procedure Parameter Transmission
in Higher Programming Languages*
Hans Langmaack

Received September 18, 1972

Summary. The paper starts with the observation that in ALGOL 60 no specifica-
tions for formal procedure parameters are prescribed, whereas ALGOL 68 demands
complete specifications. As a consequence, no ALGOL 68 program accepted by the
compiler can have wrong parameter transmissions at run time whereas ALGOL 60
programs may have them. The property of ALGOL 60 programs t0 have only correct
parameter transmissions obviously is undecidable if all data, conditional statements,
etc. have to be taken into consideration (Theorem 1) and it is unfair to demand
that the compiler should decide that property by a finite process. Therefore, we
investigate this question of decidability under a much fairer condition, namely without
taking into consideration any data or conditions and by giving all procedure calls
occurring in the same block ““‘equal rights” (Section IV, p. 123). Even this fairer
problem turns out to be algorithmically unsolvable, in general (Theorem 5), but it
is solvable as soon as the programs do not have global formal procedure parameters
(Theorem 3). Analogous answers can be given to the problems of formal equivalence
of programs and of formal reachability, formal recursivity, and strong formal recur-
sivity of procedures (Theorems 8-11). Procedures which are not strongly formally
recursive have great importance in compilation techniques as is shown in Section X.

I. Introduction

This paper deals with the question whether formal parameters of procedures
in high level programming languages should be specified or not. The situation
is well known; In ALGOL 60 no specification is prescribed, whereas ALGOL 68
demands specifications for all formal parameters, even specifications for the formal
parameters of formal procedures etc. must be given by the programmer. PL/1
takes a position in between: Formal parameters of non-formal procedures must
be specified, but formal parameters of formal procedures cannot be specified.
This means practically that PL/1 in this respect is closer to ALGOL 60 than to
ALGOL 68. For, when translating a call of a non-formal or formal ALGOL 68
procedure the compiler is informed exactly about the specifications for all formal
parameters. Best possible cede can be implemented because superfluous actual
data types need not be taken into consideration. Since no wrong parameter
transmission can happen at:run time no run time parameter checks (with respect

* The main results of this paper have been announced in an invited lecture given at
the first annual congress of the Gesellschaft fiir Informatik (GI) in October 1971 in
Munich.

On Correct Procedure Parameter Transmission in Higher Programming Languages 111

to modes) need be implemented. Now, when translating a call of a formal ALGOL 60
or PL/1 procedure the compiler does not know any specifications for the formal
parameters, so that even actual data types must be taken into account which
at run time never occur. Because correct parameter transmission is not completely
checked at compile time, run time parameter checks must be provided for.

This short discussion shows that, concerning parameter transmission, ALGOL 68
has clear advantages over the other languages mentioned. On the other hand,
concerning parameter transmission, the definition of ALGOL 60 and PL/{ can
well be justified if there is an algorithm which for any program at compile time
firstly decides whether at run time wrong parameter transmissions might occur
and which secondly detects the specifications for all formal procedure parameters.
In the following we shall investigate the question in what sense and under which
circumstances such an algorithm exists.

I1. Language Limitations
In this paper we will discuss four higher level programming languages:

1. ALGOL 60 without specifications for formal parameters, called ALGOL 60-P
(pure). '

2. ALGOL 60 with specifications prescribed for formal parameters of non-
formal procedures and denoted in that way indicated in the ALGOL 60 Report,
called ALGOL 60-PL/1, as this language is PL/1 oriented.

3. ALGOL 60-PL/1 with additional specifications prescribed for formal para-
meters of formal procedures, called ALGOL 60-SF (specify formals). Formal para-
meters of formal procedures of formal procedures cannot be specified.

4. ALGOL 60 with complete specifications for formal parameters as in
ALGOL 68, called ALGOL 60-68.

It is useful for our purposes to have a common frame for all these languages.
We choose ALGOL 60 and trim the languages in such a way that they appear
as successive restrictions of ALGOL 60-P. Different languages differ for us only
by the method of indicating specifications for formal parameters.

In ALGOL 68 the formal parameters of formal procedures of formal procedures
etc. have to be specified. Here, in general, mode declarers indicate modes struc-
tured like trees, trees which might even be infinite (5, 8]. Clearly, these infinite
trees must be described in a finite manner.

We handle the parameter mechanism for procedure calls in that way which
is given by the ALGOL 60 Report. Throughout this paper we understand the
notion formal parameter in the sense of ALGOL 60. We do so even for the language
ALGOL 60-68. The name for this language is justified because the method of
indicating modes is modelled from the ALGOL 68 Report.

As an example we present one the same program JI* written in four different
languages.

112 H. Langmaack:

ALGOL 60-P:

begin refreal 4; (concerning ref real and outreal
proc P(X, Q); see the following modifications e)
begin X := X +1; and i))
if X <5thenQ(X, P)
end;
A:=1;
Pp(A, P);
outreal 4
end

ALGOL 60-PL/1:

begin refreal 4;
proc P(X, Q); refreal X; proc(;
begin X :=X 4-1;

etc. as above

ALGOL 60-SF:

begin refreal 4;
proc P(X, Q); refreal X;
proc (ref real, proc) Q;
begin X :=X +1;

etc. as above

ALGOL 60-68:
begin refreal 4; ‘ (in strict ALGOL 68 we would
mode p = proc (ref real, p); write ref real 4 =locreal;)

proc P(X,Q); refreal X; p(;
begin X :=X +1;

etc. as above

For the aims of this paper it is not necessary to give complete definitions of
the languages. It suffices to be acquainted with ALGOL 60. In order to allow
proofs which are not swallowed up by formalities we impose restrictions and
modifications on ALGOL 60: '

a) Only proper procedures, no function procedures are allowed. For simplicity
we write proc for the declarator procedure.

b) Value listing of formal parameters (in the sense of ALGOL 60) is prohibited.

On Correct Procedure Parameter Transmission in Higher Programming Languages 113

¢) Only identifiers are allowed as actual parameters of procedure statements.

d) Beside begin and end we have an additional pair of statement braces { }.
They act as block-begin and block-end and we require that all procedure bodies
are included in these braces. In this context, the new statement braces are called
body braces.

e) We restrict the three data types of the ALGOL 60 Report real, integer, and
Boolean to two, namely real and Boolean. We write bool for the latter. The
unsigned numbers are of type real, the logical values true and false are of
type bool. As a consequence we have only real and Boolean variables, no integer
variables. For more clarity we use ref real and ref bool as declarators for real
and Boolean variables and not real and bool. The types of constants remain
real and bool. :

f) We exclude arrays, subscripted variables, switches, and switch designators.
Only identifiers, no unsigned integers are allowed as labels in front of label
colons and as designational expressions behind goto.

g) The operators in arithmetic or Boolean expressions are 4, —, X, [, +,
<, <, =, 2,>, %, 7, A, v, D, =, if then else. We further allow abs, sign,
entier as unary prefix operators with their conventional meaning. The power
operation 1 and standard functions as sin, cos, etc. are excluded in order to
avoid irrational numbers as results of operations.

h) We do not allow multiple assignment statements.

1) The input/output statements allowed are inreal g, outreal g, inbool 3,
outbool 8 where ¢ and § stand for real resp. Boolean variables.

j) In ALGOL 60-P we have no specifiers and the specification parts of procedure
declarations are empty. In ALGOL 60-PL/1 the only specifiers allowed are refreal,
ref bool, label, and proc. For ALGOL 60-SF and ALGOL 60-68 the formal
parameters are given later in Definition 3. Restricted to programs with para-
meterless procedures all four languages are the same.

III. Syntactical and Formal Programs

We assume we have unambiguous context free grammars ®p, ®p;)1, Gsp, Ggq
for ALGOL 60-P, -PL/1, -SF, -68 which are mere modifications of the grammar
presented in the ALGOL 60 Report. Ambiguities still existing in the Report may
be assumed to be remedied.

Definition 1. A syntactical program I7 is a string of basic symbols (terminal
symbols) which can be reduced to the axiom ({program) by the formal rules
of the respective grammar.

The property to be a syntactical program is decidable. By the help of a
reduction sequence R from /7 to {program) we can define which substrings
in IT or {more exactly) which occurrences of substrings in IT are called blocks,
procedure declavations (simply procedures), and procedure bodies. E.g. a substring
is called a procedure declaration if it is reduced to the non-terminal symbol
{procedure declaration} within a reduction sequence R from IT to {program}.
Because of the unambiguity of the grammar the definition is independent of the
reduction sequence R chosen.

3 Acta Informatica, Vol. 2

114 H. Langmaack:

We consider as blocks not only proper blocks but also the whole program [T,
procedure bodies, and so called extended procedure bodies. Extended bodies are
extended by the formal parameter and specification part, while the declarator
proc and the procedure identifier are excluded. Example:

proc P(X,Y); refreal X; refreal Y; {X:=Y}

—————

procedure body

extended procedure body

procedure declaration or procedure

In a similar way we can define which substrings in /T are identtfiers, arithmetic
expressions, Boolean expressions, assignment statements, procedure statements etc.
All these sets of substrings are decidable.

A syntactical program /7 can also be considered to be a string
nm=zz,..2,

where the symbols Z; are delimiters, constants, or identifiers. If Z, is an identifier
then we denote by (7, Z,) the occurrence of the identifier Z; in the program /=
2,2, ...2Z,. Occurrences of identifiers are defining or applied. Identifier occurrences
in specification parts of procedures are ignored because they are redundant, in
principle. It is well known how to establish in an ALGOL 60 program /7 a relation
é between an occurrence (4, Z;) of the identifier Z; and a defining occurrence
(7. Z) withZ;,=Z_.

Definition 2. A syntactical program /7 is called formal, if the relation 4 is
a function, totally defined on the set of all occurrences of identifiers in /1.

The property to be a formal program is decidable and é is a computable
function. If (z, Z;) is an occurrence of the identifier Z; then 8(1,Z,)=(7,Z,) is
called the assoctated defining occurrence of this identifier. (¢, Z;) is also called a
bound occurrence, bound by (7, Z,). If we restrict 4 to a block f in /I then § is
still a function, but not necessarily totally defined. If (¢, Z;) is an occurrence
in B and 48(f, Z,) is undefined in B, i.e. 6(, Z;) occurs outside 8, then (i, Z) is
called a free occurrence of the identifier Z; in 8.

Identifiers in a formal program /] may be renamed. Then II-=2,Z,... Z,
becomes [T=2,Z, ... Z,. A renaming is called admissible if 1T is a formal program
and if for all occurrences (i, Z,) of identifiers in /T pr,(8(:, Z)))=pn(8(i, Z,))
holds. p7, is the first projection with pr,(j, Z;) := j. Two formal programs are
called identical if they differ only by an admissible renaming of identifiers. A
formal program is called distinguished if different defining occurrences of identifiers
(¢,Z;)# (7, Z;) are denoted by different identifiers Z;4Z;. It is clear that in
every class of identical formal programs there exists at least one distinguished
program. All these properties defined above are decidable.

IV. Compilable Programs

In this section we should like to define, when a formal program is called to
be correct with respect to compilation or simply compilable. Informally, we mean

On Correct Procedure Parameter Transmission in Higher Programming Languages 115

by this that any applied occurrence (z, Z,) of an identifier, bound by the defining
occurrence 8 (s, Z;) =(f, Z;), is applied appropriately according to the definition.

We assign modes 0o to occurrences of certain substrings ¢ in a formal program
11, and we do so at first for the language ALGOL 60-P. The possible modes are
real, bool, refreal, ref bool, label, proc 0, formal, proc(formal, ..., formal).
To every constant occurring in JI we assign the mode real resp. bool in the
natural way. To every defining occurrence of a non-formal non-procedure identifier
we assign the mode ref real, ref bool, or label, of a formal parameter we assign
formal, of a non-formal procedure identifier we assign proc 0 resp. proc(d§,,
..., 0&,), where &, ...,§,, v=1, are the formal parameters of the procedure.
The mode &(7, Z,) of any occurrence of an identifier is defined by the mode
20(¢, Z,) of the associated defining occurrence of the identifier.

The mode of any occurrence of a right hand expression of an assignment
statement or of a Boolean expression in an if clause is defined by induction
(In the further text we shall often drop the phrase “‘occurrence of’’). These
expressions may be thought to be constructed inductively with constants and
identifiers as atomic expressions, arithmetic, relational, logical operators and
if then else as function symbols, and (and) as brackets. Let «, §, p be expressions
with certain modes da, 8f, 9y if modes are defined.

Let w be a unary arithmetic operator.

real if Jx = real or =ref real or = formal

dwo:= {undefined, otherwise.

Let o be a binary arithmetic operator.

and 9y =real or =ref real or = formal

real if 0o —real or =ref real or =formal
daoy =
undefined, otherwise.

Tor relational and logical operators modes are defined analogously. Let % be
if § then o else y.

real if ¢8 = bool or =ref bool or = formal
and da =real or =ref real or =formal
and 9y =real or =ref real or =formal
P and not da = dy = formal
"1~ 1bool analogously, replace real by bool
formal if 98 = bool or =ref bool or = formal
and da = dy = formal
undefined, otherwise
real if da =real or =ref real
o) 1= bool if du = bool or =ref bool
"} formal if d« = formal
undefined, otherwise.

0 is a computable function with a decidable domain of definition. Now we define
for ALGOL 60-P:

3¢

116 H. Langmaack:

Definition 3. A formal ALGOL 60-P program [7 is called to be correct with
respect to compilation or simply compilable if the following five conditions hold:

1) For any assignment statement in /7
ai=y

where « is an identifier and y is a right hand expression the following equations
hold: '
da =ref real or = formal,

dy =real or =ref real or = formal

or analogously with bool instead of real.

2) For any goto statement
goto«

where « is an identifier one of the equations

da = label or = formal
holds.

3) For any procedure statement
presp. oy, ...,), »=1,
-where p, a,, ..., «, are identifiers one of the equations

dy = formal or = proc 0

resp. dy = formal or = proc{formal, ..., formal)

» times
‘with the same ¥ =1 as above holds.

4) For any Boolean expression f in an if clause of a conditional statement
one of the equations
éf = bool or = ref bool or = formal
holds.

§) For any input/output statement
inreal g, outreal g, inbool §, outbool §
¢ and 8 are non-formal identifiers with
29 =ref real and 38 =ref bool.

The property to be a compilable ALGOL 60-P program /[is decidable. Our
example program /7' in ALGOL 60-P is compilable as may be checked easily.
Conditions 1)-5) are a precise formulation of the phrase ‘‘appropriate application
of identifier occurrences”’

The definition of the mode function ¢ for ALGOL 60-PL/1 changes in one
respect only: The possible modes for formal parameters are ref real, ref bool,
label, proc. Remember that we admit only identifiers as actual parameters.

On Correct Procedure Parameter Transmission in Higher Programming Languages 117

The further definition of @ is exactly the same as for ALGOL 60-P. Because of
the missing mode formal the definition could be formulated even simpler here.
In Definition 3 only condition 3} is ‘‘strengthened’:

3) For any procedure statement

presp.pla, ..., q), »=21,
one of the following equations holds:
dy = proc or = proc 0
resp. dy = proc or = proc (94, ..., 9§,)
with the same » =1 as above where &, ..., &, are the formal parameters of ¢
and where for t=1, ..., » the following implications (s) are true:
0§, proc 9%, =odua,
0§, = proc > dua, is a procedure mode
proc 0 or proc(...) or proc.

The property to be a compilable ALGOL 60-PL/1 program is decidable. Our
example program I7* in ALGOL 60-PL/1 is compilable. The modes of the actual
parameters A, P are ref real, proc(ref real, proc) and of the corresponding
formal parameters X, Q are ref real, proc so that the implications («) are true.

The definitions for ALGOL 60-SF deviate from those in ALGOL 60-PL/1
only in the following respects: The possible modes for formal parameters are
ref real, ref bool, label, proc0, proc(y,, ..., u,), where gy, ..., u,, ¥ =1, stand
for ref real, ref bool, label, or proc. Condition 3) in Definition 3 is strengthened
further:

3) For any procedure statement

yresp.y(a,...,s), =1,
the following equation holds:

Oy = proc 0 resp. oy = proc(y,, ..., u,)
with the same »=1 where g, ..., 4, are the modes of the formal parameters
of the non-formal or formal procedure identifier y and where for ¢=1,...,»
the following implications (x#) are true:
4, is different from any procedure mode>u, = éa,,
= proc 0>Ja, = proc 0,
=proc >9a, is a procedure mode,
o PFOC(y v,) 00— PFOE (o s)
with the same number » of parameters
and ji; = proc > ji; is a procedure mode
and fi; proc > ji; = pi; .
For short we may say that the modes da, and u, must not be contradictory.

The property to be a compilable ALGOL 60-SF program is decidable. Our
example program JI' in ALGOL 60-SF is compilable. The modes of the actual

118 H. Langmaack:

parameters X, P, A, P are ref real, proc(ref real, proc(ref real, proc)),
ref real, proc(ref real, proc(ref real, proc)), and of the corresponding formal
parameters are ref real, proc, refreal, proc (ref real, proc) so that the implica-
tions (*x) hold.

In ALGOL 60-68 the possible modes for identifiers are certain named trees.
For our purposes, a tree T may be conceived as a non-empty set of finite strings,
called nodes, over the natural numbers IN with the following properties:

1. T is closed under initial segment relation,i.e. if stisin 7 then sisin 7 also.
2. If tv with ¥>1 is in T then ¢(» —1) is in T also.

3. Any node ¢ in T has at most finitely many immediate successors {v in T
with »eN.

A node ¢ is called maximal (a leaf) if there is no immediate successor v in T
with v€IN. Non-maximal nodes are called inmner nodes. A mode lree is a tree,
the leaves of which are named by ref real, ref bool, label, or proc 0 and the
inner nodes of which are named by proc. It is clear that all finite mode trees
can be indicated in a 1 —1 manner by finite function terms, socalled fixed declarers,
generated by the calculus:

1) refreal, ref bool, label, and proc 0 are atomic fixed declarers (argument
symbols).

2) If gy, ...,0, v=1, are fixed declarers then proc(a,, ..., 0,} is a fixed de-
clarer, too.

The indicating function
Qx| {fixed declarers} % {finite mode trees}
is defined inductively:

1) Qe (ref real) := the single noded mode tree ref real etc. for the other
atomic fixed declarers.

2) Jge(procioy, ..., a,)) : = the ‘mode tree S () - e (0,)-
\ /
proc
E.g. the finite mode tree T
label proc0

Proco\\ref Irea'/ Pm

, proc
is indicated by the fixed declarer S5} (7T)
proc (procO, refreal, proc (label, proc0)).

Certain infinite mode trees can be indicated in a finite manner by the help
of the mode declarations as it is done in the ALGOL 68 Report. We transfer+his
method from ALGOL 68 to ALGOL 60-68: In an ALGOL 6068 program we
allow to write down a finite system of m =1 ‘“mode equations”

mode M, =1;;

mode M,,,z-r,,,;

On Correct Procedure Parameter Transmission in Higher Programming Languages 119

The 1-s on the right hand side are (variable) declarers with the mode indicants
M,, ..., M, as additional atomic declarers (argument symbols). Example:

mode M, = proc(ref real, proc(M;, M,), label);

mode M, = proc(proc 0, M;);
mode M, = proc(proc 0, proc(proc 0, M,));

We disallow a single mode indicant M, as a right hand declarer.

Any chosen indicating function 3, (M,)€{mode trees} for mode indicants
induces an extension
Jvar| {declarers} — {mode trees}

of Jg, on the set of all declarers. It can be proven that every system of mode
equations for the ““variables” M, ..., M,, has one unique system of mode trees
13, ..., T,, as its solution, such that the equations

Jvar (M1) = Tl =Jver (Ta)s

Vvar (M) =T,y =Dy ()

hold. The example equations above have the solution:

proco proc proco0 proc

proco0 proc proco proc

e wE e
! \ /

ref real /p;c/ label
proc

procO proc
Ty=T,= procO proc
proc

The mode 8(1, Z,) for a defining occurrence (¢, Z;) of a formal parameter in
an ALGOL 60-68 program I is that mode tree which is indicated by a (variable)
declarer the mode indicants of which occur in a system of mode equations as
described above. It is convenient to identify modes and their indicating declarers.
Then, the further definition of the mode function @ is the same as for ALGOL 60-P.
So we are able to introduce by finite means new and even infinite modes in an

120 H. Langmaack:

ALGOL 60-68 program. Algorithms which effectively detect the identity of
modes have been given in (5, 10, 12].

Condition 3) in Definition 3 is yet stronger compared to ALGOL 60-SF:

3) For any procedure statement

yresp.yloy, ..., o), v=1,
the equation
dy = proc 0 resp. dy = proc(day, ..., da,)

holds. Here we express that in ALGOL 6068 coercions are not involved in
parameter transmissions.

The property to be a compilable ALGOL 60-68 program is decidable because
the identity of modes can effectively be detected. Our example program /I' in
ALGOL 60-68 is compilable. The declarations of the actual parameters X, P, 4, P
are ref real, p, ref real, p and of the corresponding formal parameters are
identically the same, namely ref real, p, ref real, p.

The following example II* which we need later in Theorem1 and 5 and
Lemma 9 gives a further illustration of the notion of compilability:

begin proc D(x, y); px; q¥; { }:
proc M(x, y); px; qy; {x(»)};
proc M1(x, y); px; qy; {x(D)};
proc E(n); qr; {n(E, D, D, MD)};
proc (&, «, 8.7); p&;ra, B, y; {y (& E)};
M(E, E) end

where p stands for proc(proc), q for proc(proc, proc, proc, procj, r for
proc(proc, proc). This program I12 is written in ALGOL 60-SF where formal
parameters of formal procedures have to be specified. The program is compilable
and, consequently, also compilable in ALGOL 60-P resp. ALGOL 60-PL/1 if
we drop all specifications for formal parameters resp. parts of them. But the
formal parameters cannot be specified in such a way that the program becomes
compilable in ALGOL 60-68. Otherwise, the following equations for modes
would hold:

(1) 9E =ox™ because of M(E, E)
(2) on=0ay" because of (1) and x¥ (y¥)
(3) 0E =oy™ because of M(E, E)
(4) on =0FE because of (2) and (3)
(5) oMl1=oy because of 5 (E, D, D, M 1) and (4)
(6) oM'=0¢ because of y (£, E) and (5)
(7) 9&=0E because of 7(E, D, D, M1) and (4)
(8) ox™M!'=0E because of (6) and (7)
(9) 9D =any because of (D) and (8)
(10) proc(ax°, 3yP) because of (9} and (4)

= proc{d¢, da, 98, dy).

On Correct Procedure Parameter Transmission in Higher Programming Languages 121

The last equation (10) is a contradiction. The superscripts M, M1, D in x™, y¥,
xM1 M1 4P 4P have been written for better distinction.

We should not suppress the following remark concerning our definition of
correctness with respect to compilation. The definition is based on a sort of
local definition of appropriate application of identifier occurrences. If we would
demand that the compiler should in addition trace all parameter transmissions,
then the compiler could easily detect for this special program 7% that at run
time the execution will lead to a wrong procedure call where actual and formal
parameters do not harmonize:

‘ M(E, E)
E(E)
E(E,D,D, M1)
MI(E, E)
E(D).
In ALGOL 60-SF the execution of [12 must stop here, because 7 has the mode q
whereas D has the mode r with a different number of parameters. In ALGOL 60-
PL/1 or -P the execution goes one step further:

D(E, D, D, M1).

The procedure declaration D has two formal parameters whereas the procedure
statement D(E, D, D, M1) has four actual parameters so that the execution
must stop. ‘

On the other hand it is a crucial question whether we can fairly expect that
a compiler performs tracing of all parameter transmissions. A compiler is an
algorithm which among many other tasks has to give an answer ‘‘compilable”’
or ‘‘not compilable” for any submitted formal ALGOL program in a finite time.
The tracing of parameter transmissions where all possible input data, all inter-
mediate results, and all conditional statements must be taken into consideration
is an algorithmically unsolvable problem: For we can easily prove

Theorem 1. There is no algorithm which for any given compilable ALGOL 60-P,
-PL/1, or -SF program IT states whether there is a finite sequence d of input
data (rational numbers or truth values) such that the execution of II applied
upon 4 will stop with a wrong procedure call.

In other words: It is undecidable, whether any compilable ALGOL 60-P,
-PL/1, or -SF program IT has actually occurring incorrect parameter transmissions.
The proof is standard and straight forward. Nevertheless, we present it here
explicitely in order to show that we need different and more sophisticated
techniques when we discuss the concept of formally correct parameter trans-
mission later.

0 0 1 1 0 1 1 0} O 0

122 H. l.angmaack:

Proof. Let us consider a one tape Turing machine M over the alphabet 0, 1

with m =1 internal states S,,..., S,,,. The associated program table has 2m,,
rows and four columns.

S, 0 q S,

S, 1 a S

Ha

Sm,w 0 a2m'—l S/“lm,u—-l
Sy 1 dopy, Sti2.my

The S, are internal states, the q; are instructions print 0, print 1, go left, go right,
or stop. It is well known that there is no algorithm which for any given Turing
machine M and internal state S,, proves or disproves the statement: If M is
started in state S, and applied upon the empty tape (filled with zero digits
only) then M will reach the state S, .

Now, we effectively construct for any given pair (M, S,,) a compilable
ALGOL 60-SI' program /1™,
begin ref real fape;
procD(x,9); ...;
proc £ (&, o, B,); ...;
comment The procedure declarations are the five procedures D, M, M1, E, E
of program [1%;
lape =0,
goto S;;
comment Now there follow conditional statements associated with the internal
states S,, v=1, ..., vy —1, vy +1, ..., My,

S,: if tape — (énfier tape) < 0.1 then
- {dummy statement); if a,,_, =print0

tape :=tape +0.1; if ay,_, =print1
begin { tape : = tape[10; if ay,_; =go left
tape : = tape x10; if a,,_, =go right
goto STOP; if a,,_, =stop
goto S, , end
else
tape :=tape —0.1; if ay, =print 0
{dummy statement); if a,, = print 1
begin {tape:=tape/10; if a,, = go left
tape : = tape X 10; if a,, =go right
goto STOP; if a,, = stop

go!o S, end;

comment The following statement is associated with the internal state Sous
S,u: M(E,E);
STOP: outreal tape
end

On Correct Procedure Parameter Transmission in Higher Programming l.anguages 123

11 works independently of any input data and, in essence, simulates the actions
of the Turing machine M. The tape is represented by the real variable fape,
a tape content by a decimal fraction, e.g. the tape content of the figure above
by 110.11. The observed symbol is the digit immediately behind the decimal
point. It is obvious that the execution of /I applicd upon any input data
sequence d will stop with a wrong procedure call if and only if the Turing machine
M started in S, and applied upon the empty tape will reach the state S,,. So
there cannot be any algorithm which fulfills the task described in Theorem 1.
Q.ed.

After this negative resuit in Theorem 1, we can hope at best to get a positive
answer to the following problem: Does tracing of parameter transmissions become
an algorithmically solvable task if we allow the compiler to disregard all data
and conditional statements? This means more precisely: We do no longer con-
sider procedures to be closed subroutines and do no longer assume that the
execution of procedure statements is defined dynamically by dynamical applica-
tions of the copy rule. On the contrary, we consider procedures to be macros
or open subroutines and we assume that a program I7 with procedures is a textual
abbreviation of a program IT® without procedures. We shall call /T to have
formally correct parameter transmissions, if IT* is compilable (compare Definition 7).
This concept of formally correct parameter transmission is independent of any
execution of II, neglects all data and conditions, and disregards the relative
position of procedure statements within the main program or within the main
part of a procedure body. The main part of a procedure body is that part which
1s outside of all procedures declared within the body. We say these procedure
statements have ‘‘equal rights’’. In (4, 3, 6] there are algorithms which work
under this assumption, but they are only sufficient, i.e. their answers are correct
only if the answers read ‘‘the program has formally correct parameter trans-
missions .

Our proof of the undecidability of actually occurring incorrect parameter
transmissions uses quite essentially data and conditional statements. The proof
does not work if we would like to show the undecidability of formally incorrect
parameter transmissions because every program /7™ has formally incorrect para-
meter transmissions. Our problem now is that /T® is not finite in general.

V. Programs with Formally Correct Parameter Transmissions

Definition 4. A formal program /7 is called to be partially compilable if after
replacement of all procedure bodies by empty ones the resulting program /1, is
compilable in the sense of Definition 3.

Definition 5. Let /I be partially compilable. A program I{’ is called to result
from II by application of the copy rule (I1—11') if the following holds:

Let f(a,, ..., a,) be a procedure statement in the main program of 7/. Let

procf(x,, ..., x,);0;0;
specification| procedure
part| body

124 H. Langmaack:

be the associated procedure declaration . Partial compilability of IT guarantees
that the numbers » of actual and formal parameters are equal. We may assume
that I7T is distinguished. Then f(ay, ..., 4,) is replaced by a modified body o',
a so called gemerated block, where the formal parameters x; occurring in ¢ are
replaced by the corresponding actual parameters a;. So we get IT'.

IT: ...;procf(x,, ..., z,); 0,055 [ar, ..., a,); ...

T \\\ = S
~, ~ -
II': ...;procf(x,,.... x,);0;0; .8 o ~~~|;

poee

Starting from [I' we can easily construct an identical and distinguished
program [1"” if we rename all bound occurrences of identifiers in p’ which are
bound within o’ (local to @) by identifiers which do not yet occur in /7.

The body braces {} in ¢={p} become so called call braces in ¢’={g’}. Let
F and & be the transitive and transitive-reflexive closures of .

Lemma 1. If [T/ 11" then IT' is a formal program. e resp. = are irreflexive
resp. reflexive partial orderings in the set of formal programs.

IT' is not necessarily partially compilable even if I is generally compilable. The
programs IT3
begin ref real a;
procp(x, y); {g(%)};
p(a, p) end :
resp. .
begin ref real q;
proc p(x, q); ref real x; procg; {¢(x)};
#(a, p) end

fulfill the conditions of compilability in ALGOL 60-P resp. ALGOL 60-PL/1.
But the following programs IT*' with II*+—1II?' are not compilable, not even
partially:
begin ref real a;
proc (%, q); {g(»)};
{#()) end
resp.
begin ref real a;
proc p(x, q); refreal x; procg; {g(%)};
{p(a)} end

Specifications in the manner of ALGOL 60-SF do not help either: The program I7¢

begin (refreala;
procp(g); proc(proc) ¢; {g(r)};
proc f(x); proc(ref real) x; {x(a)};
procr(y); ref bool y; {y:=1true};
#(f) end

On Correct Procedure Parameter Transmission in Higher Programming Languages 125

is compilable, but progralh m
begin 4; {/(r)} end

with I7T¢—11*' is not partially compilable. On the other hand we can state the
following:

Theorem 2. If IT is a compilable ALGOL 6068 program and if 17 1T,
then IT" is compilable, too.

Proof. Let II+1II'. By Definition 5 all formal parameters x; occurring in g
are replaced by the corresponding actual parameters a;. As IT is compilable
in ALGOL 60-68, x; and a; have identical mode trees. Therefore, as the applica-
tion of x,; is appropriate in I/, the application of «; in /I’ must be appropriate,
too. Q.e.d.

In the other languages this conclusion fails as in spite of compilability of 17,
%; and a; do not necessarily have identical modes. In our example 74 ¢ has the
mode proc(proc), / has proc(proc(ref real)). These modes are not contra-
dictory, and they are not identical either. In I7¢' the modes of r proc(ref
bool) and of x proc(ref real) are contradictory.

The proof of Theorem 2 for ALGOL 68 instead of ALGOL 60-68 would be
more sophisticated because of the different parameter mechanisms and coercions
prescribed by the ALGOL 68 and ALGOL 60 Reports.

Lemma 2. If IT+II’, then the procedure call f(a,, ..., 4,) in II, mentioned
in Definition 5, is uniquely determined by 7, IT’.

Lemma 3. If a diagram

i
N
I7g /g

holds, then I’ and IT" are identical or we can find a program IT"" with

N
%

Hlll

if II' and I1” are partially compilable. An analogous lemma holds if we invert
the arrows.

Two sequences
-1 —..-—II,, and

14 s 1y
I v - 11,

wm',m' =0,

126 H. Langmaack:

are called to gemerale each other immediately if m’=m'" and if the programs IT]
and J1;" are identical for all indices ¢ but one index %, with 0<C4,<<m’. The relation
“‘gemerate each other’ is defined to be the equivalent (transitive, reflexive, sym-
metric) closure of the relation just defined.

Lemma 4. If
=1~ 1, =1" and

11 :ﬁo I—ﬁl e r—ﬁ;:[?'
then m ==# and both sequences generate each other.

Definition 6. Let // be a formal program where { and } are used only as body
braces. We call /7 an original program. Then

Ep:={IT'|IT* T

is called the execution of Il. Programs I1’ in Ej, different from /1, are called
generated programs.

For a generated program /I’ in E,; the following is true: In the main program
of 1T’ outside of any innermost call brace pair all applications of identifiers are
appropriate. Otherwisely I’ would not belong to E,. A program [I'€Ej is
maximal if and only if a) I1, (see Definition 4) is compilable and does not contain
any procedure statement or b} there is exactly one innermost call brace pair
in II, with an inappropriate application of an identifier or c) I7; is equal /I,
with an inappropriate application of an identifier. Maximal programs /7' in E
of category b) or c) are exactly those, which are not partially compilable. Let
II' € E be not partially compilable and different from /7, i.e. a maximal program
of category b). Then there is exactly one preceeding program p(II')€E, with
pUTY 1T,

E,, contains a trec T}; the nodes of which are exactly those programs in Ej
with at most one innermost call brace pair. We call T the execution tree of I1.
There is a bijection I}, from Ej; onto the set ¥; of all finite subtrees of T, which
contain as an element at most one program which is not partially compilable:

1-1
I”I E" onto %"'

The rumber of programs in Iy (I1") with II'€Ey, is given by the number of call
brace pairs in /I' plus one. If I1’ is I/ or partially compilable then

In(IT) ={I1"|IT" €T, ITE T2 1T
If 77" is not /I and not partially compilable let
JuIl) be {JT|IT €Ty, ITE ITE p(IT)}.
Then I, (I1') is J,({1’) added by one not partially compilable program /7" ¢1,
with [T 11", T maximal in J,;(IT’) where 1" results from /7 by the ‘‘same”
procedure statement which generates /1’ from p(IT'). I; has the property
e s I, (11") is a subtree of I, ([T},

subtree in the following sense: I, (7IT') < I,(II"") and if I, (i ”)a.ﬁ:.ﬁe]u(ll’)
then IT €I, (IT).

On Correct Procedure Parameter Transmission in Higher Programming Languages 127

Definition 7. An original program I is called to be formally correct with
respect to parameter transmissions or to have formally correct parameter trans-
missions if all programs in Ep; (or Tj) are partially compilable.

Lemma 5. If J7 has formally correct parameter transmissions then at run
time there is no actually occurring wrong procedure call.

Lemma 6. If IT has formally correct parameter transmissions then E; is a
distributive lattice isomorphic to the lattice T, of all finite subtrees of T;. I,
is an isomorphism.

Concerning programs /7 which have formally correct parameter transmissions
we may give the following remark: Compilable programs J7 without procedures
can be understood to be denotations for transformations Fj of finite data

sequences 4
Fg|{d} —{d}

where {d} is the set of all finite data sequences. In general, Fy is only partially
defined as IT applied upon 4 might end with an error message or might run
into an infinite loop. In these cases we say that Iy (d) is undefined. Let now IT’
be a program in Ej,. We alter IT” into IT’ by eliminating all procedure declarations
and by replacing all remaining procedure statements by

M: goto M.

I¥' is a program without procedures.

Now, if II'+—11" then Fj.< Fy.<={d} x{d}. Consequently, because Ej is a
lattice, the union

= U Fpe{dix{d}
Wekn

is a well defined transformation F}|{{d} —{d}. So a program I which has formally
correct parameter transmissions can be understood to be a denotation for the
transformation F}§ defined above (compare [1]).

VI. Programs without Global Formal Parameters

If IT 1T, then for all declarations A in I7 we have identical copies A’ in /1"
For all declarations 4 in the body p we have additionally modified copies A,
in o’ as parts of /I’ If]]:-I'I’, ie. I=IywIl,—--- —I1,=1I", n=0, then it
is now clear, how to define when a declaration A’ in IT’ is called a copy of a
declaration A in I1. Let IT be an original program and I1’, /1"’ programs in Ej
or Tp. Declarations 4’ in II' and A" in IT" are called similar if they are copies
of the same declaration A in /1. A simple inductive argument shows

Lemma 7. Let 4 be a non-formal identifier occurring within the procedure
body p of a procedure declaration ¢ of an original program /7 and let 4 have
a declaration 4. If ¢’ is a copy of ¢ in [1’, then d has been replaced within ¢’
by the identifier 4" of a copy A" of A. If the defining occurrence 84 stands
within ¢ then 64" stands within the body o’ of ¢', if §d stands outside p then
dd'’ stands outside o'

128 H. Langmaack:

Two nodes II' and /7" in Ty are called simalar if their innermost generated
blocks (they are enclosed in call braces {}) ¢’ and g’ differ by renaming of
identifiers and if renamed indentifiers have similar declarations. The number of
similarity classes for nodes in 7}, is limited by

M=P.-GF +1

where P is the number of non-formal procedure declarations, G is the number
of defining occurrences of non-formal identifiers, and F is the number of defining
occurrences of formal parameters in /7.)

For a given original program [/ we can effectively construct the smallest
subtree U of Tj; such that every maximal node in Uy is maximal in T or
has a different similar predecessor in U,. Paths in U} have a length of at most
M + 1 nodes.

Let (7, x;) be an applied occurrence of a formal parameter in program /1.
If (Z, x;) occurs in the body g of a procedure ¢ and if (s, »;) occurs outside ¢
then x; 1s called a global formal parameter of ¢. Example:

procp(x); {procg(y); {...x...y..}; ...}
% is a global formal parameter of ¢.

Theorem 3. If an original program /7 has no global formal procedure para-
meters then /7 has formally correct parameter transmissions if and only if all
programs in Up are partially compilable.

Corollary. For original programs Il without global formal procedure para-
meters it is decidable whether 77 has formally correct parameter transmissions
or not. .

Proof of Theorem 3. Let II’ be a program in Ty, and not in Up. Then there
is a maximal node /7’ in Uy with

=yl --+II,=1I", n>0, Il €Ty,

We show that all 77, are partially compilable and that for every I, there is a
different similar node I7, in Up. This assertion is at least true for IT,. Let it
be true for I7,_;, 0=» —1<n. Then there is a different similar node /7,_, in Uy.
If I, , is maximal in Up it cannot be maximal in Ty; otherwise, because of
the partial compilability, the innermost call brace pair of II,_, could not contain
any procedure statement which would contradict I7,_, —71,. So in any case there

is a different non-maximal node I7,_, in Uy similar to I7,_,. Both, I7,_, and

Il,_,, are partially compilable. Let
flay, ..., a,)
be the procedure statement within the main part of the innermost call brace

pair of /1, , which generates I7,. In /1,_, there is a corresponding procedure
statement

P,4)

On Correct P’rocedure Parameter Transmission in Higher Programming Languages 129

where },f, a,, a4y, ..., a,, a have sxmllar declaratlons f(a,, ..., a,) generates I’
in Up:

X =
I, _, IT'.

The declarations ¢ und.é» of f and f are (eventuaily modified) copies of one the
same declaration @ of 7 in {I. We have to check by which identifiers the global
paramcters 4, occurring in @, have been replaced in ¢ and f‘;} d is non-formal
by assumption. So, by Lemma 7 in both cases d has been replaced by identifiers"

having similar declarations. As a consequence the nodes I, and IT" are similar
and /1, is partially compilable, too. We have therefore proven that IT has formally
correct pArameter transmissions. Q.e.d.

The following example /1% of an ALGOL 60-P program with global formal
paramcters shows that the assumption in Theorem 3 is essential:

begin (proci(u); {u(m, u)};
procm(p); {g:=¢};
Mprocj(x,5);
{procq(v); {x(»)};
procp(u, v); {g(v)}; ¥ (m, $)};
f(t. f) end

x is global formal parameter of procedure g. /1° has the following trees Uy and Ty

11° =begin 4;
f{ f) end
T

{Procq(v RUCGIHE ,
proc p'(w’, v'); {g'(w")}; f(m, §')} ...
T

- {procg”("); {m(")};
proc ?’ (u v")i g" (")} p0m, p7)} -

. {q'('p")} e
T .

) - _
T similar nodes

AP m,)
T

Uy 1, == :{_‘1”(1’”)} T

[T = - {m(g")} ...

M= {p" ="} ...

All programs in Uy, are partially compilable, nevertheless, /T has incorrect para-
meter transmission as in /1, " is not applied appropriately. The argumentation

9 Acta Informatica, Vol. 2

130 H. Langmaack:

in the proof of Theorem 3 fails here because the global parameter x of ¢ has
been replaced by /in ¢’ and m in ¢”’, where / and m do not have similar declarations.

VII. Formally Equivalent Programs
In order to solve our decision problem for formally correct parameter trans-
missions we now might ask the following question: Is there an algorithm which
transforms any program into an equivalent program without global formal
parameters? Equivalence must be defined in such a way that it is invariant
with respect to formally correct parameter transmissions.

Let 17 be an original program. Let E, resp. T, be the execution resp. execution
tree of I1. We form for any program II'€E, the associated main program II,,
by elimination of all procedure declarations and we replace every remaining
procedure statement in 7, by a special symbol, say call, and term the result
the reduced masn program IT, of IT'.

Definition 7. E,y:= {II,|II'€E,} is the reduced execution of II. T,p:=
{II,|II' € T} is the reduced execution tree of I1.

T,y consists of exactly those reduced programs which contain at most one
innermost call brace pair. The existence of not partially compilable programs
in Tj; can be recognized in 7, alone: '

IT' in T, is not partially compilable 3%

1) IT, is maximal in T, , and

2) the innermost call brace pair of II, has an inappropriate application of
.an identifier or contains a call-symbol or T, =11, has an inappropriate application
of an identifier or contains a call-symbol.

If we define now

Definition 8. Two original programs are called formally equivalent if their
reduced execution trees are identical.

we can prove

Theorem 4. Let the original programs [I;, and II, be formally equivalent.
Then II, has formally correct parameter transmissions if and only if I7, has
formally correct parameter transmissions, too.

In Definition 8 of formal equivalence of programs the term ‘‘reduced execution
tree” could be replaced by ‘‘reduced execution’ as the reader may prove. If
two formally equivalent programs II, and I7, have formally correct parameter
transmissions, then they define the same transformation Ff =Fy.

VIII. Undecidabilities

We tried to construct algorithms which transform every ALGOL-program
such that 1. global formal procedure parameters are eliminated and such that
2. the transformed program is formally equivalent to the original one. But all
these constructions failed because for each of them we finally found example
programs which did not fulfill the desired conditions. Therefore, we were led

On Correct Procedure Parameter Transmission in Higher Programming Languages 131

to the conjecture that our decision problem on formally correct procedure para-
meter transmission might be unsolvable, in general. We will now attack this
conjecture by the help of Post’s correspondence systems. Such a system has
two alphabets

 UA={4,B}, A=+B,

A={4,B}, A=+B, U A=0.
So we have an isomorphism
1-1r =

Tl g

onto
- which we continue to

‘%* _Tw) ﬁ*=ﬁ;

We consider a production system
P={yn=(c1,¢)=(Cy...C1p, 611--- ¢ i

Vm = (le Em) = (le Cmn,,.» le . ém;n)}

C,; €Y, C,;e¥
ec,€UA*, e3C,cA*
n, =1, n,=1, m=21.
Definition 9. €=(, %, I') is called a correspondence sys:e}n of Post.

with

We consider non-empty sequences of indices 4,, ..., 7, with r=1, 1<7,<m.
Definition 10. A non-empty sequence of indices is a solution of €: 3%

c,»l...ci'=c,-l...c,-'.

Post’s Theorem. The property ‘€ has a solution” is undecidable; in other
words: Post’s correspondence problem is unsolvable [8].

For any given correspondence system € of Post we will now effectively con-
struct a compilable ALGOL 60-P program Ilg which fulfills the following

Lemma 8. € has a solution 3% Iz has not formally correct parameter trans-
missions.

As a consequence we have

Theorem 5. It is undecidable whether a compilable ALGOL 60-P program I7
has formally correct parameter transmissions.

For given € we construct program Ilg.

begin

comment The first part of I/ is identical for all §;
proc D(x,%); {};

proc M(x, v); {x(y)};

proc M1(x, y); {x)}

proc E(1); {1(E, D, D, M1)};

proc E(£, «, 8,7); {r ¢ E)};

g

132 H. Langmaack:

comment The second part of /g is different for different €. For cvery 7§,
1572 m we have a procedure L;. Within I; we have procedures C;y 1}, ..., Cinlnji
corresponding to the letters C;; in ¢; in the production y, =(c;, ¢,). We have
additional procedures C,,H [é,;,,| n,| corresponding to €. As the letters €
and C,;, ¢+-¢ might be the same (4 or B) we have to distinguish them bv
indices [¢] | [{');

proc 1;, (% 9);
{proc Cil1] (), {(x, <, 7‘~.'<C,l_>' D}
PFOC(,2[2]) {n(C /l|1|."1<Cj2>'37%2<C,2>. D)};

proc(,,,,,_lln,-* () (€l alm;—21,5,KC 0 %2XC Ly 00 DY
procC,,,,ln,'] (n): { (Chugrlm,— 11,6 <C;,. 55 1<C D, D)},
Proccn\“(f a f,y); {"3<C,x> (&

P"°CC,2|2 (& . B.7): {1 <C o> (&, Ci1D)};

Proc (/,..,- (7 1] B, 7);~{>¢3<C,~;1_.> (&, C,-.I,_zlf’, 2]}
Proccyql"] 5 o, ﬂ) {%(C,M) ¢, C,‘;,_l|f';"”)};
(lnyln] C []) L ((]vqln;’]r(;/n,l;lll);
M(C;,,in;]. C, [" e
‘comment x, (C;,>, x.z(C,;) are denotations for M, D if C;, ~A and
for D, M if C;;= B. %3<C;;> is a denotation for a if C;; = A and for
Bt ¢,=B;

L(E,E);....L (E F)end

Proof of Lemma 8. Any path in Tj; starts with a non-empty scquence of
calls of L;: L
| He¥ I, Py, il .

We describe the structure of the node /1,

o With 71,1 <4, < m. Let us denote
the corresponding strings

¢, ... C;,€A* and ¢, ... ; eU*

With yfp = (C"’, 5,9) 61' by
Dy...Dy and Dy...Djy
with D,e¥, D,;eq, N=n, +--- 4o, and N=i, 4 ...+, (N=1, N31). The
necessary renamings of identifiers in lg, , can be performed by raising the
discriminating indices [7] of
Cis[i] and Cjfs).
Compared with [1g [Ty, , has the following additional procedure declarations (#)

proc D11 (%); {7/(15,"1(1) >,%z<1)1>: D)}

proc DK (K] (m); {n (D21 1K ~1), 5, (DD, 5 (D>, D)} for K=2, ..., N

proc 91 [1 6: «, ﬂr)’ {%3 <DL> (5' E)l ~
proc Dy (K} (£, &, B, ¥); {xs<{Dx> (&, Dx—1 | K—11)} for K -2,..., N

On Correct Procedure Parameter ‘Transmission in Higher Programming Fanguages 13
J

The main part of the inncrmost call brace pair of I, , has the following
procedurc statements (+#)

{. i Ly(DyINY, DRINY; .. La(DyIN], DN M(Dy [N, D IND)}.

The proof for (#) and (##) can be given by a simple inductive argument. ”@,,,,,,,'
1s compilable. Therefore, the only chance to hit a maximal node on a path in
Ty is to call M for a first time. Repetitive calls of L; lead only to an infinite
pathin 7.

In a first casc we assume that there is a greatest number £ with

Under this assumption we have a path

He, , = {..; M(DyIN], DgIND} ...

T
A ADNIN| (DR INDY ...
T
o ADHIN T (Dy IN =11, {Dy>, 2D, DY} ...
...{M(I)N_TI!N--- 1, Dy, IN--1)} ...
T
which obviously can be prolonged to .
T

o AMDy. .y \IN =k A, Dy IN -h—1))}...

We put N=.N —h--1 and N=N —h —1 if h cxists. In the second case, where

~

& does not cxist, we put N=N, N =N. Now, we have the following cases
a) N=>2 Nz2
by N1, Nz2 .
o e and Dyt Dg
o Nz2 84— 24 Pvi Dy
d) N=1, N1
c) N-=1, N>2
fy N=2, N. 1} and Dy - Dg
g) N--1, N- 1]

and in any casc we can prolong

A M(DRINY, DRINDY ...
T
. ADRIN| (Dg N} ...

134

H. Langmaack:

Case g) means exactly that ,, ..., 4, is a solution of €. The other cases express
the contrary. Case g) leads to a node in Ty which is not partially compilable:

.
- AD 1] (E, %.<Dy), %2 <Dy, D)} ...
T

. {M(E, E)} ...
..{E(I?)}...
“méaaMmm
..{MIT(E, B}...
..{E(IT))}...

T
..{D(E,D,D, M1)}...

D is not applied appropriately. All the other cases lead to a maximal node with
a dummy statement between the innermost call brace pair:

case a)

case b)

case ¢}

case d)

T

ADGINY (Dy_ (N —11, ;4 <Dg), %,<Dg>, D)} ...
T

AD Dy [N —1], Dg_, [N —1)} ...

T

o e

T

. ADg[N1(E, % <D,>, #3<D,>, D)} ...
T

.{D(E, Dg_,[N —1])}...

T

o }ooo

T

AD (1] (Dy_1 [N —11, %, (D>, % <Dy), D)} ...

T
o AD(Dy_1 [N —1], E)} ...
T
A).l
T
{Dl“](E!x1<Dl>x”2<D1>»D)}
T
.{D(E,E)}...
T

N SR

On Correct Procedure Parameter Transmission in Higher Programming Languages 135

case e) T
. ADGINT (E, %,<Dy>, #3<Dy>, D)} ...
T
AM(E, Dg_ [N =11} ...
I _
AE (D, 1N —1])} ...
T
.ADg_,[N —1](E, D, D, M)} ...
T
ole Eif N—1=1
{ (’b,s_,[zx"r—z]ifﬁ—@z)}“'
.
A 1
case f) T
- AD, (1] (Dy=1 [N —1], %, <Dig>, %, <Dyg», D)} ...
T
AM(Dg_[N =11, E)} ...
T
. ADy_, [N =11 (B)} ...
T
Eif N —1=1
.. {E (Dﬁ_,[N—Z] if 1\\:’_122, x1<Dﬁ_l>, x,(Dﬁ_q), D)}
T
E
"{D(OrDﬁ_z[ﬁ—Z]'E>}”'
T
A }...

We see therefore that T, has a not partially compilable node if and only if there
is a solution 4;, ..., 7, 0of €. Q.ed.

If we compare the proofs of Theorem 1 and Lemma 8 we see that the con-
structions and argumentations are quite different and that in Lemma 8 procedure

statements and parameter transmissions play a much more important role whereas
data and conditional statements do not and cannot play any role.

For better illustration we construct [T for a concrete correspondence system €
with
I'={n=(a&) =(B4, ?)'
ye = (¢a. &) = (B, 4 B)}.
¢ has the solution 1, 2 as
t,6,—BAB=BAB=55,
(case g)) whereas e.g. 1 is no solution as

&6 =BA+B=¢,

136 7 H. Langmaack:

(case c)). The second part of I looks as follows:

procL,(x, ¥);

{proc B|1] 1/) {n(x, D, M, D)},

proc A[2] (n); {n(B[1 J M, D, D)};

ProcBH & o B, y); {BE)}

Ly(4(2), B|1]); L(4]2], B(1]); M(4]2], B)}

procL,(x, y)

{proc B[1](n); {n(», D, M, D)};

procA[1] (£ o B, 7); {«(& ¥)};

proc B(2] (£, a, B, v); {B(5 Al”}

_ Ly(B[1], B2]); L,(B[1], Bl2)); M(B[1], B[2))};

L,(E, E); L,(E, E) end

A subtree of Ty is:

g =.--L(E E)...
T
—Ilg, =---{proc B(1](»); {n(E, D, M, D)};

proc 42} (y); {n(B[1], M, D, D)};
procBMl(E o, B.7); (B E)}:

Ly(A[2), B1)); Ly(A[2], Bl1]); M(A[2], B[1])} ..

T

= Ilg,=---{proc B|3] (n); {n(4|2], D, M, D)};
proc A (2] (¢, «, B, 7); {a(&, B[1])};
proc B|3] (&, a, B, 7); {f(£, A[2])}; _
Ly(B[3], B[3]); L.(B (3], B131); M(B[3], BI3))} ---

T
—Ig, =---{...; M(4[2), B{1})}... ...{B3] (Bm)}
T
L AARIBHD} - ...{Bl}](Alzj D, M, D)}...
T T
. AB1)(B1],M,D,D)}... ... { (4[2]), 412))} -
T T
..{D(B1),E)}.. L AARIARDY .-
T T
oA). L AARIBI1), M, D, D)} .
partially compilable T
L AMB, B} ..
T

L ABMBIY ..
T

L ABN)(E, D, M, D)} ...
T \

AME E)} ...

AER)Y.

—1--‘—1

On Correct Procedure Parameter ‘Transmission in Higher Programming Languages 137

AE(E. D, D, M} ...
T
AMIE, B} ...

T
AED)} ...
T

L ADE, D, D, M)} .
not partially (mnplhl)h,

The constructed programs //¢ remain compilable in ALGOL 60-5S1° if we add
appropriate specifications. All formal parameters x, & get the mode proc(proc),
v, 1 get proc(prac, proc, proc, proc), «, fi, vy get proc{proc, proc). Lemma 8
remains truc. The only difference in the proof is that inappropriate application
of D reveals already in

AEDY .

AD(E, D, D, MD)} ...

so that

cannot be a successor.

Theorem 6. 1t is undecidable whether a compilable ALGOIL 60-51° (or
ALGOL 60-PL.f1) program J/ has formally correct parameter transmissions.

On the other hand, it 1s impossible to wdd appropnate specifications such
that all I7g become compilable ALGOL 60-68 programs and Lemma 8 remains
true. If so then because of Theorem 2 there would not exist any solvable cor-
respondence system. We can even prove directly for every //g:

Lemma 9. It is impossible to add appropriate specifications such that /g
becomes a compilable ALGOL 60-68 program.

Proof. 1f the contrary would hold we had the following equations for modes:

OFE = 0xh = 0C,,, [ny] = 9xM

UE — ayL‘ — aCl”‘lﬁl] o- ?)yhl} because of L (r l') Ll (Clu l"’l]» 1

ERECY)
and M(Cy,, im], C,).
As a consequence we can show up an equation

proc(0LE, ook, OBE, 997y = proc(dx?, dy")
as we have done for the program //2 in Section 1V. Contradiction! Q.c.d.

Concerning Theorems § and 6 the following remark is usefull: It is not satis-
fying that the exccution of any program /g applied upon any data sequence d
runs into an infinite sequence of calls of procedure L, and never stops with an
error message, say a wrong procedure call, although some programs [/ do not
have formally correct parameter transmissions. The reader might suspect that
the undecidable property of having formally correct parameter transmissions has
little to do with real programming and real program execution. This is not truc.
Every program /lg can he augmented to a compilable program 77§ by the help
of appropriate input statements, conditional statements, Iabels, and goto state-
ments such that /7§ has the following property: /g has not formally correct

138 H. Langmaack:

parameter transmissions if and only if JI§ has not formally correct parameter
transmissions and there is simultanously a data sequence 4 such that the execution
of 11§ applied upon d stops with a wrong procedure call (in other words: 11§ has
actually occurring incorrect parameter transmissions). So by Lemmas 5 and 8
and Post’'s Theorem we have another proof of Theorem 1.

IX. Application of the Proof Methods on other Problems

Theorem 7. There is no general algorithm which transforms any original
program into a formally equivalent one without global formal parameters.

Proof. If there would be such an algorithm then because of Theorems 3 and 4
we would have a general decision process whether a compilable ALGOL 60-P
program has formally correct parameter transmissions or not. This would con-
tradict Theorem 5. Q.e.d.

Theorem 8, It is undecidable whether two original programs with formally
correct parameter transmissions are formally equivalent.

Proof. For every € we construct two different programs I7¢ and 71§. For 1}
the body {x (D)} of M1 in IIg is replaced by { }, for IIg by {refreal A; A := A +1}.
I71§ and I1¢ are formally equivalent if and only if € has no solution. So formal
equivalence of ALGOL 60-P programs is undecidable. This is true even for
ALGOL 60-68 programs (and consequently for ALGOL 60-SF and ALGOL 60-
PL/1): For all formal parameters %, & we have to add the mode indicant a,
for y,n we add b, for «, 8, ¥ we add ¢ with the following system of equations

mode a = proc(b);
mode b =proc(a, ¢, ¢, c);
mode ¢ = proc(a, b); Q.ed.

In the proof of Theorem 8 there necessarily occur infinite modes as the
following equations must hold:

8Cy,, [m] =proc(proc(9C; ,, 1 [m —1], ..., ..., ...))
aC,, 1] -—.—proc(proc(ax"!, iy e)
So we have
8Cy,, [m] =proc(... (proc(axt, ..., ..., ..)..)
21, = 2 times
=proc(... (proc(dC,,], ..., ...,...) ...),

an equation which cannot be fulfilled by finite modes alone. Therefore, we
formulate the

Conjecture. Formal equivalence for ALGOL 6068 programs becomes decidable
if we restrict ourselves to programs with finite modes.

Definition 11. A procedure ¢ in an original program I7 is called formally
reachable if there is a node I’ in T, whose innermost generated block is the
modified body of a copy of ¢.

On Correct Procedure Parameter Transmission in Higher Programming Languages 139

Theorem 9. It is undecidable whether a procedure @ in an original program
with formally correct parameter transmissions is formally reachable.

Proof. M1 in I1§ (see proof of Theorem 8) is formally reachable if and only
if € has a solution. This is true for all four languages. Q.e.d.

Definition 12, A procedure ¢ in an original program /1, is called formally

recursive if there are two different generated programs /7' 11" in T, whose
innermost generated blocks are modified bodies of copies of . ¢ is called strongly
formally recursive if there are programs O~ 20" " in Ty, a copy @'
of @ inJT’, and an identical copy §" of §’ in IT", such that the innermost generated

block of II' is a modified body of @’ and the innermost generated block of /1"
is a modified body of ¢".

Theorem 10. It is undecidable whether a procedure in an original program
with formally correct procedure parameter transmissions is formally recursive
resp. strongly formally recursive.

Proof. In II§ we replace the body {ref real 4; 4:= A+1} by {M1(x, y)}
and we get JI¢. As M1 is a procedure, declared in the main program of II§,
M1 is formally recursive if and only if M1 is strongly formally recursive. M1 is
formally recursive if and only if € has a solution. This is true for all four languages.
Q.ed.

Concerning Theorems 9 and 10 we have the analogous conjectures as the one
formulated above.

Conjectures. Formal reachability, formal recursivity, and strongly formal
recursivity of procedures in ALGOL 60-68 programs become decidable if we
restrict ourselves to programs with finite modes.

By application of proof methods similar to those of Theorem 3 we may prove

Theorem 11. For programs without global formal procedure parameters it is
decidable whether a procedure is formally reachable, formally recursive, or
strongly formally recursive and whether two programs are formally equivalent.

X. Not Strongly Formally Recursive Procedures

The difference between formally recursive and strongly formally recursive
procedures is important for compilation techniques, because those procedures
which are not strongly formally recursive allow a simpler implementation than
others. E.g. it is not necessary to reserve index- or displayregisters for them if
the well known display method is used as an implementation method for pro-
cedures. Fixed storage places for simple and auxiliary variables local to a not
strongly formally recursive procedure can be reserved among the fixed storage
of the statically surrounding procedure so that we need an indexregister at most
for this larger procedure.

If we conceive blocks as procedures without parameters called on the spot,
then blocks are not strongly formally recursive. Not strongly formally recursive
procedures can be handled like blocks.

140 H. Langmaack:

Generated procedures, generated by the compiler as a substitute for complex
expressions as actual parameters of procedure statements, may be lormally
recursive but are not strongly formally recursive. lig.

A BI21, X)L

has the compiled form
...; begin real procG; {1 | B|2]}; P(G, X) end; ...

See [3], p- 119, where this special property of generated procedures is exploited
in an ALGOL 60 compiler.

It is possible to handle for statement with two for list elements
for i : — A step I3 until C, 1 step 13 until C do S
as if two for statements

fori:. A step I until C do S;
for i:— .1 step 3 until C do S

with identical controlled variables and controlled statements were given. Here
the compiler is allowed to gencrate a procedure which is not strongly formally
recursive:
begin
procs; {S};
for i::- A step I3 until C do s;
fori:— A step I3 until C dos
end
The blocks and the generated procedures are not strongly formally recursive

because of the following

Theorem 12. A procedure ¢ without parameters whose identifier f occurs
only in the main part of the procedure body (or in the main program) in which
the procedure is declared is not strongly formally recursive.

Proof. Let ¢ have the form
proc/; {¢}
declared in the main part of the body of procedure y in //:

I1: ---procg(x, ..., x,); {...procf;{o};...} ...

aY

e

Let us have a look at a path in the execution tree 7g

O 1 =2

‘We may assume that all programs /1¢ are distinguished and that successive
programs e

are literally identical with the exception of that procedure statement in /1°
which is replaced by a modified procedure body in order to give /7°''. So, every

On Correct Procedure Parameter Transmission in Higher Programming Languages 141

declaration A in [1* occurs also-in /17 for j74 and there is a smallest number 74
such that the declaration A occurs in /1. We call /1* the associated program
of A and of the identificr of A.

Let the path have a node 11 generated by a call of acopy ¢ of thc procedure
. Then, the path from /1% to 11" has a structure

e ...procg(x, ..., x,);{...procf; {p};

T=* .
1 - procg'(xy, ..., v,); {...proc s {g'};
p
T* . e
s g (ay, a0
e - Ao procf’; {07} .. b
—
o
on
T*
F 7 R {...;]‘”; }
T

His—..o... {--- AOm); e [IEETREER

11" is obviously the program associated to ¢ and to /. As (p" has no p(lramctcr%
the associated program of any identifier 4 occurring in g, is /1* with ©:Z4, or
1221, Furthermore, 4 is different from f by assumption.

N let ' ’
ows ¢ hiay, ..., a,)
De a procedure statement in the main pdrt of g,y and let /751t rcsult from I
by a call of ke(ay, ..., ay):

[
= h(ay, ..., ap); .o}
T
II"-Il—r:...{ % P S W

Any identilier 4 occurring in g, has an associated program I/* with =<1, or
122145, as we can casily sce. Furthieron, A cannot be equal to 7. Otherwise,
& would be the identifier of a procedure declared within Y, parallel to ¢ and
~would occur in the body of A. This is impossible by assumption.

Iterating this argument we sce that ¢’ is never called a second time in the
path. So ¢ is not strongly formally recursive. Q.e.d.

In the literature it is sometimes proposed to handle the blocks and generated
procedures as if they were general procedures. This simplifics the whole trans-
lation and interpretation process, in principle. In favour of gencrating cfficient
object code procedures which are not strongly {ormally recursive should be
processed differently. Unfortunatcely, Theorem 10 says that there does not exist
any general algorithm which figures out exactly these special procedures. There-
fore, theorems like Theorem 12 have a great importance for compilation tech-
niques.

142 H. Langmaack: On Correct Procedure Parameter Transmission

XI. Concluding Remarks

In a certain sense ALGOL 60 programs with procedures may be considered
to be a sort of macro grammars which have been studied in the literature. In
view of the results in [2], Theorem 9 looks surprising. In a further paper on
elimination of global parameters and on normal forms for programs with pro-
cedures we shall investigate similarities and differences between programs and
macro grammars [13].

The author should like to thank Prof. G. Hotz for many discussions, Dr. H. Feld-
mann for some hints, and the referees for their valuable critical remarks.

References

1. De Bakker, J. W., de Roever, W. P.: A Calculus for Recursive Program Schemes.
MR 131/72, Mathematisch Centrum Amsterdam, February 1972.

2. Fischer, M. J.: Grammars with Macro-like Productions. Report No. NSF-22.
Math. Ling. and Autom. Translation. Harvard Univ., Cambridge, Mass., May 1968.

3. Grau, A. A, Hill, U., Langmaack, H.: Translation of ALGOL 60. Handbook for
Automatic Computation. Vol. I, Part b. Berlin-Heidelberg-New York: Springer
1967.

4. Hawkins, E. N., Huxtable, D. H. R.: A Multi-Pass Translation Scheme for
ALGOL 60. Annual Review in Automatic Programming. Vol. III, 163-205.
Oxford: Pergamon Press 1963. R

5. Koster, C. H. A.: On Infinite Modes. ALGOL Bulletin No. 30, 86-89 (1969).

6. Ledgard, H. F.: A Model for Type Checking. Comm. ACM 15, 956-966 (1972).

7. Naur, P. (Ed.) ef al.: Revised Report on the Algorithmic Language ALGOL 60.
Num. Math. 4, 420-453 (1963).

8. Pair, C.: Concerning the Syntax of ALGOL 68. ALGOL Bulietin No. 31, 16-27
(1970).

9. Post, E. L.: A Variant of a Recursively Undecidable Problem. Bull. Am. Math.
Soc. 52, 264-268 (1946).

10. Scheidig, H.: Representation and Equality of Modes. Inf. Proc. Letters 1, 61-65
(1971).

11. Van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A.: Report
on the Algorithmic Language ALGOL 68. Num. Math. 14, 79-218 (1969).

12. Zosel, M.: A Formal Grammer for the Representation of Modes and its Application
to ALGOL 68. Thesis, Univ. of Wash. 1971.

13. Langmaack, H.: On Procedures as Open Subroutines. Fachbereich Angew. Math.
u. Informatik, Univ. des Saarlandes, Bericht A 73/04 (1973).

Prof. Dr. Hans Langmaack
Fachbereich Angewandte Mathematik
und Informatik

der Universitdt des Saarlandes
1D-6600 Saarbriicken

Im Stadtwald

Bundesrepublik Deutschland

