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Summary. An attempt is made to present a framework for the diverse complete 
problems that have been found. A new concept--a Hierarchy of Complete Problems 
is defined. Several hierarchies in various domains such as graph theory, automata 
theory, theorem proving and games are established. 

1. Introduction 

In [t] S. Cook introduced the notions of polynomial time reducibility and 
complete languages in NP-TIME. 1 Moreover, he showed that some natural 
combinatorial problems 2 are complete in NP-TIME. Since then, using several 
efficient reducibilitiers, reasearches have found many other complete problems 
in DLOG, NLOG, P-TIME, NP-TIME and P-SPACE ([t3, t t ,  t2, 9, t5], etc.). 
Although DLOG_(NLOG_(P-TIME_NP-TIME_(P-SPACE we cannot find in 
the literature any quintuple of complete problems, one in each of these five 
classes of languages, such that each is a special case of the next. The goal of this 
paper is to present such hierarchies of complete problems. 

First we recall some well-known definitions: 

Definitions. Let C be a class of functions, A and B be sets and S a class of sets. 

(i) A < c B  if there is a function/EC such that for every w, wEA iff/(w)EB. 3 

(ii) S <cA if for every B e S  B <cA.  

(iii) A is <c  complete in S if 
(a) S <cA and 
(b) A S. 

In this paper we restrict ourselves to the set C of functions which can be 
computed by a Turing machine (Tin) which uses logarithmic tape. Thus we write < 

* Some of the results in this paper were presented in the John Hopkins Conference 
on Information Sciences and Systems, April t975. 
1 We use the following notation: DLOG (P-TIME, P-SPACE) is the set of languages 
accepted by deterministic Turing machines which operate in logarithmic space (poly- 
nomial time, polynomial space respectively); NLOG (NP-TIME) is the set of lan- 
guages accepted by nondeterministic Turing machines which operate in logarithmic 
space (polynomial time). 
2 We use the terms sets, languages and problems interchangeably since all problems 
that we discuss have 0-t solutions. 
3 This is many-one reducibility. There are some other efficient reducibilities which are 
discussed in [t 4]. They are analogous to the various reducibilities of recursion theory 
(cf. [t6]), but we do not consider them here. 
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rather than <c (this is also denoted < log in the literature) and complete instead of 
<-complete. We justify our restriction by the fact that  most (if not all) of the 
reductions in the literature which are used to describe specific complete problems 
are < los.4 In one case, however, this restriction does not make much sense, since 
every LEDLOG is <los complete in DLOG. To overcome this difficulty Jones 
has defined ([t t ]) the logu rudimentary functions. All the reductions in the sequel 
are < log. Since they are fairly straightforward in all cases, we omit the tedious 
details of the proofs that  the reductions can be done using logarithmic space. 
In the case of DLOG our reductions can be shown also to be rudimentary. 

The importance of complete problems is two-fold: 

1) Often, a question about a class of languages can be translated into a seem- 
ingly simpler question about one language in the class, namely the complete 
language. In particular the question "Are  A and B equal?"  where A B can be 
translated into the question "Is L in A ?"  for L complete in B; and the question 
" I s  A closed under complementation ?"  can be translated into " I s  f~ in A ? ". 
Thus, most of the important open problems of computational complexity can be 
translated into questions about the corresponding complete problems. 

2) In some sense the complete problem is the hardest in the class since every 
problem in the class can be efficiently encoded into it. Thus, studying a complete 
problem sheds light on the whole class that  it is complete in. 

We now give the definition which is of central importance to our paper. 

Definition. A hierarchy o] complete problems (HC P) is a quintuple of problems 
(A1, As, A3, A4, As) that  satisfies: 

(1) A 1 is complete in DLOG, A 2 is complete in NLOG, A 3 is complete in 
P-TIME, A 4 is complete in NP-TIME, and A 5 is complete in P-SPACE; and 

(2) For t <-i <--4 Ai is a special case of Ai+l, i.e. A i is obtained from A,-+I by 
adding some restrictions to A~+ 1 . 

In this paper we prove the existence of several hierarchies of complete problems 
in varied areas such as graph theory, automata theory, theorem proving and 
games. Although we introduce quite a few new complete problems, this is not the 
purpose of this paper. Our goal is to present a framework for the diverse complete 
problems that  have been found. So far the numerous known complete problems 
do not fit a unified framework. We also investigate the question of what changes 
make a problem easier. Since we believe that  DLOG= N LO G = P-TIME= NP- 
T I M E =  P-SPACE, a restriction which is added to a problem A~+ 1 in an HCP to 
get A~ really makes the problem easier. Recently (t6]) a closely related question 
was investigated--i.e. : Which restrictions on a problem do not affect its com- 
plexity ? I t  was shown that some strictly restricted versions of complete problems 
in NP-TIME are still complete in NP-TIME. 

As we said before, our intention was not to introduce new complete problems, 
but  our paper includes for the first time simple combinatorial problems which are 
complete in P-SPACE. Until now, the only natural complete problems in P-SPACE 
were either questions about automata (like equivalence of regular expressions) or 

4 This was first observed in [t 5] and [11], 
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about logic ([15]). Our combinatorial problems are (a) to find a repeating pattern 
in a graph and (b) to decide whether a given person is going to die in a kind of 
game of life ([5]). 5 

Our hierarchies consist of complete problems in classes of feasible computations 
(DLOG, NLOG and P-TIME) and in classes in which computations cannot yet 
be proven to be unfeasible (NP-TIME and P-SPACE). 

In Section 2 we construct a graph HCP, in Section 3 we give two HCP's in 
automata theory, in Section 4 an HCP in theorem proving and in Section 5 two 
HCP's about games. In all the proofs we show that  the various problems are 
complete in the corresponding classes. By definition, to prove a problem A is 
complete in B we have to show (1) that  it belongs to B and (2) that  every problem 
in B can be reduced to A. In all cases except in some of the complete problems in 
automata theory, the first part is straightforward and we omit its proof. To prove 
part (2) it is enough to show that A' < A when A' is a known complete problem in 
B. We use CNF-SATISFIABILITY ([t, t3]) for NP-TIME, PATH ([2, t2]) for 
P-TIME, DGAP, and GAP ([11 ]) for DLOG and NLOG respectively. (The latter 
is the graph version of the maze language of [17].) To prove that  a problem A is 
complete in P-SPACE it will suffice to show that DLBA < A where DLBA is the 
class of languages accepted by deterministic linear bounded automata (dlba's). 
This follows from the fact that  there are complete problems in P-SPACE which 
belong to DLBA. In some cases, in order to prove that DLBA < A or NP-TIME < 
A, we will use direct encoding of a given Tm M and input x as  an instance of A. 
This method is similar to the one we used in [4] which was inspired, in turn, by 
Cook's proof that SATISFIABILITY is complete in NP-TIME ([t ]). We discuss 
this method here briefly. 

First, we consider the case of NP-TIME. Given a nondeterministic Tm M with 
input x and the upper bound on the time N = p  (I xl) we use N instantaneous 
descriptions (i.d.'s) of length N to describe the computation. The problem will 
have an object xr �9 (vertex in the case of graphs and literal in the case of theorem 
proving) corresponding to the possible fact that  at time i the i-th symbol of the 
i.d. is a,.  A solution to the problem A will consist of certain choices of these 
objects which describe a complete accepting computation of M on x as follows: 
I t  will contain objects which represent a sequence of i.d.'s of M. The structure 
of the problem will guarantee that (t) the first i.d. is the initial i.d. of M on 
x(N--  I x I blanks are added); (2) the final i.d. is accepting; and (3) the (i + l) th 
i.d. is one which can follow from the i-th i.d. by a move of M. The three properties 
will guarantee that A has a solution iff M accepts x. Actually this is a somewhat 
simplified description of the method, since in order to implement (3) above we will 
need some extra objects, however the total number of the objects will not exceed a 
polynomial in I xl. For the LBA case, we cannot use exactly the same trick 
since the number of i.d.'s can be exponential. We overcome this difficulty by using 
objects ~, j  with i~{0, t} only. i ~ - 0 ( i = t )  will mean that  the number of moves 
until now is even (odd). We will be able to encode the lba's action into an  instance 
of A since the same object in A may represent many possible facts e.g. x0ks might 

5 Very recently [3], another combinatorial problem complete in P-SPACE was dis- 
covered. 



80 Z. Galil 

stand for the fact that  at t ime t0 the/ ' - th  symbol in the i.d. is a ,  and at the same 
time it can stand for the same fact with t ime 16. The problem will allow repetition 
of objects in a way that  the context in which some choice of x~, i is made (it might 
be chosen many  times) determines the exact t ime t (t mod 2 = i) in which the/ ' - th 
symbol is a h. 

In many  cases we only sketch the proofs. We hope that  the reader will be 
able to complete the missing details. 

2. A Graph HCP: Finding a Grid in a Directed Graph 

We are given an arbi trary directed graph, k distinguished nodes--the source 
nodes and another distinguished node--the goal node. Any set of k distinct nodes 
is called a layer. A layer (il, J2 . . . . .  i,) can tollow a layer (/1, i 2 . . . . .  i,) if there are 
directed edges (i 1, il), -. . ,  (ik, i~) and (i 1, i2), -. . ,  (ih-1, ik) in the graph. A grid is a 
sequenc~ of layers such that  (1) the first layer consists of the source nodes; (2) 
the last layer contains the goal node; and the n-th layer can follow the (n- - l ) s t  
layer. Note that  a node can appear in more than one layer. 

the 

the 
source nodes 

:oal node 

Fig. I A grid (k=6) 

We now define five problems: 

As: Input  (t) a directed graph (2) an integer k (3) a list of k source nodes (4) a 
goal node. Does the graph contain a grid ? 

A4: Same as A 5 except that  we do not allow repetition of nodes in a grid. 

A3: Same as A 4 except that  we allow as inputs only simple graphs (by simple 

graph we mean a directed graph without the subgraph C~,2: ~X~ ). 

A2: Same as A 8 except that  k = t .  

AI: Same as A 2 except that  input graphs are further restricted to have nodes 
with outdegree t .  

Theorem 1. (A1, A2, Aa, A4, As) is an HCP. 

Proof. First we show that  A 4 is complete in NP-TIME. Given a nondeter- 
ministie Tm M which operates in polynomial t ime and an input x we can encode 
M and x into an instance of A 4 in such a way that  the latter contains a grid iff M 
accepts x. 

Assume tha t  2] is an alphabet which suffices to describe i.d.'s of M and that  
N = p (  I xl) is the time bound for M. We define the graph G with nodes V, V ~  
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v" v ~d v ~ , ~ l O < i , j < N , O < k , l , m < N - - l , l < n < _ N - - l a n d a ,  b,c,d,e,]E,S} i , j ,  k , l ,  -~- = = ~ -  - -  

= Vl u V2 u V3. ~ 
The meaning of v: .  is that at time i the/ '-th symbol in the i.d. is a. The mean- t , l  

ing of v~,Cd, is that  at time k the l-th and ( /+1)s t  symbols of the i.d. are c and d. 
Similarly the meaning of V~m{~ is that at time rn the (n--l)st ,  n-th and (n + 1)st 
symbols of the i.d. are e, / and g respectively. The source nodes (the initial layer) 
will be those describing the initial i.d. of M on x and the goal node will be a node 
representing the accepting state (without loss of generality we can assume that M 
accepts i n a unique state q, only at time = N  while its head scans some given 
symbol, @, at the leftmost tape cell, thus the goal node is v~#,bO). 

A grid (if exists) will consist of a layer from V 1 followed by a layer from V 2 
followed by  a layer from V 3 followed by a layer from V 1 and so forth. The set of 
edges defined below will assure that  if the first V 1 layer represents an i.d. then (i) 
the next layer must be in V 2 and will represent the same i.d. in which every two 
symbols are packed together; (if) the next layer must be in V~ and will represent 
the same i.d. in which every three symbols are packed together; and (iii) the next 
layer must be in V 1 and will represent an i.d. which can follow from the previous 
one by one move of M. This will guarantee that M accepts x iff there is a grid 
(which represents the computation of M on x). 

We now define E to be the class of all edges which appear in Fig. 2. 

I) ab . 

O) ~,J 
v? �9 v b 

I,J i , j+ l  

v 'ybr �9 vq �9 d~f(a, b, c) 

(2) / / ~  J+l (3) . . / ~ "  f i sde f ined  
< s i  v ~  + , V ~ ~ a  below i , j  i , j+ l  

Fig. 2 

(i) and (ii) above can be easily checked. For a, b, cEZ,, dEl(a, b, c) (_~ if d is a 
possible j-th symbol in an i.d. whenever a, b and c are the ( j - - l )s t  j-th and (j + l)st  
symbols in the previous i.d. (note that d depends only on a, b and c). iii) is not yet 
satisfied since we must force the next layer to have nodes (from 111) that  correspond 
to the same choice of a next move of M. Without loss of generality M has exactly 
two choices in each step, thus /(a, b, c) = {d a , d~}. We duplicate the sets V 1 and V~ 
and create new sets U 1 and U 2. The edges will be of the form (~) and (2) of Fig. 2 
and (t)' (2)' (3)* and (3)' of Fig. 3. 

~i+ l , j  1 

L j  i , j + l  i , j  i ,J+l  

d! 
Di+l , j  

(3)* V ~ V b ~  4 
i , j  i , j +  l 

Fig. 3 

_ a :{Vk, l} and 6 V1-- {vi, j}, V.~ ca Vs = Cv,/g ~ .  re, n-" 
6 A e t a  Informat iea ,  Vol. 6 

dz 

(3)' v ~ v ~ d  
i , j  i , j + l  
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The u's have the same meaning as the v's except t ha t  the v's (u's) represent first 
(second) choice for next move. One can verify tha t  if we have a layer in V 3 which 
is followed by  a layer tha t  contains elements from V 1 and from U 1, then there 
cannot  be a next layer. Thus  if a grid exists the next  layer is either in V 1 or in U x 
and the next  one is either in V~ or in U2 respectively. Wi th  this addit ion (iii) above 
is satisfied and the proof is completed. 

The proof tha t  A 5 is complete in P -SPACE is similar. The changes are: (t) We 
can delete the U's;  (2) i can take the values 0 or t only;  and (3) the edges are of the 
forms (t), (2)and (3) in Fig. t with (i + 1 ) r o o d  2 instead of i + t .  The meaning 
of v~ i is tha t  at  some time k with k rood 2 = i the j - th  symbol  of the i.d. is a. The 
t ime k is determined by  the number  of the layer in which v~ ~,i appears (it can 
appear  in m a n y  layers). 

The proof t h a t  A 3 is complete in P -TIME is also similar. Here too we do not  
need the U's and the computa t ion  of M on x can be encoded into a simple graph 
since M is deterministic. (One can show tha t  subgraphs of type  C2,~. are possible 
only due to edges of types (3) and only when there is more than  one choice for 
next  move.) 

A,  and A~ are simply GAP and D G A P  ([11]) for simple graph. These are still 
complete in N L O G  and D L O G  since every graph G can be converted to a simple 

g 
graph G' by  replacing every edge e ~,~ by  two edges !and, [a !new ,!n~ e2 ol w. 

Obviously there exists a pa th  in G iff there exists a pa th  e I l 
between the corresponding nodes in G'. ~' 

3. Two HCP's in Automata Theory 

We consider five au tomata :  

1. dfa --  deterministic finite au tomaton  7 
2. nfa - -  nondeterminist ic finite au tomaton  
3. npda  --  nondeterminist ic pushdown au tomaton  
4. rcsa --  restricted nondeterministic checking stack au tomaton  
5. csa - -  nondeterminist ic checking stack automaton.  

Except  rcsa all the others are well known. Their definition can be found in 
the literature (It0, 81). rcsa is a csa with the following restriction: once the 
au tomaton  enters its s tack it does not  distinguish between stack symbols, i.e. 
it interprets  the contents of the s tack as a unary  number.  

I t  is obvious tha t  the au tomata  above are ordered in increasing power:  The csa 
has finite control and a stack and after it enters into its stack it cannot  change 
the contents of the stack. The rcsa is csa with the restriction above. By  not  
allowing the resa to enter the stack we obtain the npda, by  deleting the s tack we 
get nfa and by  restricting the au tomata  further  to deterministic moves we get 
the dfa. 

Let  B i be the class of problems: "Does  A accept the empty  word (~) ?"  where 
A varies over machines of type  i, I ~ i ~ 5. 

7 V~Te only allow the dfa to have e-moves in a way that  if some state has an e-move 
it cannot have a read move nor can it have more than one e-move per state. 
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The discussion above implies that  Bi is a special case of Bi+ 1 since the i-th 
machine is a special case of the (i + l ) th  machine (t ~ i < 4). Moreover, we have 

Theorem 2. (B1, B~, B s, B 4, Bs) is an HCP. Note that  for t ~ i  _< 5 Bi is of 
the type ' Is  eEL(A) ?' (L(A) is the language accepted by A). The complexity of 
this problem characterizes in some sense the computational power of the corre- 
sponding automaton. I t  ignores several factors such as (t) number of heads (2) 
the difference between the one way and two way device and (3) the 'help '  the 
automaton can get from specific input formats. Thus it mainly characterizes the 
power of the control of the corresponding machine. 

Proo] o/the theorem. A slight variation of B 1 was shown to be complete in DLOG 
in [ t l ] .  In [ t t ]  it was also shown that  B 2 is complete in NLOG. In [12] it  was 
shown that  B a is complete in P-TIME. (npda can easily accept an encoding of 
admissible path systems.) We show that  (t) B s is complete in P-SPACE and (2) 
B 4 is complete in NP-TIME. 

(1) To prove that  P-SPACE < B 5 we show that  DLBA < B~: Given a dlba M 
and an input x, Ix[ = n  we can easily construct a csa A which guesses a string 
which it pushes onto its stack and then checks whether it is an accepting com- 
putation of M on x. A accepts its input iff the check succeeds. I t  needs no more 
than 4n states (~-~n to check whether the initial i.d. is @q0x :~ and ~ 2 n  states 
to go back and forth and check whether each i.d. can follow from its predecessor). 
Thus eeL(A) iff M accepts x. 

Now we show that  BsEP-SPACE. Given a csa A we first construct a non- 
erasing csa A' such that  eeL (A) iff eeL (,4'). Note that  before A enters the stack 
it behaves as an npda. Therefore we can use the notation for npda's ([10] chapter 
5). Without loss of generality A pushes at most one symbol onto its stack in one 

move. We change A as follows: if (i) (q, Z1Z~) E d (p, e, Z) and (ii) (p, Z~) (r, e) 

we add the rule (r, Z1) e ~ (p, e, Z). Note that  (ii) can be found in polynomial time 
(it can be transformed to emptiness problems for npda). The new rule prevents A 
from pushing Z 2 if it is possible that  it is going to erase it later, and to move into 
the state into which it would move if it went through the computation which 
erases Z~. Adding the new rules and deleting all the rules which erase a stack 
symbol we obtain A' such that  eeL(A) iff eeL(A') .  Now, by [t0] acceptance 
for nonerasing stack automaton can be checked in space proportional to the 
square of the number of the states of A'. T h u s "  Does A accept e ?" can be checked 
in polynomial space. 

(2) We first show that  N P - T I M E < B ~  by showing that  CNF-SATISFI- 
ABILITY < B 4. Let  ~ be a boolean formula in CNF w i n  l variables. Let  A be the 
following rosa: On every input A first pushes Z k on its stack for some k chosen 
nondeterministically. Then it checks whether e is satisfied by the assignment 

0 if k mod Pi = 0~ 
x~ ~ I otherwise ] where p~ is the i-th prime, 1 ~ i ~ l .  If 0r is satisfied by  

this assignment A accepts the input. Obviously eeL(A) iff ~ is satisfiable. A 
1 

needs , ~ N  ~ . ~  p~ states and by  the Prime Number Theorem N < l s. 
i ~ l  

To show that  B4eNP-TIME we show that  B 4 can be reduced to the non- 
emptiness problem for two way nondeterministic finite automata (2 nfa) over a 

6" 
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one symbol  a lphabet  27-~{a}. This will complete  the proof  since the la t ter  is in 
N P - T I M E  b y  the next  lemma.  As we saw above,  given an rcsa A we m a y  assume 
tha t  A is non-erasing. We construct  a 2nfa over  one symbol  a lphabe t  B such tha t  
L(B) 4=~b iff eEL(A).  B will have  two modes of operat ion:  in mode  2 it will 
behave  exac t ly  as A behaves  af ter  it enters  its s tack  and  will accept  if A does. 
(By definition of rcsa it behaves  exac t ly  as 2nfa over  one symbol  a lphabe t  a t  
this stage. Also r emember  t ha t  we are looking a t  acceptance o f ,  only.) In  mode  1 B 
will behave as a one w a y  nfa. I t  will have addi t ional  s ta tes  {Eq, Z]I q is a s ta te  of A 
and Z a s tack  symbol  of A} and will s t a r t  a t  tqoZo] (q0 is the initial  s ta te  of A and 
Z o is its b o t t o m  of s tack  symbol) .  I t  will move  as follows: if q is a s ta te  of A in 
which it enters its stack,  then B passes to mode  2; otherwise [q'Z']E~B([qZ], a) if 

�9 t (q, Z) -~(q, ZZ'). Note  t h a t  this last  condit ion can be checked in polynomial  

t ime (as above it can be reduced to emptiness  problem for npda).  Note  t ha t  during 
the first  s tage B can scan a k iff the length of the s tack  a t  the end of the first  s tage 
can be k. Thus  L (B) :4:q9 iff eEL (A). This completes the proof. 

In  the proof  above we used the following L e m m a :  

Lemma.  The  nonemptiness  problem for two w a y  nondeterminis t ic  finite 
au toma ton  (2nfa) languages over  one symbol  is in hiP (in fact  it is complete in NP). 

Proo[. Given a 2nfa A with n states,  b y  ~10~ there is an equivalent  nfa B 
with N ~ n  ~+1 states.  Thus  L (A) :t=~b iff there is k ~ n  ~+1 such tha t  a~EL (A) (a is 
the single input  symbol).  To check if L (A) 4= ~b we first  guess k <--n ~+1 and then 
check if a~EL (A). Note t ha t  we cannot  s imulate  A in polynomia l  t ime since k can 
be exponent ia l  in n. Le t  a configurat ion of A be a pa i r  (s, i) where sES is a s ta te  
and  O<=i~k+t  is the head  position. If akEL(A), then there is a sequence of 
moves  which accepts  it wi thout  repeat ing a configuration.  Wi thou t  loss of gener- 
a l i ty  A accepts when its head  scans the  left endmarker .  Thus if akEL (A) there is 
a non-repeat ing sequence of configurations c o, c 1, c~ . . . .  , c~ such t ha t  c o -----(qo, 0), 
c~ = (p, 0), p accepting, and  cz+ 1 follows f rom c~ b y  one move  of A for 0 _<l - -<u-- t .  
Unfor tuna te ly  u can be ve ry  large. We consider only the configurations in which 
A scans an endlnarker  (i ---- 0 or i = k + t) d 0, d 1 . . . . .  dv v =< 21S ] (the sequence is 
wi thout  repetit ion).  Obviously d o ----c 0, dv = c  u and  dl+ 1 can follow d I af ter  a 
sequence of moves  in which A does not  hi t  any  endmarker .  Thus  we guess the 
sequence {d~}~=o and check if i t  satisfies the above.  We show how to check if 
dl+l---(q,k+t ) follows f rom dz-=(p, 0) wi thout  h i t t ing  any  endmarker .  The 
other  three cases dz+ l=(q ,  0) dl-----(p, k + t ) ,  d l + l = ( q ,  0) d~-----(p, 0) and  dl+ 1 = 
(q, k + t) d~ = (p, k + t) are similar. 

We call a sequence of configurations [ma, rn~ bounded if each configurat ion 
in the  sequence (p, i) satisfies m 1 ~ i ~ m S. 

Let  pES and m be an integer.  We define 

{q] (p, I) A (q' m + 1) in a ~1, m + t ] bounded sequence}, Rp,,, 

Lp,,~ = {ql (P, m + t ) (q, t) in a [t, m + 1 ] bounded  sequence}, 

L R,,m = {el (P, m + 1) ]-~ (e, m + t) in a El, m + t ] bounded  sequence}, 

R Lp,,, = {q ] (p, t) ~-A (q, t) in a [1, m + t ] bounded  sequence}. 
I 
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Now we can build Rp,,,,+m, recursively by the following program: 

R +'Rt,,m,; 
d o  while  R does not increase; 

R+-Rw{q l3q lER  and qeRLq . . . .  }; 

R ~ R  u{ql3qlER and qeLRq,,,~,} 
e n d  ; 
Rt,,,~,+m+-{ql3qleR and qERq,,,~,} 

~ ( q ,  + t )  in a [1, + + 1 ]  Note that the final value of R is {q[ (p, t) * ml ml ms 

bounded sequence}. Fig. 4 indicates why the program above is correct. 

1 m l + l  ra~ +m2 + 1 

Fig. 4. Note  that  ii and iii can repeat at most  IS[ t imes 

Lp,,~,+r~,, LRp,,~,+,,,,, RLp,~,+,~, can be computed similarly. Thus we construct 
Rp,,,~, Lp,,~,, LRp,,=, RLp, e~ for all 0=<m~[ logz(k- - l ) ]  and pES. Then we 
compute Rp,k_ 1 using the binary representation of k - - l .  Now dr+ 1 ----(q, k + t )  
can follow d l = (p, 0) without hitting the endmarkers iff there are Pl, pzES such 
that  A can move from (p, 0) to (Pl, ~) and from (p,, k) to (p, k + t) in one step 
and P~ERp,,h-x. This completes the proof of the lemma. 

I t  is interesting to note that  although quite a few complete problems about 
automata were found they do not fit into an HCP. In particular, we could not 
construct any HCP from all the complete problems dealing with regular ex- 
pressions ([9], [t5]) or finite automata. The best we could do was to construct 
the following incomplete HCP: 

Let C5: Nonelnptiness of 2nfa languages over binary alphabet. 

C,: Nonemptiness of 2nfa languages over unary alphabet. 
Q: ? 
C2: Nonemptiness of (one way) nfa languages over unary alphabet. 
C1: Nonemptiness of (one way) dfa languages over unary alphabet. 

I t  was shown in [12] that  C1 and C2 are complete in DLOG and NLOG. We can 
show that  C4 and C s are complete in NP-TIME and P-SPACE. (The most diffi- 
cult part is the lemma proved above.) However we were unable to find some C 3 
lying between Cz and C a which is complete in P-TIME. 

4. A n  HCP in Theorem Prov ing  

Definition. A proo] system consists of (t) A set of literals X----{x 1, x 2 . . . . .  xn} 
which contains three distinct subsets: AX- - the  set of axioms, T H - - t h e  set of 
theorems and AS- - the  set of assumptions-----{xi,, Xiklik=4=ik, k----l, 2 ...}. The as- 
sumptions are arranged in conjugate pairs (xik, xi, ) xi~ is the conjugate of xik and 
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vice versa; and (2) A set of rules of the form Yl . . . . .  y,--~z such tha t  zEX-AS and 
yiEX, t <--i <--r. We wi l l say  that  z can be derived from Yl . . . . .  Y,- 

We will say that  xEX can be proven if there is a subset of X-AS, {z 1 . . . . .  zp} 
such that  (1) zp=x; (2) There is k < p  with {z 1 . . . . .  z,}(_AX; (3) z,+1 can be 
derived from {Yl . . . . .  Ym} ( A  S • {zl . . . . .  z,} for k <--l--<p--I and (4) Throughout 
this process, if an assumption xi, is used in the derivation of some z~, then its 
coniugate xj~ is not used in any derivation. 

We can view A S as a source for additional axioms, i.e. for any proof we can 
.add to A X  any subset of A S which does not contain a pair of conjugate literals. 

A proof system is valid if every xE TH can be proven. 

Our HCP will consist of various restricted forms of valid proof systems. 
We restrict all our proof systems to have ITH] = 1 .  This restriction is not 

necessary but  it simplifies the proofs. 

Define D4: The set of all valid proof systems. 
D 3: D,  except that  A S = ~. 
D~: D3 with rules restricted to have r = t. 
DI: D,  with the restriction that  no two literals can be derived from 

the same literal. 

In  order to construct an HCP we define D~ for which D 4 is a special case. We 
extend the definition of a proof system as follows: A generalized prooJ system is a 
proof system with the addition that  xEX-A X has a superscript (i.e. x (0) and the 
rules should be interpreted as y~O . . . .  , y~~ Thus 

Ds: The set of all valid generalized proof systems. 

Theorem 3. (D1, D,, D3, D4, D~) is an HCP. 

Proo[. D1, D, and D 3 are complete in DLOG, NLOG and P-TIME respectively 
since one can easily reduce DGAP, GAP and PATH ([11], [12], [2]) to D1, D~ 
and D 8 respectively. D 4 is complete in NP-TIME since a computation of a non- 
deterministic T m  which operates in polynomial t ime can be encoded into an 
instance of D 4 (the encoding is much simpler than that  of Section 2) : The axioms 
play the role of the initial configuration, the theorem stands for the fact that  the 
input is accepted, each assumption stands for one of the two choices for next  
move and the rules represent the transformation of an i.d. to the one which 
follows from it. Similarly D 6 is complete in P-SPACE (superscript i corresponds 
to t ime = i). 

5. HCP's in Games s 

Let G be a directed graph with set of edges E and set of vertices V(V re- 
presents a given population). For v E V let 2V~ = {wl(w , v)E E} be the set of neigh- 
bouts of v (note that  being a neighbour is not necessarily commutative). Let  
k > 0 be a given integer, and for each v E V and t ~ 0 let a~ ) be an integer between 
0 and k. a~ 0 = i means that  at t ime t the person v has i- th degree of sickness 
(i ~ 0 means healthy, i = k means dead). The rules for the spreading of the dis- 
ease are given as follows: for every assignment to any N~ at t ime t there are 

8 The problems below are called games since they resemble the game of life ([5]). 
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probabilities Pi > O, 0 <= i <= k, ~. Pi = l where Pi is the probabil i ty that  a~ ~+1) = i 

(the probabil i ty does not depend on t). 

Define Es: Given G, {a~~162 and the set of rules. Is there a positive prob- 
ability that  v~ ) = k for some t ~ 0, where v ois a distinguished vertex ? 

E4: Same as E 5 except that  al~ +x) => a~ 0 for all vE V and t ~ 0. 
E~: Same-as ELwithout probability, i.e. a~ +1) is uniquely determined by  

Es: Same as E a with k = !. 
E2: Same as E 3 with restricted rules: al: +x) = l if f o r s o m e w c N  v a~ ) = I. 
Ex: Same as E 2 except IN,.J = t  for all vEV. 

Theorem 4. (El, E2, E3, EL, Es) is an HCP. 

Proo/. E 5 is complete in NP-SPACE and hence in P-SPACE since every lba 
computation can be encoded into an instance of Es: The initial assignment 
{a~~ represents the initial i.d., the rule encode the move of the machine and 
the distinguished person-- the  accepting state. The probabilities encode the 
nondeterminism. Before moving to the next step a small local disease can simulate 
the check that  exactly one move is chosen. If  this does not happen, the disease 
stops spreading. Similarly E L can encode a nondeterministic Tm which operates 
in polynomial time. E;  and E 3 can easily encode PATH ([2]). E2 and E x can encode 
GAP and DGAP ([i l l) .  

I t  is interesting to consider E 6 for which E 5 is a special case: 

E s: The same as E 5 except that  the question is: Is the probabili ty that  av~ *) = k 
for some t is greater than half. 

E e is complete in probabilistic polynomial space ([7]), a class which contains 
P-SPACE. (It is not known whether the inclusion is proper.) 

A similar hierarchy which does not use probabili ty (i.e. a(v t+l) is determined 
uniquely by  {aZ'lw N })is the following: 

Fs: Given a graph and rules and a subset U of the vertices (the source of the 
plague). Is there an initial assignment {a~~ v such that  a~ ~ = 0 for vr U 
such that  for some t a I~ = k. Vo 

F4: Same as E 5 except that  a~ +1) ~ a~ ) for all vE V and t >_ 0. 
F3: Same a s F  L but lU  I = 1 .  
F2: Same as F n except the rules are restricted as in E 2. 
FI :  Same as F 2 except IN d = 1  for all vEV. 

Theorem 5. (/;1, F2, F 8, -/74, Fs) is an HCP. 

Proo/. The part  of the proof concerning/;1, F ,  and F 3 is similar to that  con- 
cerning El,  E 2 and E 3. F L and F 5 are different. In the case of F5 we have rules 
and U such that  only one initial assignment which describes the first i.d. of the 
given lba M and its input x can result in an expansion of the disease, and then 
it does so simulating the lba. In the case of FL the initial assignment contains two 
parts. One is responsible for the initial i.d. as in F 5 and the other is responsible 
for the nondeterministic choices that  the machine can make during the computa- 
tion. 
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