
Acta Informatica 6, 77--88 (1976)
�9 by Springer-Verlag t 976

Hierarchies of Complete Problems*
Zvi Galil

Received June 4, 1975

Summary. An attempt is made to present a framework for the diverse complete
problems that have been found. A new concept--a Hierarchy of Complete Problems
is defined. Several hierarchies in various domains such as graph theory, automata
theory, theorem proving and games are established.

1. Introduction

In [t] S. Cook introduced the notions of polynomial time reducibility and
complete languages in NP-TIME. 1 Moreover, he showed that some natural
combinatorial problems 2 are complete in NP-TIME. Since then, using several
efficient reducibilitiers, reasearches have found many other complete problems
in DLOG, NLOG, P-TIME, NP-TIME and P-SPACE ([t3, t t , t2, 9, t5], etc.).
Although DLOG_(NLOG_(P-TIME_NP-TIME_(P-SPACE we cannot find in
the literature any quintuple of complete problems, one in each of these five
classes of languages, such that each is a special case of the next. The goal of this
paper is to present such hierarchies of complete problems.

First we recall some well-known definitions:

Definitions. Let C be a class of functions, A and B be sets and S a class of sets.

(i) A < c B if there is a function/EC such that for every w, wEA iff/(w)EB. 3

(ii) S <cA if for every B e S B <cA.

(iii) A is <c complete in S if
(a) S <cA and
(b) A S.

In this paper we restrict ourselves to the set C of functions which can be
computed by a Turing machine (Tin) which uses logarithmic tape. Thus we write <

* Some of the results in this paper were presented in the John Hopkins Conference
on Information Sciences and Systems, April t975.
1 We use the following notation: DLOG (P-TIME, P-SPACE) is the set of languages
accepted by deterministic Turing machines which operate in logarithmic space (poly-
nomial time, polynomial space respectively); NLOG (NP-TIME) is the set of lan-
guages accepted by nondeterministic Turing machines which operate in logarithmic
space (polynomial time).
2 We use the terms sets, languages and problems interchangeably since all problems
that we discuss have 0-t solutions.
3 This is many-one reducibility. There are some other efficient reducibilities which are
discussed in [t 4]. They are analogous to the various reducibilities of recursion theory
(cf. [t6]), but we do not consider them here.

78 Z, Galil

rather than <c (this is also denoted < log in the literature) and complete instead of
<-complete. We justify our restriction by the fact that most (if not all) of the
reductions in the literature which are used to describe specific complete problems
are < los.4 In one case, however, this restriction does not make much sense, since
every LEDLOG is <los complete in DLOG. To overcome this difficulty Jones
has defined ([t t]) the logu rudimentary functions. All the reductions in the sequel
are < log. Since they are fairly straightforward in all cases, we omit the tedious
details of the proofs that the reductions can be done using logarithmic space.
In the case of DLOG our reductions can be shown also to be rudimentary.

The importance of complete problems is two-fold:

1) Often, a question about a class of languages can be translated into a seem-
ingly simpler question about one language in the class, namely the complete
language. In particular the question "Are A and B equal?" where A B can be
translated into the question "Is L in A ?" for L complete in B; and the question
" I s A closed under complementation ?" can be translated into " I s f~ in A ? ".
Thus, most of the important open problems of computational complexity can be
translated into questions about the corresponding complete problems.

2) In some sense the complete problem is the hardest in the class since every
problem in the class can be efficiently encoded into it. Thus, studying a complete
problem sheds light on the whole class that it is complete in.

We now give the definition which is of central importance to our paper.

Definition. A hierarchy o] complete problems (HC P) is a quintuple of problems
(A1, As, A3, A4, As) that satisfies:

(1) A 1 is complete in DLOG, A 2 is complete in NLOG, A 3 is complete in
P-TIME, A 4 is complete in NP-TIME, and A 5 is complete in P-SPACE; and

(2) For t <-i <--4 Ai is a special case of Ai+l, i.e. A i is obtained from A,-+I by
adding some restrictions to A~+ 1 .

In this paper we prove the existence of several hierarchies of complete problems
in varied areas such as graph theory, automata theory, theorem proving and
games. Although we introduce quite a few new complete problems, this is not the
purpose of this paper. Our goal is to present a framework for the diverse complete
problems that have been found. So far the numerous known complete problems
do not fit a unified framework. We also investigate the question of what changes
make a problem easier. Since we believe that DLOG= N LO G = P-TIME= NP-
T I M E = P-SPACE, a restriction which is added to a problem A~+ 1 in an HCP to
get A~ really makes the problem easier. Recently (t6]) a closely related question
was investigated--i.e. : Which restrictions on a problem do not affect its com-
plexity ? I t was shown that some strictly restricted versions of complete problems
in NP-TIME are still complete in NP-TIME.

As we said before, our intention was not to introduce new complete problems,
but our paper includes for the first time simple combinatorial problems which are
complete in P-SPACE. Until now, the only natural complete problems in P-SPACE
were either questions about automata (like equivalence of regular expressions) or

4 This was first observed in [t 5] and [11],

Hierarchies of Complete Problems 79

about logic ([15]). Our combinatorial problems are (a) to find a repeating pattern
in a graph and (b) to decide whether a given person is going to die in a kind of
game of life ([5]). 5

Our hierarchies consist of complete problems in classes of feasible computations
(DLOG, NLOG and P-TIME) and in classes in which computations cannot yet
be proven to be unfeasible (NP-TIME and P-SPACE).

In Section 2 we construct a graph HCP, in Section 3 we give two HCP's in
automata theory, in Section 4 an HCP in theorem proving and in Section 5 two
HCP's about games. In all the proofs we show that the various problems are
complete in the corresponding classes. By definition, to prove a problem A is
complete in B we have to show (1) that it belongs to B and (2) that every problem
in B can be reduced to A. In all cases except in some of the complete problems in
automata theory, the first part is straightforward and we omit its proof. To prove
part (2) it is enough to show that A' < A when A' is a known complete problem in
B. We use CNF-SATISFIABILITY ([t, t3]) for NP-TIME, PATH ([2, t2]) for
P-TIME, DGAP, and GAP ([11]) for DLOG and NLOG respectively. (The latter
is the graph version of the maze language of [17].) To prove that a problem A is
complete in P-SPACE it will suffice to show that DLBA < A where DLBA is the
class of languages accepted by deterministic linear bounded automata (dlba's).
This follows from the fact that there are complete problems in P-SPACE which
belong to DLBA. In some cases, in order to prove that DLBA < A or NP-TIME <
A, we will use direct encoding of a given Tm M and input x as an instance of A.
This method is similar to the one we used in [4] which was inspired, in turn, by
Cook's proof that SATISFIABILITY is complete in NP-TIME ([t]). We discuss
this method here briefly.

First, we consider the case of NP-TIME. Given a nondeterministic Tm M with
input x and the upper bound on the time N = p (I xl) we use N instantaneous
descriptions (i.d.'s) of length N to describe the computation. The problem will
have an object xr �9 (vertex in the case of graphs and literal in the case of theorem
proving) corresponding to the possible fact that at time i the i-th symbol of the
i.d. is a,. A solution to the problem A will consist of certain choices of these
objects which describe a complete accepting computation of M on x as follows:
I t will contain objects which represent a sequence of i.d.'s of M. The structure
of the problem will guarantee that (t) the first i.d. is the initial i.d. of M on
x(N-- I x I blanks are added); (2) the final i.d. is accepting; and (3) the (i + l) th
i.d. is one which can follow from the i-th i.d. by a move of M. The three properties
will guarantee that A has a solution iff M accepts x. Actually this is a somewhat
simplified description of the method, since in order to implement (3) above we will
need some extra objects, however the total number of the objects will not exceed a
polynomial in I xl. For the LBA case, we cannot use exactly the same trick
since the number of i.d.'s can be exponential. We overcome this difficulty by using
objects ~, j with i~{0, t} only. i ~ - 0 (i = t) will mean that the number of moves
until now is even (odd). We will be able to encode the lba's action into an instance
of A since the same object in A may represent many possible facts e.g. x0ks might

5 Very recently [3], another combinatorial problem complete in P-SPACE was dis-
covered.

80 Z. Galil

stand for the fact that at t ime t0 the/ ' - th symbol in the i.d. is a , and at the same
time it can stand for the same fact with t ime 16. The problem will allow repetition
of objects in a way that the context in which some choice of x~, i is made (it might
be chosen many times) determines the exact t ime t (t mod 2 = i) in which the/ ' - th
symbol is a h.

In many cases we only sketch the proofs. We hope that the reader will be
able to complete the missing details.

2. A Graph HCP: Finding a Grid in a Directed Graph

We are given an arbi trary directed graph, k distinguished nodes--the source
nodes and another distinguished node--the goal node. Any set of k distinct nodes
is called a layer. A layer (il, J2 i,) can tollow a layer (/1, i 2 i,) if there are
directed edges (i 1, il), -. . , (ik, i~) and (i 1, i2), -. . , (ih-1, ik) in the graph. A grid is a
sequenc~ of layers such that (1) the first layer consists of the source nodes; (2)
the last layer contains the goal node; and the n-th layer can follow the (n- - l) s t
layer. Note that a node can appear in more than one layer.

the

the
source nodes

:oal node

Fig. I A grid (k=6)

We now define five problems:

As: Input (t) a directed graph (2) an integer k (3) a list of k source nodes (4) a
goal node. Does the graph contain a grid ?

A4: Same as A 5 except that we do not allow repetition of nodes in a grid.

A3: Same as A 4 except that we allow as inputs only simple graphs (by simple

graph we mean a directed graph without the subgraph C~,2: ~X~).

A2: Same as A 8 except that k = t .

AI: Same as A 2 except that input graphs are further restricted to have nodes
with outdegree t .

Theorem 1. (A1, A2, Aa, A4, As) is an HCP.

Proof. First we show that A 4 is complete in NP-TIME. Given a nondeter-
ministie Tm M which operates in polynomial t ime and an input x we can encode
M and x into an instance of A 4 in such a way that the latter contains a grid iff M
accepts x.

Assume tha t 2] is an alphabet which suffices to describe i.d.'s of M and that
N = p (I xl) is the time bound for M. We define the graph G with nodes V, V ~

Hierarchies of Complete Problems 8t

v" v ~d v ~ , ~ l O < i , j < N , O < k , l , m < N - - l , l < n < _ N - - l a n d a , b,c,d,e,]E,S} i , j , k , l , -~- = = ~ - - -

= Vl u V2 u V3. ~
The meaning of v: . is that at time i the/ '-th symbol in the i.d. is a. The mean- t , l

ing of v~,Cd, is that at time k the l-th and (/+1)s t symbols of the i.d. are c and d.
Similarly the meaning of V~m{~ is that at time rn the (n--l)st , n-th and (n + 1)st
symbols of the i.d. are e, / and g respectively. The source nodes (the initial layer)
will be those describing the initial i.d. of M on x and the goal node will be a node
representing the accepting state (without loss of generality we can assume that M
accepts i n a unique state q, only at time = N while its head scans some given
symbol, @, at the leftmost tape cell, thus the goal node is v~#,bO).

A grid (if exists) will consist of a layer from V 1 followed by a layer from V 2
followed by a layer from V 3 followed by a layer from V 1 and so forth. The set of
edges defined below will assure that if the first V 1 layer represents an i.d. then (i)
the next layer must be in V 2 and will represent the same i.d. in which every two
symbols are packed together; (if) the next layer must be in V~ and will represent
the same i.d. in which every three symbols are packed together; and (iii) the next
layer must be in V 1 and will represent an i.d. which can follow from the previous
one by one move of M. This will guarantee that M accepts x iff there is a grid
(which represents the computation of M on x).

We now define E to be the class of all edges which appear in Fig. 2.

I) ab .

O) ~,J
v? �9 v b

I,J i , j+ l

v 'ybr �9 vq �9 d~f(a, b, c)

(2) / / ~ J+l (3) . . / ~ " f i sde f ined
< s i v ~ + , V ~ ~ a below i , j i , j+ l

Fig. 2

(i) and (ii) above can be easily checked. For a, b, cEZ,, dEl(a, b, c) (_~ if d is a
possible j-th symbol in an i.d. whenever a, b and c are the (j - - l)s t j-th and (j + l)st
symbols in the previous i.d. (note that d depends only on a, b and c). iii) is not yet
satisfied since we must force the next layer to have nodes (from 111) that correspond
to the same choice of a next move of M. Without loss of generality M has exactly
two choices in each step, thus /(a, b, c) = {d a , d~}. We duplicate the sets V 1 and V~
and create new sets U 1 and U 2. The edges will be of the form (~) and (2) of Fig. 2
and (t)' (2)' (3)* and (3)' of Fig. 3.

~i+ l , j 1

L j i , j + l i , j i ,J+l

d!
Di+l , j

(3)* V ~ V b ~ 4
i , j i , j + l

Fig. 3

_ a :{Vk, l} and 6 V1-- {vi, j}, V.~ ca Vs = Cv,/g ~ . re, n-"
6 A e t a Informat iea , Vol. 6

dz

(3)' v ~ v ~ d
i , j i , j + l

82 Z. Galil

The u's have the same meaning as the v's except t ha t the v's (u's) represent first
(second) choice for next move. One can verify tha t if we have a layer in V 3 which
is followed by a layer tha t contains elements from V 1 and from U 1, then there
cannot be a next layer. Thus if a grid exists the next layer is either in V 1 or in U x
and the next one is either in V~ or in U2 respectively. Wi th this addit ion (iii) above
is satisfied and the proof is completed.

The proof tha t A 5 is complete in P -SPACE is similar. The changes are: (t) We
can delete the U's; (2) i can take the values 0 or t only; and (3) the edges are of the
forms (t), (2)and (3) in Fig. t with (i + 1) r o o d 2 instead of i + t . The meaning
of v~ i is tha t at some time k with k rood 2 = i the j - th symbol of the i.d. is a. The
t ime k is determined by the number of the layer in which v~ ~,i appears (it can
appear in m a n y layers).

The proof t h a t A 3 is complete in P -TIME is also similar. Here too we do not
need the U's and the computa t ion of M on x can be encoded into a simple graph
since M is deterministic. (One can show tha t subgraphs of type C2,~. are possible
only due to edges of types (3) and only when there is more than one choice for
next move.)

A, and A~ are simply GAP and D G A P ([11]) for simple graph. These are still
complete in N L O G and D L O G since every graph G can be converted to a simple

g
graph G' by replacing every edge e ~,~ by two edges !and, [a !new ,!n~ e2 ol w.

Obviously there exists a pa th in G iff there exists a pa th e I l
between the corresponding nodes in G'. ~'

3. Two HCP's in Automata Theory

We consider five au tomata :

1. dfa -- deterministic finite au tomaton 7
2. nfa - - nondeterminist ic finite au tomaton
3. npda -- nondeterminist ic pushdown au tomaton
4. rcsa -- restricted nondeterministic checking stack au tomaton
5. csa - - nondeterminist ic checking stack automaton.

Except rcsa all the others are well known. Their definition can be found in
the literature (It0, 81). rcsa is a csa with the following restriction: once the
au tomaton enters its s tack it does not distinguish between stack symbols, i.e.
it interprets the contents of the s tack as a unary number.

I t is obvious tha t the au tomata above are ordered in increasing power: The csa
has finite control and a stack and after it enters into its stack it cannot change
the contents of the stack. The rcsa is csa with the restriction above. By not
allowing the resa to enter the stack we obtain the npda, by deleting the s tack we
get nfa and by restricting the au tomata further to deterministic moves we get
the dfa.

Let B i be the class of problems: "Does A accept the empty word (~) ?" where
A varies over machines of type i, I ~ i ~ 5.

7 V~Te only allow the dfa to have e-moves in a way that if some state has an e-move
it cannot have a read move nor can it have more than one e-move per state.

Hierarchies of Complete Problems 83

The discussion above implies that Bi is a special case of Bi+ 1 since the i-th
machine is a special case of the (i + l) th machine (t ~ i < 4). Moreover, we have

Theorem 2. (B1, B~, B s, B 4, Bs) is an HCP. Note that for t ~ i _< 5 Bi is of
the type ' Is eEL(A) ?' (L(A) is the language accepted by A). The complexity of
this problem characterizes in some sense the computational power of the corre-
sponding automaton. I t ignores several factors such as (t) number of heads (2)
the difference between the one way and two way device and (3) the 'help ' the
automaton can get from specific input formats. Thus it mainly characterizes the
power of the control of the corresponding machine.

Proo] o/the theorem. A slight variation of B 1 was shown to be complete in DLOG
in [t l] . In [t t] it was also shown that B 2 is complete in NLOG. In [12] it was
shown that B a is complete in P-TIME. (npda can easily accept an encoding of
admissible path systems.) We show that (t) B s is complete in P-SPACE and (2)
B 4 is complete in NP-TIME.

(1) To prove that P-SPACE < B 5 we show that DLBA < B~: Given a dlba M
and an input x, Ix[= n we can easily construct a csa A which guesses a string
which it pushes onto its stack and then checks whether it is an accepting com-
putation of M on x. A accepts its input iff the check succeeds. I t needs no more
than 4n states (~-~n to check whether the initial i.d. is @q0x :~ and ~ 2 n states
to go back and forth and check whether each i.d. can follow from its predecessor).
Thus eeL(A) iff M accepts x.

Now we show that BsEP-SPACE. Given a csa A we first construct a non-
erasing csa A' such that eeL (A) iff eeL (,4'). Note that before A enters the stack
it behaves as an npda. Therefore we can use the notation for npda's ([10] chapter
5). Without loss of generality A pushes at most one symbol onto its stack in one

move. We change A as follows: if (i) (q, Z1Z~) E d (p, e, Z) and (ii) (p, Z~) (r, e)

we add the rule (r, Z1) e ~ (p, e, Z). Note that (ii) can be found in polynomial time
(it can be transformed to emptiness problems for npda). The new rule prevents A
from pushing Z 2 if it is possible that it is going to erase it later, and to move into
the state into which it would move if it went through the computation which
erases Z~. Adding the new rules and deleting all the rules which erase a stack
symbol we obtain A' such that eeL(A) iff eeL(A') . Now, by [t0] acceptance
for nonerasing stack automaton can be checked in space proportional to the
square of the number of the states of A'. T h u s " Does A accept e ?" can be checked
in polynomial space.

(2) We first show that N P - T I M E < B ~ by showing that CNF-SATISFI-
ABILITY < B 4. Let ~ be a boolean formula in CNF w i n l variables. Let A be the
following rosa: On every input A first pushes Z k on its stack for some k chosen
nondeterministically. Then it checks whether e is satisfied by the assignment

0 if k mod Pi = 0~
x~ ~ I otherwise] where p~ is the i-th prime, 1 ~ i ~ l . If 0r is satisfied by

this assignment A accepts the input. Obviously eeL(A) iff ~ is satisfiable. A
1

needs , ~ N ~ . ~ p~ states and by the Prime Number Theorem N < l s.
i ~ l

To show that B4eNP-TIME we show that B 4 can be reduced to the non-
emptiness problem for two way nondeterministic finite automata (2 nfa) over a

6"

84 Z. Galil

one symbol a lphabet 27-~{a}. This will complete the proof since the la t ter is in
N P - T I M E b y the next lemma. As we saw above, given an rcsa A we m a y assume
tha t A is non-erasing. We construct a 2nfa over one symbol a lphabe t B such tha t
L(B) 4=~b iff eEL(A). B will have two modes of operat ion: in mode 2 it will
behave exac t ly as A behaves af ter it enters its s tack and will accept if A does.
(By definition of rcsa it behaves exac t ly as 2nfa over one symbol a lphabe t a t
this stage. Also r emember t ha t we are looking a t acceptance o f , only.) In mode 1 B
will behave as a one w a y nfa. I t will have addi t ional s ta tes {Eq, Z]I q is a s ta te of A
and Z a s tack symbol of A} and will s t a r t a t tqoZo] (q0 is the initial s ta te of A and
Z o is its b o t t o m of s tack symbol) . I t will move as follows: if q is a s ta te of A in
which it enters its stack, then B passes to mode 2; otherwise [q'Z']E~B([qZ], a) if

�9 t (q, Z) -~(q, ZZ'). Note t h a t this last condit ion can be checked in polynomial

t ime (as above it can be reduced to emptiness problem for npda). Note t ha t during
the first s tage B can scan a k iff the length of the s tack a t the end of the first s tage
can be k. Thus L (B) :4:q9 iff eEL (A). This completes the proof.

In the proof above we used the following L e m m a :

Lemma. The nonemptiness problem for two w a y nondeterminis t ic finite
au toma ton (2nfa) languages over one symbol is in hiP (in fact it is complete in NP).

Proo[. Given a 2nfa A with n states, b y ~10~ there is an equivalent nfa B
with N ~ n ~+1 states. Thus L (A) :t=~b iff there is k ~ n ~+1 such tha t a~EL (A) (a is
the single input symbol). To check if L (A) 4= ~b we first guess k <--n ~+1 and then
check if a~EL (A). Note t ha t we cannot s imulate A in polynomia l t ime since k can
be exponent ia l in n. Le t a configurat ion of A be a pa i r (s, i) where sES is a s ta te
and O<=i~k+t is the head position. If akEL(A), then there is a sequence of
moves which accepts it wi thout repeat ing a configuration. Wi thou t loss of gener-
a l i ty A accepts when its head scans the left endmarker . Thus if akEL (A) there is
a non-repeat ing sequence of configurations c o, c 1, c~ , c~ such t ha t c o -----(qo, 0),
c~ = (p, 0), p accepting, and cz+ 1 follows f rom c~ b y one move of A for 0 _<l - -<u-- t .
Unfor tuna te ly u can be ve ry large. We consider only the configurations in which
A scans an endlnarker (i ---- 0 or i = k + t) d 0, d 1 dv v =< 21S] (the sequence is
wi thout repetit ion). Obviously d o ----c 0, dv = c u and dl+ 1 can follow d I af ter a
sequence of moves in which A does not hi t any endmarker . Thus we guess the
sequence {d~}~=o and check if i t satisfies the above. We show how to check if
dl+l---(q,k+t) follows f rom dz-=(p, 0) wi thout h i t t ing any endmarker . The
other three cases dz+ l=(q , 0) dl-----(p, k + t) , d l + l = (q , 0) d~-----(p, 0) and dl+ 1 =
(q, k + t) d~ = (p, k + t) are similar.

We call a sequence of configurations [ma, rn~ bounded if each configurat ion
in the sequence (p, i) satisfies m 1 ~ i ~ m S.

Let pES and m be an integer. We define

{q] (p, I) A (q' m + 1) in a ~1, m + t] bounded sequence}, Rp,,,

Lp,,~ = {ql (P, m + t) (q, t) in a [t, m + 1] bounded sequence},

L R,,m = {el (P, m + 1)]-~ (e, m + t) in a El, m + t] bounded sequence},

R Lp,,, = {q] (p, t) ~-A (q, t) in a [1, m + t] bounded sequence}.
I

Hierarchies of Complete Problems 85

Now we can build Rp,,,,+m, recursively by the following program:

R +'Rt,,m,;
d o while R does not increase;

R+-Rw{q l3q lER and qeRLq };

R ~ R u{ql3qlER and qeLRq,,,~,}
e n d ;
Rt,,,~,+m+-{ql3qleR and qERq,,,~,}

~ (q , + t) in a [1, + + 1] Note that the final value of R is {q[(p, t) * ml ml ms

bounded sequence}. Fig. 4 indicates why the program above is correct.

1 m l + l ra~ +m2 + 1

Fig. 4. Note that ii and iii can repeat at most IS[t imes

Lp,,~,+r~,, LRp,,~,+,,,,, RLp,~,+,~, can be computed similarly. Thus we construct
Rp,,,~, Lp,,~,, LRp,,=, RLp, e~ for all 0=<m~[logz(k- - l)] and pES. Then we
compute Rp,k_ 1 using the binary representation of k - - l . Now dr+ 1 ----(q, k + t)
can follow d l = (p, 0) without hitting the endmarkers iff there are Pl, pzES such
that A can move from (p, 0) to (Pl, ~) and from (p,, k) to (p, k + t) in one step
and P~ERp,,h-x. This completes the proof of the lemma.

I t is interesting to note that although quite a few complete problems about
automata were found they do not fit into an HCP. In particular, we could not
construct any HCP from all the complete problems dealing with regular ex-
pressions ([9], [t5]) or finite automata. The best we could do was to construct
the following incomplete HCP:

Let C5: Nonelnptiness of 2nfa languages over binary alphabet.

C,: Nonemptiness of 2nfa languages over unary alphabet.
Q: ?
C2: Nonemptiness of (one way) nfa languages over unary alphabet.
C1: Nonemptiness of (one way) dfa languages over unary alphabet.

I t was shown in [12] that C1 and C2 are complete in DLOG and NLOG. We can
show that C4 and C s are complete in NP-TIME and P-SPACE. (The most diffi-
cult part is the lemma proved above.) However we were unable to find some C 3
lying between Cz and C a which is complete in P-TIME.

4. A n HCP in Theorem Prov ing

Definition. A proo] system consists of (t) A set of literals X----{x 1, x 2 xn}
which contains three distinct subsets: AX- - the set of axioms, T H - - t h e set of
theorems and AS- - the set of assumptions-----{xi,, Xiklik=4=ik, k----l, 2 ...}. The as-
sumptions are arranged in conjugate pairs (xik, xi,) xi~ is the conjugate of xik and

86 Z. Galil

vice versa; and (2) A set of rules of the form Yl y,--~z such tha t zEX-AS and
yiEX, t <--i <--r. We wi l l say that z can be derived from Yl Y,-

We will say that xEX can be proven if there is a subset of X-AS, {z 1 zp}
such that (1) zp=x; (2) There is k < p with {z 1 z,}(_AX; (3) z,+1 can be
derived from {Yl Ym} (A S • {zl z,} for k <--l--<p--I and (4) Throughout
this process, if an assumption xi, is used in the derivation of some z~, then its
coniugate xj~ is not used in any derivation.

We can view A S as a source for additional axioms, i.e. for any proof we can
.add to A X any subset of A S which does not contain a pair of conjugate literals.

A proof system is valid if every xE TH can be proven.

Our HCP will consist of various restricted forms of valid proof systems.
We restrict all our proof systems to have ITH] = 1 . This restriction is not

necessary but it simplifies the proofs.

Define D4: The set of all valid proof systems.
D 3: D, except that A S = ~.
D~: D3 with rules restricted to have r = t.
DI: D, with the restriction that no two literals can be derived from

the same literal.

In order to construct an HCP we define D~ for which D 4 is a special case. We
extend the definition of a proof system as follows: A generalized prooJ system is a
proof system with the addition that xEX-A X has a superscript (i.e. x (0) and the
rules should be interpreted as y~O , y~~ Thus

Ds: The set of all valid generalized proof systems.

Theorem 3. (D1, D,, D3, D4, D~) is an HCP.

Proo[. D1, D, and D 3 are complete in DLOG, NLOG and P-TIME respectively
since one can easily reduce DGAP, GAP and PATH ([11], [12], [2]) to D1, D~
and D 8 respectively. D 4 is complete in NP-TIME since a computation of a non-
deterministic T m which operates in polynomial t ime can be encoded into an
instance of D 4 (the encoding is much simpler than that of Section 2) : The axioms
play the role of the initial configuration, the theorem stands for the fact that the
input is accepted, each assumption stands for one of the two choices for next
move and the rules represent the transformation of an i.d. to the one which
follows from it. Similarly D 6 is complete in P-SPACE (superscript i corresponds
to t ime = i).

5. HCP's in Games s

Let G be a directed graph with set of edges E and set of vertices V(V re-
presents a given population). For v E V let 2V~ = {wl(w , v)E E} be the set of neigh-
bouts of v (note that being a neighbour is not necessarily commutative). Let
k > 0 be a given integer, and for each v E V and t ~ 0 let a~) be an integer between
0 and k. a~ 0 = i means that at t ime t the person v has i- th degree of sickness
(i ~ 0 means healthy, i = k means dead). The rules for the spreading of the dis-
ease are given as follows: for every assignment to any N~ at t ime t there are

8 The problems below are called games since they resemble the game of life ([5]).

Hierarchies of Complete Problems 87

probabilities Pi > O, 0 <= i <= k, ~. Pi = l where Pi is the probabil i ty that a~ ~+1) = i

(the probabil i ty does not depend on t).

Define Es: Given G, {a~~162 and the set of rules. Is there a positive prob-
ability that v~) = k for some t ~ 0, where v ois a distinguished vertex ?

E4: Same as E 5 except that al~ +x) => a~ 0 for all vE V and t ~ 0.
E~: Same-as ELwithout probability, i.e. a~ +1) is uniquely determined by

Es: Same as E a with k = !.
E2: Same as E 3 with restricted rules: al: +x) = l if f o r s o m e w c N v a~) = I.
Ex: Same as E 2 except IN,.J = t for all vEV.

Theorem 4. (El, E2, E3, EL, Es) is an HCP.

Proo/. E 5 is complete in NP-SPACE and hence in P-SPACE since every lba
computation can be encoded into an instance of Es: The initial assignment
{a~~ represents the initial i.d., the rule encode the move of the machine and
the distinguished person-- the accepting state. The probabilities encode the
nondeterminism. Before moving to the next step a small local disease can simulate
the check that exactly one move is chosen. If this does not happen, the disease
stops spreading. Similarly E L can encode a nondeterministic Tm which operates
in polynomial time. E; and E 3 can easily encode PATH ([2]). E2 and E x can encode
GAP and DGAP ([i l l) .

I t is interesting to consider E 6 for which E 5 is a special case:

E s: The same as E 5 except that the question is: Is the probabili ty that av~ *) = k
for some t is greater than half.

E e is complete in probabilistic polynomial space ([7]), a class which contains
P-SPACE. (It is not known whether the inclusion is proper.)

A similar hierarchy which does not use probabili ty (i.e. a(v t+l) is determined
uniquely by {aZ'lw N })is the following:

Fs: Given a graph and rules and a subset U of the vertices (the source of the
plague). Is there an initial assignment {a~~ v such that a~ ~ = 0 for vr U
such that for some t a I~ = k. Vo

F4: Same as E 5 except that a~ +1) ~ a~) for all vE V and t >_ 0.
F3: Same a s F L but lU I = 1 .
F2: Same as F n except the rules are restricted as in E 2.
FI : Same as F 2 except IN d = 1 for all vEV.

Theorem 5. (/;1, F2, F 8, -/74, Fs) is an HCP.

Proo/. The part of the proof concerning/;1, F , and F 3 is similar to that con-
cerning El, E 2 and E 3. F L and F 5 are different. In the case of F5 we have rules
and U such that only one initial assignment which describes the first i.d. of the
given lba M and its input x can result in an expansion of the disease, and then
it does so simulating the lba. In the case of FL the initial assignment contains two
parts. One is responsible for the initial i.d. as in F 5 and the other is responsible
for the nondeterministic choices that the machine can make during the computa-
tion.

88 Z. Galil

Acknowledgments. I am indebted to Professors J. Hopcroft and J. Har tmanis for
their encouragement and advice. I would also like to thank J. Simon and M. Solomon
for useful discussions and help with the presentation.

References

1. Cook, S. A. : The.complexi ty of theorem proving procedures. Proceedings of 3rd
Annual ACM Symposium of Theory of Computing, Sheiker Heights (Ohio) 197t,
p. 151-158

2. Cook, S .A . : An observation on time-storage t rade off. Proceedings of 5th
Annual ACM Symposium on Theory of Computing, Austin (Tex.) 1973, p. 29-33

3. Even, S., Tarjan, R. E. : A combinational problem which is complete in poly-
nomial space. Proceedings of 7th Annual ACM Symposium on Theory of Com-
puting, Albuquerque (New Mexico) t975, p. 66-7t

4. Galil, Z.: On some direct encodings of nondeterministic Turing machines
operating in polynomial t ime into P-complete problems. SIGACT News 6,
19-24 January 1974

5. Gardner, M.: The fantastic combinations of John Conway's new solitaire game
' Life '. Scientific American 223, 120-123 (t 970)

6. Garey, M. R., Johnson, D. S., Stockmeyer, L. J . : Some simplified NP-complete
problems. Proceedings of 6th ACM Symposium on Theory of Computing, Seattle
(Wash.) 1974, p. 91-95

7. Gill, J. T. : Computat ional complexity of probabilistic Turing machines. Pro-
ceedings 6th Annual ACM Symposium on Theory of Computing, Seattle (Wash.)
t974, p. 91-95

8. Greibach, S. A.: Checking au tomata and one-way stack languages. J. Computer
and System Sciences 3, 196-217 (1969)

9. Hartmanis, J., Hunt, III., H. B.: The LBA problem and its importance in the
theory of computing. Cornell University, Technical Report 73-171, t973

10. Hopcroft, J. E., Ullman, J . D . : Formal languages and their relation to auto-
mata. Reading (Mass.): Addison-Wesley I969

t t . Jones, N. D. : Reducibi l i ty among combinatorial problems in logn space. Pro-
ceedings of 7th Annual Princeton Conference on Information Sciences and Systems,
t973, p. 547-551

12. Jones, N. D., Laaser, W. T. : Complete problems for deterministic polynomial
time. Proceedings of 6th Annual ACM Symposium on Theory of Computing,
Seattle (Wash.) 1974, p. 40-46

13. Karp, R .M. : Reducibilities among combinatorial problems. In: Miller, R.,
Thatcher, J. (eds): Complexity of computer computations. New York: Plenum
Press t972, p. 85-104

14. Ladner, R., Lynch, N., Selman, A. : Comparison of polynomial t ime reducibilities.
Proceedings of 6th Annual ACM Symposium on Theory of Computing, Seattle
(Wash.) 1974, p. 110-121

15. Meyer, A. R., Stockmeyer, L. J. : Word problems requiring exponential time.
Proceedings of 5th Annual ACM Symposium on Theory of Computing, Austin
(Tex.) 1973, p. 1-9

t6. Rogers, J., Jr. : Theory of recursive functions and effective computabil i ty .
New York : McGraw-Hill 1967

t 7. Savitch, W. J. : Relationship between nondeterministic and determinist ic tape
complexities. J. Computer and System Sciences 4, t 77-192 (197o)

Zvi Galil
Computer Sciences Depar tment
IBM T. J. Watson Research Center
Yorktown Heights, New York 10598
U.S.A.

