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Abstract. I present a new clausal version of NGB set theory, and compare my version with that first gwen 
by Boyer et al. [4]. A complete set of reductions for Boolean rings is given, derived from those of Hsiang 
[7]. I hst over 400 theorems proved semiautomatically in elementary set theory, and supply the proofs of 
several of these, including Cantor's theorem. I present a semiautomated proof that the composition of 
homomorphisms is a homomorphlsm, thus solving a challenge problem given in [4]. Using the clauses and 
heuristics presented, there is no apparent obstacle to the semlautomated development of set theory through 
considerably more difficult theorems. 
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1. Introduction 

Since virtually all extant mathematics can be formulated in the language of set theory, 
this theory could be regarded as the ultimate proving ground for automated theorem- 
proving programs. However, very simple theorems in set theory have proved difficult 
for past resolution theorem provers. Winker and Wos [20], in connection with trying 
to prove that union distributes over intersection, state: "Many are acquainted with the 
disappointing tediousness with which such problems are solved with standard 
theorem-proving approaches." Lusk and Overbeek [10] state " . . .  there are a variety 
of quite simple problems that have stymied resolution-based programs for years. 
[Proving] the union of sets is commutative has proved challenging for [resolution] 
programs." I address these particular difficulties in Section 5 of this paper. 

Boyer et al. [4] have performed a useful service by providing a clausal version of the 
yon Neumann-Bernays-G6del (NBG) version of set theory, suitable as input to 
resolution theorem provers. They follow the treatment of G6del [6], but have gone 
beyond simply using standard conversion procedures to translate first-order NBG set 
theory into clausal form. In several instances where G6del asserts the existence of a set 
with certain properties, they have uniquely determined the set and given it a name. In 
addition to the axioms, they have provided the clausal form for a number of 
definitions and theorems from set theory, abstract algebra, and number theory. 

Boyer et al. state that "Anyone attempting to submit the clauses given here to an 
automated theorem prover will quickly confront many fundamental issues in 
theorem proving. This set of clauses is difficult to work with for several reasons. [Four 
reasons are then enumeratured.]" However, their conversion to clausal form can be 
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improved in quite a few ways, which I describe in Section 3. I present a new con- 
version in Section 4. The resulting clauses are much more amenable to automated 
development, and I list over 400 theorems in elementary set theory proved with 
their use. 

Section 6 contains a complete set of reductions for Boolean rings, revised from those 
given by Hsiang [7] so they will work in a reasoning system not embodying 
associative-commutative unification. Section 7 describes the relationship between 
Skolem functors and the Axiom of Choice. 

The theorems I have proved using this set of clauses are introduced in Sec- 
tion 8. Sections 9, 10 and 11 discuss the heuristics and option settings used to 
obtain proofs of these theorems. Section 12 contains a machine proof of Cantor's 
theorem. 

Boyer et al. [4] challenge readers to find an automated proof that the composition 
of homomorphisms is a homomorphism, which is also Test Problem 15 in Wos [22]. 
They then provide a sequence of 27 lemmas that lead to its proof, along with the 
proofs of these lemmas, which they obtained by hand and verified by machine. Their 
mechanical proof checker is guided by user instructions such as "compute all the 
binary resolvents of clause 42 and clause 76". They assert, "It is not our intention to 
suggest that any existing resolution-based theorem prover ought to be able to attack 
the example challenge problems successfully. Indeed, we suspect that all of the 
challenge problems are probably beyond that ability of any current known resolution- 
based system." 

This assertion notwithstanding, I have obtained semiautomated proofs (see 
Section 11) of all these lemmas, and of the theorem itself. These results are presented 
in Section 13. 

Possible improvements to the unification algorithm appropriate to NBG set theory 
are discussed in Section 14. 

For readers who are unfamiliar with resolution theorem proving in general, and 
OTTER in particular, Appendix 1 provides a brief introduction. This appendix 
explains such concepts as clauses, substitutions, unification, binary resolution, hyper- 
resolution, UR-resolution, paramodulation, demodulation, set-of-support strategy, 
subsumption, weighting, and lexical ordering. 

Appendix 2 contains a list of more than 400 theorems in elementary set theory 
proved using the clauses and methods presented in the paper. 

Thus the main contributions of this study are: 

A. I provide a clausal version of NBG set theory that is amenable to semiautomated 
development using a resolution theorem prover. 

B. I provide a number of heuristics and proof procedures that have proved effective 
in carrying out this development. 

C. I demonstrate the value of these clauses and proof procedures by presenting 
theorems and proofs obtained by their use. 
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2. Notation 

Names beginning with small 'u' through 'z' are variables. All other names are either 
individual constants, function symbols, or relation symbols, depending upon the 
context. Formulas containing the sequent sign '--,' are clauses. All other formulas are 
formulas of first-order logic. 

Above I used 'function symbol' in the usual sense of first-order logic. But our subject 
matter here is set theory, and among the objects most studied are functions as classes 
of  ordered pairs. Thus, for example, ' I '  is an individual constant that names the 
identity function. To avoid possible confusion, from now on ] will use 'functor'  rather 
than 'function symbol'. I further discuss the relation between terms and functions in 
Section 3.6. 

I present clauses essentially as I load them into OTTER version 1.01, written by 
William McCune of Argonne National Laboratory [12]. OTTER is a fast resolution 

theorem prover, to which I have added the capabilities of  using sequent notation, and 
of accepting one-character infix operators. To improve readability, I replace some 

ASCII symbols used in OTTER by standard set-theoretic notationJ 
I present clauses fully parenthesized, whereas I often omit parentheses from first- 

order formulas when no confusion can result. I write clausal equalities as they will be 
ordered by OTTER. This explains why in definitions the defined term is on the right 
side of  the equality - it is of lower weight than the defining term. 

3. Simplications 

In this section I describe the modifications ! made to G6del's axioms while converting 
them to clausal from. Since an extended development of  virtually the whole of 
mathematics can be based on these axioms, efforts toward expressing them as simply 
as possible should be amply rewarded. Considerations of machine efficiency will be 
important in my conversion, and thus the clauses I supply do not result from a direct 
clausification of G6del's axioms. Rather, I believe that with proper definitions they are 
provably equivalent to this. I compare my conversion to that of  Boyer et al. 

3.1. SETHOOD 

G6del's axioms contain a unary relation M(x), interpreted as 'x is a set'. He defines 
the universal class V, and has as a theorem 

x e V ,~ M(x). 

~Symbols appearing m this paper are approximated in OTTER as follows: 
e ~ - >  (x x y) 

c < . . . .  Ix,  y}  ( x  ; y)  co 
+ o {x} ss(x) 

n * + & <x, y> Ix, y] 

X(x, y) 
omega 
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Thus as our first simplification, we will use this equivalence to eliminate the unary 
relation M in favor of  the individual constant V, making this replacement through- 
out his axioms. Without this elimination, there is frequent necessity to make the 
equivalence deduction in one direction or the other. 

3.2. EQUALITY 

The equality axiom ~ (x = x) of  Boyer et al. is not needed as an axiom, since it 
follows from the Axiom of  Extensionality. I include it in the axiom and theorem list 
loaded to OTTER as Theorem (EQI) (see Appendix 2). 

Their version of the Axiom of Extensionality contains a Skolem functor, and does 
not work well with hyperresolution or UR-resolution. It does not permit a natural 
way to split up a proof  that ~ (x = y). It is preferable first to define the subclass 
relation _c, which of  course will be needed anyway, and express extensionality as 

x = y ~ x ~ _  y & y ~ _ x .  

This requires no new Skolem functors, and provides the natural breakdown: to show 
two classes are equal, show that each is a subclass of  the other. 

I further discuss proving equality of  classes in Section 5. 

3.3. INTRODUCTION OF ORDERED PAIRS 

I have completely revised their treatment of  the first and second components of  
ordered pairs, and have eliminated their ordered pair predicate O P P .  

I first prove the following theorem: 

Vx 3u 3v((<u, v> e (V • V) & x = <u, v>) 

v ( ~  3 y 3 z ( < y , z > e ( V  x V ) & x  = < y , z > ) & u  = x & v  = x)) .  

Skolemizing this theorem produces two functors, ' l s t '  and ' 2nd ' ,  which are similar to 
the ' f irst '  and ' second '  functors that they introduce by separate and unneeded axioms. 
A difference is that in the case x is not an ordered pair, I require l s t ( x )  = x and 
2nd(x) = x ,  whereas Boyer et  al. make their default values 0. Note that we can use the 
Axiom of  Regularity to show that (x,  y> ~ x for sets x and y. Knowing that 
l s t ( x )  = 0 does not tell one whether x is indeed an ordered pair of  sets, whereas from 
l s t ( x )  = x one can immediately conclude that x is not  an ordered pair of  sets. 

I also prove the characteristic uniqueness theorems: 

( (u ,  v )  e ( V  • V ) )  ~ ( l s t ( ( u ,  v ) )  = u). 

( (u ,  v )  ~ ( V  x V) )  -~ (2nd((u ,  v ) )  = v).  

I also prove uniqueness in the case that the argument is not  an ordered pair of  sets. 
These theorems eliminate the need for their Axioms of First and Second, and the 

four Skolem functors in them. I also eliminate their definiton of  the ordered pair 
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predicate OPP(x ) ,  eliminating two Skolem functions and four clauses. Instead of 

O PP(x )  we will use (x �9 (V x V)) or, rarely, ( ( l s t ( x ) ,  2nd(x))  = x). 

3,4 USE OF ORDERED PAIRS 

The clauses in Boyer et al. contain many instances of the sethood predicate (x �9 V). 
Some clauses have four instances of it! Using their clauses I have found that whenever 
a newly deduced unit ~ ( t  ~ V) becomes the given clause, the system bogs down to 
a crawl while hyperresolution or UR-resolution tests the huge number of unifying 
matches - especially in clauses with multiple appearances. 

There is a fairly simple solution to this problem. Rather than using (x �9 V), 
(y �9 V) --* in the hypothesis of a clause, instead use ((x,  y )  �9 (V x V)) ~ .  Not only 
does this reduce the number of literals in the clauses, but we also must use the clause 

( x e V ) , ( y ~ V ) ~ ( ( x , y ) � 9 2 1 5  V)) 

to make the further deduction that some pair is ordered. This delays the deduction 
of new ordered pair literals, improves the combinatorics substantially, and largely 
eliminates this problem. If  we are ever confronted with a glut of deduced clauses 
~ ( ( t~ ,  t2) ~ (V • V)), we could selectively block their deduction (via the displayed 
clause) by using weights. 

There are two different forms that can be used for clauses containing ordered pairs. 
To illustrate, Boyer et al. give Axiom B-I, which defines the elementhood relation, as 

(z �9 E )  <~ (z �9 (V  x V))  & (lst(z)  ~ 2nd(z)). 

The direct clausification produces 

( z � 9  ~ ( z � 9  x V)). 

(z �9 E )  --* ( lst(z)  �9 2nd(z)). 

(z �9 (V • V)), (Ist(z)  �9 2nd(z)) ~ (z �9 E) .  

Or using simple theorems about 1st and 2nd, we can rewrite these as 

( z � 9  ~ ( z � 9  • V)) {or ~ (E ~ (V • V))}. 

((x,  y )  �9 E)  ~ (x �9 y). 

( ( x ,  ) ' )  �9 (V x V)), (x �9 y) --} ( (x ,  y )  �9 E).  

This second set of clauses also comes directly from the version of the class existence 
theorem given below in Section 3.6. Boyer et al. use the first form. I always use the 
second form. I believe these latter clauses are more natural, and appear to be of the 
form most often directly useful. 
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3.5. C O N S T R U C T O R  A X I O M S  

Gbders  Axiom B-6 (inverse) is dependent. I rearranged the order of  axiom intro- 
duction so that we can prove B-6 as a theorem. This treatment is inspired by 
Mendelson [13]. 

Boyer et al. use a version of  Axiom B-5 that gives the full Cartesian product 
(x x y), whereas GSdel's version only gives the existence of  (V x y). I will follow 
Boyer et al., and furthermore list Axiom B-5' as the first of  the Group B axioms, which 
permits a more convenient expression of  the remaining Group B axioms. The 
alternative is to use more convoluted axioms; then after proving the existence of  the 
inverse of  a relation define (x • y) = (V x y) n inverse((V x x)), and finally use 

this definiton to back-simplify the axioms. 
For reasons given at the beginning of  Section 3.4, we wish to use Axiom B-5'a in 

the unrelativized form given. However this requires that no ordered pair in which one 
of  the arguments is a proper class can be equal to an ordered pair of  sets. The usual 
definition of the ordered pair as (x,  y )  = {{x}, {x, y}} fails this test, for using it we 

have 

(o,  o> = {{o}, {o, o}} = {{o}, {o}} = {{o}, {o, v } }  = (o,  

Then using B-5'a, we would obtain the false conclusion 

( O , O ) ~ ( v x  V) =~ ( O , V ) ~ ( v x  v)  =~ v ~ I s .  

Thus I will instead define (x,  y )  = {{x}, {x, {y}}}. 

3.6. C L A S S  E X I S T E N C E  T H E O R E M  

Boyer et al. chose the von Neumann-Bernays-GSdel  version of  set theory, rather 
than Zermelo-Fraenkel (ZF), because thefinite number of axioms in NBG can all be 
input to a computer. But note that very early in the development of NBG one proves 
the class existence theorem: 

Let ~ b ( x j , . . . ,  x. ,  Yl . . . . .  Ym) be a formula in the primitive notation of  NBG 
whose free variables are among x~ . . . . .  x. ,  y~ . . . .  , Ym, and in which all 
quantifiers are relativized to V (~b is predicative). Then 

3!z((z =_ V") & 
Vx~.. .  Vx.(((x, . . . . .  x . )  ~ z) ~ (((x~ . . . . .  x . )  ~ V") & 

q~(Xl ,  �9 �9 �9 , Xn, Yl  . . . .  , Ym))))"  

This metaschema in NBG is analogous to the Axiom Schema of  Subsets in ZF, 
and the two metaschemata are used approximately as often in the respective 
developments. 

We can expand the primitive notation of  NBG by permitting the introduction of  
new functors whenever the usual existence and uniqueness theorems are proved. Such 
functors are, in principle, eliminable. There is a similar metatheorem that I will call 
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the function existence theorem: suppose that ~b is predicative and ~ is a functor such 
that 

Vx~ . . .  V x , ( ( ( x l  . . . . .  x , )  e v " )  =~ 

((~(x, . . . . .  x,) �9 V) & Vy((y �9 z(x, . . . . .  x,)) r q~(x, . . . . .  x,, y)))). 

Then 

q ! x f ( ( x f  ~_ V "+~) & 

Vxl . �9 . Yx ,  Vz( ( (x l  . . . . .  x , ,  z )  �9 x f )  ~ ( ( x l  . . . . .  x , )  �9 r )  & 

T ( x , , . . . ,  x , )  = z)). 

Thus under appropriate conditions, formulas may be reified into classes and terms 
may be reified into functions. 

There are are least three approaches we can take toward using the class existence 
theorem: 

1. Make use of this theorem to define manually new classes as needed, adding axioms 
that are called definitions. Boyer et al. adopted this approach. Of course, we must 
define such classes before any proof run that needs them. 

2. Automate the introduction of newly defined classes, justified by the class existence 
theorem, as part of a metalevel control mechanism. 

In these two approaches, the practical advantage of the finite axiomatizability of 
NBG is largely lost and illusory. It has not done away with the need for the automated 
reasoning system to use infinite schemata of axioms[theorems, either clumsily by hand 
or else mechanically. The second approach may be worth pursuing, but such auto- 
mation of the metatheory is not available in OTTER version 1.01. 

In contrast to the above two approaches, the approach I adopt makes essential use 
of the finite axiomatizability of NBG. In particular, note that most of the definitions 
via the class existence theorem in Boyer et al. contain quantifiers, and thus produce 
Skolem functors when clausified. But use of Axiom B-4 (domain) allows us to mirror 
such definitions without using quantifiers, thus eliminating the Skolem functors. Thus 
the approach I have adopted is: 

3. Generally avoid using the class existence theorem, especially when its use would 
introduce Skolem functors. Instead, whenever one needs to define a new class, 
give an explicit definition which mirrors the construction techniques used in the 
proof of the theorem. For example, rather than Boyer et al.'s definition of the sum 
class U(x)  by 

(z �9 U(x)  c~ (z �9 V & 3 y ( ( y  e V ) & ( z � 9 1 4 9  

we can use either of the explicit definitions 

U(x)  = ( i n v e r s e ( E ) " x )  

= D(restr ic t (E,  V , x ) )  

and eliminate a Skolem functor. 
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The construction techniques used in the proof  of  the class existence theorem can 
be improved upon to produce simpler definitions. In particular, we can often 
eliminate an existential quantifier by using 

3z((r z~ E u) & (r y )  ~ v)) ~ ((x, y )  ~ (vo u)). 

3.7. CONSTRUCTORS VERSUS SKOLEM FUNCTORS 

As a further example, Boyer et al. define the image functor by the first-order 

equivalence (changed to my notation): 

vy Vz Vxf( y ~ (xf "z) r 

y e V & 3u(u e V & u E ( V  x V)  & u s x f  & lst(u) s z & 2nd(u) = y)). 

The formula on the right contains a quantifier, which produces a Skolem functor 

upon clausification. Such quantifiers in the defining formulas they use produce a glut 
of Skolem functors, identified only as f l , . . . ,  f 5 9 .  

William of Ockham has warned us against multiplying Skolem functors needlessly. 
In the first place, it is generally preferable to construct and uniquely determine an 
object than simply to assert its existence. In the second place, these Skolem functors 
are not independent, but with more careful work can be interdefined. Thirdly, Skolem 
functors may not appear in formulas ~b used to define further classes via the class 
existence theorem (see Section 7). Finally, a user may be excused if upon seeing a 
formula containing ( f 3 1 ( x )  e f 4 3 ( y ) ) ,  he wonders what the formula is about. I will 
instead rely heavily upon the Group B axioms, which provide the means for con- 
structing new classes from old ones by explicit equality definitions. 

The Group B axioms produce constructor functors under clausification, which may 
be defined uniquely (as Boyer et al. have done). I have also modified the Axiom of 

Infinity so that the infinite set is uniquely determined to be tn. There are three other 
axioms that unavoidably produce Skolem functors or individual constants: the 
Axioms of Extensionality, Regularity, and Choice. Extensionality is, of  course, 
fundamental, and relies on the Skolem functor 'notsub' that comes from the definition 
of subclass. (If x is not a subset of  y, then notsub(x, y) witnesses the fact by belonging 
to x but not y.) Of the 59 Skolem functors appearing in the clauses of  Boyer et al., 

about 56 of  them can be explicitly defined in terms of  the Skolem functor 'notsub' and 
the constructor functors of  Group B. I have done so, except for the two Skolem 
functors in the definition of  H O M  (homomorphism), whose elimination appears to be 
too tedious. I have also given names to the few Skolem functors that remain after 
these simplifications. The names are related to their purpose, and should make the 
axioms more intelligible to the user. 

I fa  defined class can be uniquely determined, notsub is not needed in the definition. 
As an example of where it is needed, see the definitions of  dora and ran in Section 4, 
which can be used to replace quite a few of the Skolem functors in Boyer et al. 
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Continuing with the example of the image functor, the definition given above 
clausifies to 

( y  E (xr "x)) ~ ( f 22 (y ,  x, xr) ~ (V • V)). 

( y  ~ (xr "x)) ~ ( f 22 (y ,  x, xr) ~ xr). 

( y  E (xr "x)) --* l s t ( f22 (y ,  x, xr)) E x). 

( y  ~ (xr "x)) ~ (2nd( f22(y ,  x, xr)) = y). 

(u E xr), (u ~ (V • V)), (lst(u) ~ z), (2nd(u) = y), ( y  ~ V) ~ (y  ~ (xr "z)). 

I instead use a one-line definition of this functor: 

(R(restrict(xr, x, V)) = (xr "x)). 

Normally when I give an explicit construction of  a class, I also prove the theorems 
that give the simplest membership conditions for the class. Here, they are 

(3' ~ (xr "x)) ~ ((dom(xr, x, y), y )  ~ (V • V)). 

( y  ~ (xr "x)) ~ ((dom(xr, x, y), y )  �9 xr). 

( y  �9 (xr "x)) -~ (dom(xr, x, y) �9 x). 

((x ,  y )  �9 xr), ((x ,  y )  �9 (V x V)), (x e z) ~ ( y  �9 (xr "z)). 

Note in particular that we have replaced the Skolem functor 'f22' by the functor 
'dora'. In Section 4 dom(xr, x, y) is defined to be a preimage of y in x under xr, and 
numerous properties of  dora are proved in Appendix 2 beginning with the section 
RANGE.  We also see how replacing u by (x, y )  has eliminated a clause and simplified 
the last clause. 

Sometimes explicit definitions are not illuminating. For  example, we define the 
successor functor by 

s u e e ( x )  = x • {x}, 
and we can explicitly define the corresponding function (relation) by 

SUCC = (V x V) c~ ~(( (Eo ~(inverse((E w I)))) 

w ( ~  (E) o inverse((E w I))))). 

It would be tedious to prove the desired membership properties of this relation, and 
so we instead use the definition given by the class existence theorem: 

SUCC ~ (V x V), 

((x,  y )  �9 SUCC) .~  ((x ,  y )  ~ (V x V)) & (succ(x) = y), 

which in this case does not produce any Skolem functors. (We could instead use 
the function existence theorem after proving (SSi) and the corollary to (SC5) in 
Appendix 2.) 
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The net effect of these simplifications on the set theory clauses of their GROUP 1 
and GROUP 2 is a reduction from 33 to 5 Skolem functors, and from 142 to 90 
clauses. 

4. Clauses for Axioms and Definitions 

For each axiom and definition, I first present its version in first-order logic, then its 
clausal version. Referenced theorems may be found in Appendix 2. 

GROUP 1 : AXIOMS AND BASIC DEFINITIONS 

Axiom A-1 : Sets are classes (omitted because all objects are classes). 

Definition of _c (subclass). 
vx vy((x c_ y) , ~ ,  vu((u ~ x) ~. (u ~ /))). 

( xcy ) ,  ( u ~ x )  --, ( u~y ) .  
- ,  (notsub(x, y) ~ x), (x c y). 

(notsub(x, y) E y) - .  (x c y). 

Axiom A-2: Elements of classes are sets. 
vx (x c V). 

--. (x c_ v). 

Axiom A-3: Extensionality. 
vx vy((x = y) ~ (xc_ y) a (yc_x)). 

( x = y )  .-, ( xcy ) .  
( x = y )  --, (yc_x). 
(xc_y), ( y c x )  --. (x =y) .  

Axiom A-4: Existence of unordered pair. 
v u v x v y ( ( u E { x , y } )  ~ ( u E V ) & ( u = x  v u = y ) ) .  
vx vy({x, y} ~ v). 

(u ~ {x, y}) --, (u = x), (u = y). 
(x E V) - ,  (x E {x, y}). 
(yet, ' )  - .  (y E {x, y}). 
--, ({x, y} ~ V). 

Definition of singleton set. 
vx({x} = {x, x}). 

- ,  ({x, x }  = {x} ) .  

Theorem (SS6) in Appendix 2 introduces memb. 

Definition of ordered pair. 
Vx vy(<x, y> = {{x}, {x, {y}}}). 

( { {x } ,  {x, { y } } }  = <x, y>).  

Axiom B-5'a: Cartesian product. 
vu w vx vy((<u, v> E (x • y)) ~ (u ~ x) & (v E y)). 

(<u, v> ~ ( x x y ) )  - ,  (u~x ) .  
(<u, v> ~ (xxy) )  ---, (v~y) .  
(u~x ) ,  ( v~v )  --, (<u, v> ~ (x• 
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See Theorem (OP6) for 1st and 2nd. 

Axiom B-5'b: Cartesian product. 
vz(z E (x x y) ~ (z = <1st(z), 2nd(z)>).  

(z E (x x y)) - ,  (z = <1st(z), 2nd(z)>) .  

Axiom B-l: E (elementhood relation). 
(E c_ (V • V)). 
Vx Vy((<x, y>  e E) ~=~ (<x, y>  ~ (V x V)) & (x e y)). 

(E C (V x V)). 
( < x , y > ~ E )  - .  ( x~y ) .  
(<x, y>  e (V x V)), (x e y) ~ (<x, y>  ~ E). 

Axiom B-2: n (binary intersection). 
vz vx vy((z E (x n y)) ~ (Z E X) & (z E y)). 

( z ~ ( x n y ) )  -~ ( z~x ) .  
( z e ( x n y ) )  --. ( zey ) .  
( z e x ) , ( z e y )  - ,  ( z ~ ( x n y ) ) .  

Axiom B-3: ~ (complement). 
vz vx((z ~ -(x)) ~ (z ~ V) ~ ~(z ~ x)). 

(z ~ -(x)), (z e x) - , .  
(z e V) - .  (z ~ ~(x)), (z e x). 

Theorem (SP2) in Appendix 2 introduces the null class 0. 

Definition of u (binary union). 
vx vy((x u y) = - ( ( - ( x )  n -(y)))).  

--* ( - ( ( - ( x )  n ~(y))) --- (x u y)). 

Definition of + (symmetric difference). 
vx vy((x + y) = (~(x n y) n - ( - ( x )  n -(y)))).  

- .  ( (~ f ix  n y)) n ~((~(x) n -(y))))  = (x + y)). 

Defimtion of restrict (restriction). 
vx(restrict(xr, x, y) = (xr n (x x y))). 

--* ((xr n (x x It)) = restrict(xr, x, y)). 

Axiom B-4: D (domain). 
V~ vz((z ~ D(x)) ~ (z ~ V) & ~(restrict(x, {z}, V) = 0)). 

(restrict(x, {z}, V) = 13), (z E D(x)) --. .  
(z ~ V) - ,  (restrict(x, {z}, V) = 0), (z E D(x)). 
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(rotate(x) c ((V x V) x V)). 
(< <u, v>,  w >  ~ rotate(x)) ~ (<  <v, w> ,  u>  ~ x). 
(<<v, w>, u> c x), ( < < u ,  v>, w> E ((Vx V) x V)) ~ (<<u,  v>, w> E rotate(x)). 

Axiom B-8: flip. 
vx(flip(x) c_ (iV x V) x V)). 
vz vu  w vw( (<  <u, v>,  w >  ~ flip(x)) ~=~ (<  <u, v>,  w >  c ((v • v) • v)) & (<  <v, u>,  w >  e x)). 

Axiom B-7: rotate. 
vx(rotate(x) c_ ( ( I /x  V) x V)). 
vx vu'w'v'w((< <u, v> ,  w >  ~ rotate(x)) ~ (<  <u, v>,  w >  ~ ((V x tO x V)) a (< <v, w>,  u>  ~ x)). 
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--. (flip(x) c (( I /x V) x V)). 
(<<U, v>, w> e flip(x)) --, (<  <v, u>,  w >  E x). 
(<  <v, u>,  w >  ~ x), (<  <u, v>, w >  ~ (( I /x V) x V)) --. (<  <u, v>, w >  e flip(x)). 

Definition of inverse. 
Vy(inverse(y) = D(flip((y x 10))). 

--. (D(flip((y x I/))) = inverse(y)). 

Definition of R (range). 
Vz(R(z) = D(inverse(z))). 

--, (D(inverse(z)) = R(z)). 

Definition of dora. 
Vz Vx Vy(dom(z, x, y) = lst(notsub(restrict(z, x, {y}), 0))). 

--, (lst(notsub(restrict(z, x, {y}), 0)) = dora(z, x, y)). 

Definition of ran. 
Yz Yx(ran(z, x, y) = 2nd(notsub(restrict(z, {x}, y), 0))). 

- .  (2nd(notsub(restrict(z, {x}, )1), 0)) = ran(z, x, y)). 

Definition of �9 (image). 
Yx Yxr((xr �9 x) = R(restrict(xr, x, V))). 

- .  (R(restrict(xr, x, V)) = (xr "x)) .  

Definition of succ (successor). 
vx(succ(x) = (x o {x})). 

- ,  ((x u {x} )  = succ(x)). 

Definition of SUCC from the class existence theorem. 
( s u c c  c (V • V)). 
vx vy((<x, y>  e SUCC) <=~ (<x, y> e (1/x V) & (succ(x) = y)). 

-~ ( s u c c  c (v x v)). 
(<x, y> ~ s u c c )  -~ (succ(x) = y). 
(succ(x) = y), (x e v) -~ (<x, y> e succ ) .  

Definition of INDUCTIVE. 
vx(INDUCTIVE(x) ~ 0 E X & (SUCC "x)  ~ x)). 

INDUCTIVE(x) --. (0 E x). 
INDUCTIVE(x) ~ ((SUCC = x) c x). 
(0 ~ x), ((SUCC �9 x) c_ x) - .  INDUCTIVE(x). 

Axiom C-t : Infinity. 
~( (x  ~ V) & INDUCTIVE(x) & Yy(INDUCTIVE(y) =~ (x ~ y))). 

-~ INDUCTIVE(u). 
INDUCTIVE(y) ~ (o; c_ y). 

( ~ 0 .  

Definition of U (sum class). 
vx(U(x) = D(restrict(E, V, x))). 

--. (O(restrict(E, V, x)) = U(x)). 

Axiom C-2: U (sum class). 
vx((x ~ v) ~, (U(x) ~ v)). 

ART QUAIFE 
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(x e V) --, (U(x) ~ V). 

Definition of P (power class). 
vx(P(x) = - ( (E  " -(x)))). 

- .  ( - ( ( E  " - ( x ) ) )  = P(x)) .  

Axiom C-3: P (power class), 
Vu((u ~ V) =~ (P(u) E V)). 

( u e V )  - .  (P (u )~V) .  

Definition of o (composition), 
vxr vyr((yr o xr) c (V x V)). 
VU VV vxr  vy r ( (<u ,  v>  ~ (yr o xr)) r (<u ,  v>  E (V x V)) & (V E (yr " (xr " {u } ) ) ) ) .  

--, ((yr o xr) c_ (V x V)). 
( <y, z >  ~ (yr o xr))  ~ (z ~ (yr = (xr " {y } ) ) ) .  
(z e (yr " (xr " {y } ) ) ) ,  (<y,  z> ~ (V x V)) ~ (<y,  z>  ~ (yr o xr)). 

Definition of SINGVAL (single-valued class). 
vx(SINGVAL(x)  r ((x o inverse(x))  c_ I), 

SINGVAL(x)  ~ ((x o inverse(x))  c_ 1). 
((x o inverse(x))  c_ I) ---, SINGVAL(x).  

Definition of FUNCTION.  
Yxf(FUNCTION(xf)  ,===~ (xf c_ (V x V)) & SINGVAL(xf)) .  

FUNCTION(x f )  ---, (xf c_ (V x V)). 
FUNCTION(x f )  --, SlNGVAL(xf) .  
(xf c_ (3/x V)), SINGVAL(xf)  - -  FUNCTION(xf) .  

Axiom C-4: Replacement. 
vx((x ~ V) & FUNCTION(xf )  =~ ((xf " x) E V)). 

FUNCTION(xf ) ,  (x ~ V) ~ ((xf " x) ~ V). 

Axiom D: Regularity. 
vx (~ (x  = o) =~ 3u((u ~ v) a (u ~ x) & ((u n x) = o))). 

(x = 0), ( regular(x)  ~ x). 
(x = 0), ( ( regular(x)  n x) = 0). 

Definition of '  (functional apphcation). 
vxr vy((xf ,  y) = U((xr , (y})) ) .  

(u ( ( r f  " {y } ) )  = (xf '  y)). 

Axiom E: Universal choice 
3xf(FUNCTION(xf )  & vy((y c V) =~ (y = (9) v ( (x f '  y) E y))). 

--, FUNCTION(cho ice ) .  
(y ~ V) --, Of = o), ( ( cho ice "  y) ~ y). 

GROUP 2: MORE SET THEORY DEFINITIONS. 

Definition of O N E O N E  (one-to-one function) 
vx f (ONEONE(x f )  r FUNCTION(xf )  & FUNCTlON( inverse(x f ) ) ) .  

ONEONE(xf )  ---, FUNCTION(xO. 
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ONEONE(xf) -* FUNCTlON(inverse(xf)). 
FUNCTlON(inverse(xf) ), FUNCTION(xf) -., ONEONE(xf). 

Definition of S (subset relation). 
(S = ( - ( ( - (E)  o inverse(E))) n (V x V)). 

--. ( ( - ( ( - (E)  o inverse(E))) n (V x V)) = S). 

Definition of I (identity relation). 
(I = (S n inverse(S))). 

- .  ((S n inverse(S)) = O. 

Definition of diag (diagonalization). 
vxr(diag(xr) = -(D((I n xr)))). 

- ,  (-(13((I n xr))) = diag(xr)). 

Definition of Cantor class. 
vx(cantor(x) = (D(x) n diag((inverse(E) o x)))). 

--, ((D(x) n diag((inverse(E) o x))) = cantor(x)). 

Definition of OPERATION. 
vxf(OPERATION(xf) ,==~ EUNCTION(xf) & ((D(D(xf)) x D(D(xt))) = O(xf)) & (R(xf) c_ D(D(xf))). 

OPERA TION(xf) ~ FUNCTION(xf). 
OPERATION(xf) -~ ((D(D(xf)) x O(D(xf))) = D(xf)). 
OPERATION(x~) --. (R(xf) ~ D(D(xf))). 
FUNCTION(xf), ((D(D(xf)) x D(D(xf))) ~- D(xf)), (R(xf) c_ D(D(xf))) -~ OPERATION(xf). 

Definition of COMPATIBLE. 
vxh yxf vxg(COMPATIBLE(xh, xf, xg) 

O(O(xg)))). 
, = ,  FUNCTION(xh) & (D(D(xf)) = D(xh)) & (R(xh) c_ 

COMPATIBLE(xh, xf, xg) - ,  FUNCTION(xh). 
COMPA TIBLE(xh, xf, xg) --, (D(D(xf) ) = O(xh) ). 
COMPATIBLE(xh, xf, xg) - .  (R(xh) ~ D(D(xg))). 
FUNCTION(xh), (D(D(xf)) = O(xh)), (R(xh) c D(D(xg))) --* COMPATIBLE(xh, xf, xg). 

Definition of HOM (homomorphism). 
vxh vxl vxg(HOM(xh, xf, xg) .=~ OPERATION(#) & OPERATION(xg) & COMPATIBLE(xh, xf, xg) & 

YX Vy((<X, y> e O(xf)) ~ ((xg' <(xh'  x), (xh' y)>) = (xh ' (xf ' <x, y>)))). 

HOM(xh, xf, xg) --, OPERATION(xt). 
HOM(xh, xf, xg) --. OPERATION(xg). 
HOM(xh, xl, xg) --, COMPATIBLE(xh, xf, xg). 
HOM(xh, xf, xg), (<x, y> e D(xO) -~ ((xg' <(xh'  x), (xh' y)>) = (xh' (xf' <x, y>))). 
OPERATION(x'f), OPERATION(xg), COMPATIBLE(xh, xf, xg) 

- ,  (<nothoml(xh, xf, xg), nothom2(xh, xf, xg)> e D(xf)), HOM(xh, xf, xg). 
OPERATION(xO, OPERATION(xg), COMPATIBLE(xh, xf, xg), 

((xg" <(xh ' nothoml(xh, xf, xg)), (xh ' nothom2(xh, xf, xg))>) = 
(xh ' (x f '<nothoml (xh, xf,, xg), nothorn2(xh, xf, xg) > ) )) --* HOM(xh, xf, xg), 

5. Proving Classes Equal 

Appendix 2 includes a list of theorems of Boolean algebra that I proved using 
OTTER. Most of these proofs involve showing that two terms denote the same class. 

The simplification I provided in Section 3.2 still leaves a difficulty in proving 
equality of classes. I will discuss this difficulty with specific reference to OTTER, 
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which implements the inference rules hyperresolution, UR-resolution, and binary 
resolution. The difficulty is that to prove an equality --, (a = b) for (ground) terms a 

and b, we must resolve 

(El) (a = b) -~ with 

(E2) ( x _  y ) , ( y  ~ x) ~ (x = y) to get 

(E3) (a ~ b),(b _ a) ~ .  

However, neither hyperresolution nor UR-resolution will make this inference. Here 
we clearly want some case analysis mechanism, to split the proof into separate proofs 
that --*(a ~ b) and --* (b _ a). 

This difficulty may be addressed in at least the following ways: 

Unacceptable 

1. We can make the desired inference using binary resolution. But binary resolution 
normally generates far too many unwanted conclusions to be used as an inference 
rule. 

2. Lusk and Overbeek [10] solved this problem by using qualifying literals, and 
locking to force case analysis. But neither qualification nor locking are currently 
available in OTTER. 

3. Winker and Wos [20] addressed this problem by introducing demodulators 
(rewrite rules) that define propositional calculus at the term level. They would 
introduce a function E L  taking on values T and F, and have clauses such as 

(EL(x ,  y)  = T )  ~ (x ~ y), 

three demodulators defining w, ~,  and ~ such as 

--, (EL(x ,  ( y  w z)) = O R ( E L ( x ,  y), E L ( x ,  z))), 

plus about 37 propositional logic demodulators such as 

( N O T ( N O T ( x ) )  = x)  

--* (OR(x ,  T )  = T).  

Thus they reduce proving theorems of Boolean algebra to using propositional logic 
rewrite rules. 

If we were to follow this approach, we would presumably adopt some of the 
propositional logic demodulators as axioms, and prove the rest of them. But this 
is more or less the same amount of work as proving the theorems of Boolean 
algebra directly. Furthermore, these demodulators only seem useful for the 
duration of proving the corresponding theorems of Boolean algebra such as 

--, ( ~ ( ~  ( x ) )  = x ) ,  

--, ( ( x  u v )  = v ) ;  

henceforth we would rely on the Boolean algebra rewrite rules. 
All told, it does not seem of net benefit to introduce this temporary machinery. 
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Marginally Acceptable 

4. We prove the following four theorems by resolving (E2) against the definition of 

the subclass relation: 

-~ (x = y), (notsub(x, y) e x), (notsub( y, x) e y). 

(notsub(x, y) e y) --* (x = y), (notsub( y, x) ~ y). 

(notsub( y, x) ~ x) --* (x = y), (notsub(x, y) ~ x). 

(notsub(x, y) e y), (notsub( y, x) e x) --* (x = y). 

Now a proof that --, (a = b) can proceed by hyperresolution. In particular, we 

first deduce 

(E4) --* (notsub(a, b) e a), (notsub(b, a) ~ b). 

The drawback to this approach is that (E4) contains literals from both of the cases 
a _ b and b _c a; these cases are considered simultaneously, which is not as 
efficient as considering them serially. It also requires us to use hyperresolution, 
whereas it is usually more efficient to obtain proofs by UR-resohtion alone. 

5. The user undertakes the case analysis, by separately proving the two theorems 

--+ (a _~ b) and --* (b __ a). 
Note that this approach should be needed less and less as the development 

proceeds. Once we have built up a body of theorems, we may often expect to prove 
-* (a = b) from other known equalities, without having to open up the basic 

definition of equality. 

I used Method 4 to prove all the theorems of Boolean algebra, except the distributive 
law, which I proved using Methods 4 and 5. The proof of Theorem (12) below shows 

how Method 4 is used to prove -~ ((x n y) = (y  n x)). 

Theorem (12) - ,  (x n y)  = (y n x). 

Axioms and Previously Proven Theorems'. 

23 (z e (x n y)) --. (z �9 x). 
24 ( z e ( x n y ) )  --, (zey) .  
25 (z e x), (z ~ y) --, (z e (x n y)). 

153 --, (x = y), (notsub(x, y) e x), (notsub(y, x) ~ y). 
154 (notsub(x, y) e y) --. (x = y), (notsub(y, x) e y). 
155 (notsub(y, x) �9 x) ~ (x = y), (notsub(x, y) ~ x). 
156 (notsub(x, y) e y), (notsub(y, x) ~ x) --. (x = y). 

Negation of Theorem: 

157 ( ( a n b )  = ( b n a ) )  -~. 

The Proof: 

164 .-* (notsub((a n b), (b n a)) E (a n b)), 
(notsub((b n a), (a N b)) ~ (b n a)) 

I ~6 --. (notsub((b n a), (an  b)) e (b n a)), 
(notsub((a nb) ,  (b n a)) e b) 

167 --. (notsub((b n a), (a n b)) �9 (b n a)), 
(notsub((a n b), (b n a)) �9 a) 

[hyper, 157, 153]. 

[hyper, 164.24]. 

[hyper, 164, 23]. 



AUTOMATED DEDUCTION IN NBG SET THEORY 

181 -.  (notsub((b n a), (an b)) ~ (b n a)), 
(notsub((a n b), (b n a)) ~ (b n a)) [hyper, 167, 25, 166]. 

240 --. (notsub((b n a), (an b)) ~ (b n a)) [hyper, 181,154, unit_del, 157]. 
242 --, (notsub((b n a), (a c~ b)) ~ a) [hyper, 240, 24]. 
243 --, (notsub((b n a), (an b)) ~ b) [hyper, 240, 23]. 
248 ---, (notsub((b n a), (an b)) c (an b)) [hyper, 243, 25, 242]. 
251 --. (notsub((a nb),  (b n a)) ~ (an b)) [hyper, 248, 155, unit_del, 157]. 
261 ~ (notsub((a nb),  (b n a)) ~ b) [hyper, 251,24]. 
262 ~ (notsub((a nb), (b n a)) ~ a) [hyper, 251,23]. 
269 --, (notsub((a nb),  (b n a)) ~ (1o n a)) [hyper, 262, 25, 261 ]. 
273 ~ ((an b) = (b n a)) [hyper, 269, 156, 248]. 
282 ~ [binary, 273, 157]. 
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6. Boolean Demodulators 

If we use the standard operation symbols ',~ ', ' u ' ,  and '~ ' ,  it is difficult to know what 
set of rewrite rules to incorporate. There is no complete set of reductions for free 
Boolean algebras, since there may be more than one minimal set of prime implicants 

[18t. 
Alternatively, we may eliminate ' u '  in favor of the symmetric difference functor ' + '  

by using 

x u y  = x + y + ( x n y ) .  

We can then use the complete set of  reductions derived from those for a Boolean ring, 
and thus reduce every Boolean term to a unique form. The drawback to this approach 
is that it is more natural to express theorems in terms of ' u '  than in terms o f ' +  '. The 
approach of  [7] also requires us to eliminate the complement functor ' ~ '  via 

~,.x = x + V .  

Below I supply such a complete set of reductions. I have modified the reductions given 

in [7] in the following respects: 

1. To keep the canonical form as nearly natural as possible, I have retained the ' ~ '  
functor. The rules will reduce any term containing ' ~ '  to one in which ' ~ '  
appears at most once, and that appearance is initial. Correspondingly, 'V '  will 
never appear as a summand in a reduced term. 

2. The reductions in [7] are complete with respect to associative-commutative unifi- 
cation. Since neither of  these unification options are available in OTTER,  we 
must use lex-dependent demodulators to write each term as a unique fight-asso- 
ciated sum of products. We also need to add a demodulator under (I6) and one 
under (E6), to effect the reductions from this lex-ordered right-associated form. 

BOOLEAN DEMODULATORS REPLACING UNION BY SYMMETRIC DIFFERENCE 

These demodulators should be used with the lexical order specifier 

lex([O, 1/, ~ (x), (x n x), (x u x), (x + x)]). 

To assure uniqueness of the canonical form, we also should select the O TTER option 
lex_order_vars, which defines and uses a lexical ordering of variables. 
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INTERSECTION 

(12) Commutative law of intersection. 
((x n y) = (y n x)). 

(13) Lexical ordering within associations. 
- ,  ( ( x n ( y n z ) )  = ( y n ( x n z ) ) ) .  

(14) Intersection with O. 
--, ((O n x) = o). 

(15) Intersect ion with V. 
- ,  ( (V n x) = x). 

(16) Idempotent law of intersection. 
-~ ((x n x)  = x). 
Corollary. 
--, ((x n (x n y))  = (x n,v)) .  

COMPLEMENT 

(C1) Complement of complement. 
- ,  ( - ( - ( x ) )  = x). 

(C2) Special cases. 
( - ( o ) = W .  

--, ( - ( v ) = o ) .  

(C3) Elimination of complement in intersection. 
( ( - (x )  n y) = (y + (x n y))). 

(C4) Moving complement out in symmetric difference. 
( ( - ( x )  + y) = - ( ( x  + y))). 

SYMMETRIC DIFFERENCE 

(El) Elimination of union. 
( ( x u y )  = ( ( x n y )  + (x + y))]. 

(E2) Commutative law of symmetric difference. 
- ,  ((x + y) = (y + x)). 

(E3) Lexical ordering within associations. 
((x + (y + z)) = (y + (x + zJ)). 

(E4) Symmetric dif ference with O. 
--, ((o + x) = x). 

(ES) Symmetric difference with V. 
( (v  + x) = - (x)) .  

(E6) Nilpotent law of symmetric difference. 
((x + x) = o ) .  

Corollary. 
((x + (x + y)) = y). 

DISTRIBUTIVE LAW 

(D1) Intersection distributes over symmetric difference. 
- ( ( x n ( y + z ) )  = ( ( x n y )  + ( x n z ) ) ) .  
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These demodulators should be useful in any study that heavily involves Boolean 
algebra. But for the further development reported in this paper, I continue to use 't3' 
rather t ha n '  + '. I found the Boolean demodulators used rarely, and that those given 
in Appendix 2 more than sufficed. With that incomplete set of reductions, it is not 
clear which orientation of the distributive laws is most useful. In Appendix 2 I have 

oriented them to factor rather than distribute. 

7. Sko|em Functors and the Axiom of Choice 

Skolem functors serve much the same purpose as Hilbert e-terms - they provide 
names for objects that are guaranteed to exist by existential assertions. Unless there 
is exactly one object satisfying the existential assertion, the object named is 
indeterminate. 

Since equality is ubiquitous, the Skolem functor notsub appearing in the definition 
of the subclass relation sees much duty in our system, Note that notsub(x, O) acts as 

a universal choice term, in that we have the Theorem (SP4): 

(x = 0), (notsub(x, O) �9 x). (1) 

Several textbooks in set theory (for example, [2]) give, as a very strong version of the 

Axiom of Choice, the Axiom of Global Choice: 

c ~ 0 ~ a ( c )  e c ,  (2) 

where 'c' is a variable restricted to sets, and 'a '  is a unary functor. Since we already 
have such a functor in (l), why do we need Axiom E of Choice in addition? 

The answer is that set theories using (2) also have an Axiom Schema of  Replace- 
ment which allows a to appear in the formula of the schema. In Grdel 's  system the 
corresponding schema is the class existence theorem, which only applies to formulas 
of the basic theory in which there are no functors. In particular it does not apply to 
formulas containing the Skolem functor 'notsub', so there is no way to prove intbur 
clausal system that the intuitively conceived class {(x, notsub(x, 0)): x e V} exists. 
That  is, there is no way to reify the term notsub(x, O) into a function, whereas Axiom 
E explicitly assumes the existence of  such a function. 

I have introduced several Skolem functors, such as "1st' and "2nd', via uniqueness 
theorms of the form F(Vx~ . . . Vx,) (9! Y)4~- The uniqueness theorems guarantee that 
such functors are eliminable, and thus they may be included in formulas to which we 
apply the class existence theorem. But there is no way to define notsub(x, O) uniquely, 
or else we could prove the Axiom of Choice! 

We see that the real power of the Axiom of Choice is not that it allows one to make 
infinitely many arbitrary selections, but that it asserts the existence either of  a set (or 
class) containing the selected entities, of the corresponding function (class of ordered 
pairs) that makes the choices. 
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8. Theorems Proved 

Appendix 2 contains a list of most of the theorems I have proved to date from the 
above axioms. I selected these theorems while producing my own development of 
elementary set theory; they turn out to constitute a fair sampling of the theorems 
found in the first 90 pages of Suppes [19]. 

These theorems were proved automatically, using OTTER. The proofs were not 
hand-guided as in [4]. Since OTTER is not interactive, user guidance comes princi- 
pally from assignment of weights and selection of inference rules before a proof run, 
as described in Section 10. It is also up to the user to organize the sequence of 
theorems proved so that a proof attempt can build upon previous results without 
biting off too large a new chunk. 

9. Use of Previously Proved Theorems 

Bledsoe [3] obtained proofs of theorems in set theory by only loading those reference 
theorems needed in the proof. He pointed out that "A different set of reference 
theorems would have yielded a different proof or no proof, and too large a set would 
have lead to no proof at all". 

If I only loaded reference theorems needed in a proof, I believe that almost all the 
400-plus theorems in Appendix 2 would have been proved very easily (see, for 
example, the end of Section 13). Adopting such a strategy trivializes the problem, at 
least using OTTER on the theorems listed. Since I am conducting a systematic 
development of set theory, when I prove a theorem I add its clausal version to the 
Axiom list (see Appendix 2). I always load all previously proved theorems. The 
computer should be able to bring to bear everything it knows in proving the theorem 
at hand. An exception is that I do not load the Axiom of Choice. It is not needed in 
elementary set theory, and it is bad form to use it when it is not needed. Of course 
I also do not load the few theorems that are subsumed by later theorems (see the 
beginning of Appendix 2). 

Thus, along with a few theorems that are relevant to the proof of the theorem at 
hand, I load many irrelevant theorems that act as noise in producing many irrelevant 
conclusions. To overcome that problem, I frequently find it necessary to intervene to 
a much lesser extent than only loading relevant theorems. Instead I assign low weights 
to functors I expect must appear in the proof (see Section 10). Proof runs then still 
produce many irrelevant conclusions, but fewer of them move to the top of the set of 
support to be further considered. 

10. Heuristics and Option Settings 

The weighting option in OTTER is described in Section A11 of Appendix 1. I assign 
weight 1 to every term, including every subterm, appearing in the theorem. Without 
this heuristic almost all the proof attempts would have run on until user termination. 
This weighting heuristic is so universally useful that I recommend its incorporation 
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into OTTER as an auto-weighting option. It is a first step toward an automated deter- 
mination of optimal weight assignment. The next step to explore is the automatic 
assignment of low weights to all 'sufficiently similar' terms; for example if f (a) is 
assigned weight 1, should all terms f (x)  also be assigned weight 1? 

If the conclusion of the theorem is of the form (tl ~ t2), I also use the template 

weight(notsub(1, 1), - 1). 

Most of the theorems I have proved are universal statements, in which the clausal 
version of the negation of  the theorem contains no free variables. In such cases I also 
assign a high enough weight to variables so that all deduced clauses containing 
variables will be discarded. Thus any proof obtained will be a ground proof. This 
heuristic is successful in the large majority of cases. 

The set-of-support strategy, the assignment of low weights to terms in theorems, 
and the discarding of formulas containing free variables, all work to keep OTTER 
focusing upon the objects named in the theorem. In this respect the object-oriented 
inference mechanisms used by McAllester in the system Ontic [8] are strongly anal- 
ogous to my rules. 

For use with lex-dependent demodulators, I use the lexical specifier 

lex([O, V, ,,~ (x), 
a, b, c, d, f, g, gl, g2, h, hl, h2, 
notsub(x, x), {x}, memb(x), memb'(x), {x, x}, 
(x, x),  (x • x), lst(x), 2nd(x), lst'(x), 
2nd'(x), E, restrict(x, x, x), D(x), rotate(x), flip(x), inverse(x), R(x), 
dom(x, x, x), ran(x, x, x), (x " x) succ(x), SUCC, 09, U(x), e(x), (x o x), 
svl(x), sv2(x), sv3(x), SS, regular(x), (x 'x), choice, 
S, I, diag(x), cantor(x), nothoml(x, x, x), nothom2(x, x, x), 
(x c~ x), (x vo x), (x + x)]), 

where the order is from most preferred to least preferred. The first and last lines of 
this specification are significant. The second line consists of Skolem constants used in 
expressing the negation of a theorem. The order of the remaining functors matters 
little. 

In my first attempt at a proof, I turn on UR-resotution, paramodulation into and 
from, and back demodulation. If these settings fail to obtain a proof within a 
reasonable length of time, I try turning on hyperresolution. I then also assign low 
weights to other functors that I expect must appear in the proof. This step is 
frequently necessary. 

Suppose, as is frequently the case, that the theorem we are trying to prove is a Horn 
clause. If one puts all literals from the theorem in the set of support, then the proof 
will consist of some true statements (in any model of the hypotheses) that follow from 
the hypotheses, plus some false statements that follow from the negation of the 
conclusion. The user may find it confusing to look through such a proof and keep in 
mind which statements he is to believe, and which he is to disbelieve. 
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One doesn't have this problem while reading a proof in which every deduced line 
is true. Thus I prefer proofs that proceed in a completely forward direction from the 
hypotheses of the theorem, and only use the negation of the conclusion in the last line 
where the contradiction is recognized (and which step is then superfluous). One might 
expect such proofs to be difficult to obtain, because the prover is not making any use 
of the goal for guidance. Nonetheless many, perhaps the majority, of the proofs of the 
theorems listed in this paper were obtained in this way. I do this by putting the 
negation of the conclusion in the axiom list, outside of the set of support. 

An especially pleasing subset of such proofs is formed by those in which (almost) 
every deduction line consists of a positive literal obtained by UR-resolution, in that 
negative deduced literals are one level more psychologically complex than positive 
literals. To assist in obtaining such proofs, one can assign a high weight to the 
negation sign, so that the prover will focus on positive (unit) clauses. I did that in 
obtaining all but one of the proofs presented in Sections 12 and 13. Without that 
weight template, the contradiction in the proof of Theorem (CO9) below comes at line 
8179 and takes 375.53 seconds. 

I have not tested this last heuristic extensively enough to know how widely 
applicable it is. It is unlikely to work if the negated theorem contains a positive literal 
of the form ~ (x ~ ~ (y)), since this probably will have to be converted to (x e y) -}. 
It also will not work when the conclusion contains Skolem constants not appearing 
in the hypothesis+ since the forward proof would require derived clauses containing 
variables, which I discard. Otherwise, it certainly appears promising. 

I never use binary resolution, since it generates far too much junk to use regularly 
in automated proofs. Rather than succumb to the temptation to use binary 
resolution when other methods fail, one should instead try to figure out what changes 
need to be made so that more efficient resolution rules may be used. 

The heuristics presented above have evolved from those presented in [16] and [17]. 

11. Proof Finder or Proof Verifier? 

My heuristic of assigning weight 1 to terms appearing in the theorem statement 
normally suffices to obtain proofs in which no other functors appear. But if other 
functors are needed in the proof, it is often necessary to assign them low weights as well. 

Theorems in this paper typically required a handful of computer runs to obtain 
a proof. The most difficult theorem, the composition of  homomorphisms theorem in 
Section 13, took more than 20 runs spread over a week. When it was necessary to add 
weight templates, I could do so without great difficulty, since I normally had an idea 
of how the proof should proceed - or would work out a proof sketch while watching 
OTTER fail. Sometimes it was necessary to backtrack and ask OTTER to prove a 
simpler theorem first. Further, if OTTER obtained a proof that was longer or less 
elegant than my hand proof, I would tinker with the settings for several more runs 
until it obtained my proof. 

The continuum between proof finder and proof verifier is largely measured by the 
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degree of user guidance supplied to the prover. Almost all my heuristics and para- 
meter settings are or can be made automatic, except for the frequent need to supply 
additional weighting templates. When such additional templates are necessary, I call 
the proof semiautomatic. 

Of course, if we are asking OTTER to act solely as a proof verifier, we can 
automatically supply low weights to all terms appearing in the proof outline, and 
expect that OTTER will then normally find the full proof. Remember also that even 
when the user supplies weights in advance, OTTER must still proceed without further 
guidance to generate proofs requiring up to about 30 deduction steps. 

Thus we may say that the main obstacle to OTTER acting as a fully automatic 
proof finder in set theory is automation of the method of selecting weights. Wos [22] 
presents this as Problem 27. It is closely related to the problem of automatically 
determining which of a large body of previously proved theorems are most relevant 
to the proof of the theorem at hand. 

12. Proof of Cantor's Theorem 

The next two sections contain several OTTER proofs. The proof traces show only 
the axioms and the deduction steps that actually contribute to the proof. For example, 
in the proof immediately below, 352 previously proved theorems were loaded but only 
8 used in the proof. There were at least 269 retained conclusions, but only 8 of these 
contributed to the proof. While I do not turn on binary resolution as an option, 
OTTER uses binary resolution to obtain the final unit conflict. 

I now prove Cantor's theorem that there can be no function mapping a set onto 
its power set. I first define the Cantor class by 

cantor(x) = D(x )  n diag((inverse(E)ox)) ,  

which can be simplifed to 

cantor(x) = D(x )  ~ ~ D ( ( E  n x)). 

I have previously proved the membership conditions 350-352 below of the Cantor 
class. 

Theorem (CA4) S/NGVAL(x), (D(x) �9 V), (P(D(x)) ~ R(x)) ~ . 

Axioms and Previously Proven Theorems: 

2 (uex ) ,  ( x c y )  --, ( uey ) .  
266 (y �9 R(z)) - ,  (dora(z, V, y) ~ O(z)). 
289 (z e V), (z c x) - .  (z e P(x)). 
301 (y e V), (x c_ y) --, (x e V). 
333 (y �9 R(z)), SINGVAL(z) ~ ((z' dora(z, V, )1)) = y). 
350 --, (cantor(x) c_ D(x)). 
351 (z E cantor(xr)), (z �9 (xr' z)) --,. 
352 (z �9 D(xr)) ~ (z F. (xr '  z)), (z E cantor(xr)). 

Negation of Theorem: 

353 --, SlNGVAL(f). 
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354 -- ,  (P(D(f)) c_ R(O). 
355 --* (D(O E V). 

T h e  Proof: 

432 ~ (cantor( O F_ V) 
456 -- ,  (cantor(O E P(D(O)) 
554 ---, (cantor(f) ~ R(O) 
586 -~ (( f '  dom(f, V, cantor(O)) = cantor(O) 
5 9 0  -- .  (dom(f, V, cantor(O) ~ D(O) 
696 ~ (dorn(f, V, cantor(O) ~ cantor(O) 
6 9 7  (dom(f, V, cantor(f)) E cantor(f)) --. 
7 0 0  --- 

[ur, 355, 301,350]. 
[ur, 432, 289, 350]. 
[ur, 458, 2, 354]. 
[ur, 554, 333, 353]. 
[ur, 554, 266]. 
[para..from, 586, 352, unit_del, 590]. 
[para_from, 586, 351 ]. 
[binary, 696, 697]. 

This proof required 10.95 seconds on a VAX 8800. 
Could OTTER reinvent the diagonal argument? It could certainly construct the 

Cantor class 'on the fly', not requiring my previous definition. But it may be too much 
to expect OTTER to prove its membership conditions 350-352 while trying to prove 
this theorem. Nonetheless, given a class with these membership conditions, OTTER 
is able to polish off the proof in a sprightly and natural manner. 

13. Proof that the Composition of Homomorphisms is a Homomorphism 

Boyer et al. offer this theorem as a challenge problem. They then provide a sequence 
of 27 lemmas that lead to its proof, together with hand-guided proofs of the lemmas. 

It is clear that one could not obtain most of their proofs, as presented, by a standard 
resolution theorem prover using hyperresolution and/or UR-resolution. Here is one 
line in their proof of Lemma 18, using my notation: 

(flZb ~ V), ((f2b, x) 6 (V x V)), (lst((f2b, x)) = fl7b), 

((f2b, x)  ~ V), (f2b ~ V), (x ~ V), (f3b ~ V), ((f3b, x )  ~ V) ~ ,  

where f2b, f3b, and f l  7b are abbreviations for other complex terms. 
Even using binary resolution, this complex clause would never automatically move 

to the top of the set of support to be considered again. Nonetheless, I have been able 
to obtain semiautomatic proofs of the lemmas and of the theorem. 

The most difficult of the lemma proofs they present is, in my notation: 

Lemma 18: (R(x) ~_ D(y)) -* (O(x) = D(yox))). 

Their hand-guided proof requires 25 reference theorems, 2 clauses for the denial of the 
theorem, 65 lines of deduction, and 12 lines of abbreviations, for a total of 94 lines. 

] will prove this theorem in two parts, showing inclusion in both directions. We do 
not need the hypothesis of the theorem for the easier direction. Because of the deep 
nesting of terms that occurs, I will also introduce abbreviations into OTTER's proof. 
I produced these abbreviations by hand after OTTER obtained the unabbreviated 
proof. 

Theorem (CO6) -4 (O((y o x)) c_ O(x)). 

A b b r e v i a t i o n s :  

notsub = notsub(D((g o O), D(f)) 
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ran = ran((g o O, notsub, V) 
dora = dom(g, (f " {notsub)}. ran) 

Axioms and Previously Proven Theorems: 

3 ~ (notsub(x, y) �9 x), (x c y). 
4 (notsub(x, y) e y) --, (x C y). 

261 (x �9 D(z)) --, (<x, ran(z, x, V) > ~ z). 
262 (<x, y>  �9 (V x V)), (<x, y> E z) --, (x e D(z)). 
342 (<l l ,  v> �9 (xf o YO) ---' (<u, dom(xf, (yf = {u}), v) > ~ yf). 
343 (<u, v> E (xf o yf)) ~ (<u, dom(xf, O/f " {u}), v)> �9 (V • V)). 

Negation of Theorem: 

350 (D((g o t)) c D(I)) - . .  

The Proof: 

434 (notsub �9 D(t')) --. 
435 ---, (notsub e D((g o f))) 
440 --, ( <notsub, ran> e (g o O) 
454 -.  (<notsub, d o m >  E (Vx V)) 
455 --, (<notsub, dom>  e t) 
577 --. (notsub E D(f)) 
590 

[ur, 350, 4]. 
[ur, 350, 3]. 
[ur, 435, 261]. 
[ur, 440, 343]. 
[ur, 440, 342]. 
[ur, 455, 262, 454]. 
[binary, 577, 434]. 

This proof required 10.89 seconds on a VAX 8800. 

Theorem (C09) (R(x) c__ D(y)) --. (D(x) c_ D((y o x))). 

Abbreviations: 

notsub = notsub(D(f), D((g o t))). 
ran = ran(f, nots//b, V). 
ranran = ran(g, ran, V). 

Axioms and Previously Proven Theorems: 

2 ( u � 9  (xc__y) .-, ( u � 9  
3 .-, (notsub(x, y) �9 x), (x c y). 
4 (notsub(x, y) e y) --* (X C y). 

92 (z �9 (yr o xr)) --. (zE(VxV)) .  
259 (x �9 D(z)) --. (<x, ran(z, x, V)> �9 (V x V)). 
260 (x ~ D(z)) --. (<x, ran(z, x, V)> e. z). 
261 (<x, y>  e. (V x V)), (<x, y> e Z) --* (X e D(z)). 
267 (x e D(z)) ~ (ran(z, x, V) e R(z)). 
340 (<x, y>  �9 (V x V)), (<y, z> �9 (V x V)), (<x, y> �9 xr), (<y, z> �9 yr) ~ (<x, z>  E (yr o xr)). 

Negation of Theorem: 

347 --, (R(f) c_ D(g)). 
346 (O(O C D((g o O)) -- '. 

The Proof: 

432 (notsub �9 D((g o f))) --, 
433 - .  (notsub e. D(f)) 
437 --. (ran �9 R(f)) 
438 --, (<notsub, ran> �9 f) 
439 --, (<notsub, ran> �9 (Vx V)) 
469 - ,  (ran �9 D(g)) 

[ur, 348, 4], 
[ur, 346, 3]. 
[ur, 433, 267]. 
[ur, 433, 260]. 
[ur, 433, 25g]. 
[ur, 437, 2, 347]. 
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577 ---. (<ran, ranran> E g) 
576 --. (<ran, ranran> e ( V x  V)) 
671 - ,  (<notsub,  ranran> e (go f)) 
791 -., (<notsub,  ranran> E (Vx tO) 
873 ---, (notsub E D ( (g  o f))) 
880  - ,  

[ur, 469, 260]. 
[ur, 469, 259]. 
[ur, 578, 340, 438, 577, 439]. 
[ur, 671, 92]. 
[ur, 791,261,671 ]. 
[binary, 873, 432]. 
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This proof required 20.56 seconds on a VAX 8800. 
Even if we double-count the clauses that are common to the two proofs, the two 

theorems require 6 lines of  abbreviation, 15 reference theorems, 3 clauses for the 
negations of the theorems, and 19 lines of deduction, for a total of 43 lines. This is 
less than half the length of the hand proof of Boyer et al., the number of deduction 
lines is less than one third, and each deduced clause is a unit. While some of the saving 
is due to splitting the theorem in half, most of it is due to better clauses. Furthermore, 
OTTER's two proofs are precisely the proofs that I produced by hand, so I consider 

them very natural. 
In addition to my usual weighting heuristics described above, to obtain these proofs 

I used the templates: 

weight(dom(1, 1, 1), -2 ) .  

weight(ran(l, 1, 1), -2 ) .  

weight((l, 1), - 1). 

weight((1 "1), - 1). 

weight({1}, 0). 

As remarked above, use of these templates makes the proofs less than fully automatic. 
However, a user would easily intuit that these functors will be needed in the proof, 
and thus assign them low weights. 

Lemma 19 of Boyer et aL, slightly restated, is that the composition of single-valued 
classes is single-valued. Their definition of single-valued is the natural one (see 
(SVI)-(SV3) in Appendix 2), but it generates three Skolem functors. And their 
hand-guided proof requires 77 lines. , 

I avoided the Skolem functors by defining 

SINGVAL(x)  ~ (xo inverse(x) ~_ I), 

and this definition permits an elegant proof of their Lemma 19 using the relational 
calculus. 

Theorem ($V6) S/NGVAL(x), SINGVAL(y) --. S/NGVAL((y o x)). 

Axioms and Previously Proven Theorems: 

64 S/NGVAL(x) --. ((x o inverse(x)) ~ I). 
65 ((x o inverse(x)) c I) - .  SINGVAL(x). 
97 (xc_y), ( y ~ z )  --. ( x cz ) .  

305 ~ (((xr o yr) o zr) = (xr o (yr o zr))). 
310 (xr c_ l) - .  ((zr o (xr o ur)) E (zr o ur)). 
311 ~ (inverse((xr o yr)) = (inverse(w) o inverse(xr))). 
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Negation of Theorem: 

375 SINGVAL((g o f)) -+.  
376 ---, SINGVAL(f). 
377 ~ SlNGVAL(g). 

The Proof: 

456 (((g o 19 o inverse((g o f))) ~ 0 
457 ~ ((f o inverse(f)) ~ 0 
458 ~ ((g o inverse(g)) c_ 0 
473 (((g o f) o (inverse(f) o inverse(g))) ~ I) 
538 (((g o 19 o (inverse(f) o inverse(g))) c_ (g o inverse(g))) --, 
660 ((g o (f o (inverse(f) o inverse(g)))) c_ (g o inverse(g))) --, 
839 ((g o ((f o inverse(f)) o inverse(g))) ~ (g o inverse(g))) --. 

1051 ((f o inverse(f)) c I) -~ 
1060 --, 

[ur, 375, 65]. 
[ur. 376, 64]. 
[ur, 377, 64]. 
[para_into, 311,456]. 
[ur, 473, 97, 458]. 
[para_into, 305, 538]. 
[para_into, 305, 660]. 
[ur, 839, 310]. 
[binary, 1051,457]. 

This proof required 19.09 seconds on a VAX 8800. 

Theorem (HO1) HOM(xhl .  xf l ,  xg l ) ,  HOM(xh2, xg l ,  xg2) -~ HOM((xh2 o xhl ) ,  xft, xg2). 

AbbreviatLons. 

n l  = nothoml ( (h2  o h l ) ,  f l ,  g2) 
n2 = nothom2((h2 o h l ) ,  f l ,  g2) 

Axioms and Previously Proven Theorems: 

67 FUNCTION(d) --, SlNGVAL(d). 
86 COMPATIBLE(xh, xf, xg) ~ FUNCTION(xh). 
90 HOM(xh, xf, xg) ~ OPERATION(d). 
91 HOM(xh, xf, xg) -., OPERATION(xg). 
92 HOM(xh, xf, xg) --, COMPATIBLE(xh, xf, xg). 
93 (<x, y>  e O(d)), HOM(xh, xl, xg) 

--. ( (xg '  <(xh 'x) ,  ( x h ' y ) > )  = (xh '  (xf '  <x, y>))) .  
94 COMPATIBLE(xh, xf, xg), OPERATION(d), OPERATION(xg) 

-~ ( <nothoml (xh ,  xf, xg), nothom2(xh, xf, xg)> E D(d)), HOM(xh, xf, xg). 
95 ( (xg '  <(xh ' nothoml(xh,  xf, xg)), (xh ' nothom2(xh, xf, xg) )>)  = 

(xh " (xf '  <nothoml (xh ,  xf, xg), nothom2(xh, xf, xg)>))) ,  
COMPATIBLE(xh, x'f, xg), OPERATION(d), OPERATION(xg) --, HOM(xh, xf, xg). 

228 ( < u , v >  ~ ( x x y ) )  --. (u~x) .  
229 (<u, v> ~ (x x y)) -~ (v ~ y). 
373 (x E D((yt o d))) ,  SINGVAL(d) ---, (((yf o d )  ' x) = (yf" (xf" x))). 
393 COMPATIBLE(xh, xf, xg), OPERATION(d) --, ((D(xh) x D(xh)) = D(d)).  
396 (<x, y>  ~ (D(xh) x D(xh))), COMPATIBLE(xh, xf, xg), OPERATION(d) 

( (x l '  <x, y> )  E D(xh)). 
397 (<x, y> e (D(xh) x D(xh))), COMPATIBLE(xh, xf, xg) ---* (<(xh"  x), (xh '  y )>  E D(xg)). 
398 COMPATIBLE(xhl ,  xf l ,  xg l ) ,  COMPATIBLE(xh2, xg l ,  xg2) 

COMPATIBLE((xh2 o xhl ) ,  xf l ,  xg2). 

Negation of Theorem: 

399 HOM((h2 o h l ) ,  f l ,  g2) 4 . 
400 --, HOM(h l ,  f l ,  g l ) .  
401 --, HOM(h2, g l ,  g2). 

The Proof. 

477 ~ COMPATIBLE(hi ,  f l ,  g l )  [ur, 400, 92]. 
479 - ,  OPERATION(f1) [ur, 400, 90]. 
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495 --, COMPATIBLE(h2, g l ,  g2) 
496-- ,  OPERATION(g2) 
512 ..-, ( (O(hl)  x O(h l ) )  = D( f l ) )  
513 -... FUNCTION (h 1 ) 
525 .--. SINGVAL(hl)  
533 --., COMPATIBLE((h2 o h l ) ,  f l ,  g2) 

ART QUAIFE 

[ur, 401,92]. 
[ur, 401,91]. 
[ur, 477, 393, 479]. 
[ur, 477, 86]. 
[ur, 513, 67]. 
[ur, 495,398,477], 

589 --. ((D((h2 o h l ) )  x O((h2 o h l ) ) )  = D(f l ) )  [ur, 533, 393, 479]. 
590 ((g2 ' <((172 o h l )  ' n l ) ,  ((h2 o h l )  ' n2 )>)  = ((h2 o h l )  ' ( f l  ' < n l ,  n2>)) )  .-, 

[ur, 533, 95, 479, 496, 399]. 

701 --, 

738---, 

591 -.-, ( < n l ,  n 2 >  ~ D( f l ) )  [ur, 533, 94, 479, 496, 399]. 
597 --. ( (g l  " < ( h l  ' n l ) ,  (h l  ' n2 )>)  = (h l  ' ( f l  " < n l ,  n2>) ) )  [ur, 591,93, 400]. 
600 --, ( < n l ,  n 2 >  E (D((h2 o h l ) )  x D((h2 o h l ) ) ) )  [para into, 589, 591]. 
601 ~ ( < n l ,  n 2 >  E (D(h l )  x D(h l ) ) )  [para_into, 512, 591]. 
810 --, (( f l  " < n l ,  n 2 > )  ~ D((h2 o h l ) ) )  [ur, 600, 396, 533, 479]. 
611 --, (n2 ~ D((h2 o h l ) ) )  [ur, 600, 229]. 
612 --. (n l  ~ O((h2 o h l ) ) )  [ur, 600, 228]. 
616 - ,  ( < ( h l  " n l ) ,  ( h i '  n2 )>  ~ D(g l ) )  [ur, 601,397, 477]. 
639 - .  (((h2 o h l )  ' ( f1 '  < n l ,  n2>) )  = (h2 '  (h l  ' ( f l  ' < n l ,  n2>) ) ) )  

[ur, 61 O, 373, 525]. 
646 --, (((h2 o h l )  ' n2) = (h2 ' (h l  ' n2))) [ur, 611,373, 525]. 
652 --, (((172 o h l )  ' n l )  = (h2 '  (h l  ' n l ) ) )  [ur, 612, 373, 525]. 
660 ---, ( (g2 '  < ( h 2 '  (h l  ' n l ) ) ,  (h2" (171' n2) )>)  = 

(h2 '  (g l  ' < ( h l  ' n l ) ,  (h l  ' n2)>) ) )  
[ur, 616, 93, 401 ]. 

( (h2 '  (g l  ' < ( h i ' n 1 ) ,  ( h i ' n 2 ) > ) )  = ((h2 o h l )  ' ( f l  ' < n l ,  n2>)))  
[para into, 597, 639]. 

( (g2" <((h2 o h l )  " n l ) ,  (h2" (h l  ' n2 ) )> )  = 
(h2" (g l  " <(171" n l ) ,  (h l  ' n2)>) ) )  

[para into, 652, 660]. 
774 - ,  ((g2 ' <((h2 o h l )  ' n l ) ,  ((h2 o h l )  ' n2 )>)  = 

(172' (g l  ' < ( h l  ' n l ) ,  (171' n2)>) ) )  
[para into, 646, 738]. 

805 ~ ((g2 ' <((h2 o h l )  ' n l ) ,  ((h2 o h l )  ' n2 )>)  = ((h2 o h l )  ' ( f1 '  <n l ,  n2>) ) )  
[para into, 701,774]. 

806 --. [binary, 805, 590]. 

This proof required 157.89 seconds on a VAX 8800. 
In contrast to all other proofs I have obtained of theorems of set theory, this one 

is rather unsatisfactory in that I had to use very many weight templates to put OTTER 
on the right track. Without these weights, it appears that OTTER version 1.01 would 
not have obtained this proof within acceptable limits of computer time. Because of the 
substantial hints given to OTTER, this particular proof comes closer to a verification 
than a proof discovery. But even with these initial hints, OTTER had to make it 
through the deduction steps shown without further interaction. 

Normally in a proof requiring equality substitutions, I want to use the back 
demodulation option. However, I had to turn this option off to obtain this proof. 
There are various equations relating the domains, such as line 512. If we use this to 
canonicalize the domains, then line 601 will no longer unify with line 397. 

For comparison, I reran Theorem (HO1) with only the 18 'Axioms and Previously 
Proven Theorems' and 'Negation of Theorem' clauses loaded. I eliminated all 

weights, except the high weight on variables. OTTER found the proof in 4.62 seconds! 
This is pleasantly surprising, considering the deep nesting of terms that occurs in the 
derived clauses. It illustrates my claim that the frequent need to set weights is due to 
my practice of loading all previously proved theorems in each proof run. If the user 
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applies his wisdom to load only the reference theorems needed for the proof, the 
problem of obtaining automated proofs is trivialized by at least an order of 
magnitude. 

14. Developing a Unification Algorithm Appropriate to NBG Set Theory 

Using Robinson's standard unification algorithm, the term ~ (x) will not unify with, 
for example, an individual constant c. However, I have recently built the law 
~(~(x))  = x into OTTER's (Robinson's) unification algorithm, which permits 
these terms to unify with the substitution x = ~,(c). In very limited testing on 
"natural" theorems, this improved algorithm has not produced shorter proofs. 

Commutative unification, to treat '~ ' ,  'c~', and '="  among others, would be a 
welcome addition to OTTER. Are there other laws of NBG set theory that can 
profitably be incorporated into the unification algorithm? Would use of a more 
general unification algorithm permit a resolution theorem prover to reinvent Cantor's 
diagonal argument? 

Bailin [1] has modifed Huet's type theory unification algorithm to provide a 
semidecision algorithm for the unifiability of two formulas of ZF set theory modulo 
a sequence of contractions (x ~ { y: ~b(y)}) ~ qS(x). His work does not directly apply 
to NBG set theory, since Axioms BI-B8 have eliminated the need for the set builder 

and the doubly-recursive definition of terms and formulas. Is there any part of his 
algorithm that has a useful analog in NBG set theory? 

15. Conclusion 

No one shall be able to drive us from the paradise that Cantor created for us. 

David Hilbert 

Boyer et al. paint a somewhat pessimistic picture of the possibility of developing set 
theory (at least using their clauses) with current theorem provers. My experience has 
been much more positive. With my revised clausal form of the axiom system, along 
with the heuristics I use, theorems in elementary set theory can be proved semi- 
automatically without great difficulty. There is no apparent obstacle to the develop- 
ment of set theory through considerably more difficult theorems. In particular the 
other challenge problems presented in their paper should be within near reach (except 
the two unsolved problems, which will take a little longer). 

Of course, there is a substantial gap in difficulty between reproving known theorems 
and attacking open problems on the frontiers of research. But we are witnessing a 
steady increase in the intelligence of theorem proving software. More dramatically, 
the number of computations per dollar obtainable by computer hardware is approxi- 
mately doubling every two years. Moravec [14] extrapolates that $1000 personal 
computers with the computational power of the human brain should be available by 
year 2030. The time will come when such crushers as Riemann's hypothesis and 
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Goldbach's conjecture will be fair game for automated reasoning programs. For  those 
of  us who arrange to stick around, endless fun awaits us in the automated develop- 
ment and eventual enrichment of  the corpus of  mathematics. 
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Appendix  1. Introduct ion to Reso lut ion  Theorem Proving  

A1. INTRODUCTION 

I will provide a brief overview of  the principal methods used in resolution theorem 
proving, with particular reference to the system OTTER. This appendix is expository, 
and no proofs are provided. For  further discussion, the reader may consult [21, 10, 

5, 9 and 15]. 

A2. CLAUSES 

Many computer implementations of first-order logic use the clausal form, which is an 
equivalent formulation of this logic. I will use the following language conventions in 
describing clausal form. 

Names  are arbitrary strings over the uppercase and lowercase English alphabet. 
Names beginning with lower case 'u' through 'z' are variables. All other names are 
either individual constant symbols, function symbols, or relation symbols, depending 
upon the context. 

Terms are defined inductively in the usual way, as the least class such that 

(1) A variable or an individual constant symbol is a term. 
(2) I f f  is a function symbol and h,  t 2 , . . . ,  t, are terms, then f ( t l ,  h , . . . ,  t,) 

is a term. 

I f R  is a relation symbol and fi, t2 . . . .  , t, are terms, then R( f i ,  h . . . .  , t ,)  is an 
atomic formula.  

If  A~ . . . . .  A,,, B~ . . . . .  B, are atomic formulas, then A, & . . .  & Am 
B a v  . . . v B, is a clause. I will always abbreviate this clause as A j . . . . .  Am 

B~ . . . . .  B,, so that commas appearing before the conditional sign stand for &, while 
those following the conditional sign stand for v .  ! will use the conditional sign ' ~ '  
in clauses (sequents), and reserve '=~' for use in ordinary formulas of  first-order logic. 

Special cases of  clauses: 

m = 0 (no hypotheses): 

B z . . . . .  B. iff (Bj v . . .  v B.) 
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n = 0 (no conclusions): 

Al . . . . .  A n ~  iff - a ( A l & . . . & A m )  

where with rn = 1, we see how negations are represented. 
m = 0 and n = 0 (no hypotheses or conclusions): 

is the null clause, which is false. 

n = 0 or n = 1 (Horn clause): 

Ai . . . . .  A m ~  [B] 

which are the rules used in the logic programming language Prolog. 
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A3. CONVERSION TO CLAUSAL FORM 

It is often necessary to convert formulas written in standard frst-order notation into 
clausal form. I have written a Prolog program (using many routines supplied by 
William McCune) to do this conversion. The principal steps taken by my program are: 

(1) Verify that the input formula is well-formed. 

(2) Replace the formula by its universal closure. 
(3) Eliminate ~ and r in favor of--7, v and &. 
(4) Drive all negation signs in to the atomic formulas. 

(5) Optimize the placement of  quantifiers, to reduce the number and arity of  the 
Skolem functions introduced in (6). 

(6) Replace existentially quantified variables by Skolem terms. 
(7) Delete universal quantifiers. 

(8) Place the matrix in conjunctive normal form (a conjunction of clauses). 
(9) Delete any clause that is a tautology. 

(10) Check whether any clause can be subsumed by a simpler factor. 
(11) Delete any clause that is subsumed by another clause. 
(12) Write each clause as a sequent. 

Every step of  this procedure produces output that is logically equivalent to the input 
- except for step (6), which only preserves satisfiability. Thus the universal closure of 
the resulting conjunction of  clauses is satisfiable iff the universal closure of the original 
formula is satisfiable. 

The skeleton of this procedure may be found in many texts, such as [9]. OTTER 
also includes a module to carry out most of the above steps. 

A4. CUT RULE 

We let Greek capitals F, E, O, | stand for finite lists of  atomic formulas, separated 
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by commas. The cut rule in Gentzen systems is the propositional inference rule 

F ~ Z , R  

R , r 1 7 4  

F , ~  ~ Z , |  

This rule is a generalization of  the chain rule of inference. 

AS. SUBSTITUTIONS 

An expression is either a term, a list of  terms, an atomic formula, or a list of  atomic 
formulas. A finite set rr = {(v~, ti ) . . . .  , (v , ,  t , )} of  ordered pairs is a substitution 
iff every v, is a variable, every t, is a term, and the variables are distinct. Conventionally 

'e' denotes the null substitution. 
If  a is a substitution and E is an expression, then Ea, the instance of  E by a, is the 

expression obtained from E by simultaneously replacing each occurrence of  the 

variable v, by t,, for i = 1 . . . .  , n. 
I f #  = {(u~, s I ) ,  . . . , (Urn, Sin) } is another substitution, then the composition #a 

of  p and a is the substitution obtained from the set 

{ ( U l ,  SIO" ) . . . . .  (Urn, S m ~ ) ,  ( V l ,  t l ) ,  . . . , ( V n ,  t n ) }  

by deleting any pair (u,, s,a) for which u, = s,a, and deleting any pair (%, tj) for 

which v, �9 {ul . . . .  , u,,}. 
For  any substitutions #, a, r and expression E, we have the following: 

0"~ ~--- ~0" ~ (7, 

(zp)~  = E(~a) ,  

(~a)~ = ~(a~). 

A6. U N I F I C A T I O N  A L G O R I T H M  

The unification algorithm is a method for finding the most general substitution that 
will make two expressions identical, if any such substitution exists. If  a most general 
unifier exists, it is unique up to a renaming of  variables. The method is similar in spirit 
to the solution of a system of  linear equations by the successive elimination of variables. 

We let unify(E1, E2, rr) mean that the substitution a is a most general unifier of  the 
expressions E1 and E2. Computer scientists often specify algorithms in pseudo- 
Pascal. It is an embarassment that such procedural specifications are even used in 
works on logic programming! Since I endorse the thesis that computation is con- 
trolled deduction, ! will instead specify the algorithm for computing unify in pseudo- 

Prolog. 
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unify(VorC, VorC, ~) ,-- 
VorC is a variable or an individual constant. 

unify(V, T, {<V, T> }) , -  
V is a variable, T is a term, 
V does not occur in 7". 

unify(T, V, {<V, T> }) .-- 
V is a variable, T is a term, 
V does not occur in T. 

unify(T1, 72, O) 
T1 =.. [Funct I Args l ] ,  T2 =.. [Funct [ Args2], 
unify_list(Arcjsl, Args2, o). 

unify.Jist([], [1, ~). 
unify_list([T1 I rls], [7"2 I r2s], (p o)) .- 

unify(T1, 1"2, 12), 
uni~/_tist((Tls p), (T2s p), o). 
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The principal theorem concerning this algorithm is that it always terminates, and if 
it terminates in success, the output a is indeed a most general unifier of E l  and E2. 
We can even use the above two procedures to find the most general unifier of any finite 
list [El . . . . .  E,] of unifiable expressions, by calling unify list([E~ . . . . .  E , _ j ,  
[E 2 . . . . .  e.], ~). 

A7. BINARY RESOLUTION 

For each inference rule described below, the premises of the inference are first 
standardized apart by renaming variables so that they have no variable in common. 

Combining the cut rule with the unification algorithm, we obtain the binary 
resolution inference rule. 

Almost  General Case: 

F "-* Z, R 

R ' , d o - ~ |  

(F, do ~ Z, | a, 

where R and R' are unifiable with most general unifier a. 

In the fully general case, we allow a to unify R, R',  and other literals from Y~ and do, 
which are also deleted from the conclusion. If  we do not permit such additional 
unifications, then we also must use factoring, a separate rule of inference, to obtain 
refutation completeness. 

The intuitive importance of  using the unification algorithm while computing resol- 
vents is that it only instantiates variables to the minimum degree necessary, thus 
keeping deduced information in the most general form possible. The algorithm makes 
intelligent substitutions for variables, as opposed to the blind substitutions used in 
early theorem provers based upon Herbrand's theorem. 

Binary resolution is a refutation-complete rule of inference for first-order logic 
expressed in clausal form. By this we mean that if a set of  clauses is unsatisfiable, then 
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by a series of applications of  binary resolution to the clauses it is possible to derive 
the null clause - signifying a contradiction. Thus in the use of binary resolution (or 
other resolution rules discussed below), we convert the negation of the proposed 
theorem to clausal form, and attempt to derive the null clause. 

I never use binary resolution, since it generates far too much 'junk' to use regularly 
in automated proofs. Usually the binary resolvent is a longer clause than either of the 
input clauses. Deriving longer clauses is heading in the wrong direction from trying 
to derive the null clause, that is from proving the theorem. The reasoning steps taken 
by binary resolution are too small. Binary resolution deserves a large historical 
accolade, but today it is of interest mainly as the basis for more powerful procedures 
such as hyperresolution and UR-resolution. 

A8. HYPERRESOLUTION 

Special Case: Forward chaining from a Horn clause. 

A1 . . . .  , A,. ~ B 

-~  A~ 

- ,  A; .  

---) Bf f  , 

where a is the most general unifier making A,tr = A~a for all i. 

Almost General Case: Non-Horn clause nucleus. 

A1 . . . . .  Am --) (~ 

-~ 01 ,  A'I 

r 

| Am 

(O ,  O i ,  �9 �9 � 9  O m ) a .  

The almost general case is the same as the special case, except for the extra disjuncts 
that tag along for the ride. Note that every input clause but one is a positive clause, 
and the conclusion is a positive clause. 

In the fully general case, just as with binary resolution, we allow tr also to unify 
other literals from the | which are also deleted from the conclusion. 

Hyperresolution (like binary resolution) is a refutation-complete rule of inference. 

A9. UR-RESOLUTION 

The disjunctions produced as output of hyperresolution are waffling conclusions. 
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Deriving further clauses from such a conclusion means treating several cases 
simultaneously, when it would usually be more efficient to treat them serially. But 
OTTER lacks a case-analysis mechanism. 

Intuitively speaking, unit clauses are the powerhouses of an automated reasoning 
system. They assert that something definitely is (or is not) the case. A unit clause is 
just one literal away from the null clause - proof of the theorem. 

UR-resolution (unit-resulting resolution) is to unit clauses as hyperresolution is to 
positive clauses. 

Ai . . . . .  A., ~ B 1 . . . . .  B. 

A t 
m 

B~ --, 

B.a, 

where tr is the most general unifier making A,tr = A~r for all i and B,a = B;tr for 
i # n .  

Every literal but one (which, unlike the illustration, does not have to be the last one, 
and can be positive or negative) is cancelled from the nucleus under a most general 
unifier tr. So the conclusion is another unit clause. 

UR-resolution is refutation complete for a system of assumptions all of which are 
Horn clauses. (It is a very useful rule in any case.) 

Both hyperresolution and UR-resolution are substantial improvements over binary 
resolution, in that they make larger inference steps in one fell swoop, without saving 
the intermediate results to further clog up the clause space. They are effective steps in 
fighting the combinatorial explosion. 

AI0. EQUALITY REASONING 

The equality relation is one of the most important relations used in mathematical 
reasoning. Its principal logical feature is that one can substitute equals for equals in 
any expression. 

In the standard treatment of equality as an addition to first-order logic, we add 
reflexivity, symmetry, and transtivity axioms, together with substitutivity axioms for 
every function symbol and relation symbol in the system. While this treatment also 
will work in an automated reasoning system, it is very slow and inefficient. Using these 
axioms, several chaining steps are needed to carry out simple substitutions. 
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Paramodulation 

Paramodulation is a clausal equality inference rule that permits us to make equality 
substitutions directly at the term level. 

Let C[r] be a clause containing a term r at some designated position. If  t is another 
term, we let C[t] be the result of  replacing this single designated occurrence of r by 
r The paramodulation rule of  inference is 

C[r] ('into' clause) 

F ~ (s = t), Z ( 'from' clause) 

(r, c[t],  ~ )  ~, 

where a is the most general unifier of  r and s. Note that C carries the sequent sign. 

Paramodulation provides a logically complete treatment of  equality, without the need 
to add the special axioms mentioned above, except reflexivity. 

Paramodulation, like binary resolution, has the potential to generate large amounts 
of  'junk' that clogs up the clause space. This is particularly true if one allows the terms 
r or s to be variables. But most of  the theorems I prove are universal statements, in 
which the clausal version of  the denial of  the theorem contains no free variables. In 
such cases I also assign a high enough weight to variables so that all deduced clauses 
containing variables will be discarded. Thus any proof  obtained will be a ground 
proof. This heuristic is quite successful in pruning the output of  paramodulation to 
a manageable set of more useful clauses. 

Demodulation 

Demodulators (rewrite rules, reductions) are positive unit equality clauses that are 
used to simplify or canonicalize other expressions. A single demodulation occurs as 
follows: 

C[r] 

--, (s = t) 

c[t~], 

where a is a substitution such that scr = r. Note that here we are using one-way 
matching, rather than unification. 

Normally, all demodulators in the system are applied to any newly derived clause until 
it cannot be further simplifed. The derived clause is then discarded in favor of  the 
simplifed clause. OTTER also provides a back demodulation option, wherein newly 
derived demodulators are used to simplify all clauses already in the system. 

Use of equality simplifications is a powerful, fast, and particularly easy to under- 
stand reasoning procedure. Knuth and Bendix [8] provided an algorithm for a class 
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of equational theories that permits the computation of a set of rewrite rules sufficient 
to check the truth of  every equation of  the theory by requiring that equal terms reduce 

to the same normal form. Following their seminal work, complete sets of  reductions 

have been found for a number of equational theories (see, for example, Section 6 of 
this paper). 

Lexical Ordering. 

A demodulator --, (s = t) is lex-dependent iff s and t become identical when all 

variables are replaced by the same symbol, say 0. An example of a lex-dependent 
demodulator is ~ ((x + y) = (y  + x)), which will loop if applied without restric- 
tion. But one can use the lex command of OTTER to assign a lexical ordering on 
function symbols and individual constants. This ordering induces a lexical ordering 
on all terms. A lex-dependent demodulator is then applied only if it produces a 
lexically smaller term. 

Lexical ordering is also used to determine the order of deduced equality literals. 
Normally the term of  lowest weight is placed on the fight side of the equality. If both 
terms have the same weight, the lexically smallest term is placed on the right side. 

A11. OTHER STRATEGIES FOR FIGHTING THE COMBINATORIAL EXPLOSION 

I will briefly summarize a few other significant strategies used by resolution theorem 
provers. 

Set-of-Support Strategy 

As normally used, this strategy demands that each conclusion drawn be relevant to 
the particular theorem we are trying to prove, by requiring that at least one of the 
premise clauses of the inference have a clause from the theorem as an ancestor. 

Subsumption 

Clause A subsumes clause B if there exists a substitution cr such that Aa _c B. The 

subsumption procedure discards any derived clause that is less general than another 
clause already in the clause space. 

Weighting 

The default weight of  a clause is just the sum of the number of individual variables, 
individual constants, function symbols, and relation symbols it contains; connectives 
are not counted. One can use weight templates to modify this default computation. 
For  example, the weight template weight(f (g(2), 3), 50) assigns weight (2.  weight 
of r) + (3 �9 weight of  s) + 50 to the termf(g(r), s). We normally use weights in two 
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ways: to discard any generated clause with weight beyond a specified maximum, and 
to select the clause of smallest weight from the set of support as the next clause from 
which to draw inferences. 

AI2. RUNNING OTTER 

The basic loop carried out by OTTER, as I normally use it, is in pseudo-Prolog: 

proof 
the null clause is derived. 

proof 
the set of support is empty, !, fail. 

proof 
the alotted resources are exceeded, !, fail. 

proof 
let the given clause be the clause of lowest weight in the set of  support, 

use the chosen rules of inference to derive all consequences of the given 
clause and the axiom list (the given clause must participate in the inference), 

process the derived clauses by demodulation, subsumption checks, etc., 

move the given clause to the axiom list, and add the processed derived 
clauses to the set of support, 

proof 
Once I prove a theorem, ! add it to the axiom list or to the demodulator list so that 
it may be used in the proof of further theorems. 

Appendix 2. Theorems Proved 

I only supply the first-order form of the theorem in a few cases where it is not obvious 
from the clauses. Equality theorems preceded by '%'  are not loaded with the axiom 
list, but rather with the demodulator list. To save space, I have not provided that 
separate list. The few theorems preceded by '% %' are subsumed by other theorems. 

PARTIAL ORDER 

(P01) Reflexivity. 
- .  ( x ~ x ) .  

(P02) Antisymmetry is part of Axiom A-3. 
%%(xcy), (ycx)  --, (x=y) .  

(P03) Transitivity. 
(xc_y), (ycz)  - ,  (xcz).  

EQUALITY 

(EQ1) Boyer et al.'s equality axiom. 
vx(x = x). 

-. (x =x). 
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(EQ2) Expanded equality definition. 
.-, (x = y), (notsub(x, y) ~ x), (notsub(y, x) e y). 

(notsub(x, y) E y) --. (x = y), (notsub(y, x) e y). 
(notsub(y, x) E x) --, (x = y), (notsub(x, y) �9 x). 
(notsub(x.  y) �9 y), (notsub(y, x) e x) --. (x = y). 

SPECIAL CLASSES 

(sin) Lemma. 
(F E (x o -(x)) --.. 

(SP2) Existence of 0 (null class). 
3x vz(~(z e x)). 

(z E O) .-~ . 

(SP3) 0 is a subclass of every class. 
- .  ( o c x ) .  
Corollary. 
(x;O) --, ( x = O ) .  

(SP4) Uniqueness of null class, 
--, (z = 0), (notsub(z, O) E z). 

(SP5) 0 is a set (follows from axiom of infinity). 
- .  ( O e t o .  
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UNORDERED PAIRS 

(UP1) Unordered pair is commutative. 
--, ({x, y }  = {y, x}). 

(UP2) If one argument is a proper class, pair contains only the other, 
- ,  ({x, x }  C. {x, y}). 

(y E V), ({x, y }  = {X}). 

(UP3) If both arguments are proper classes, pair is null. 
- ,  ({x, y}  = O), (X E tO, (F e V). 

(UP4) Left cancellation for unordered pairs. 
({x, y} = {x, z}), (<y,  z >  e (V x v)) - .  (y = z). 

(UPS) Right cancellation for unordered pairs. 
({x, z}  = Of, z}), (<x, y>  E (V x tO) --, (x = y). 

(UP6) Corollary to (A-4). 
(x e V), ({x, v} = o) - . .  
(y �9 tO, ({x, y }  = o) - - . .  

(UP7) If both members of a pair belong to a set, the pair is a subset. 
(x ~ z), (y e z) --. ({x, y}  c z). 

SINGLETONS 

(SS1) Every singleton is a set. 
- .  ( { x }  e tO. 

(SS2) A set belongs to its singleton. 
(x ~ to - .  (x e ~x}). 
Corollary. 
(x ~ tO, ({x}  = o) - . .  



130 ART QUAIFE 

(SS3) Only x can belong to {x}. 
(y e { x } )  ~ (y = x). 

(SS4) If x is not a set, {x} = 0. 
-~ (x e tO, ( { x }  = O). 

(SS5) A singleton set is determined by its element. 
({X} = {y}), (x ~- V) --* (x = y). 
( { x }  = {y } ) ,  (y e V) -~ (x = y). 

(SS6) Existence of memb. 
vx( 3u((u e V & x = {u})  v (-~ 3y(y e V & x = {y}) & u = x))). 

(y e V) --., (memb({y})  e I/). 
(y e V) .-., ( {memb({y} )  } = {y}). 
--,, (memb(x) e 1/), (memb(x) = x). 
--, ( {memb(x)}  = x), (mernb(x) = x). 

(SS7) Uniqueness of memb of a singleton set. 
Yx vu(((u e V) & x = {u})  =~ memb(x) = u). 

(u e I/) --, (memb({u})  = u). 

(SS8) Uniqueness of memb when x is not a singleton of a set. 
vx vu((", 3y((y e I/) & x = {y}) & u = x) =~ memb(x) = u). 

-~ (memb'(x) e V), (memb(x) = x). 
- ,  ({memb'(x)} = x), (memb(x) = x). 

(SS9) Corollary to (SSt). 
( {memb(x)}  = x) --. (x e V). 

(SS10). 
({mernb(x)} = x), (y e x) --, (memb(x) = y). 

(SS11 ). 
(x e y) --. f i x }  ~ y). 

(ssl 2). 
(x c_ 5 , } )  -~ ( { y }  = x), (x = O). 

(SS13) A class contains 0, 1, or at least 2 members. 
(notsub((-({notsub(x, 0)}) n x), O) F. (-({notsub(x, 0)}) n x)), ({notsub(x, 19)} = x), (x = 0). 

Corollaries. 
--, (notsub((~({notsub(x, 0)}) n x), O) E x), ({notsub(x, 0)} = x), (x = 0). 

(notsub((~({notsub(x, 0)}) n x), O) = notsub(x, 19)) --, ({notsub(x, 0)} = x), (x = 0). 

ORDERED PAIRS 

(OP1) An ordered pair is a set. 
- .  (<x, y> e V). 

(OP2) Members of ordered pair. 
--. ({x} e <x, y>). 
- ,  ({x, {y}} e <x, y>).  

(OP3) Special cases. 
- ,  ({{x}, {x, 0}}  = <x, y>), (ye  V),. 
- .  ({o, { { y } } }  = < x , y > ) ,  ( x e V ) .  
--. ({0, {0}}  = <x, y>),  (x E V), (y e tO. 

(OP4)-(OP5) An ordered pair uniquely determines its components. 
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(OP4). 
%%(<w, x> = <y, z>), (w ~ V), (y ~ V) -~ (w = y). 

(OP5). 
% % ( < w ,  x >  = <y, z>) ,  (x ~ V), (z ~ V) -~ (x = z). 

(OP6) Existence of 1st and 2nd. 
Vx 3u 3v((<u, v>  ~ (Vx  V) & x = <u, v>)  v 

('~ 3)1 3z(<y, z>  ~ (V x V) & x = <y, z> )  & u = x & v = x)). 

(<y,  z>  F_ (Vx  V)) ~ ( < l s t ( < y ,  z>) ,  2nd(<y,  z > ) >  c= (Vx  V)). 
(<y, z> E (V x V)) -~ (< ls t (<y ,  z>),  2nd(<y, z > ) >  = <y, z>). 

---, (<1st(x), 2nd(x )>  ~. (Vx  V)), (1st(x) = x). 
---, (< Is t (x ) ,  2nd(x)>  ~. (Vx  V)), (2nd(x) = x). 
-~ (<1st(x), 2nd(x)>  = x), (1st(x) = x). 
- ,  (<  1st(x), 2nd(x) > = x), (2nd(x) = x). 

(OP7) Uniqueness of 1st and 2nd when x is an ordered pair of sets. 
vx vu v ( ( < u ,  v>  ~ (V x V) & x = <u, v>)  =~ 1st(x) = u & 2nd(x) = v) 

(<u, v>  ~ ( t / x  V)) -~ ( l s t (<u ,  v>)  = u). 
(<u,  v>  ~ (Vx  V)) --, (2nd(<u,  v>)  = v). 

(OP8) Uniqueness of 1st and 2nd when x is not an ordered pair of sets. 
vx vu Yv(( 3 } /~ . ( (<y ,  z>  ~ (V x V)) & x = <y, z> )  & u = x & v = x) v 1st(x) = u & 2nd(x) = v). 

--, (< l s r ( x ) ,  2nd ' (x )>  ~ (V x V)), (1st(x) = x). 
- ,  (<  lst '(x), 2nd'(x) > F. (V x V)), (2nd(x) = x). 
--, (< l s r ( x ) ,  2nd ' (x )>  = x), (1st(x) = x). 
--, (< l s r ( x ) ,  2nd ' (x)> = x), (2nd(x) = x). 

(OP9) Corollaries to (OP1), 
(<1st(x), 2nd(x )>  = x) --, (x E V). 

(OPIO) Improved version of (OP4). 
(<w, x>  = <y, z>),  (w ~ v) -~ (w = y). 
Corollaries. 

(x ~ V), ( l s t (<x ,  y > )  = <x, y>) .  
--, (x ~. V), (2nd( <x, y >  ) = <x, y>  ). 

(0Pl l )  Improved version of (OP5). 
( < w , x >  = <y, z>), (x~ V) -~ (x = z). 
Corollaries. 
--* (y E V), ( l s t (<x ,  y> )  = <x, y>) .  
-~ (y ~ V), (2nd(<x,  y > )  = <x, y>) .  

BOOLEAN ALGEBRA 

INTERSECTION 

(11) Associative law of intersection. 
-*  ( ( ( x n y )  n z )  = ( x n ( y n z ) ) ) .  

02) Commutative law of intersection. 
%-~ ( ( xny )  = (ynx) ) .  

(13) Lexical ordering within associations, 
% - .  ( ( x n ( y n z ) )  = ( y n ( x n z ) ) ) .  

04) Intersection with O. 
%-, ((O n x) = o). 
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(15) V is an identity for intersection. 
%-. ((V n x) = x). 

(16); Idempotent law of intersection. 
%--. ((x n x) = x). 
Corollary. 
% - ,  ((x n (x n y)) = (x n y)), 

COMPLEMENT 

(C1) Complement of complement. 
% - .  (~ ( - ( x ) )  = x), 

(C2) Special cases. 
% -  (~(o) = v). 
% -  ( -60 =o). 

(C3) Intersection and union with complement. 
% - .  ((~(x) n x) = o). 
%-, ((~(x) u x) = v). 

(C4) DeMorgan's laws, 
% .-+ (~((x u y)) = ( - ( x )  n ~(y))). 
% .-, (~((x n )1)) = (~(x) u ~(y))). 

(C5) Uniqueness of complement. 
((x u y) = V), ((x n y) = O) --, ( - (x )  = y). 

UNION 

(U1) Associative law of union. 
- -  ( ( ( x u y ) u z )  = ( x u ( y u z ) ) ) .  

(U2) Commutative law of union 
%--* ((x u y) = (y u x)). 

(U3) Lexical ordering within associations. 
%--, ((x u (y u z)) = (y u (x u z))). 

(U4) 0 is identity for union. 
% - .  ((O u x) = x). 

(U5) Union with V. 
%--. ((V u x) = v). 

(U6) Idempotent law of union. 
%--. ((x u x) = x). 
Corollary. 
% - .  ( ( x u ( x u y ) )  = ( xuy ) ) .  

(U7) Members of union. 
(xE ( y u z ) )  ~ (XEF), (XEZ), 
(x ~_ y) --* (X E (y u z)). 
(X E Z) --. (x E ( y u  z)). 

DISTRIBUTIVE LAWS 

(DI) Intersection distributes over union. 
%--., ( ( ( x n y ) u ( x n z ) )  = ( x n ( y u z ) ) ) ,  
%-,  (((x n z) u (y n z)) = ((x u y) n z)), 
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(D2) Union distributes over intersection. 
-~ ( ( ( x u y )  n ( x u z ) )  = ( x u ( y n z ) ) ) .  
- ,  ( ( (xu  z) n ( y u  z)) = ((x n y) nz) ) .  

(D3) Absorption for intersection. 
--, ((x n (x u y))  = x). 
Corollary. 
- .  ( ( x n ( y n ( x u z ) ) )  = ( xny ) ) .  

(D4) Absorption for union. 
((x u (x n y)) = x). 

Corollary. 
-~ ((x u (y u (x n z)))  = (x u y)). 

(D5). 
--, ((x u (-(x) n z)) = (x u z)). 
Corollary. 
- ,  ((x u fy u ( - ( x )  n z)))  = (x u (y u z))). 
- ,  (((x n z )  u ( - ( x )  n (y nz ) ) )  = ((x n z )  u (y nz) ) ) .  

(D6). 
--, ( ( - (x )  u (x n z)) = ( - ( x )  u z)). 

Corollary. 
- ,  ( ( - ( x )  u (y u (x n z))) = ( - ( x )  u (y u z))). 

(D7). 
--, ( ( ( - (x)  n y) u (x n y)) = y). 
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SUBCLASSES 

(SUl). 
( x r  --, ( ( x n y ) = x ) .  

(su2). 
( ( x n y )  = x )  --, (xc_y). 

(su3). 
(xc_y) .-, ( ( x u y ) = y ) .  

(SU4). 
((xuy) =y) - ,  (xc_y). 

(su5). 
(x c y) --, ( ( - (y )  n x) = o). 

(su6). 
( ( - ( y )  n x) = 0 )  --, (x c_ y). 

(suT). 
(x c_ y) ..-, ((-(x) u y) = v). 

(SUB). 
( ( - ( x )  u y) = V) --, (x c y). 

(su9). 
(x c_ y) --, (~(y) c_ -(x)). 

(suio). 
( - ( y )  c_ -(x))  - ,  (x c_ y). 
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LATrlCE 

(LA1) Upper and lower bounds. 
- ,  (x r (x u y)). 
.--, (y r  ( xuy ) ) .  
--, ((x o y) r x). 
.-, ( ( x n y ) ~ y ) .  

(LA2.) Least upper and greatest lower bounds. 
(x ~ z), (y ~ z) -~ ((x u y) ~ z). 
(z r x), (z ; y) - .  (z r (x n v)). 

(LA3) Union and intersection are monotonic. 
(xr  -~ ( ( x u z )  ~ ( y u z ) ) .  
(xr  --, ( ( x n z )  r ( y n z ) ) .  

CARTESIAN PRODUCT 

(cm). 
- .  ((x x y) c_ (v • v)). 
Corollary. 
(u ~ x), (v ~ y) - .  (<u,  v >  ~ (v • v)). 

(CP2). 
( < u ,  v >  ~ (x • y))  --, (<v ,  u >  ~ (y • x)) .  

(CP3) Special cases. 
%--. ((x • O) = o). 
%-- .  ( ( o •  

(CP4). 
- .  ((x n (V x V)) c_ (D(x) x V)). 

(CP5) x is monotonic. 
(xc_y) .-, ( (xxz )  c_(yxZ)). 
(y c_ z) .-, ((x x y) c_ (x x z)). 
Corollaries. 
--, ((x x Z) c_ ((x u y) x z)). 
--, ( ( /  x z) c ((x u y) • z)). 
--, ((x • y) c_ (x • ( y u  z))). 

((x • z) c_ (x x (y u z))). 
--, (((x n y) x z) c_ (x • z)). 
--, (((x n y) • z)  c_ O, • z)). 
- .  ((x ,, ( /  n z)) c_ (x x y)). 
--, ((x•  ( y n z ) )  c_ ( x •  

(CP6) x distributes over union. 
%-,  ( ( (xxZ) u (yxZ))  = ( (xu y) xZ)). 
%-,  (((x x y) u (x x Z)) = (x x (y u z))). 

(CPT) x distributes over intersection. 
Special case of (CPg). 
%--, (((x x z) n (y x z)) = ((x n y) x z)). 
%-- ,  (((x x y) n (x • z)) = (x • (y n z))). 

(CPS) Lemma. 
--, ( ( (wxx)  n (yxz ) )  c_ (wxz) ) .  

(CP9) Double distribution for intersection. 
%-,  (((w x x) n (y x z)) = ( ( w n y )  x (x n z))). 

(CPIO) Inverse of square. 
% --, ( inverse((xx x)) = (x • x)). 

ART QUAIFE 
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(CPIO) 
((u • v) 
((u x v) 

Left cancellation law. 
= ( w  x x) )  -~ (u = o), (v = x). 
= ( w  • x) )  -~ ( w  = O), (v = x). 

(CP11 ) 
((u x v) 
((u x v) 

Right cancellation law. 
= ( w  x x) )  --. (v = O), (u = w). 
= ( w  • x) )  --. (x = O), (u = w).  

(CP12) Corollary. 
( (u • u) = ( w  x w ) )  -~ (u = w) .  
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RESTRICTION 

(RS1)-(RS4) Alternate definition of restrict. 

(RSl). 
(<u,  v >  E restrict(xr, x, y)) -~ (<u,  v >  E xr). 

(RS2). 
(<u,  v >  ~ restrict(xr, x, y)) --, (u ~ x). 

(RS3). 
(<u,  v >  ~ restrict(xr, x, y)) -~ (v ~ y). 

(RS4). 
(<u, v>  ~ xr), (<u,  v>  ~ (x x y)) --. (<u,  v>  ~ restrict(xr, x, y)). 

(RS5). 
% --, (restrict(restrict(xf, x l ,  y l ) ,  x2, y2) = restrict(xf, (x l  n x2), (}/1 n y2))). 

(RS6) Special cases. 
% --, (restrict(V, x, y) = (x x y)). 
% ~ (restrict(O, x, y) = 0). 
% --, (restrict(xr, O, y) = 0). 
%- - ,  (restrict(xr, x, O) = 0). 

(RS7) restr ict  preserves intersections. 
--, ((restr ict(xr l ,  x l ,  y l )  n restrict(xr2, x2, y2)) = restr ict((xr l  nx r2 ) ,  (x l  n x2), (y l  n y2))). 

(RS8). 
.-. ((restr ict(xr l ,  x, y) u restrict(xr2, x, y)) = restr ict((xr l  u xr2), x, y)). 

Corollary. 
--, ((restrict(x, y, y) u inverse(restrict(x, y, y))) = restrict((x u inverse(x)), y, y)). 

(RS9) Restriction of E. 
(y ~ V) --, (restrict(E, x, {y} )  = (x n y)). 
- .  (restrict(x, y, z) ~ x). 
--, (restrict(x, y, z) c_ (y x z)). 

(RS10). 
--, (restrict(x, y, z) c_ x). 
--, (restrict(x, y, z) ~ (y x z)). 

(RS11) restr ict is monotonic. 
(x l  c_ x2) --, (restrict(x1, y, z) c_ restrict(x2, y, z)). 
0 / I  ~ y2) --. (restrict(x, y l ,  z) c_ restrict(x, y2, z)). 
(z l  ~ z2) --, (restrict(x, y, z l )  c_ restrict(x, y, z2)). 

(RS12). 
% ~ (restrict((x x y), x, y) = (x x y)). 
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DOMAIN 

(DO1) Alternate version of Axiom B-4. 
vz vxr((z e D(xr)) r (z e V) & 3y((y e V) & (<z, y> Exr))). 

(x ~ O(xr)) --. (<x, ran(xr, x, v )>  ~ (v  x v)). 
(x e D(xr)) - .  (<x, ran(xr, x, V) > ~ xr). 
(<x, y>  e xr), (<x, y>  e (V x V)) --, (x e D(xr)). 

(DO2) Special cases. 
%-, (D(O)=O) .  
% - .  (D(V)=V~.  

(DO3) Domain preserves union. 
- *  ((D(x) u D(y)) = O((x u y))). 
Corollary: domain is monotonic. 
(x c y) ~ (O(x) c_ O(y)). 

(O((x n y)) E D(x)). 
- ,  (D((x n y)) c D(y)). 

(004). 
-~ ( ( x n ( V x V ) ) c _ ( D ( x ) •  

(DO5) Domain only considers ordered pairs. 
% - .  (O((x n (V x V))) = O(x)). 

(DO6). 
( D ( ( x x y ) ) = x ) , ( y = O ) .  

%- - ,  ( D ( ( x x x ) )  = x). 

(DO7). 
% ~ (restrict(x6 (D(xr) n x), y) = restrict(xr, x, y)). 
Corollary. 
% ~ (restrict(x6 D(xr), y) = restrict(xr, V, y)). 

(DO8). 
%--,  (D(restrict(x, y, V)) = (O(x) n y)). 
Corollaries. 

(D(restrict(x, y, z)) r (D(x) n y)). 
((D(restrict(x, y, z)) x u) c ((D(x) n y) x u)). 

--, ((u x D(restrict(x, y, z))) c_ (u x (D(x) n y))). 
--. ((D(restrict(xl, y l ,  z l ) )  x D(restrict(x2, y2, z2))) ~ (y l  x ),2)). 

INVERSE 

(IN1)-(IN3) Proof of G6del's Axiom B-6. 
vx(inverse(x) ~ (V x tO). 
vu w vx((<u, v>  e inverse(x)) ~=~ (<u, v>  e (V x V)) & (<v, u>  e x)). 

(IN1). 
--, (inverse(x) ~ (V x V)). 

(IN2). 
(<u, v>  e inverse(x)) ..~ (<v, u>  ~ x). 

(IN3). 
( <v, u >  E x), ( <u, v>  e (V x V)) ~ ( <u, v> e inverse(x)). 

(IN4) Special cases. 
%--,  (inverse(O) = 0). 
% - .  (inverse(V) = (V x V)). 
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(IN5) Inverse distributes over union and intersection. 
% ~ ((inverse(x) u inverse(y)) = inverse((x u y))). 
% .-, (( inverse(x) n inverse(y)) = inverse((x n y))). 

(IN6) Domain and range of inverse. 
%-- ,  (D(inverse(x)) = R(x)). 
%- - ,  (R(inverse(x)) = D(x)). 

(IN7) Inverse of complement. 
--, ( inverse(- (x) )  = ( - ( inverse(x) )  n (1t x tO)). 

(IN8) Inverse of product. 
%-. .  ( inverse((x x y)) = (y x x)). 

(IN9) Inverse of inverse. 
% - .  ( inverse( inverse(x)) = restrict(x, V, V)). 

(INIO) Inverse commutes with restrict. 
-.. (restrict( inverse(xr), x, y) = inverse(restrict(xr, y, x))). 

137 

RANGE 

(RA1) Alternate definition of range. 
(y ~ R(z)) - ,  (<dora(z, V, y), y>  ~ (V • V)). 
(y ~ R(z)) --, (<dora(z, V, y), y>  ~ z). 
(<x, y>  ~ z), (<x, y>  ~ (V x V)) - ,  (y ~ R(z)). 

(RA2) Special cases. 
% - ,  (R(O)=O). 
% - ,  ( R ( V ) = V ) .  

(RA3) Range preserves union. 
- .  ((R(x) u R(y)) = R((x u y))). 

Corollary: range is monotonic. 
(x ; y) --, (R(x) c_ R(y)). 
--, (R((x n y)) ~ R(x)). 
--, (R((x n y)) ~ R(y)). 

(~4). 
--, ((x n (v x v)) c (v x R(x))). 

(RA5) Range only considers ordered pairs. 
% - ,  (R((x n (V, ,  V))) = R(x)). 

(RA6). 
- ,  (R((x• 

(RA7). 
% --. (restrict(xr, x, (R(xr) n )1)) = restrict(xr, x, y)). 
Corollary. 
% --, (restrict(xr, x, R(xr)) = restrict(xr, x, V)). 

(RAe). 
% --* (R(restrict(x, V, z)) = (R(x) n z)). 
Corollaries. 
-+ (R(restrict(x, y, z)) c_ (R(x) n z)). 
- ,  ((R(restrict(x, y, z)) x u) c_ ((R(x) n z) x u)). 

((u x R(restrict(x, y, z))) c_ (u x (R(x) nz ) ) ) .  
-~ ((R(restr ict(xl ,  y l ,  z l ) )  x R(restrict(x2, y2, z2))) c (z l  x z2)). 
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(RA9). 
0I e R(z)) --, (dom(z, V, y) e O(z)). 
(x e D(z)) - ,  (ran(z, x, V) e R(z)). 

IMAGE 

(IM1)-(IM4) Alternate definition of image. 

(IM1). 
(y e (xr " x)) ~ (dom(xr, x, y) e x). 
Corollary. 
(y e. (xr �9 {x})), (x e V) --, (<x, y>  e xr). 

(IM2). 
(<x, y >  e xr), (<x, y>  e (V x V)), (x e z) ~ (y e (xr "z)).  
Corollary. 
(<x, y>  e xr), (<x, y>  F. (V x V)) --, (y e (xr " {x})). 

(IM3). 
(y e (xr , x)) --, (<dom(xr, x, y), y>  ~ (V x V)). 

(IM4). 
(y e ( x r ' x ) )  --, (<dom(xr, x, y), y>  exr).  

(IM5) Range is image of the domain. 
% -* ((xr �9 O(xr)) = R(xr)). 
Corollary. 
%---, ((xr " V) = R(xO). 

(IM6) Image is monotonic. 
(y c z) --, ((xr " y) ~, (xr " z)). 
( x r ~ y r )  --, ( ( x r ' z ) r  

(IM7). 
((x n D(z)) = 0 )  --, ((z = x) = 0). 
Corollaries. 
% . - , ( ( z , o ) = o ) .  
--, (x E O(z)),  ((z " { x } )  = O). 

(IMS)-(IM9) Alternate definition of subset. 

0MS). 
(x ~ -((E " ~(y)))) --, (x c_ y). 

(IMg). 
(x ~ y), (x e V) --, (x e ~((E " ~(y)))). 

(IM10) image under V. 
- ,  ((V , x) = V), (x = O). 

SUM CLASS 

($C1)-(SC2) Alternate definition of sum class. 

(scl). 
(x e U(y)) .-, (x E ran(E, x, y)). 
(x e U(y)) --, (ran(E, x, y) E y). 

(sc2). 
( z e y ) , ( y ~ x )  --, (zeU(x)). 

ART QUAIFE 
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(SC3) Special cases. 
%-, (U(O)=O) .  
%--, ( u ( v ) = v ) .  
% .., (u ( {o} )  = o). 

(SC4) Sum of singleton. 
(x ~ v) -.. (u({x})  = x). 

(SC5) Sum of pair. 
(<x, y>  ~ (1/x V)) --, (U({x, y})  = (x u y)). 
Corollary. 
(<x,  y >  ~ (Vx  V)) --, ( ( x u y )  e v). 

(SC6) Sum of ordered pair. 
(<x, y>  �9 (Vx  V)) - ,  (U(<x,  y>)  = {x, { y } } ) .  

(SC7) An element of y is a subset of its union. 
(x ~ y) --, (x c U(y)). 
Corollary. 
--+ (y c_ P(U(y))). 

(SC8) Alternate definition of sum class. 
% --, ((inverse(E) "x )  = U(x)). 

(SC9) Sum distributes over union. 
--, (U((x u y)) = (U(x) u u(y))). 

(SC10). 
--, (Uf(x n y)) c_ (U(x) n U(y))). 

(SCll) Domain and range. 
--, (O(x) ~ U(U(x))). 
- ,  (R(x) ~ U(U(x))). 

POWER CLASS 

(PC1)-(PC2) Alternative definition of power class. 

(PC1), 
(ZEP(x))  - ,  ( z r  

(PC2). 
(z ~ x), (z e V) -.-, (z e P(x)). 

(PC3) Power is monotonic. 
(x c__ y) ~ (P(x) c P(y)). 

(PC4) Special cases. 
.-, (o ~ P(x)). 

(P(x) = o) - , .  
%.- ,  (P (V)=V) .  

(PC5) Power class of a set. 
(x ~ V) - ,  ((inverse(S) = {x})  = P(x)). 

(PC6). 
((x x y) ~ P(P((x u y)))). 

(PC7). 
.--, (x c U(P(x))). 

(PCS). 
((P(x) n P(y)) = P((x n V))). 
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RELATIONS 

(RL1). 
--. (restrict(xf, x, )1) ~ (V x V)). 

(RE2). 
(x c_ (V x v)) --. (x c (O(x) x R(x))). 
Corollaries. 
(x c (v ~ v)) -~ (x c (O(x) ,< (x , O(x)))). 
(x c (v x v)) ~ (restrict(x, D(x), R(x)) = x). 

(RL3). 
(x c_ (V x V)) --, ( inverse( inverse(x))  = x). 
Corollaries. 
% - - ,  ( inverse( inverse( inverse(x) ) )  = inverse(x)) .  
% - ~  ( inverse( inverse(E))  = E). 
% --, ( inverse( inverse( I ) )  = I). 

ART QUAIFE 

COMPOSITION 

(C01)-(C02) Alternate definition of composition. 

(cot). 
(<u ,  v >  ~ (xf  o yl))  --, (<u ,  dom(xf ,  (yf " {u } ) ,  v) > �9 yf). 
(<u, v>  ~ (xf o yO) -~ (<u, d o m ( ~  (y f "  {u}), v)> ~ (v •  v)). 
(<u ,  v >  E ( x f oy f ) )  --, ( <dom(x f ,  ( y f "  {u } ) ,  v), v>  Ex f ) .  
(<u, v> ~ (xf o yO) -~ (<dom(xf, (yf " {u}), v), v> ~ (V • V)). 

(C02). 
(<x ,  y >  E xr), (<y ,  z >  E yr), (<x,  y >  ~ (V x V)), (<y,  z >  E (V x V)) ~ (<x,  z >  E (yr o xr)). 

(C03) I is identity for composition. 
% - ,  ( ( x o i ) = x ) .  
% - ~  ( ( I o x ) = x ) .  

(co4). 
--, (restr ict(I ,  O(x), I/) ~ ( inverse(x)  o x)). 

(C05) Relation to image. 
% 4 (((xr o yr) " z) = (xr " (yr " z))). 

(C06) Domain and range of composition, 
(D((xr  o yr))  c_ D(yr)) .  
(R((xr  o yr))  c_ R(xr)). 

(C07) Composition is associative. 
(((xr o yr) o zr) = (xr o (yr o zr))).  

(C08) Special cases. 
%-. ( (Oox )  = 0). 
% - ~  ( ( x o O ) = O ) .  
% - .  ((V o x) = (V x D(x))) .  
% ~ ((x o V) = (R(x) x V)). 

(C09) Boyer Lemma 18. 
(R(xr) c_ D(yr))  --. (D((yr  o xr)) = D(xr)) .  

(C010) Dual version of (C09). 
(D(yr) ~ R(xr))  --, (R((yr o xr))  = R(yr)). 

(COlt) Composition is monotonic. 
(xr c_ yr) --, ((zr o xr) c_ (zr o yr)). 
(xr E yr) ~ ((xr o zr) E (yr  o zr)). 
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Corollaries. 
(xr c_ yr) ~ ((zr o (xr o ur)) c (zr o (yr o ur))). 
(xr c_ l) - .  ((zr o (xr o ur))  ~ (zr o ur)). 

(CO12) Inverse of composition. 
--. (inverse((xr o yr)) = (inverse(yr) o inverse(xr))). 

(CO13) Composition of element relation. 
(<x, y>  ~ (E o E)) .-, (x E U(y)). 
(x ~ U(y)), (y ~ v) -~ (<x,  y >  ~ (E o E)). 

(C014DEF) Definition of singleton relation. 
-~ ((~((E o ~(I))) n E) = SS). 

(C015)-(C017) Membership conditions for SS. 

(C015). 
(<x, y> e SS) -~ (x e V). 

(COt 6). 
(<x, y>  �9 Ss) -~ ({x} = y). 

(CO17). 
({x} = y), (x e. V) --, (<x, y>  ~ SS). 

SINGLE-VALUED CLASSES 

(SV1)-(SV3) Alternate definition of SINGVAL 

(SV1). 
SINGVAL(z), (<u, v> ~ (V x V)), (<u, w >  ~ (V x V)), (<u, v> E z), (<u, w>  E z) -~ (v = w). 

(SV2DEF) Definitions of terms for (SV3). 
--, ( lst(notsub((x o inverse(x)), I)) = svl(x)). 
.-. (2nd(notsub((x o inverse(x)), I)) = sv2(x)). 
- .  (dom(x, (inverse(x) �9 {sv l  (x) }), sv2(x)) = sv3(x) ). 

(sva). 
.--, (<Sv3(x), Sv l (x)> ~ x), SINGVAL(x). 
.-, (<sv3(x), sv2(x) > ~ x), SINGVAL(x). 

(svl (x) = sv2(x)) .--, SINGVAL(x). 

(SV4) A subclass of a single-valued class is single-valued. 
SINGVAL(x) - ,  SINGVAL((x n y)). 

(SV5) In a single-valued class, the image of each domain element is a singleton. 
SINGVAL(x), (z E D(x)) .-, ( {memb((x �9 {z}))} = (x = {z})). 

(SV6) The composition of single-valued classes is single-valued. 
SINGVAL(xr), SINGVAL(yr) ~ SINGVAL((xr o yr)). 

FUNCTIONS 

(FU1) The restriction of a function is a function. 
FUNCTION(xf) --, FUNCTlON(restrict(xf, x, y)). 

(FU2) The intersection of functions is a function. 
FUNCTION(xf), FUNCTION(yf) .-, FUNCTION((xf n YO). 

(FU3) The composition of functions is a function. 
FUNCTION(x't), FUNCTION(yf) --, FUNCTION((xf o yf)). 

141 



142 

(FU4) Restriction of function. 
FUNCTION(xf) --, (restriot(xf, V, V) = xt). 

ART QUAIFE 

SUBSET RELATION 

(SR1)-(SR3) Alternate definition of S. 

(sin). 
-~ (s c (v . v)). 

(SR2). 
(<x, y>  e S) -~ (x ~ y). 

(SR3). 
(X c_ y), (<x, y>  E (V x V)) --* (<X, y>  e S). 

IDENTITY 

(ID1)-(ID3) Alternate definition of I. 

Ore). 
-~ (i c_ (v • v)). 

OO2). 
(<x,  y >  e l) --, (x = y). 

003). 
(x e v) -~ ( <x, x >  e t). 

(ID4) Identity is a function. 
--, FUNCTION(I). 
Corollary. 
--, FUNCTION(restrict(I, x, y)). 

(ID5) Domain and range of identity. 
%--. (D( I )=V) .  
% - .  ( R ( I ) = t O .  
% --, (D(restrict(I, x, y)) = (x n y)). 
% --, (R(restrict(I, x, y)) = (x n y)). 
Corollary. 
%-- ( ( l ' x ) = x ) .  

(ID6) Image of a class under identity. 
% - ,  ((restrict(I, x, x) "y )  = (x n y)). 

(ID7) Identity is one-one. 
--, ONEONE(/). 

(ID8) Inverse of identity is identity. 
% - ,  (inverse(I) = I). 

(ID9) Sets with at most one member. 
((x x x) c_ l) - ,  ( {memb(x)}  = x), (x = O). 
(x = O) - .  ((x x x) ~ l). 
( {memb(x)}  = x) ~ ((x x x) c_ I). 

(IDIO) Sets with more than one member. 
(U e X) ~ (notsub((x n - ( {u}) ) ,  (3) E X), ((X x X) C I). 
(U e X), (notsub((x n ~({u})), O) = x) --+ ((x x x) ~ I). 

(IDl l) .  
-~ ((x n I) ~ (x n inverse(x))). 
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REPLACEMENT 

(RP1) Axiom of Subsets. 
(y ~ V), (x c_ y) - ,  (x e V). 
(y e V) - ((x n y) ~ V~. 

(RP2). 
(x e V) -~ (O(x) e V). 
(x e V) - (R(x) e V). 

(RP3). 
(<x, y>  E (Vx V)) --, ( (xxy)  E V). 

(RP4). 
( <O(x), R(x)> e (V x V)), (x c_ (V x V)) - .  (x �9 V). 

(RP5). 
(x �9 I/) ..-, (inverse(x) E V). 

(RP6). 
FUNCTION(xf), (D(xt) E V) --, (xf �9 V). 

(RP7). 
SINGVAL(x), (y E V) ~ (restrict(x, y, V) E V). 

(RPS). 
(U(x) e V) -~ (x e tO. 

(RP9). 
(P(x) ~ V) ~ (x e V). 

(RP10). 
((x u y) e V) --. (x e V). 

(RP11 ). 
((x x y) ~ V~ -~ (x ~ V), (y = O). 
((x x y) e V~ --, (y e V), (x = O). 

DIAGONALIZATION. 

(DI1) Lemma. 
( < x , x >  ey )  - ,  ( x � 9  
(x E O((y n I))) - ,  (<x, x>  �9 y). 

(DI2) Alternate definition of diagonalization. 
--, (D((-(x) n y)) = diag(x)). 

(DI3)-(DI4) Alternate definition of diagonalization. 

(DI3). 
(z �9 diag(xr)), (<z, z>  �9 xr) - , .  

(DI4). 
(z �9 V) ~ (z �9 diag(xr)), (<z, z >  �9 xr). 

(DI5)-(DI6) Special case of the Russell class, NOT using the axiom of regularity. 

(DI5). 
(z �9 diag(E)), (z �9 z) 4 . 

(DI6). 
(z E V) --, (z E diag(E)), (z E z). 
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(DI7) The Russell class is not a set. 
(diag(E) ~ V) - , .  

(DI8). 
-~ (~(R((xr  n I))) = diag(xr)). 

(DI9). 
-~ (diag(( inverse(xr) o xs)) = ~(D((xr n xs)))). 
-~ (diag((xr  o inverse(xs)))  = ~(R((xr n xs)))). 

SPECIAL CLASSES (CONTINUED) 

(SP6) V is not a set. 
( V ~ x )  - , .  

Corollaries. 
(V ~ (x x y)) -~ . 
(<x, v>  ~ (v x v)) -~.  
(<v,  y >  ~ (V • v)) -~ .  

(SP7). 
( v = o )  -~ .  
( v ; o )  -- , .  

(SP8) Corollaries to (UP2). 
% -  ({x, v} = {x}). 
% -~ ({v, x} = {x}). 

(SP9) Corollary to (SS4). 
% - ~  ( { v }  = o). 

(SPIO) Corollaries to (OP3). 
--. ({{x},  {x, o} }  = <x, v>).  
--. ( {o,  { { y } } }  = <v,  y>) .  
% - ~  (<v, v>  = {o, {o}}) .  

(SP11) The class of ordered pairs is not a set. 
((V x V) ~ x) - - . .  

REGULARITY 

(RE1) No class can belong to itself. 
( x~x )  - , .  

(RE2) Corollary to (RE1). 
({x} = x) - . .  

(RE3) If memb(x)  = x ,  then x is not a singleton of a set. 
( {memb(x ) }  = x), (memb(x) = x) --4. 

(RE4) There are no cycles of length 2. 
( x ~ y ) , ( y ~ x )  --,.  

(RE5) Corollaries to (RE4). 
(<x, y>  = x) -~.  
(<X, y >  = y) -~ . 

(RE6) Converses to (OPIO), (0P l l )  corollaries. 
( lSt(<X, y > )  = <x, y> ) ,  (<x ,  y >  E (V x 'tO) -~ .  
(2nd(<x ,  y > )  = <x, y> ) ,  (<x,  y >  E (V x I/)) -~ .  
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(RE7) x and its complement can't both be sets. 
(x E y), (~(x) E z) --*. 

(RES) Equivalent conditions for x not to be an ordered pair. 
(1st(x) = x) --* (2nd(x) = x). 
(2nd(x)  = x) --. Ost(x) = x). 

(RE9) The components of an ordered pair are sets. 
(<  1st(x), 2nd(x)> = x) --+ (1st(x) ~ V). 
(<1st (x) ,  2nd(x)  > = x) - ,  (2nd(x) E V). 
Corollary. 
(<1st(x), 2nd(x)> = x) --. (x E ~ /x  V)). 

(REIO) Corollaries to (RE9). 
(< l s t (<x ,  y>),  2nd(<x,  y > ) >  = <x, y>)  --, (x E V). 
(< l s t (<x ,  y>),  2nd(<x, y > ) >  = <x, y>)  - .  (y E V). 

APPLICATION 
(AP1). 
SINGVAL(z), (x E D(z)) --. (memb((z = {x})) = (z '  x)). 
SINGVAL(z), (x ~ O(z)) --. ((z = {x})  = { (z '  x)}). 

(AP2)-(AP3) Range of z is class of applications of z to domain. 

(AP2). 
SINGVAL(z), (x E D(z)) --. ((z '  x) E R(Z)). 

(AP3). 
SINGVAL(z), (y ~ R(z)) - .  ((z' dora(z, V, y)) = y). 

(AP4). 
(y E (xf " {x}))  --* (y E (xf '  x)). 
Corollaries. 
-~ ((xt " (x}) c P((xt" x))). 

( <x, y>  E xl), ( <x, y>  E (V x V)) - ,  (y c_ (xf ' x)). 

(AP5). 
- ,  (((inverse(E) o xf) = {x}) = (xf '  x)). 

(AP6). 
(z ~ (xt '  z)), (z E diag((inverse(E) o xf))) - . .  
(z e V) --, (z E (xf '  z)), (z e diag((inverse(E) o xf))). 

(AP7). 
- .  ( (z '  x) = o), (x e O(z)). 

(AP8). 
SINGVAL(xO ,-.-, ((xf '  x) ~ V). 

(AP9). 
SINGVAL(xf), (<x, y>  E xt), (<x, y>  E (V x V)) - ,  ((xf' x) = y). 

(APtO). 
SINGVAL(xt), (x E D(xf)) - ,  (<x, (xf '  x )>  E xf). 

(AP11). 
SINGVAL(x/), (x E D(xf)) - ,  (((yf o xf) ' x) = (yf '  (xf ' x))). 
Corollary. 
SINGVAL(xf), (x E D((yf o xf))) ~ (((yf o xf) ' x) = (yf ' (xf '  x))). 

(APt2). 
-~ ((xf" x) = 0 ) ,  (x ~ D(xO). 
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(AP13). 
SINGVAL(xf) --, ((Off o xf) ' x) c (yf' (xf' x))). 

(AP14) Special cases. 
(x ~ V) - .  ((V' x) = v). 
.-. ( (o '  x) = O), (x ~ V). 

% - .  ( ( x ' V ) = O ) .  

CANTOR CLASS 

(CA1)-(CA3) Alternate definition of Cantor class. 

(CAI). 
--, (cantor(x) c_ O(x)). 

(CA2). 
(z ~ cantor(xr)), (z ~ (xr '  z)) -~ . 

(CA3). 
(z ~ O(xr)) --, (z E (xr '  z)), (z ~ cantor(xr)). 

(CA4) Cantor's Theorem. 
SINGVAL(xf), (D(xf) E V), (P(D(xf)) ~ R(xf)) 4 . 

COMPATIBLE FUNCTIONS 

(CF1)-(CF3) Alternate definition of COMPATIBLE 

(CF1). 
OPERATION(x1), COMPATIBLE(xh, xf, xg) -~ ((D(xh) x D(xh)) = O(xf)). 

(CF2). 
OPERATION(xg), COMPATIBLE(xh, xf, xg) --, ((R(xh) x R(xh)) c_ O(xg)). 

(CF3). 
FUNCTION(xh), ((D(xh) x O(xh)) = O(xf)), ((R(xh) x R(xh)) c_ O(xg)) --, COMPATIBLE(xhl, xf, xg). 

(CF4). 
OPERATION(xf), COMPATIBLE(xh, xf, xg), (<x, y> E (D(xh) x D(xh))) --, ((xf" <x, y>) E D(xh)). 

(CF5). 
COMPATIBLE(xh, xf, xg), (<x, y> ~ (D(xh) x O(xh))) --, (<(xh ' x), (xh' y)> E O(xg)). 

(CF6). 
COMPATIBLE(xhl, xfl, xgl),  COMPATIBLE(xh2, xgl,  xg2) --, (R(xhl) c_ D(h2)). 
Corollaries. 
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl,  xg2) ~ (D((xh2 o xhl)) = D(xhl)). 
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl,  xg2) 

-~ ((D((xh2 o xhl))  x D((xh2 o xhl))) = (D(xhl) x O(xhl))). 

(CF7). 
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl,  xg2) 
--, COMPATIBLE((xh2 o xhl), xfl, xg2). 

HOMOMORPHISMS 

(HO1) The composition of homomorphisms is a homomorphism, 
HOM(xhl, xfl, xgl) ,  HOM(xh2, xgl,  xg2) --, HOM((xh2 o xhl), xf l ,  xg2). 
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