
Acta Informatica 2, 110-- t42 (t973)
�9 by Springer-Verlag 1973

On Correct Procedure Parameter Transmission
in Higher Programming Languages*

Hans L a n g m a a c k

Received September 18, 1972

Summary. The paper starts with the observation tha t in ALGOL 60 no specifica-
tions for formal procedure parameters are prescribed, whereas ALGOL 68 demands
complete specifications. As a consequence, no ALGOL 68 program accepted by the
compiler can have wrong parameter transmissions at run t ime whereas ALGOL 60
programs may have them. The property of ALGOL 60 programs to have only correct
parameter transmissions obviously is undecidable if all data, conditional statements,
etc. have to be taken i n t o consideration (Theorem t) and i t is unfair to demand
tha t the compiler should decide tha t proper ty by a finite process. Therefore, we
investigate this question of decidabili ty under a much fairer condition, namely without
taking into consideration any da ta or conditions and by giving all procedure calls
occurring in the same block "equal r ights" (Section IV, p. t23). Even this fairer
problem turns out to be algorithmically unsolvable, in general (Theorem 5), but i t
is solvable as soon as the programs do not have global formal procedure parameters
(Theorem 3). Analogous answers can be given to the problems of formal equivalence
of programs and of formal reachability, formal recursivity, and strong formal recur-
s iv i ty of procedures (Theorems 8- t t). Procedures which are not strongly formally
recursive have great importance in compilation techniques as is shown in Section X.

I. Introduction

This paper deals wi th the quest ion .whether formal pa ramete r s of procedures
in high level p rog ramming languages should be specified or not. The s i tua t ion
is well known: I n A L G O L 60 no specif icat ion is prescr ibed, whereas A L G O L 68
demands specif icat ions for all formal parameters , even specif icat ions for the formal
pa rame te r s of formal procedures etc. mus t be given b y the programmer . PL / I
t akes a posi t ion in be tween: F o r m a l pa rame te r s of non-formal procedures mus t
be specified, b u t formal pa ramete r s of formal procedures cannot be specified.
This means prac t ica l ly t ha t PL[I in this respect is closer to A L G O L 60 t han to
A L G O L 68. For , when t rans la t ing a call of a non-formal or formal A L G O L 68
procedure the compiler is informed exac t ly about the specificat ions for all formal
parameters . Best possible code can be implemented because superfluous ac tua l
d a t a types need not be t aken into considerat ion. Since no wrong p a r a m e t e r
t ransmiss ion can happen a t l run t ime no run t ime p a r a m e t e r checks (with respect

* The main results of this paper have been announced in an invited lecture given a t
the first annual congress of the Gesellschaft fiir Informatik (GI) in October 1971 in
Munich.

On Correct Procedure Parameter Transmission in Higher Programming Languages 111

to modes) need be implemented. Now, when translating a call of a formal ALGOL 60
or PL/ t procedure the compiler does not know any specifications for the formal
parameters, so that even actual data types must be taken into account which
at run time never occur. Because correct parameter transmission is not completely
checked at compile time, run time parameter checks must be provided for.

This short discussion shows that, concerning parameter transmission, ALGOL 68
has clear advantages over the other languages mentioned. On the other hand,
concerning parameter transmission, the definition of ALGOL 60 and PL/I can
well be justified if there is an algorithm which for any program at compile time
firstly decides whether at run time wrong parameter transmissions might occur
and which secondly detects the specifications for all formal procedt~re parameters.
In the following we shall investigate the question in what sense and under which
circumstances such an algorithm exists.

II. Language Limitations

In this paper we will discuss four higher level programming languages:

t. ALGOL 60 without specifications for formal parameters, called ALGOL 60-P
(pure).

2. ALGOL 60 with specifications prescribed for formal parameters of non-
formal procedures and denoted in that way indicated in the ALGOL 60 Report,
called ALGOL 60-PL/t, as this language is PL/I oriented.

3. ALGOL 60-PL/t with additional specifications prescribed for formal para-
meters of formal procedures, called ALGOL 60-SF (specify formals). Formal para-
meters of formal procedures of formal procedures cannot be specified.

4. ALGOL 60 with complete specifications for formal parameters as in
ALGOL 68, called ALGOL 60--68.

It is useful for our purposes to have a common frame for all these languages.
We choose ALGOL 60 and trim the languages in such a way that they appear
as successive restrictions of ALGOL 60-P. Different languages differ for us only
by the method of indicating specifications for formal parameters.

In ALGOL 68 the formal parameters of formal procedures of formal procedures
etc. have to be specified. Here, in general, mode declarers indicate modes struc-
tured like trees, trees which might even be infinite [5, 8]. Clearly, these infinite
trees must be described in a finite manner.

We handle the parameter mechanism for procedure calls in that way which
is given by the ALGOL 60 Report. Throughout this paper we understand the
notion formal parameter in the sense of ALGOL 60. We do so even for the language
ALGOL 60-68. The name for this language is justified because the method of
indicating modes is modelled from the ALGOL 68 Report.

As an example we present one the same program H 1 written in four different
languages.

112 H. Langmaack :

ALGOL 60-P:

begin ref real A ;
proc P(X, 0);

beg in X : ~ X + t ;
if X < 5 then Q (X, P)

end;
A : ~ I ;
P(A, P);
outreal A

end

(concerning ref real and outrea l
see the following modifications e)
and i))

ALGOL 60-PL/t :

begin ref real A ;
proc P(X, Q); refreal X; procQ;

begin X : ---- X ~- t ;

etc. as above

ALGOL 60-SF:

begin ref real A ;
proc P (X , Q); r e f r e a l X;

proc (ref real, proc) Q;
b e g i n X : = X § t ;

etc. as above

ALGOL 60-68 :

begin te l real A ;
mode p = proc (ref real, p) ;
proc P(X, Q); r e f r e a l X ; pQ;

begin X : = X -t- t ;

etc. as above

(in strict ALGOL 68 we would
write r e f real A = Ioc real ;)

For the aims of this paper it is not necessary to give complete definitions of
the languages. I t suffices to be acquainted with ALGOL 60. In order to allow
proofs which are not swallowed up by formalities we impose restrictions and
modifications on ALGOL 60:

a) Only proper procedures, no function procedures axe allowed. For simplicity
we write proc for the declarator procedure.

b) Value listing of formal parameters (in the sense of ALGOL 60) is prohibited.

On Correct Procedure Parameter Transmission in Higher Programming Languages 1 t 3

c) Only identifiers are allowed as actual parameters of procedure statements.

d) Beside begin and end we have an additional pair of statement braces { }.
They act as block-begin and block-end and we require that all procedure bodies
are included in these braces. In this context, the new statement braces are called
body braces.

e) We restrict the three data types of the ALGOL 60 Report real, integer, and
B o o l e a n to two, namely real and Boolean . We write bool for the latter. The
unsigned numbers are of type real, the logical values true and false are of
type baal. As a consequence we have only real and Boolean variables, no integer
variables. For more clarity we use ref real and ref bool as declarators for real
and Boolean variables and not real and baal. The types of constants remain
real and bool.

f) We exclude arrays, subscripted variables, switches, and switch designators.
Only identifiers, no unsigned integers are allowed as labels in front of label
colons and as designational expressions behind goto .

g) The operators in arithmetic or Boolean expressions are + , --, • /, + ,
< , _--<, = , >=, > , 4:, 7, ^, v, ~ , ~ , if then else. We further allow abs, sign,
ent ier as unary prefix operators with their conventional meaning. The power
operation ~ and standard functions as sin, cos, etc. are excluded in order to
avoid irrational numbers as results of operations.

h) We do not allow multiple assignment statements.

i) The input/output statements allowed are inreal t~, autreal Q, inbaal r ,
autbaa l fl where ~ and fl stand for real resp. Boolean variables.

j) In ALGOL 60-P we have no specifiers and the specification parts of procedure
declarations are empty. In ALGOL 60-PL/t the only specifiers allowed are refreal ,
ref boal , label , and prac. For ALGOL 60-SF and ALGOL 60-68 the formal
parameters are given later in Definition 3. Restricted to programs with para-
meterless procedures all four languages are the same.

III. Syntactical and Formal Programs

We assume we have unambiguous context free grammars 63p, ~PL/1, ~SF , ~

for ALGOL 60-P, -PL/t , -SF, -68 which are mere modifications of the g r ammar
presented in the ALGOL 60 Report. Ambiguities still existing in the Report may
be assumed to be remedied.

Definition I. A syntactical program H is a string of basic symbols (terminal
symbols) which can be reduced to the axiom (program,3 by the formal rules
Of the respective grammar.

The property to be a syntactical program is decidable. By the help of a
reduction sequence R from / / to (program) we can define which substrings
in I I or (more exactly) which occurrences of substrings in H are called blocks,
procedure declarations (simply procedures), and procedure bodies. E.g. a substring
is called a procedure declaration if it is reduced to the non-terminal symbol
(procedure declaration) within a reduction sequence R f r o m / 7 to (program).
Because of the unambiguity of the grammar the definition is independent of the
reduction sequence R chosen.

:5 Acta Informatica, Vol. 2

t t4 H. Langrnaack :

We consider as blocks not only proper blocks but also the whole p r o g r a m / 7 ,
procedure bodies, and so called extended procedure bodies. Extended bodies are
extended by the formal parameter and specification part, while the declarator
p r o e and the procedure identifier are excluded. Example :

proc P(X, Y); refreal X; refreal Y; {X:= Y}

procedure body

extended procedure body

procedure declaration or procedure

In a similar way we can define which substrings i n / 7 are identifiers, arithmetic
expressions, Boolean expressions, assignment statements, procedure statements etc.
All these sets of substrings are decidable.

A syntactical p r o g r a m / / c a n also be considered to be a string

/ 7 = z l z 2 . . . z .

where the symbols Z i are delimiters, constants, or identifiers. If Z i is an identifier
then we denote by (i, Zi) the occurrence of the identifier Z i in the program I I =
Z 1Zz . . . Z,. Occurrences of identifiers are defining or applied. Identifier occurrences
in specification parts of procedures are ignored because they are redundant, in
principle. I t is well known how to establish in an A L G O L 60 program H a relation
6 between an occurrence (i, Zi) of the identifier Z i and a defining occurrence
~', Zi) with Z~ = Z i.

Definition 2. A syntactical program 11 is called /ormal, if the relation 6 is
a function, totally defined on the set of all occurrences of identifiers in /7 .

The proper ty t o be a formal program is decidable and 6 is a computable
tunction. If (i, Zi) is an occurrence of the identifier Z i then 6 (i, Z i) = (/', Zi) is
called the associated defining occurrence of this identifier. (i, Zi) is also called a
bound occurrence, bound by (/', Zi). If we restrict 6 to a block fl in /7 then ~ is
still a function, but not necessarily total ly defined. If (i, Zi) is an occurrence
in fl and ~ (i, Zi) is undefined in fl, i.e. 6(i, Zi) occurs outside fl, then (i, Zi) is
called a]ree occurrence of the identifier Z i in ft.

Identifiers in a formal program H may be renamed. Then I1,-=Z 1 Z2. . . Z,,
b e c o m e s / / = Z x Z 2 ... 2,,. A renaming is called admissible i f / l is a formal program
and if for all occurrences (i, Z,) of identifiers in l I pr~(6(i, Z,))=pr~ (6(i, 2,))
holds, prx is the first pro~ection with pr l(j, Z i) : = / . Two formal programs are
called identical if they differ only by an admissible renaming of identifiers. A
formal program is called distinguished if different defining occurrences of identifiers
(i, Zi) ~ (i, Zi) are denoted by different identifiers Z i4=Z i. I t is clear that in
every class of identical formal programs there exists at least one distinguished
program. All these properties defined above are decidable.

IV. Compilable Programs

In this section we should like to define, when a formal program is called to
be correct with respect to compilation or simply compilable. Informally, we mean

On Correct Procedure Parameter Transmission in Higher Programming Languages I i 5

by this tha t any applied occurrence (i, Zi) of an identifier, bound by the defining
occurrence 8 (i, Zi) = 0', Zi), is applied appropriately according to the definition.

We assign modes Da to occurrences of certain substrings a in a formal program
/7, and we do so at first for the language A L G O L 60-P. The possible modes are
r e a l , boo l , r e f r e a l , r e f boo l , l a b e l , p r o c O, f o r m a l , p r o c (f o r m a l f o r m a l) .
To every constant occurring in H we assign the mode r e a l resp. b o o l in the
natural way. To every defining occurrence of a non-formal non-procedure identifier
we assign the mode r e f r e a l , t e l b o o l , or label , of a formal parameter we assign
f o r m a l , of a non-formal procedure identifier we assign p r o c 0 resp. p r o c (a ~ 1,
. . . . a~,), where ~i ~,, v-----t, are the formal parameters of the procedure.
The mode 8(i, Zi) of any occurrence of an identifier is defined by the mode
08 (i, Zi) of the associated defining occurrence of the identifier.

The mode of any occurrence of a right hand expression of an assignment
s ta tement or of a Boolean expression in an if clause is defined by induction
(In the further text we shall often drop the phrase "occurrence of"). These
expressions m a y be thought to be constructed inductively with constants and
identifiers as atomic expressions, arithmetic, relational, logical operators and
if t h e n e l se as function symbols, and (and) as brackets. Let ~, fl, 7 be expressions
with certain modes 0~, Off, 07 if modes are defined.

Let co be a unary ari thmetic operator.

a f r e a l if Oac = r e a l or ~ r e f r e a l o r = f o r m a l
co ~ : = / undefined, otherwise.

Let o be a binary ari thmetic operator.

[r e a l if Oct = r e a l or = r e f r e a l o r = f o r m a l
O0coy :----~ and 07 = r e a l o r - - r e f r e a l o r = f o r m a l

[undefined, otherwise.

For relational and logical operators modes are defined analogously. Let ~ be
i f fl t h e n cc e lse 7-

r r e a l if ~fl = boo l or = r e f boo l or = f o r m a l
and Oct = r e a l or ----- r e f r e a l or = f o r m a l
and ~T = r e a l or = r e f r e a l or = f o r m a l
and not Oct = 0 7 = f o r m a l

? , r / : = b o o l analogously, replace r e a l b y b o o l
f o r m a l if ~)fl ---- b o o l or = r e f b o o l or -- f o r m a l

and 0~ -~ 97 ----- f o r m a l
undefined, otherwise

I r e a l if Oa = r e a l or = r e f r e a l
) b o o l if O~c = b o o l or = r e f b o o l

(~c) : =] f o r m a l if ~cc = f o r m a l
/ undefined, otherwise.

0 is a computable function with a decidable domain of definition. Now we define
for AL(;OL 60-P:

8*

t t 6 H. Langmaack :

Definition 3. A formal A L G O L 60-P p r o g r a m / 7 is called to be correct with
respect to compilation or simply compilable if the following five conditions hold:

t) For any assignment s ta tement in H

0 ~ : ~

where ,, is an identifier and y is a right hand expression the following equations
hold:

c~c = r e f r e a l or = f o r m a l ,

8y = r e a l or ---- r e f r e a l or = f o r m a l

or analogously with bool instead of rea l .

2) For any goto s ta tement
g o t o ~c

where ~ is an identifier one of the equations

~c = l abe l or = f o r m a l
holds.

3) For any procedure s ta tement

~p resp. ~p (~q ~) , ~ > 1,

where ~p, ~q ~, are identifiers one of the equations

aVs = f o r m a l or = PrOC 0

resp. O~p = f o r m a l or = p r o ~ (f o r m a l , . . . , f o r m a l)

~, times
wi th the same �9 > 1 as above holds.

4) For any Boolean expression fl in an if clause at a conditional s ta tement
one of the equations

aft = bool or = r e f bool or = f o r m a l
holds.

5) For any input /output s ta tement

i n r e a l Q, o u t r e a l Q, i n b o o l fl , o u t b o o l fl

O and fl are non-formal identifiers with

c3Q = r e f r e a l a n d af t = r e f bool .

The property to be a compilable ALGOL 60-P program [1 is decidable. Our
example program //~ in ALGOL 60-P is compilable as m a y be checked easily.
Conditions 1)-5) are a precise formulation of the phrase "appropriate application
of identifier occurrences"

The definition of the mode function 8 for ALGOL 60-PL/I changes in one
respect only: Tile possible modes for formal parameters are r e f r e a l , r e f b o o l ,
label , proc . Remember that we admit only identifiers as actual parameters.

On Correct Procedure Parameter Transmission in Higher Programming Languages 1 t 7

The further definition of 8 is exactly the same as for ALGOL 60-P. Because of
the missing mode f o r m a l the definition could be formulated even simpler here.
In Definition 3 only condition 3) is "s t rengthened":

3) For any procedure statement

one of the following equations holds:

~hp = proc or = proc 0

resp. a~p = proc or = proc (8~ z ~ ,)

wi th the same ~ ~ t as above where El ~, are the formal parameters of ~0
and where for ~= t ~ the following implications (,) are true:

8 / i , ~ proc ~O/i, = 0~,

a~, = proc ~- Sac, is a procedure mode
proc 0 or proc (. . .) or proc.

The property to be a compilable ALGOL 60-PL/t program is decidable. Our
example p r o g r a m / i n in ALGOL 60-PL/t is compilable. The modes of the actual
parameters A, P are re f real , p roc(re f real , proc) and of the corresponding
formal parameters X, Q are re f real , proc so that the implications (.) are true.

The definitions for ALGOL 60-SF deviate from those in ALGOL 60-PL/t
only in the following respects: The possible modes for formal parameters are
-tel real , re f bool, label, proc O, proc(Fz B,), where/~ B,, ts ~ t, stand
for re f real , re f bool, label, or proc. Condition 3) in Definit ion 3 is strengthened
further:

3) For any procedure statement

resp. V~ (oh 0~), �9 ~ t,

the following equation holds:

8~0 ---- proc 0 resp. 8~ = proc (~ B,)

with the same ~ _ t where /s 1 /z, are the modes of the formal parameters
of the non-formal or formal procedure identifier tp and where for ~ = t
the following implications (**) are true:

B, is different from any procedure mode>-/z, = 80c,,

/~, = proc O>-00c, = proc 0,

/~, = proc >-80c, is a procedure mode,

/~, = p roc (/7h ~;) ~80c = proc (/~z ~;)

with the same number ~ of parameters

and ~; = proc >- ~ is a procedure mode

and ~T ~ proc ~ z =~T-

For short we may say that the modes Sac, and/~, must not be contradictory.
The property to be a compilable ALGOL 60-SF program is decidable. Our

example program H a in ALGOL 60-SF is compflable. The modes of the actual

1J 8 H. Langmaack :

parameters X, P, A, P are ref real, proc(ref real, proc(ref real, proc)),
ref real, proc(ref real, proc(ref real, proc)), and of the corresponding formal
parameters are ref real, proc, ref real, proc (ref rea l , proc) so that the implica-
tions (**) hold.

In ALGOL 60-58 the possible modes for identifiers are certain named trees.
For our purposes, a tree T may be conceived as a non-empty set of finite strings,
called nodes, over the natural numbers]N with the following properties:

t . T is closed under initial segment relation, i.e. if st is in T then s is in T also.

2. If t~ with ~:>t is in T then t (~ - - t) is in T also.

3. Any node t in T has at most finitely many immediate successors ~ in T
with ~ E N.

A node t is called maximal (a lea/) if there is no immediate successor ~ in T
with ~E~T. Non-maximal nodes are called inner nodes. A mode tree is a tree,
the leaves of which are named by ref real, r e f bool , label , or p r o c 0 and the
inner nodes of which are named by proc. I t is clear that all finite mode trees
can be indicated in a t --1 manner by finite function terms, socalled fixed declarers,
generated by the calculus:

t) re f reo l , ref bool, label , and p roc 0 are atomic fixed declarers (argument
symbols).

2) If a 1 a,, ~ 1 , are fixed declarers then proc(a l a,) is a fixed de-
clarer, too.

The indicating function

~fi,[{fixed declarers) ~ {finite mode trees}

is defined inductively:

t) ~ft1(ref real) : = the single noded mode tree r e f r ea l etc. for the other
atomic fixed declarers.

2) ~|ix (p roc (a 1 a,)) : = the "mode tree ~fil (al) -.. ~fii (a,).

p r o c
E.g. the finite mode tree T

' % 7 o
pro~c_ 0 ref ,real / proc

is indicated by the fixed d e c l a r e r ' ~ (T)

proc (proc 0, refreal, proc (label, proc 0)).

Certain infinite mode trees can be indicated in a finite manner by the help
of the mode declarations as it is done in the ALGOL 68 Report. We transfer*this
method from ALGOL 68 to ALGOL 60-68: In an ALGOL 60-68 program we
allow to write down a finite system of m ~ t "mode equations"

m o d e / ~ = 31;

m o d e / ~ = V.;

On Correct Procedure Parameter Transmission in Higher Programming Languages t t 9

The T-s on the right hand side are (variable) declarers with the mode indicants
M], . . . , M , as additional atomic declarers (argument symbols). Example:

mode M z = proc(ref real, proc(M~, M~.), label);
mode/V~ = proc(proc O, /V~);
mode M a = proc(proc O, proc(proc O,/V~)) ;

We disallow a single mode indicant M, as a right hand declarer.

Any chosen indicating function ~var(Mu)E{mode trees} for mode indicants
induces an extension

~v~ [{declarers} -+ {mode trees}

of ~ix on the set of all declarers. I t can be proven that every system of mode
equations for the "var iab les" M 1 I ~ , has one unique system of mode trees
T 1 T,, as its solution, such that the equations

~v~(~) =/'1 =~v~(T~),

hold. The example equations above have the solution:

s

s s

p r o c ~ ~ r ~ : p r o c ~ ~ , o c

proc 0 proc 0 p/roe

proc

T,=r,=

s s ~

proc 0 pr~c

proc 0 proc

proc

The mode a(i, Zi) for a defining occurrence (i, Z~) of a formal parameter in
an ALGOL 60-68 p rog ram/7 is that mode tree which is indicated by a (variable)
declarer the mode indicants of which occur in a system of mode equations as
described above. I t is convenient to identify modes and their indicating declarers.
Then, the further definition of the mode function a is the same as for ALGOL 60-P.
So we are able to introduce by finite means new and even infinite modes in an

t 20 H. Langmaack :

ALGOL 60-68 program. Algorithms which effectively detect the identity of
modes have been given in [5, t0, t2].

Condition 3) in Definition 3 is yet stronger compared to ALGOL 60-SF:

3) For any procedure statement

~p resp. ~ (al 0~), v => t,
the equation

0~ = proc 0 resp. 0~ = proc (0~q ~)

holds. Here we express that in ALGOL 60-68 coercions are not involved in
parameter transmissions.

The property to be a compilable ALGOL 60-68 program is decidable because
the identity of modes can effectively be detected. Our example program/-/1 in
ALGOL 60-68 is compilable. The declarations of the actual parameters X, P, A, P
are ref real, p, ref real , p and of the corresponding formal parameters are
identically the same, namely re f real, p, ref real, p.

The following example /-/t which we need later in Theorem t and 5 and
Lemma 9 gives a further illustration of the notion of compilability:

begin procD(x,y); px; qy; { };
proc M(x, y); px; qy; {x(y)};
pror Ml(x, y); px; qy; {x(D)};
proc E(r/) ; qr/; {r/(E, D, D, M1)};
proc E (~, ~c, #, 7) ; .P~; rot,/~, 7; {7 (~, E)};
M(E, 1~) end

where p stands for proc(proc), q for proc(proc, proc, proc, proc), r for
proc(proc, proc). This program H i is written in ALGOL 60-SF where formal
parameters of formal procedures have to be specified. The program is compilable
and, consequently, also compilable in ALGOL 60-P resp. ALGOL 60-PL/t if
we drop all specifications for formal parameters resp. parts of them. But the
formal parameters cannot be specified in such a way that the program becomes
compilable in ALGOL 60-68. Otherwise, the following equations for modes
would hold:

(t) OE = Ox "u because of M{E, E)
(2) Or/ =Oy ~ because of (1) and xM(y M)
(3) OE = Oy u because of M(E, ft.)
(4) Or/ = OE because of (2) and ())
(~) OMI= Oy because of r/(E, D, D, M1) and (4)
(6) Ox~tl = 0~ because of y(~, E) and (5)

(7) O~=OE because of rl(E, D, D, M1) and (4)
(8) Ox ut =OE because of (6) and (7)

(9) OD = 0rl because of x u i (D) and (8)
(t0) proe(0x n, 0y ~ because of (9) and (4)

= proc (0~, Oa, Off, 07).

On Correct Procedure Parameter Transmission in Higher Programming Languages 121

The last equation (t0) is a contradiction. The superscripts M, M1, D in x M, yM,
xM1, M1 yO y , X D, have been written for better distinction.

We should not suppress the following remark concerning our definition of
correctness with respect to compilation. The definition is based on a sort of
local definition of appropriate application of identifier occurrences. If we would
demand that the compiler should in addition trace all parameter transmissions,
then the compiler could easily detect for this special program / /z that at run
time the execution will lead to a wrong procedure call where actual and formal
parameters do not harmonize:

M(E, E)
E(E)
E(E, D, D, M1)
m l (E, E)
E(D).

In ALGOL 60-SF the execution of/P must stop here, because ~ has the mode q
whereas D has the mode r with a different number of parameters. In ALGOL 60-
PL/I or -P the execution goes one step further"

D (E, D, D, M1).

The-procedure declaration D has two formal parameters whereas the procedure
statement D(E, D, D, M1) has four actual parameters so that the execution
must stop.

On the other hand it is a crucial question whether we can f a i r l y expect that
a compiler performs tracing of all parameter transmissions. A compiler is an
algorithm which among many other tasks has to give an answer "compilable"
or "not compilable" for any submitted formal ALGOL program in a finite time.
The tracing of parameter transmissions where all possible input data, all inter-
mediate results, and all conditional statements must be taken into consideration
is an algorithmically unsolvable problem: For we can easily prove

Theorem 1. There is no algorithm which for any given compilable ALGOL 60-P,
-PL/t , or -SF program 17 states whether there is a finite sequence d of input
data (rational numbers or t ruth values) such that the execution o f / I applied
upon d will stop with a wrong procedure call.

In other words: I t is undecidable, whether any compilable ALGOL 60-P,
-P L / t , or -SF program 17 has actually occurring incorrect parameter transmissions.
The proof is standard and straight forward. Nevertheless, we present it here
explicitely in order to show that we need different and more sophisticated
techniques when we discuss the concept of formally correct parameter trans-
mission later.

-'-I ~ I ~ ' I ' I ~ I I I ~ I ~ I ~ -''

t 22 H . l . a n g m a a c k :

Proo/. Let us consider a one tape T u r i n g mach ine M over the a lphabe t 0, t
wi th m >_ l i n t e rna l s ta tes S~ S,,,x. The associated p rog ram tab le has 2m~t
rows a n d four columns.

S t 0 a I S,,

S t I a S S, .

"~m,w 0 azmM_ l S~,2mM_ 1
S.n ~ I a2.n~ Su2rnx

Tile S , are i n t e r n a l s ta tes , tile a i are i n s t ruc t ions print O, print 1, go left, go right,
or stop. I t is well known tha t there is no a lgor i thm which for a n y g iven T u r i n g
mach ine M a n d i n t e r n a l s ta te Sv, proves or d isproves the s t a t e m e n t : If M is
s t a r t ed in s ta te S~ a n d appl ied u p o n the e m p t y t ape (filled wi th zero digi ts
only) t hen M will reach the s ta te S,M.

Now, we effect ively cons t ruc t for a n y g iven pai r (M, S,M) a compi lab le
A L G O L 60-S1; program IIm.

begin ref real tape;
p r o c D (x, y) ; . . . ;

proc/;;'(x, co,/3, y); ... ;

comment The procedure dec la ra t ions are the five procedures D, M, M I , E, i~
of p rogram 11:;

tape : = 0;
gala S~;

c o m m e n t Now there follow cond i t iona l s t a t e m e n t s ,associated wi th the i n t e r n a l
s ta tes S,, v = 1, . . . , vM - - t , v , + 1 ,mM;

S, : i f t a p e - (entier tape) < 0.t then
[(d u m m y s t a t e m e n t) ; if a : , _ 1 = p r i n t 0
| tape : = tape + 0.1 ; it a S,_ z = print t

begin ~ tape : = tape/tO; if a~,_ z =go left
]tape : = t a p e • t0 ; if a2,_ z =go right
t goto S T O P ; if a~,_ z = slop

goto S,2._ t end
else

[tape : = tape - - 0. t ; if a s, = print 0
[(d u m m y s t a t e m e n t) ; if a,, = print t

b e g i n / tape : = gape/t 0; if a S, = go left
|tape := tape • if a , , = g o right
t g o t o S T O P ; if a2, = stop

gala Su. v end;

c o m m e n t Tile fol lowing s t a t e m e n t is associated wi th the i n t e r n a l s ta te S ,x ;

S , , : M(E, E) ;
ST'O P: outreal tape

e n d

()~ Correct l'r-eedure t~arameter Transmission m Higher l~rogramming l.anguages 123

l i nt works independently of any input data and, in essence, simulates tile actions
of the Turing machine M. The tape is represented by the real variable tape,
a tape content by a decimal fraction, e.g. the tape content of the figure above
by t10.1t. The observed symbol is the digit immediately behind the decimal
point. I t is obvious that the execution of 11M applied upon any input data
sequence d will stop with a wrong procedure call if and only if the Turing machine
M started in St and applied upon the empty tape will reach the state S, . . So
there cannot be any algorithm which fulfills the task described in Theorem 1.
Q.e.d.

After this negative result in Theorem t, we can hope at best to get a positive
answer to the following problem : Does tracing of parameter transmissions become
an algorithmically solvable task if we allow the compiler to disregard all data
and conditional s tatements? This means more precisely: We do no longer con-
sider procedures to be closed subroutines and do no longer assume that the
execution of procedure statements is defined dynamically by dynamical applica-
tions of the copy rule. On the contrary, we consider procedures to be macros
or open subroutines and we assume that a program 1I with procedures is a textual
abbreviation of a progranl H E without procedures. We shall call I1 to have
/ormally correct parameter transmissions, i f / /~ is compilable (compare Definition 7).
This concept of formally correct parameter transmission is independent of any
execution of 1-I, neglects all data and conditions, and disregards the relative
position of procedure statements within the main program or within the main
part of a procedure body. The main part of a procedure body is that part which
is outside of all procedures declared within the body. We say these procedure
statements have "equal rights". In [4, 3, 6] there are algorithms which work
under this assumption, but they are only sufficient, i.e. their answers are correct
only if the answers read " the program has formally correct parameter trans-
missions".

Our proof of the undecidability of actually occurring incorrect parameter
transmissions uses quite essentially data and conditional statements. The proof
does not work if we would like to show the undecidability of formally incorrect
parameter transmissions because every p rogram/ /M has formally incorrect para-
meter transmissions. Our problem now is that / /F , is not finite in general.

V. Programs with Formally Correct Parameter Transmissions

Definition 4. A formal p r o g r a m / 7 is caUed to be partially compilable if after
replacement of all procedure bodies by empty ones tile resulting program //~ is
compilable in the sense of Definition 3.

Definition 5. Let H be partially compilable. A program / / ' is called to result
[rom H by application o/the copy rule (H ~ I I ') if the following holds:

Let](a I a,,) be a procedure statement in tile main program of II. Let

proc/(x~ x.); a; O;
specification procedure

par~J body

! 24 H. Langmaack :

be the associated procedure declaration q~. Partial compilability o f / / g u a r a n t e e s
that the numbers n of actual and formal parameters are equal. We may assume
that / / i s distinguished. Then / (a 1 a,) is replaced by a modified body e',
a so called generated block, where the formal parameters x i occurring in Q are
replaced by the corresponding actual parameters a i. So we g e t / / ' .

1 I : . . . ; p r o c / (x I x.) ; a ; . ~ ; / (a , a.); ...

/] ' : ..., proc / (x a, x,); a, 0 ~

Starting from /-/' we can easily construct an identical and distinguished
program/- /" if we rename all bound occurrences of identifiers in O' which are
bound within Q' (/oca/to ~') by identifiers which do not yet occur i n /7 ' .

The body braces { } in e-----{~} become so called call braces in e' =(~ '}. Let

+ and * be the transitive and transitive-reflexive closures of ~.

Lemma 1. If I I + H ' then H ' is a formal program. + resp. ~- are irreflexive
resp. reflexive partial orderings in the set of formal programs.

/ / ' is not necessarily partially compilable even if H is generally compilable. The
programs H s

begin ref real a;
proc p (x, y) ; {q (x)};
p(a, p) end

resp.
begin ref real a;

proc p (x, q); ref real x; proc q; {q (x)};
(a, p) end

fulfill the conditions of compilability in ALGOL 60-P resp. ALGOL 60-PL/t.
But the following programs /-P' with /-P v-H a' are not compflable, not even
partially:

begin ref real a;
proc p (x, q); {q (x)};
{p end

resp.
begin ref real a;

proc p(x, q); ref real x; proc q; {q(x)};
{p (a)} end

Specifications in the manner of ALGOL 60-SF do not help either: The program/-/*

begin [refreal a;
A) proc p (q); proc(proc) q; {q(r)};

| proc [(x); proc (ref real) x; {x (a)};
[proc r (y); ref bool y; { y : = true};

p ([) end

On Correct Procedure Pari~meter Transmission ill Higher Programming Languages 125

is compilable, but program H 4"

begin/ t ; {f(r)} end

with H 4 ~ H 4' is not partially compilable. On the other hand we can state the
following:

F i r s t Theorem 2. If H is a compilable ALGOL 60-68 program and if H ~-Ll ,
then H " is compilable, too.

Proo]. Let H ~ - H ' . By Definition 5 all formal parameters x i occurring in Q
are replacecl by the corresponding actual parameters ai. As H is compilable
in ALGOL 60-68, x i and a i have identical mode trees. Therefore, as the applica-
tion of x i is appropriate in H, the application of a i in H ' must be appropriate,
too. Q.e.d.

In the other languages this conclusion fails as in spite of compilability of H,
x i and ai do not necessarily have identical modes. In our example 1-I4 q has the
mode p roc (p roc) , f has p r o c (p r o c (r e f reol)). These modes are not contra-
dictory, and they are not identical either. In H 4' the modes of r proc(ref
bool) and of x p r o c (r e f reul) are contradictory.

The proof of Theorem 2 for ALGOL 68 instead of ALGOL 60-68 would be
more sophisticated because of the different parameter mechanisms and coercions
prescribed by the ALGOL 68 and ALGOL 60 Reports.

Lemma 2. If H ~-H', then the procedure call f (a I an) in H, mentioned
in Definition 5, is uniquely determined by H, H' .

Lemma 3. If a diagram

17" H "

holds, then H ' and H " are identical or we can find a program H ' " with

H

9 \

//.e

if H ' and H " are partially compilable. An analogous lemma holds if we invert
the arrows.

Two sequences
Ho ~H~ ~--.. ~-H~,, and

> 0,

126 H. Langmaack :

are called to generate each other immediately if m ' = m " and if the programs //~
and II~' are identical for all indices i but one index i 0 with 0 < i0< m'. The relation
"generate each other" is defined to be the equivalent (transitive, reflexive, sym-
metric) closure of the relation just defined.

Lemma 4. If
l l = 1 I o v - l l 1 v- .-. v-H;,, = l l ' and

11 =B0 v- l v-... v-/I = 11'

then m = ~ and both sequences generate each other.

Definition 6. Let I I be a formal program where { and } are used only as body
braces. We c a l l / / a n original program. Then

E. : = {/7' I H : - / / ' }

is called the execution of l]. Programs / / ' in En, different from I L are called
generated programs.

For a generated program Jr/' in E n the following is true: In the main program
of H ' outside of any innermost call brace pair all applications of identifiers are
appropriate. 0therwisely /7 ' would not belong to E n. A program [I ' E E n is
maximal if and only if a) [I'~ (see Definition 4) is compilable and does not contain
any procedure statement or b) there is exactly one innermost call brace pair
in /7: with an inappropriate application of an identifier or c) /7" is equal II~
with an inappropriate application of an identifier. Maximal programs H ' in E n
of category b) or c) are exactly those, which are not partially compilable. Let
/7' EE n be not partially compilable and different from [I, i.e. a maximal program
of category b). Then there is exactly one preceeding program p(/7 ')EE n with
p (I1') v-II ' .

E n contains a tree T n the nodes of which are exactly those programs in E n
with at most one innermost call brace pair. We call T n the execution tree o f / / .
There is a bijectiou I n from E o onto the set %n of all finite subtrees of To, which
contain as an element at most one program which is not partially compilable:

In[E 1-1 .

~ H OlltO " ~ n "

The number of programs in I n (/ / ') with H ' E E n is given by the number of call
brace pairs in I I ' plus one. If [I' is 1] or partially compilable then

In (I I ') : {H"I I I " ~Tn, I I ~- /7" v-[I}.* '

I f / 7 ' is not l I and not partially compilable let
- - * t Jn (II') be {17 I/7 6 T n, I I * /7 v- p ([I)}.

Then I n (ll ') is Jn (ll ') added by one not partially compilable program I I " E T n

w i t h / I v - I I " , / 7 maximal in Jn (17') w h e r e / 7 " results f r o m / 7 by the " s a m e "
procedure statement which generates I I ' from p(1"7'). I n has the property

l I ' ~- l l " M In (fl ') is a subtree of I n (II"),

subtree in the following sense: IH(I I ') ~_ I H (l I ") and if IH(I I)~ l l v - - lTEIH(l l)
then [I e l n (I I ').

On Correct Procedure Parameter Transmission in Higher Programming Languages 127

Definition 7. An original program / / is called to be /ormally correct with
respecl to parameter transmissions or to have /ormally correct parameter trans-
missions if all programs in E n (or Tn) are partially compilable.

Lemma 5. If / / has formally correct parameter transmissions then at run
time there is no actually occurring wrong procedure call.

Lemma 6. If / / h a s formally correct parameter transmissions then E n is a
distributive lattice isomorphic to the lattice ~ n of all finite subtrees of T n. I n
is an isomorphism.

Concerning p r o g r a m s / / w h i c h have formally correct parameter transmissions
we may give the following remark: Compilable p r o g r a m s / I without procedures
can be understood to be denotations for transformations Fh of finite data
sequences d

l~l {d} -~ {d}

where {d} is the set of all finite data sequences. In general, F b is only partially
defined as /1 applied upon d might end with an error message or might run
into an infinite loop. In these cases we say that F~ (d) is undefined. Let now I I '

be a program in E n. We alter I I ' i n t o / I ' by eliminating all procedure declarations
and by replacing all remaining procedure statements by

M: goto M.

/) ' is a program without procedures.

Now, if H ' v - / / " then F~I,~_ l~, ,G{d} • Consequently, because E n is a
lattice, the union

: = U x { a }
l l" C E'ri

is a well defined transformation P)~ [{d} --~(d}. So a program I I which has formally
correct parameter transmissions can be understood to be a denotation for the
transformation F* defined above (compare [t]).

VI. Programs without Global Formal Parameters

If Hv--II ' , then for all declarations A i n / / w e have identical copies A' in H ' .
For all declarations A in the body ~ we have additionally modified copies A'~,,

~t " t
F-- i n e ' as parts of H' . If I I v - I I , i.e. H = I I o ~ - H I ~ ... H~----ll , n>=O, then it

is now clear, how to define when a declaration A" in H ' is called a copy o/ a
declaration A in I-I. L e t / / b e an original program and II ' , I I " programs in E n
or T o. Declarations A' in I I ' and A" in I I " are called similar if they are copies
of the same declaration A i n /] . A simple inductive argmnent shows

Lemma 7. Let d be a non-formal identifier occurring within the procedure
body ~ of a procedure declaration tp of an original p r o g r a m / / a n d let d have
a declaration A. If 9 ' is a copy of qJ in [I', then d has been replaced within q/
by tile identifier d'" of a copy A " of A. If the defining occurrence 6d stands
within ~ then 6d'" stands within the body O' of ~p', if rSd stands outside ~ then
8d" stands outside e'-

t 28 H. Langmaack:

Two n o d e s / / ' a n d / 7 " in T n are called similar if their innermost generated
blocks (they are enclosed in call braces { }) ~' and Q" differ by renaming of
identifiers and if renamed indentifiers have similar declarations. The number of
similarity classes for nodes in T n is limited by

M = P . G F + |

where P is the n u m b e r of non-formal procedure declarations, G is the number
of defining occurrences of non-formal identifiers, and F is the number of defining
occurrences of formal parameters in /7 .

For a given original program / / we can effectively construct the smallest
subtree U n of T n such that every maximal node in Un is maximal in T n or
has a different similar predecessor in U n. Paths in U n have a length of at most
M + t nodes.

Let (i, xi) be an applied occurrence of a formal parameter in program /7.
If (i, x3 occurs in the body 0 of a procedure 9 and if ~ (i, xi) occurs outside 9
then x i is called a global/ormal parameter of ~. Example:

p r o c p(x); {proc q(y); {... x . . . y. . . } ; . . . }
x is a global formal parameter of q.

Theorem 3. If an original program / / h a s no global formal procedure para-
meters t h e n / 7 has formally correct parameter transmissions if and only if all
program s in U n are partially compilable.

Corollary. For original programs / / without global formal procedure para-
meters it is decidable whether 17 has formally correct parameter transmissions
or not.

Proo/ of Theorem 3. L e t / 7 ' be a program in T n and not in U n. Then there
is a maximal node /7 ' in U n with

H ' = H o ~ / 7 1 ~ - ' " ~ - H n = H " , n > O , H , E T n.

We show that all H , are partially compilable and that for every H , there is a
different similar n o d e / I , in U n. This assertion is at least true for H 0. Let it
be true for H,_I , 0_~ v --1 < n. Then there is a different similar n o d e / I , - 1 in U u.
I f / I , - 1 is maximal in U n it cannot be maximal in :IN; otherwise, because of
the partial compilability, the innermost call brace pair o f /~ , -1 could not contain
any procedure s.tatement which would contradict H ,_ 1 ~ H , . So in any case there

is a different non-maximal node H , - 1 in U n similar to H , _ 1. Both, H ,_ 1 and

H ,_ I , are partially compilable. Let

/ (al a .)

be the procedure statement within the main part of the innermost call brace

pair o f .H,_ 1 which generates H r. In /7 ,-1 there is a corresponding procedure
statement

On Correct I'rocedure I)arameter Transmission in Higher Programming Languages 129

where / , / , a,, al , a,,, ~,, have similar declarations, / (ax a,) generates H '
in U, :

HI,_ 1 F--H'.

The declarations ~0 and ~p of / and 7 are (eventually modified) copies of one the
same declaration ~p (ff T in H. We have to check by which identifiers the global
parameters d, occurring in ~, have been replaced in 9~ and ~. d is non-formal
by assumption. So, by Lemma 7 in both cases d has been replaced by identifiers'

having similar declarations. As a consequence the nodes H, a n d / / ' are similar
and II~ is partially compilable, too. We have therefore proven t h a t / 7 has formally
correct p~rameter transmissions. Q.e.d.

The following example I P of an ALGOL 60-P program with global formal
parameters shows that the assumption in Theorem 3 is essential:

begin [proc l (/~) ; {#(m,/~)} ;
I p roc m(~0); {~0 : = ~0};

A I proc / (x, y) ; '
�9] {proc q (v); {x (,)}; "

- p r o c p (u , v); {q(v)); y (m, p)};
/(l, 1) end

x is global formal parameter of i)rocedure q. [P has the following trees U, and T n

! I 5 ~- begin A ;
/(l, /) end

T
.. . {pro= q'(r ; { l (r

proc p'(. ' , v')" {q'(v')};/(m; p')} ...
T

. . . {p roc q"(v") ; {m (~")} ;
proc p"(u", v"); {q"Cv")}; p'(m, p")} ...

T
.

T
. . . { t (p , ,) } ,

T similar nodes
... {p"(m, p")} ...

T
Uzz 1Io =---.-{q"(p")} . . .

. , n (q ") } . . . -

T
i t 2 { p " : = p " } , . .

All programs in U n are partially compilable, nevertheless, H has incorrect para-
meter transmission as in / /~ p" is not applied appropriately. Tim argumentation

9 Acta hfformatica, VoL 2

t 30 H. Langmaack:

in the proof of Theorem 3 fails here because the global parameter x of q has
been replaced by l in q' and m in q", where l and m do not have similar declarations.

VII. Formally Equivalent Programs

In order to solve our decision problem for formally correct parameter trans-
missions we now might ask the following question: Is there an algorithm which
transforms any program into an equivalent program without global formal
parameters ? Equivalence must be defined in such a way that it is invariant
with respect to formally correct parameter transmissions.

L e t / / b e an original program. Let E n resp. T n be the execution resp. execution
tree o f / / . We form for any p r o g r a m / / ' E E u the associated main program//~,
by elimination of all procedure declarations and we replace every remaining
procedure statement i n / / ~ by a special symbol, say co|l, and term the result
the reduced main program//~ o f / / ' .

Definition7. E,u:={II~IH'EEn} is the reduced execution of 17. T,n:=
{H'IH' E Tn} is the reduced execution tree of H.

T,u consists of exactly those reduced programs which contain at most one
innermost call brace pair. The existence of-not partially c0mpilable" programs
in T n can be recognized in T,n alone:

/ / ' in T n is not partially compilable

t) //~ is maximal in T,n, and

2) the innermost call brace pair o f / /~ has an inappropriate application of
~an identifier or contains a coil-symbol or/ /~ = / / , has an inappropriate application
of an identifier or contains a coil-symbol.

If we define now

Definition 8. Two original programs are called [ormally equivalent if their
reduced execution trees are identical.

we can prove

Theorem 4. Let the original programs //1 and //2 be formally equivalent.
Then /I1 has formally correct parameter transmissions if and only if I/2 has
formally correct parameter transmissions, too.

In Definition 8 of formal equivalence of programs the term "reduced execution
t ree" could be replaced by "reduced execution" as the reader may prove. If
two formally equivalent programs I / t and II2 have formally correct parameter
transmissions, then they define the same transformation Y~, = F~o.

VIII. Undecidabilities
We tried to construct algorithms which transform every ALGOL-program

such that t. global formal procedure parameters are eliminated and such that
2. the transformed program is formally equivalent to the original one. But all
these constructions failed because for each of them we finally found example
programs which did not fulfill the desired conditions. Therefore, we were led

On Correct Procedure Parameter Transmission in Higher Programming Languages 13t

to the conjecture that our decision problem on formally correct procedure para-
meter transmission might be unsolvable, in general. We will now attack this
conjecture by the help of Post's correspondence systems. Such a system has
two alphabets

92 = {A, B}, A 4: B,

So we have an isomorphism

�9 which we continue to

-192 - - ' 2 ~
onto

1 - -1

--192" ~ ~ * = ~ ; " onto

We consider a production system

with

/ ' = {rl = (c,, ~1) = (Q1 . . . Ci,, , C,1 . . . ~ ,) ,

7 , = (c., ~.) = (cm, ... c,.. . , ~m, . . . ~.~.)}

c~ie92, ~ ; e ~

e:4=cie92*, e4='~ie~i*

Definition 9. ~ = (9~, ~ , / ') is called a correspondence system of Post.

We consider non-empty sequences of indices 1"1 J, with r ~ t, 1--<ji~m.

Definition 10. A non-empty sequence of indices is a solution of ~:

C h . . . C j r ~ Ci~ . . . C j .

Post's Theorem. The property "~ has a solution" is undecidable; in other
words: Post's correspondence problem is unsolvable [8].

For any given correspondence system ~ of Post we will now effectively con-
struct a compilable ALGOL 60-P p rog ram/ / r which fulfills the following

Lemma 8. ~ has a solution ~ / / r has not formally correct parameter trans-
missions.

As a consequence we have

Theorem 5. It is undecidable whether a compflable ALGOL 60-P p r o g r a m / /
has formally correct parameter transmissions.

For given ~ we construct program/-/r

begin
comment The first part of He is identical for all if;
proc O (x, y) ; { };
proc M(x, y); {x(y)};
proc MI(x, y); {x (D)};
proc E(~); {77 (E, D, D, M1)};
proc E(~, ~, 13, ~,); {>,(& E)};

9*

t 32 H.I.angm~mck :

c o m m e n t ' F l l e second part of I1~ is different for different iS. For every j,
t ~ / ' ~ m we have a procedure L i. Within L, we have procedures Ci t 1] J Ci,tllniJ
corresponding to the letters Cii in c i in thc production yt =(c/, ~,). We haw"
additional procedures (~: Ill C't~ll htl corresl~mding to ~,. As the lcttt:rs Cti
and C~,., i4 i' might be the ~amv (A or 13) wc havc to distinguish them by
indices Ii] I Ii'J;

proc L,(x, y)';
{proc C/t 11 } ('1) {'J (x, ~., <c:,,), ~., <C, &./))} :

proc C/2121 (q); {'1 ((?,t I a l, u~ (Ci..,> ~, ~., (C/o b, D)}

procC/ ,~_t 1%-- l l (q) ' {q(C, , a[n/--21,ut(C~,, . ,) ,• t), D)}"
proc C i ,,jln,J ('l)" {q (C i,,--~ In~ -- t I, ~ (('/,,j>" • (C, ,,j>, D)}"

proc C'/:12] (~:, a, fl, 7); {ua(O,z) (~, C / t i t J)};

Lt(Ci,,,In,], (],~[h/])' . . . L,(C,,,,In/], (~,,,,I h,I)"
M(C/,,, [ni], C17~[a,I)}"

- c o m m e n t xa(Ci,), xo(Cic) are denotations lor M, D i[C/,.-:A and
for D, M if C/i==-B. ~%(C/,) is a denotation tor 0t i[(~/~=-/1 and for
fl i'f (:/i - B;

L~(E, E)" ...; L,,(E, E) end

Proo] of L e m m a 8. Any path in lne starts with a non-empty scqucnt:e o[
calls of Li: L~, L~, tq, ..

H~ ~ I[r ~ l[r ' i,"" ~ I1~,... r

We describe the structure of the nodc II~.i,...r with r:> 1, t ~/'0:<:m. I.et us denote
the corresponding strings

ci, . . .ci ,~{* and ~ . . . ~ i , ~ *

with ~'io --- (ci~ ~/o) ~1' by
Dr. . . DN ~uld 1")1-.. 1").~,

with D~egA, ~) , ~ , N - - n i - ~ a:ni. and ~ : . , q i a . . .~ h~. (N_>=a, N ~ I) . "lhe
necessary renamings of identifiers in !1~,..~, can be pcrtormcd by raising the
discriminating indices [ij of

C/di] and (~,[il.

Compared with He H~,...~, has the following additional procedure dcclarations (.)

proc D~[t] (~i); {zt(E, gx<D,), • D)}
proc D~ [K] (r/); {r/(l)K2z[K--t], • (D~>, ~,,. <1)~r D)} fi,r K- -2 N
proc Dz[t] (~, ~, fl, 7); {x~ <D,> ($,/~')1
procff), .[K](~,~,fl, y) ; {xz (l)K) (~ ,DK_, lK-- t]) } f o r k -2~.

{)n C<>rrcct I ' rocct lurc I 'aramctcr Transmission in Iligher I ' rogramming I ztngu,'tges 133

The main par t of tile innermost call brace pair of Iltt~,...j, has the following
procedure s ta tements (**)

{ . . . L,(DNIN],/3K, INt)" " L.,(D~,INJ, Dr~ NI); M(/)NINI, 13rviN])}.

The proof for (.) and (**) can be giwm by a simple inductive argument , llr

is c<mqfilalde. Thereiore, the only chance to hit a maxinml node on a path in
The is to call M for a first time. R e w t i t i v e calls of L i lead only to an infinite
path in T , r

In a first C~LqC WC ~msume tha t there is a greatest number h with

D N -- b ~ DN_ h = b/~t_ h

h~o, . N - - h ~ 2 , IV -..h~2.

Under this assumption we have a path

/1r ,, = .-- { . . . ; M(DN IN I, 1)~ IN I)} �9
T

. . . {D,v IN I (D~ IN J)} ...
T

. . . {I)~r I (I1,~.., IN - 1 I, x, (DN), x., (I)N), D)} . . .
T

. �9149 +J,b,~ , I A / - - I I) } . . .
T

which obviously can Ix~ i>rolonged to

T
. . .{M(D,r a l N - - h t l , b ~ _ h _ ~ l N - h - - t]) } . . .

We put ~ / : - N - h - - - t and . N = . ~ / - - h - - 1 if h exists. In the second c~me, where
h does not exist, we put N = N , ~/ ~ / . Now, we Imve the following cac, es

u . : r

c) ~ 2 ,
d) ~ t,
e) ~-:1 , ~ : - 2 /
tq ~ > ' , , ~ il
g) ~" t ,R

and /-),~ I D #

and /3~ -b~

and in any ca_se we can I)rolong

... {�9 M(D~ r~]. ~ I~ I)} .�9
t

.�9 {D,~ I.'~I (b~ I.NJ)} ..o

t34 H. Langmaack:

Case g) means exact ly tha t 7"~ i, is a solution of ~. T h e other cases express
the contrary. Case g) leads to a node in T~rr which is not par t ia l ly compilable:

T
{Dx [t] (E, ga <Dx>, x2 <D~>, D)} . . .

T
{M(E, E)} .. .

T
{ E (E) } . . .

T
{]~ (E, D, D, M1)}. . .

T
{ i l (E, E)} . . .

T
{E (D)} ...

T
{D (E, D, D, M1)}. . .

D is not applied appropriately. All the other cases lead to a maximal node with
a d u m m y s ta tement between the innermost call brace pair:

case a)

case b)

case c)

case d)

T
. . . { b ~ [h r] (D~_I [~ - - t] , ~<D~>, g2<D~), D)} .. .

T
... {D (O~_~ IN - - t] , D~_~ Ehr - - 1])} ...

1
. . .{ } . . .

T
. . . { ~ [~] (E, ,~ <Oh, ,q <O~>, O)} ...

T
~ n

....{D(E, D~_~ I N - - t]) } . . .
T

�9 --{ } ...

T
... {D~ [t] (D~_I [~r -- t], ,~1 <DR> , ,,, <D,~>, D)} ...

1
�9 . . . { D (D q _ l IN - - t], E ') } . . .

T
. . . { } . . .

T
. . . {D~ [t] (E, ,h , ~,. , O) } . . .

T
. . . {D (~, E)} . . .

T
. . . { } . . .

On Correct Procedure Parameter Transmission in Higher Programming Languages t 35

case e)

case f)

T
.. . {b~ [N] (E, ;q (Dx), g, (Da), D)} .. .

T
.. . {M(E, D~_I IN -- ~])} .. .

T
n

. . . {E (D~_ x [N - - t])} . . .
T

. . . {Dg_ 1 [N -- t] (E, D, D, M1)} . . .

T
[[E i f ~ r - - t = t

T
, . . (} . . .

T
... {Dr [t] (D~_I IN - - t] , ~a (DN), ~q (DK), D)} ...

T
. . . {M(D#_ 1 IN -- 1], E)} .. .

T
... {Dg_~ [~ -- I] (/~)} ...

T

{ E / E if ~l- f - t = 1 . . .

T
E

T
. . .{ } . . .

We see therefore tha t Tn~ has a not partially compilable node if and only if there

is a solution ?'x, - . . , ?', of ~. Q.e.d.

If we compare the proofs of Theorem t and Lemma 8 we see tha t the con-
structions and argumentat ions are quite different and tha t in Lemma 8 procedure
s ta tements and parameter transmissions play a much more impor tan t role whereas
data and conditional s ta tements do not and cannot play any role.

For bet ter illustration we construct/- /~ for a concrete correspondence system
with

/" = {Yx = (ca, ~x) = (B A , B),

y, = (c,, = (B, 2 B)}.
has the solution t, 2 as

el~ 2=B)IB =B• B=cxc~

(case g)) whereas e.g. t is no solution as

el = B---g 4: B = ~1

136 H. Langmaack :

(case c)). The second part of I Ir looks as follows:

proc L 1 (x, y) ;
{proc 13 lt] ('1) ; {~/(x, D, M, D)};

proc A [2] (~1)" {~1 (B [t], M, D, D)};
proc/3 [t] (8, ~,/3, 7) ; {/3 (8, y)} ;
L] (A 112],/~ I1])" L= (A 12],/~ I1 it); M(A [2],/3 It])};

proc L 2 (x, y) ;
{proc B [t] (~1); {"1 (x, D, M, D)};
proc .4 [it] (8, ~, #, 7) {~ (8, y)}"
proc B [2] (8, ~(, fl, 7); {/3 (8, 3 [1])};
L x (13 [1] , /312]); L,, (B [t] , /~ [2J); M(B [1] , /~ [2])};

L~(E, E); L~(E, E) end

A subtrce of Tur is:

O~ L1 (E, E) . . .
T

--IIr ==... {proc/3 It] ('q)" {~l(E, D, M, D)};
procA 12] (7/); { , I (B I t] , M, D, D)}"
proc/~ 11] (8, ~,/3, 7) ; {fl (8, E)}"
L1 (A I2L B [t])" L= (A [2], B It]); M(A [2],/~ It])} ...

T
= II(~l,-----... {proc B [3] (~/); {tt (A [2]; D; M, D)};

procA [2] (8, c(,fl, 7); {oc(8, B[t])};
proc/~13] (8, oc,/3, 7); {/3(8, 3 [2])}"
L I (B 13], B [3]) L2(BI3], B I 3 1) M(BI3],/~ 13])}

T
- -He , -- { . . . ; M(A [2] , /] [1]) } {B [3] (BI3])} ...

T T
. . . {A [2] (B [I])} {/;' [3] (A 12], D, M, D)} .. .

T T
.. . {BI t] (B[t] , M, D, D)} { M (/ [23, 312]) } .. .

T
.. . {D(Bl l] , E)}. . .

I
. . . { } . . .
partially compilable

T
. . . {A [2] (2 [2])} ...

T
.. . {AI2] (B[t] , M, D, D)} . , .

T
... {M(Z~ l~ I, B I~])} ...

T
. . . {B11] (~111)} . . .

T
.. . {/~ I t] (E, D, M, 1))} ...

T
.. {M(E, E)} ...

T
... {1,'(/7.')}...

I

On Correct Procc~lurc I'aramcter Tran.~mis.~it,n in Higher I'rogramming l.anguages 137

. . . { ~ g,:, t), o , ~ f t) } . . .

r

. . . {M t (F~, E)} . . .
t

. . . { E (D) } . . .
T

. . . { D (~ , D, t), Mr)} . . .
not partially compilal)le

The constructed programs I1r remain compiktble in AI.GOI. (~-SI; il we add
appropriate specifications. All formal parameters x, ~ get the mode p roc(pro t) ,
y, q get proc(proc, proc, proc, proc), or, fl, 7 get proc(proc, proc), l .cmma 8
remains true. The only difference in the proof is that inapprol)riate application
of I) reveals already ~,~

... {E(/))}-..
so that

. . . {I)(F., J), D, ~ 0 } - . .

cannot be a successor.

Theorem6. It is undecidable whether a COmlfilal,le AI.GOI.(,o-SF (or
ALGOI. (~-PI.]t) prograzn 11 has formally correct p~trameter transmissi,ms.

On the other hand, it is impossil)le to add appropriate specitications such
that all IIr become compilable ALGOL 60-68 programs and I.emma 8 remains
true. If so then because o1 Theorem 2 there would not exist any solvable cor-
respondence system. We can even prove dirc~ztly for every II~:

Lemma 9. It is impossible to add appropriate specifications such that II~
becomes a compilable ALGOL 60-68 program.

Proo[. If the contrary would hold we had the following equations for modes:

a E = ax L, = aC~,,, [n~] = axA~[
OE ~)ys 0(~l,,,[hi] ~)yUj because of Li (E , E), Ll(Ct , , , Inl] , Ct~,l~l]),

and M(('~,,, Ina], C~, I~3).

As a consequence we can show up an equation

proc(O~, ~0t/z', il/3r~, a7 ~z) = proc(Ox ~ ~y')

as we haw: done for the program I ! ~ in Section 1V. Contradiction! Q.e.d.

Concerning Theorems 5 and 6 the following remark is usefuli: I t is not satis-
fying that the execution of any program I1r applied upon any data sequence d
runs into an infinite ~quence of calls of procedure LI and never stops with an
error message, say a wrong procedure call, although some programs ll~. do not
have fiwmally correct parameter transmissions. The reader might suspect that
the undecidablc prolwrty of having formally correct parameter transmissions has
little to do with real programming and real program execution. This is not true.
F.very program I1r can be augmented to a compilable prograna I1~ by the hel l,
of al,l,rol,riatc input statements, ,?onditional .~tatemcnts, labels, and goto state-
mcnts such that I1~_ has the h,lh~wing l,rOl~crty: I1~ has not formally correct

t 38 H. Langmaack:

parameter transmissions if and only i f / ' /~ has not formally correct parameter
transmissions and there is simultanously a data sequence d such that the execution
of/ ' /~ applied upon d stops with a wrong procedure call (in other words: 17~ has
actually occurring incorrect parameter transmissions). So by Lemmas 5 and 8
and Post's Theorem we have another proof of Theorem 1.

IX. Application of the Proof Methods on other P r o b l e m s

Theorem 7. There is no general algorithm which transforms any original
program into a formally equivalent one without global formal parameters.

Proo/. If there would be such an algorithm then because of Theorems 3 and 4
we would have a general decision process whether a compilable ALGOL 60-P
program has formally correct parameter transmissions or not. This would con-
tradict Theorem 5. Q.e.d.

Theorem 8. I t is undecidable whether two original programs with formally
correct parameter transmissions are formally equivalent.

Proo/. For every ~ we construct two different programs]-/~ and 17~. For]-/~
the body {x (D)} of M1 in 17r is replaced by { }, for / /~ by {ref reol A ; A : = A + t}.
/-~le and H~ are formally equivalent if and only if ff has no solution. So formal
equivalence of ALGOL 60-P programs is undecidable. This is true even for
ALGOL 60-68 programs (and consequently for ALGOL 60-SF and ALGOL 60-
PL/ t) : For all formal parameters x, ~ we have to add the mode indicant a,
for y, ~7 we add b, for ~, fl, 7 we add c with the following system of equations

m o d e a = proc (b) ;
m o d e b = proc (o , c, c, c);
m o d e c = proc (o , b); Q.e.d.

In the proof of Theorem 8 there necessarily occur inf inite modes as the
following equations must hold:

O C l . , [th] = proc (prac (0C1 , . ,_1 [~h - - !]))

0 Ct ~ [t] = proc (proc (0~ c~)).
So we have

0 Cz,, In1] = proc (.. . (proc (0x ~) ...)

2n I ~-2 times
= proc (.. . (proc (OC 1., [nl]) ...),

an equation which cannot be fulfilled by finite modes alone. Therefore, we
formulate the

Conjecture. Formal equivalence for ALGOL 60-68 programs becomes decidable
if we restrict ourselves to programs with finite modes.

Definition 11. A procedure q~ in an original program 17 is called /ormcdly
reachable if there is a node 17' in Tn whose innermost generated block is the
modified body of a copy of ~.

On Correct Procedure Parameter Transmission in Higher Programming Languages t 39

Theorem 9. I t is undecidable whether a procedure ~ in an original program
with formally correct parameter transmissions is formally reachable.

Proo/. M1 i n / / ~ (see proof of Theorem 8) is formally reachable if and only
if ff has a solution. This is true for all four languages. Q.e.d.

Definition 12. A procedure ~o in an original program H, is called /ormally

recursive if there are two different generated programs /7' + / 7 " in T n whose
innermost generated blocks are modified bodies of copies of ~0. ~0 is called strongly

/ormally recursive if there are p rograms/7 ' ~ H ' * / 7 " ~ H " in T n, a copy if'
of q0 in/7 ' , and an identical copy ~" of - " - " q0 m / 7 , such that the innermost generated
block o f / 7 ' is a modified body of ~' and the innermost generated block o f / 7 "
is a modified body of ~".

Theorem 10. I t is undecidable whether a procedure in an original program
with formally correct procedure parameter transmissions is formally recursive
resp. strongly formally recursive.

Proot. I n / / ~ we replace the body {ref t ea l A" A : = A + t } by {Ml(x ,y)}
and we get H~. As M1 is a procedure, declared in the main program of/-/d,
M1 is formally recursive if and only if M1 is strongly formally recursive. M1 is
formally recursive if and only if ff has a solution. This is true for all four languages.
Q.e.d.

Concerning Theorems 9 and l0 we have the analogous conjectures as the one
formulated above.

Conjectures. Formal reachability, formal recursivity, and strongly formal
recursivity of procedures in ALGOL 60-68 programs become decidable if we
restrict ourselves to programs with finite modes.

By application of proof methods similar to those of Theorem 3 we may prove

Theorem 11. For programs without global formal procedure parameters it is
decidable whether a procedure is formally reachable, formally recursive, or
strongly formally recursive and whether two programs are formally equivalent.

X. Not Strongly Formally Recursive Procedures

The difference between formally recursive and strongly formally recursive
procedures is important for compilation techniques, because those procedures
which are not strongly formally recursive allow a simpler implementation than
others. E.g. it is not necessary to reserve index- or displayregisters for them if
the well known display method is used as an implementation method for pro-
cedures. Fixed storage places for simple and auxiliary variables local to a not
strongly formally recursive procedure can be reserved among the fixed storage
of the statically surrounding procedure so that we need an indexregister at most
for this larger procedure.

If we conceive blocks as procedures without parameters called on thespo t ,
then blocks are not strongly formally recursive. Not strongly formally recursive
procedures can be handled like blocks.

14o H. I .;tngm;utck :

Generated procedures, generated by the compiler as a subst i tute fi)r complex
exl>rcssions as actn;tl parameters of procedure statements, may I~, [orm:tlly
recursive but are not strongly fommllv recursiw'. E.g.

. . . ; I ' (A - ~ / l l2I , X); ...
has the compiled form

. . . ; begln reol proc(;; {,.I I 1112]}; 1'((;, X) end; . . .

See [3], i >. t t9, where this special property of generated I~rocedures i~ exploited
in an ALGOl. O) comlfiler.

I t is possible to handle for s ta tement with two for list eh;ments

for i : = A step/~ until C, ft step fi until C do S

as if two for s tatements

f o r i : A step B u n t i I C d o S ;
for i ::~ .i step /~ until C do S

with identical controlled variables and controlled statements were given. Here
tile compiler is allowed to generate a procedure which is not strongly formally
recursive:

begin
proc s; {S} ;
for i ::- A step 1~ until C do s;
for i : = A step B until C do s

end

The blocks and the generated procedures are not strongly formally recursive
because of the following

Theorem 12. A procedure t/, without parameters w h o ~ identifier f occurs
only in the main part of the procedure b(~ly (or in the main program) in which
tile procedure is declared is not strongly formally recursive.

Proo f . Let ~ have the form
proc/ ; { ~;}

declared in the main par t of the I)<~ly of procedure V) in I / :

I I p r o c g (x , X.); {... p r o r {~;}; ...} .. .

Let us have a look at a path in the execution tree T n

I 1 , ~ I 1 ~ l ~ 1 1 ~ ~ . . .

.We may ;Lssume that all l)rogram.~ I I i are di.~tinguiMled and that successive

programs I I ' ~ 1 1 i l I

are lit("rally identical with the exception of that lmwcdure s tatement in I I ~

which is replaced by a modified i)rocc~lure laaly in order to give I1 i l t . . qo , every

()n Correct I ~lOC(~(|lll(~ I);tl 'aill(;ter "l'ranslnissi(m in I-ligher I)r()g,al l ln) i l lg I , a n g u a g e s 141

declaration A in II i occurs also in II i for j ~ i and there is a smallest number i a
such tha t the declaration A occtirs in II i.'. We call II ia the associated 15rogram

of A and o[the identifier of A.

l .et the i)ath havc a node IP, generated l)y a call of a copy q/ ' o[the procc(lurc
% Then, the path .[rom II ~ to IP" has a s t ructure

/ I ~ p r o c g (x , %) { . . . p r o c 1; {~}" . . . } . . .
T *

i I I ~. / P p r o c ~ (.% v,,); { . . . p r o c / ' ; {~ ' } . . . j . . .

T*

- : . , - r I , . , } . , . I I ~ . . { . . g (a, , , ,) ;
T

/ P { . . . { . . . p r o c 1"" { ~ " } ; . . . } " . . . }

~v~s
12.,

T*
I f ' { . . . - I " }

r

l / ~ { ; { g , ; } ; l

IP" is obviously the progranl associated to 9/ ' and to 1". As 9/ ' has no parameters
the associated program n[any identi[ier h occurring in (i,': is I1 i with i : ~ i 3 or
i ~ i s . Fur thermore , h is different from 1" by assumption.

Now, lee
h (. i , , ' , .)

be a l)r(medure s t a tement in the main par t of ~,',', and let I! i" I t result from 11 i"
i i

by a call of h(at a,,):

l l " - ' { . . . ; h(a l a,',.) ; . . . }
T

' - - l l l
I I'''L - {.--;{e.,};.--}-.-

Any identifier h' occurring in ~ " has an associated program i l i with i % i a or
i ~ i s , as we can easily see. Furtheron, h" cannot be equal to jr". Otherwise,
h wouhl bc the identifier of a procedure declared within ~,,~' parallel to r and jr"
would occur in the body o[h. This is iml)ossible by assuml)tion.

I te ra t ing this a rgument wc see tha t q/ ' is never called a seeond t ime in the
path. So 9' is not s t rongly [ormally recursive. Q.e.d.

In the l i terature it is somet imes proposed to handle the bh)cks and generated
procedures as i[they were general procedures. This simpli[ies the whole trans-
lation and interpreta t ion process, in princil)le. In favour o[generat ing efficient
ol)ject code procedures which are not s t rongly [ormally recursive should be
processed di[[erently. Unfortunately, "fhcorem t0 says tha t there does not exist
any general algori thm which figures out exact ly these Sl)ecial procedures. There-
fore, theorems like Theorem t2 have it great importance [o r compilat ion tech-
niques.

t42 H. Langmaack : On Correct Procedure Parameter Transmission

XI. Concluding Remarks

In a certain sense ALGOL 60 programs with procedures may be considered
to be a sort of macro grammars which have been studied in the li terature. In
view of the results in [2], Theorem 9 looks surprising. In a further paper on
e l iminat ion of global parameters and on normal forms for programs with pro-
cedures we shall invest igate similarit ies and differences between programs and
macro g rammars [13].

The author should like to thank Prof. G. Hotz for many discussions, Dr. H. Feld-
mann for some hints, and the referees for their valuable critical remarks.

References
1. De Bakker, J. w., de Roever, W. P. : A Calculus for Recursive Program Schemes.

M R 13t/72, Mathematisch Centrum Amsterdam, February t 972.
2. Fischer, M. J . : Grammars with Macro-like Productions. Report No. NSF-22.

Math. Ling. and Autom. Translation. Harvard Univ., Cambridge, Mass., May 1968.
3. Grau, A. A., Hill, U., Langmaack, H.: Translation of ALGOL 60. Handbook for

Automatic Computation. Vol. I, Part b. Berlin-Heidelberg-New York: Springer
t967.

4. Hawkins, E. /x'., Huxtable, D . H . R . : A Multi-Pass Translation Scheme for
ALGOL60. Annual Review in Automatic Programming. Vol. III , 163-205.
Oxford: Pergamon Press 1963.

5. Koster, C. H. A. : On Infinite Modes. ALGOL Bulletin No. 30, 86-89 (1"969).
6. Ledga.rd, H. F.: A Model for Type Checking. Comm. ACM 15, 956-966 (t972).
7. Naur, P. (Ed.) et al. : Revised Report on the Algorithmic Language ALGOL 60.

Num. Math. 4, 420--453 (1963).
8. Pair, C.: Concerning the Syntax of ALGOL 68. ALGOL Bulletin No. 3t, 16-27

(1970).
9. Post, E. L : A Variant of a Recursively Undecidable Problem. Bull. Am. Math.

Soc. 52, 264-268 (1946).
10. Scheidig, H.: Representation and Equality of Modes. Inf. Proc. Letters 1, 61-65

(1971).
11. Van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster, C. H. A.: Report

on the Algorithmic Language ALGOL68. Num. Math. 14, 79-218 (1969).
12. Zosel, M. : A Formal Grammer for the Representation of Modes and its Application

to ALGOL 68. Thesis, Univ. of Wash. 1971.
t 3. Langmaack, H. : On Procedures as Open Subroutines. Fachbereich Angew. Math.

u. Informatik, Univ. des Saarlandes, Bericht A 73/04 (t973).

Prof. Dr. Hans Langmaack
Fachbereich Angewandte Mathematik
und Informatik
der Universitgt des Saarlandes
D-6600 Saarbriicken
Im Stadtwald
Bundesrepublik Deutschland

