
Journal of Automated Reasoning 8: 91-147, 1992. 91
c D 1992 Kluwer Academw Pubhshers. Printed m the Netherlands.

Automated Deduction in von Neumann-Bernays-
G6del Set Theory

ART Q U A I F E
Trans Time, Inc., 10208 Pearmam St., Oakland, CA 94603, U.S.A.

(Received: 31 October 1989, accepted 6 April 1990)

Abstract. I present a new clausal version of NGB set theory, and compare my version with that first gwen
by Boyer et al. [4]. A complete set of reductions for Boolean rings is given, derived from those of Hsiang
[7]. I hst over 400 theorems proved semiautomatically in elementary set theory, and supply the proofs of
several of these, including Cantor's theorem. I present a semiautomated proof that the composition of
homomorphisms is a homomorphlsm, thus solving a challenge problem given in [4]. Using the clauses and
heuristics presented, there is no apparent obstacle to the semlautomated development of set theory through
considerably more difficult theorems.

Key words. Set theory, automated reasoning, mechanical theorem proving, reductions, heuristics.

1. Introduction

Since virtually all extant mathematics can be formulated in the language of set theory,
this theory could be regarded as the ultimate proving ground for automated theorem-
proving programs. However, very simple theorems in set theory have proved difficult
for past resolution theorem provers. Winker and Wos [20], in connection with trying
to prove that union distributes over intersection, state: "Many are acquainted with the
disappointing tediousness with which such problems are solved with standard
theorem-proving approaches." Lusk and Overbeek [10] state " . . . there are a variety
of quite simple problems that have stymied resolution-based programs for years.
[Proving] the union of sets is commutative has proved challenging for [resolution]
programs." I address these particular difficulties in Section 5 of this paper.

Boyer et al. [4] have performed a useful service by providing a clausal version of the
yon Neumann-Bernays-G6del (NBG) version of set theory, suitable as input to
resolution theorem provers. They follow the treatment of G6del [6], but have gone
beyond simply using standard conversion procedures to translate first-order NBG set
theory into clausal form. In several instances where G6del asserts the existence of a set
with certain properties, they have uniquely determined the set and given it a name. In
addition to the axioms, they have provided the clausal form for a number of
definitions and theorems from set theory, abstract algebra, and number theory.

Boyer et al. state that "Anyone attempting to submit the clauses given here to an
automated theorem prover will quickly confront many fundamental issues in
theorem proving. This set of clauses is difficult to work with for several reasons. [Four
reasons are then enumeratured.]" However, their conversion to clausal form can be

92 ART QUAIFE

improved in quite a few ways, which I describe in Section 3. I present a new con-
version in Section 4. The resulting clauses are much more amenable to automated
development, and I list over 400 theorems in elementary set theory proved with
their use.

Section 6 contains a complete set of reductions for Boolean rings, revised from those
given by Hsiang [7] so they will work in a reasoning system not embodying
associative-commutative unification. Section 7 describes the relationship between
Skolem functors and the Axiom of Choice.

The theorems I have proved using this set of clauses are introduced in Sec-
tion 8. Sections 9, 10 and 11 discuss the heuristics and option settings used to
obtain proofs of these theorems. Section 12 contains a machine proof of Cantor's
theorem.

Boyer et al. [4] challenge readers to find an automated proof that the composition
of homomorphisms is a homomorphism, which is also Test Problem 15 in Wos [22].
They then provide a sequence of 27 lemmas that lead to its proof, along with the
proofs of these lemmas, which they obtained by hand and verified by machine. Their
mechanical proof checker is guided by user instructions such as "compute all the
binary resolvents of clause 42 and clause 76". They assert, "It is not our intention to
suggest that any existing resolution-based theorem prover ought to be able to attack
the example challenge problems successfully. Indeed, we suspect that all of the
challenge problems are probably beyond that ability of any current known resolution-
based system."

This assertion notwithstanding, I have obtained semiautomated proofs (see
Section 11) of all these lemmas, and of the theorem itself. These results are presented
in Section 13.

Possible improvements to the unification algorithm appropriate to NBG set theory
are discussed in Section 14.

For readers who are unfamiliar with resolution theorem proving in general, and
OTTER in particular, Appendix 1 provides a brief introduction. This appendix
explains such concepts as clauses, substitutions, unification, binary resolution, hyper-
resolution, UR-resolution, paramodulation, demodulation, set-of-support strategy,
subsumption, weighting, and lexical ordering.

Appendix 2 contains a list of more than 400 theorems in elementary set theory
proved using the clauses and methods presented in the paper.

Thus the main contributions of this study are:

A. I provide a clausal version of NBG set theory that is amenable to semiautomated
development using a resolution theorem prover.

B. I provide a number of heuristics and proof procedures that have proved effective
in carrying out this development.

C. I demonstrate the value of these clauses and proof procedures by presenting
theorems and proofs obtained by their use.

AUTOMATED DEDUCTION IN NBG SET THEORY 93

2. Notation

Names beginning with small 'u' through 'z' are variables. All other names are either
individual constants, function symbols, or relation symbols, depending upon the
context. Formulas containing the sequent sign '--,' are clauses. All other formulas are
formulas of first-order logic.

Above I used 'function symbol' in the usual sense of first-order logic. But our subject
matter here is set theory, and among the objects most studied are functions as classes
of ordered pairs. Thus, for example, ' I ' is an individual constant that names the
identity function. To avoid possible confusion, from now on] will use 'functor' rather
than 'function symbol'. I further discuss the relation between terms and functions in
Section 3.6.

I present clauses essentially as I load them into OTTER version 1.01, written by
William McCune of Argonne National Laboratory [12]. OTTER is a fast resolution

theorem prover, to which I have added the capabilities of using sequent notation, and
of accepting one-character infix operators. To improve readability, I replace some

ASCII symbols used in OTTER by standard set-theoretic notationJ
I present clauses fully parenthesized, whereas I often omit parentheses from first-

order formulas when no confusion can result. I write clausal equalities as they will be
ordered by OTTER. This explains why in definitions the defined term is on the right
side of the equality - it is of lower weight than the defining term.

3. Simplications

In this section I describe the modifications ! made to G6del's axioms while converting
them to clausal from. Since an extended development of virtually the whole of
mathematics can be based on these axioms, efforts toward expressing them as simply
as possible should be amply rewarded. Considerations of machine efficiency will be
important in my conversion, and thus the clauses I supply do not result from a direct
clausification of G6del's axioms. Rather, I believe that with proper definitions they are
provably equivalent to this. I compare my conversion to that of Boyer et al.

3.1. SETHOOD

G6del's axioms contain a unary relation M(x), interpreted as 'x is a set'. He defines
the universal class V, and has as a theorem

x e V ,~ M(x).

~Symbols appearing m this paper are approximated in OTTER as follows:
e ~ - > (x x y)

c < Ix, y} (x ; y) co
+ o {x} ss(x)

n * + & <x, y> Ix, y]

X(x, y)
omega

94 ART QUAIFE

Thus as our first simplification, we will use this equivalence to eliminate the unary
relation M in favor of the individual constant V, making this replacement through-
out his axioms. Without this elimination, there is frequent necessity to make the
equivalence deduction in one direction or the other.

3.2. EQUALITY

The equality axiom ~ (x = x) of Boyer et al. is not needed as an axiom, since it
follows from the Axiom of Extensionality. I include it in the axiom and theorem list
loaded to OTTER as Theorem (EQI) (see Appendix 2).

Their version of the Axiom of Extensionality contains a Skolem functor, and does
not work well with hyperresolution or UR-resolution. It does not permit a natural
way to split up a proof that ~ (x = y). It is preferable first to define the subclass
relation _c, which of course will be needed anyway, and express extensionality as

x = y ~ x ~ _ y & y ~ _ x .

This requires no new Skolem functors, and provides the natural breakdown: to show
two classes are equal, show that each is a subclass of the other.

I further discuss proving equality of classes in Section 5.

3.3. INTRODUCTION OF ORDERED PAIRS

I have completely revised their treatment of the first and second components of
ordered pairs, and have eliminated their ordered pair predicate O P P .

I first prove the following theorem:

Vx 3u 3v((<u, v> e (V • V) & x = <u, v>)

v (~ 3 y 3 z (< y , z > e (V x V) & x = < y , z >) & u = x & v = x)) .

Skolemizing this theorem produces two functors, ' l s t ' and ' 2nd ' , which are similar to
the ' f irst ' and ' second ' functors that they introduce by separate and unneeded axioms.
A difference is that in the case x is not an ordered pair, I require l s t (x) = x and
2nd(x) = x , whereas Boyer et al. make their default values 0. Note that we can use the
Axiom of Regularity to show that (x, y> ~ x for sets x and y. Knowing that
l s t (x) = 0 does not tell one whether x is indeed an ordered pair of sets, whereas from
l s t (x) = x one can immediately conclude that x is not an ordered pair of sets.

I also prove the characteristic uniqueness theorems:

((u , v) e (V • V)) ~ (l s t ((u , v)) = u).

((u , v) ~ (V x V)) -~ (2nd((u , v)) = v).

I also prove uniqueness in the case that the argument is not an ordered pair of sets.
These theorems eliminate the need for their Axioms of First and Second, and the

four Skolem functors in them. I also eliminate their definiton of the ordered pair

AUTOMATED DEDUCTION IN NBG SET THEORY 95

predicate OPP(x) , eliminating two Skolem functions and four clauses. Instead of

O PP(x) we will use (x �9 (V x V)) or, rarely, ((l s t (x) , 2nd(x)) = x).

3,4 USE OF ORDERED PAIRS

The clauses in Boyer et al. contain many instances of the sethood predicate (x �9 V).
Some clauses have four instances of it! Using their clauses I have found that whenever
a newly deduced unit ~ (t ~ V) becomes the given clause, the system bogs down to
a crawl while hyperresolution or UR-resolution tests the huge number of unifying
matches - especially in clauses with multiple appearances.

There is a fairly simple solution to this problem. Rather than using (x �9 V),
(y �9 V) --* in the hypothesis of a clause, instead use ((x, y) �9 (V x V)) ~ . Not only
does this reduce the number of literals in the clauses, but we also must use the clause

(x e V) , (y ~ V) ~ ((x , y) � 9 2 1 5 V))

to make the further deduction that some pair is ordered. This delays the deduction
of new ordered pair literals, improves the combinatorics substantially, and largely
eliminates this problem. If we are ever confronted with a glut of deduced clauses
~ ((t~ , t2) ~ (V • V)), we could selectively block their deduction (via the displayed
clause) by using weights.

There are two different forms that can be used for clauses containing ordered pairs.
To illustrate, Boyer et al. give Axiom B-I, which defines the elementhood relation, as

(z �9 E) <~ (z �9 (V x V)) & (lst(z) ~ 2nd(z)).

The direct clausification produces

(z � 9 ~ (z � 9 x V)).

(z �9 E) --* (lst(z) �9 2nd(z)).

(z �9 (V • V)), (Ist(z) �9 2nd(z)) ~ (z �9 E) .

Or using simple theorems about 1st and 2nd, we can rewrite these as

(z � 9 ~ (z � 9 • V)) {or ~ (E ~ (V • V))}.

((x, y) �9 E) ~ (x �9 y).

((x ,) ') �9 (V x V)), (x �9 y) --} ((x , y) �9 E).

This second set of clauses also comes directly from the version of the class existence
theorem given below in Section 3.6. Boyer et al. use the first form. I always use the
second form. I believe these latter clauses are more natural, and appear to be of the
form most often directly useful.

9 6 A R T Q U A I F E

3.5. C O N S T R U C T O R A X I O M S

Gbders Axiom B-6 (inverse) is dependent. I rearranged the order of axiom intro-
duction so that we can prove B-6 as a theorem. This treatment is inspired by
Mendelson [13].

Boyer et al. use a version of Axiom B-5 that gives the full Cartesian product
(x x y), whereas GSdel's version only gives the existence of (V x y). I will follow
Boyer et al., and furthermore list Axiom B-5' as the first of the Group B axioms, which
permits a more convenient expression of the remaining Group B axioms. The
alternative is to use more convoluted axioms; then after proving the existence of the
inverse of a relation define (x • y) = (V x y) n inverse((V x x)), and finally use

this definiton to back-simplify the axioms.
For reasons given at the beginning of Section 3.4, we wish to use Axiom B-5'a in

the unrelativized form given. However this requires that no ordered pair in which one
of the arguments is a proper class can be equal to an ordered pair of sets. The usual
definition of the ordered pair as (x, y) = {{x}, {x, y}} fails this test, for using it we

have

(o, o> = {{o}, {o, o}} = {{o}, {o}} = {{o}, {o, v } } = (o,

Then using B-5'a, we would obtain the false conclusion

(O , O) ~ (v x V) =~ (O , V) ~ (v x v) =~ v ~ I s .

Thus I will instead define (x, y) = {{x}, {x, {y}}}.

3.6. C L A S S E X I S T E N C E T H E O R E M

Boyer et al. chose the von Neumann-Bernays-GSdel version of set theory, rather
than Zermelo-Fraenkel (ZF), because thefinite number of axioms in NBG can all be
input to a computer. But note that very early in the development of NBG one proves
the class existence theorem:

Let ~ b (x j , . . . , x. , Yl Ym) be a formula in the primitive notation of NBG
whose free variables are among x~ x. , y~ , Ym, and in which all
quantifiers are relativized to V (~b is predicative). Then

3!z((z =_ V") &
Vx~.. . Vx.(((x, x .) ~ z) ~ (((x~ x .) ~ V") &

q~(Xl , �9 �9 �9 , Xn, Yl , Ym))))"

This metaschema in NBG is analogous to the Axiom Schema of Subsets in ZF,
and the two metaschemata are used approximately as often in the respective
developments.

We can expand the primitive notation of NBG by permitting the introduction of
new functors whenever the usual existence and uniqueness theorems are proved. Such
functors are, in principle, eliminable. There is a similar metatheorem that I will call

AUTOMATED DEDUCTION IN NBG SET THEORY 97

the function existence theorem: suppose that ~b is predicative and ~ is a functor such
that

Vx~ . . . V x , (((x l x ,) e v ") =~

((~(x, x,) �9 V) & Vy((y �9 z(x, x,)) r q~(x, x,, y)))).

Then

q ! x f ((x f ~_ V "+~) &

Vxl . �9 . Yx , Vz(((x l x , , z) �9 x f) ~ ((x l x ,) �9 r) &

T (x , , . . . , x ,) = z)).

Thus under appropriate conditions, formulas may be reified into classes and terms
may be reified into functions.

There are are least three approaches we can take toward using the class existence
theorem:

1. Make use of this theorem to define manually new classes as needed, adding axioms
that are called definitions. Boyer et al. adopted this approach. Of course, we must
define such classes before any proof run that needs them.

2. Automate the introduction of newly defined classes, justified by the class existence
theorem, as part of a metalevel control mechanism.

In these two approaches, the practical advantage of the finite axiomatizability of
NBG is largely lost and illusory. It has not done away with the need for the automated
reasoning system to use infinite schemata of axioms[theorems, either clumsily by hand
or else mechanically. The second approach may be worth pursuing, but such auto-
mation of the metatheory is not available in OTTER version 1.01.

In contrast to the above two approaches, the approach I adopt makes essential use
of the finite axiomatizability of NBG. In particular, note that most of the definitions
via the class existence theorem in Boyer et al. contain quantifiers, and thus produce
Skolem functors when clausified. But use of Axiom B-4 (domain) allows us to mirror
such definitions without using quantifiers, thus eliminating the Skolem functors. Thus
the approach I have adopted is:

3. Generally avoid using the class existence theorem, especially when its use would
introduce Skolem functors. Instead, whenever one needs to define a new class,
give an explicit definition which mirrors the construction techniques used in the
proof of the theorem. For example, rather than Boyer et al.'s definition of the sum
class U(x) by

(z �9 U(x) c~ (z �9 V & 3 y ((y e V) & (z � 9 1 4 9

we can use either of the explicit definitions

U(x) = (i n v e r s e (E) " x)

= D(restr ic t (E, V , x))

and eliminate a Skolem functor.

98 ART QUAIFE

The construction techniques used in the proof of the class existence theorem can
be improved upon to produce simpler definitions. In particular, we can often
eliminate an existential quantifier by using

3z((r z~ E u) & (r y) ~ v)) ~ ((x, y) ~ (vo u)).

3.7. CONSTRUCTORS VERSUS SKOLEM FUNCTORS

As a further example, Boyer et al. define the image functor by the first-order

equivalence (changed to my notation):

vy Vz Vxf(y ~ (xf "z) r

y e V & 3u(u e V & u E (V x V) & u s x f & lst(u) s z & 2nd(u) = y)).

The formula on the right contains a quantifier, which produces a Skolem functor

upon clausification. Such quantifiers in the defining formulas they use produce a glut
of Skolem functors, identified only as f l , . . . , f 5 9 .

William of Ockham has warned us against multiplying Skolem functors needlessly.
In the first place, it is generally preferable to construct and uniquely determine an
object than simply to assert its existence. In the second place, these Skolem functors
are not independent, but with more careful work can be interdefined. Thirdly, Skolem
functors may not appear in formulas ~b used to define further classes via the class
existence theorem (see Section 7). Finally, a user may be excused if upon seeing a
formula containing (f 3 1 (x) e f 4 3 (y)) , he wonders what the formula is about. I will
instead rely heavily upon the Group B axioms, which provide the means for con-
structing new classes from old ones by explicit equality definitions.

The Group B axioms produce constructor functors under clausification, which may
be defined uniquely (as Boyer et al. have done). I have also modified the Axiom of

Infinity so that the infinite set is uniquely determined to be tn. There are three other
axioms that unavoidably produce Skolem functors or individual constants: the
Axioms of Extensionality, Regularity, and Choice. Extensionality is, of course,
fundamental, and relies on the Skolem functor 'notsub' that comes from the definition
of subclass. (If x is not a subset of y, then notsub(x, y) witnesses the fact by belonging
to x but not y.) Of the 59 Skolem functors appearing in the clauses of Boyer et al.,

about 56 of them can be explicitly defined in terms of the Skolem functor 'notsub' and
the constructor functors of Group B. I have done so, except for the two Skolem
functors in the definition of H O M (homomorphism), whose elimination appears to be
too tedious. I have also given names to the few Skolem functors that remain after
these simplifications. The names are related to their purpose, and should make the
axioms more intelligible to the user.

I fa defined class can be uniquely determined, notsub is not needed in the definition.
As an example of where it is needed, see the definitions of dora and ran in Section 4,
which can be used to replace quite a few of the Skolem functors in Boyer et al.

AUTOMATED DEDUCTION IN NBG SET THEORY 99

Continuing with the example of the image functor, the definition given above
clausifies to

(y E (xr "x)) ~ (f 22 (y , x, xr) ~ (V • V)).

(y ~ (xr "x)) ~ (f 22 (y , x, xr) ~ xr).

(y E (xr "x)) --* l s t (f22 (y , x, xr)) E x).

(y ~ (xr "x)) ~ (2nd(f22(y , x, xr)) = y).

(u E xr), (u ~ (V • V)), (lst(u) ~ z), (2nd(u) = y), (y ~ V) ~ (y ~ (xr "z)).

I instead use a one-line definition of this functor:

(R(restrict(xr, x, V)) = (xr "x)).

Normally when I give an explicit construction of a class, I also prove the theorems
that give the simplest membership conditions for the class. Here, they are

(3' ~ (xr "x)) ~ ((dom(xr, x, y), y) ~ (V • V)).

(y ~ (xr "x)) ~ ((dom(xr, x, y), y) �9 xr).

(y �9 (xr "x)) -~ (dom(xr, x, y) �9 x).

((x , y) �9 xr), ((x , y) �9 (V x V)), (x e z) ~ (y �9 (xr "z)).

Note in particular that we have replaced the Skolem functor 'f22' by the functor
'dora'. In Section 4 dom(xr, x, y) is defined to be a preimage of y in x under xr, and
numerous properties of dora are proved in Appendix 2 beginning with the section
RANGE. We also see how replacing u by (x, y) has eliminated a clause and simplified
the last clause.

Sometimes explicit definitions are not illuminating. For example, we define the
successor functor by

s u e e (x) = x • {x},
and we can explicitly define the corresponding function (relation) by

SUCC = (V x V) c~ ~(((Eo ~(inverse((E w I))))

w (~ (E) o inverse((E w I))))).

It would be tedious to prove the desired membership properties of this relation, and
so we instead use the definition given by the class existence theorem:

SUCC ~ (V x V),

((x, y) �9 SUCC) .~ ((x , y) ~ (V x V)) & (succ(x) = y),

which in this case does not produce any Skolem functors. (We could instead use
the function existence theorem after proving (SSi) and the corollary to (SC5) in
Appendix 2.)

100 ART QUAIFE

The net effect of these simplifications on the set theory clauses of their GROUP 1
and GROUP 2 is a reduction from 33 to 5 Skolem functors, and from 142 to 90
clauses.

4. Clauses for Axioms and Definitions

For each axiom and definition, I first present its version in first-order logic, then its
clausal version. Referenced theorems may be found in Appendix 2.

GROUP 1 : AXIOMS AND BASIC DEFINITIONS

Axiom A-1 : Sets are classes (omitted because all objects are classes).

Definition of _c (subclass).
vx vy((x c_ y) , ~ , vu((u ~ x) ~. (u ~ /))).

(xcy) , (u ~ x) --, (u~y) .
- , (notsub(x, y) ~ x), (x c y).

(notsub(x, y) E y) - . (x c y).

Axiom A-2: Elements of classes are sets.
vx (x c V).

--. (x c_ v).

Axiom A-3: Extensionality.
vx vy((x = y) ~ (xc_ y) a (yc_x)).

(x = y) .-, (xcy) .
(x = y) --, (yc_x).
(xc_y), (y c x) --. (x =y) .

Axiom A-4: Existence of unordered pair.
v u v x v y ((u E { x , y }) ~ (u E V) & (u = x v u = y)) .
vx vy({x, y} ~ v).

(u ~ {x, y}) --, (u = x), (u = y).
(x E V) - , (x E {x, y}).
(yet, ') - . (y E {x, y}).
--, ({x, y} ~ V).

Definition of singleton set.
vx({x} = {x, x}).

- , ({x, x } = {x}) .

Theorem (SS6) in Appendix 2 introduces memb.

Definition of ordered pair.
Vx vy(<x, y> = {{x}, {x, {y}}}).

({ {x } , {x, { y } } } = <x, y>).

Axiom B-5'a: Cartesian product.
vu w vx vy((<u, v> E (x • y)) ~ (u ~ x) & (v E y)).

(<u, v> ~ (x x y)) - , (u~x) .
(<u, v> ~ (xxy)) ---, (v~y) .
(u~x) , (v~v) --, (<u, v> ~ (x•

AUTOMATED DEDUCTION IN NBG SET THEORY

See Theorem (OP6) for 1st and 2nd.

Axiom B-5'b: Cartesian product.
vz(z E (x x y) ~ (z = <1st(z), 2nd(z)>).

(z E (x x y)) - , (z = <1st(z), 2nd(z)>) .

Axiom B-l: E (elementhood relation).
(E c_ (V • V)).
Vx Vy((<x, y> e E) ~=~ (<x, y> ~ (V x V)) & (x e y)).

(E C (V x V)).
(< x , y > ~ E) - . (x~y) .
(<x, y> e (V x V)), (x e y) ~ (<x, y> ~ E).

Axiom B-2: n (binary intersection).
vz vx vy((z E (x n y)) ~ (Z E X) & (z E y)).

(z ~ (x n y)) -~ (z~x) .
(z e (x n y)) --. (zey) .
(z e x) , (z e y) - , (z ~ (x n y)) .

Axiom B-3: ~ (complement).
vz vx((z ~ -(x)) ~ (z ~ V) ~ ~(z ~ x)).

(z ~ -(x)), (z e x) - , .
(z e V) - . (z ~ ~(x)), (z e x).

Theorem (SP2) in Appendix 2 introduces the null class 0.

Definition of u (binary union).
vx vy((x u y) = - ((- (x) n -(y)))).

--* (- ((- (x) n ~(y))) --- (x u y)).

Definition of + (symmetric difference).
vx vy((x + y) = (~(x n y) n - (- (x) n -(y)))).

- . ((~ f ix n y)) n ~((~(x) n -(y)))) = (x + y)).

Defimtion of restrict (restriction).
vx(restrict(xr, x, y) = (xr n (x x y))).

--* ((xr n (x x It)) = restrict(xr, x, y)).

Axiom B-4: D (domain).
V~ vz((z ~ D(x)) ~ (z ~ V) & ~(restrict(x, {z}, V) = 0)).

(restrict(x, {z}, V) = 13), (z E D(x)) --. .
(z ~ V) - , (restrict(x, {z}, V) = 0), (z E D(x)).

101

(rotate(x) c ((V x V) x V)).
(< <u, v>, w > ~ rotate(x)) ~ (< <v, w> , u> ~ x).
(<<v, w>, u> c x), (< < u , v>, w> E ((Vx V) x V)) ~ (<<u, v>, w> E rotate(x)).

Axiom B-8: flip.
vx(flip(x) c_ (iV x V) x V)).
vz vu w vw((< <u, v>, w > ~ flip(x)) ~=~ (< <u, v>, w > c ((v • v) • v)) & (< <v, u>, w > e x)).

Axiom B-7: rotate.
vx(rotate(x) c_ ((I /x V) x V)).
vx vu'w'v'w((< <u, v> , w > ~ rotate(x)) ~ (< <u, v>, w > ~ ((V x tO x V)) a (< <v, w>, u> ~ x)).

102

--. (flip(x) c ((I /x V) x V)).
(<<U, v>, w> e flip(x)) --, (< <v, u>, w > E x).
(< <v, u>, w > ~ x), (< <u, v>, w > ~ ((I /x V) x V)) --. (< <u, v>, w > e flip(x)).

Definition of inverse.
Vy(inverse(y) = D(flip((y x 10))).

--. (D(flip((y x I/))) = inverse(y)).

Definition of R (range).
Vz(R(z) = D(inverse(z))).

--, (D(inverse(z)) = R(z)).

Definition of dora.
Vz Vx Vy(dom(z, x, y) = lst(notsub(restrict(z, x, {y}), 0))).

--, (lst(notsub(restrict(z, x, {y}), 0)) = dora(z, x, y)).

Definition of ran.
Yz Yx(ran(z, x, y) = 2nd(notsub(restrict(z, {x}, y), 0))).

- . (2nd(notsub(restrict(z, {x},)1), 0)) = ran(z, x, y)).

Definition of �9 (image).
Yx Yxr((xr �9 x) = R(restrict(xr, x, V))).

- . (R(restrict(xr, x, V)) = (xr "x)) .

Definition of succ (successor).
vx(succ(x) = (x o {x})).

- , ((x u {x}) = succ(x)).

Definition of SUCC from the class existence theorem.
(s u c c c (V • V)).
vx vy((<x, y> e SUCC) <=~ (<x, y> e (1/x V) & (succ(x) = y)).

-~ (s u c c c (v x v)).
(<x, y> ~ s u c c) -~ (succ(x) = y).
(succ(x) = y), (x e v) -~ (<x, y> e succ) .

Definition of INDUCTIVE.
vx(INDUCTIVE(x) ~ 0 E X & (SUCC "x) ~ x)).

INDUCTIVE(x) --. (0 E x).
INDUCTIVE(x) ~ ((SUCC = x) c x).
(0 ~ x), ((SUCC �9 x) c_ x) - . INDUCTIVE(x).

Axiom C-t : Infinity.
~((x ~ V) & INDUCTIVE(x) & Yy(INDUCTIVE(y) =~ (x ~ y))).

-~ INDUCTIVE(u).
INDUCTIVE(y) ~ (o; c_ y).

(~ 0 .

Definition of U (sum class).
vx(U(x) = D(restrict(E, V, x))).

--. (O(restrict(E, V, x)) = U(x)).

Axiom C-2: U (sum class).
vx((x ~ v) ~, (U(x) ~ v)).

ART QUAIFE

AUTOMATED DEDUCTION IN NBG SET THEORY

(x e V) --, (U(x) ~ V).

Definition of P (power class).
vx(P(x) = - ((E " -(x)))).

- . (- ((E " - (x))) = P(x)) .

Axiom C-3: P (power class),
Vu((u ~ V) =~ (P(u) E V)).

(u e V) - . (P (u)~V) .

Definition of o (composition),
vxr vyr((yr o xr) c (V x V)).
VU VV vxr vy r ((<u , v> ~ (yr o xr)) r (<u , v> E (V x V)) & (V E (yr " (xr " {u })))) .

--, ((yr o xr) c_ (V x V)).
(<y, z > ~ (yr o xr)) ~ (z ~ (yr = (xr " {y }))) .
(z e (yr " (xr " {y }))) , (<y, z> ~ (V x V)) ~ (<y, z> ~ (yr o xr)).

Definition of SINGVAL (single-valued class).
vx(SINGVAL(x) r ((x o inverse(x)) c_ I),

SINGVAL(x) ~ ((x o inverse(x)) c_ 1).
((x o inverse(x)) c_ I) ---, SINGVAL(x).

Definition of FUNCTION.
Yxf(FUNCTION(xf) ,===~ (xf c_ (V x V)) & SINGVAL(xf)) .

FUNCTION(x f) ---, (xf c_ (V x V)).
FUNCTION(x f) --, SlNGVAL(xf) .
(xf c_ (3/x V)), SINGVAL(xf) - - FUNCTION(xf) .

Axiom C-4: Replacement.
vx((x ~ V) & FUNCTION(xf) =~ ((xf " x) E V)).

FUNCTION(xf) , (x ~ V) ~ ((xf " x) ~ V).

Axiom D: Regularity.
vx (~ (x = o) =~ 3u((u ~ v) a (u ~ x) & ((u n x) = o))).

(x = 0), (regular(x) ~ x).
(x = 0), ((regular(x) n x) = 0).

Definition of ' (functional apphcation).
vxr vy((xf , y) = U((xr , (y}))) .

(u ((r f " {y })) = (xf ' y)).

Axiom E: Universal choice
3xf(FUNCTION(xf) & vy((y c V) =~ (y = (9) v ((x f ' y) E y))).

--, FUNCTION(cho ice) .
(y ~ V) --, Of = o), ((cho ice " y) ~ y).

GROUP 2: MORE SET THEORY DEFINITIONS.

Definition of O N E O N E (one-to-one function)
vx f (ONEONE(x f) r FUNCTION(xf) & FUNCTlON(inverse(x f))) .

ONEONE(xf) ---, FUNCTION(xO.

103

104 ART QUAIFE

ONEONE(xf) -* FUNCTlON(inverse(xf)).
FUNCTlON(inverse(xf)), FUNCTION(xf) -., ONEONE(xf).

Definition of S (subset relation).
(S = (- ((- (E) o inverse(E))) n (V x V)).

--. ((- ((- (E) o inverse(E))) n (V x V)) = S).

Definition of I (identity relation).
(I = (S n inverse(S))).

- . ((S n inverse(S)) = O.

Definition of diag (diagonalization).
vxr(diag(xr) = -(D((I n xr)))).

- , (-(13((I n xr))) = diag(xr)).

Definition of Cantor class.
vx(cantor(x) = (D(x) n diag((inverse(E) o x)))).

--, ((D(x) n diag((inverse(E) o x))) = cantor(x)).

Definition of OPERATION.
vxf(OPERATION(xf) ,==~ EUNCTION(xf) & ((D(D(xf)) x D(D(xt))) = O(xf)) & (R(xf) c_ D(D(xf))).

OPERA TION(xf) ~ FUNCTION(xf).
OPERATION(xf) -~ ((D(D(xf)) x O(D(xf))) = D(xf)).
OPERATION(x~) --. (R(xf) ~ D(D(xf))).
FUNCTION(xf), ((D(D(xf)) x D(D(xf))) ~- D(xf)), (R(xf) c_ D(D(xf))) -~ OPERATION(xf).

Definition of COMPATIBLE.
vxh yxf vxg(COMPATIBLE(xh, xf, xg)

O(O(xg)))).
, = , FUNCTION(xh) & (D(D(xf)) = D(xh)) & (R(xh) c_

COMPATIBLE(xh, xf, xg) - , FUNCTION(xh).
COMPA TIBLE(xh, xf, xg) --, (D(D(xf)) = O(xh)).
COMPATIBLE(xh, xf, xg) - . (R(xh) ~ D(D(xg))).
FUNCTION(xh), (D(D(xf)) = O(xh)), (R(xh) c D(D(xg))) --* COMPATIBLE(xh, xf, xg).

Definition of HOM (homomorphism).
vxh vxl vxg(HOM(xh, xf, xg) .=~ OPERATION(#) & OPERATION(xg) & COMPATIBLE(xh, xf, xg) &

YX Vy((<X, y> e O(xf)) ~ ((xg' <(xh' x), (xh' y)>) = (xh ' (xf ' <x, y>)))).

HOM(xh, xf, xg) --, OPERATION(xt).
HOM(xh, xf, xg) --. OPERATION(xg).
HOM(xh, xl, xg) --, COMPATIBLE(xh, xf, xg).
HOM(xh, xf, xg), (<x, y> e D(xO) -~ ((xg' <(xh' x), (xh' y)>) = (xh' (xf' <x, y>))).
OPERATION(x'f), OPERATION(xg), COMPATIBLE(xh, xf, xg)

- , (<nothoml(xh, xf, xg), nothom2(xh, xf, xg)> e D(xf)), HOM(xh, xf, xg).
OPERATION(xO, OPERATION(xg), COMPATIBLE(xh, xf, xg),

((xg" <(xh ' nothoml(xh, xf, xg)), (xh ' nothom2(xh, xf, xg))>) =
(xh ' (x f '<nothoml (xh, xf,, xg), nothorn2(xh, xf, xg) >))) --* HOM(xh, xf, xg),

5. Proving Classes Equal

Appendix 2 includes a list of theorems of Boolean algebra that I proved using
OTTER. Most of these proofs involve showing that two terms denote the same class.

The simplification I provided in Section 3.2 still leaves a difficulty in proving
equality of classes. I will discuss this difficulty with specific reference to OTTER,

AUTOMATED DEDUCTION IN NBG SET THEORY 105

which implements the inference rules hyperresolution, UR-resolution, and binary
resolution. The difficulty is that to prove an equality --, (a = b) for (ground) terms a

and b, we must resolve

(El) (a = b) -~ with

(E2) (x _ y) , (y ~ x) ~ (x = y) to get

(E3) (a ~ b),(b _ a) ~ .

However, neither hyperresolution nor UR-resolution will make this inference. Here
we clearly want some case analysis mechanism, to split the proof into separate proofs
that --*(a ~ b) and --* (b _ a).

This difficulty may be addressed in at least the following ways:

Unacceptable

1. We can make the desired inference using binary resolution. But binary resolution
normally generates far too many unwanted conclusions to be used as an inference
rule.

2. Lusk and Overbeek [10] solved this problem by using qualifying literals, and
locking to force case analysis. But neither qualification nor locking are currently
available in OTTER.

3. Winker and Wos [20] addressed this problem by introducing demodulators
(rewrite rules) that define propositional calculus at the term level. They would
introduce a function E L taking on values T and F, and have clauses such as

(EL(x , y) = T) ~ (x ~ y),

three demodulators defining w, ~, and ~ such as

--, (EL(x , (y w z)) = O R (E L (x , y), E L (x , z))),

plus about 37 propositional logic demodulators such as

(N O T (N O T (x)) = x)

--* (OR(x , T) = T).

Thus they reduce proving theorems of Boolean algebra to using propositional logic
rewrite rules.

If we were to follow this approach, we would presumably adopt some of the
propositional logic demodulators as axioms, and prove the rest of them. But this
is more or less the same amount of work as proving the theorems of Boolean
algebra directly. Furthermore, these demodulators only seem useful for the
duration of proving the corresponding theorems of Boolean algebra such as

--, (~ (~ (x)) = x) ,

--, ((x u v) = v) ;

henceforth we would rely on the Boolean algebra rewrite rules.
All told, it does not seem of net benefit to introduce this temporary machinery.

106 ART QUAIFE

Marginally Acceptable

4. We prove the following four theorems by resolving (E2) against the definition of

the subclass relation:

-~ (x = y), (notsub(x, y) e x), (notsub(y, x) e y).

(notsub(x, y) e y) --* (x = y), (notsub(y, x) ~ y).

(notsub(y, x) ~ x) --* (x = y), (notsub(x, y) ~ x).

(notsub(x, y) e y), (notsub(y, x) e x) --* (x = y).

Now a proof that --, (a = b) can proceed by hyperresolution. In particular, we

first deduce

(E4) --* (notsub(a, b) e a), (notsub(b, a) ~ b).

The drawback to this approach is that (E4) contains literals from both of the cases
a _ b and b _c a; these cases are considered simultaneously, which is not as
efficient as considering them serially. It also requires us to use hyperresolution,
whereas it is usually more efficient to obtain proofs by UR-resohtion alone.

5. The user undertakes the case analysis, by separately proving the two theorems

--+ (a _~ b) and --* (b __ a).
Note that this approach should be needed less and less as the development

proceeds. Once we have built up a body of theorems, we may often expect to prove
-* (a = b) from other known equalities, without having to open up the basic

definition of equality.

I used Method 4 to prove all the theorems of Boolean algebra, except the distributive
law, which I proved using Methods 4 and 5. The proof of Theorem (12) below shows

how Method 4 is used to prove -~ ((x n y) = (y n x)).

Theorem (12) - , (x n y) = (y n x).

Axioms and Previously Proven Theorems'.

23 (z e (x n y)) --. (z �9 x).
24 (z e (x n y)) --, (zey) .
25 (z e x), (z ~ y) --, (z e (x n y)).

153 --, (x = y), (notsub(x, y) e x), (notsub(y, x) ~ y).
154 (notsub(x, y) e y) --. (x = y), (notsub(y, x) e y).
155 (notsub(y, x) �9 x) ~ (x = y), (notsub(x, y) ~ x).
156 (notsub(x, y) e y), (notsub(y, x) ~ x) --. (x = y).

Negation of Theorem:

157 ((a n b) = (b n a)) -~.

The Proof:

164 .-* (notsub((a n b), (b n a)) E (a n b)),
(notsub((b n a), (a N b)) ~ (b n a))

I ~6 --. (notsub((b n a), (an b)) e (b n a)),
(notsub((a nb) , (b n a)) e b)

167 --. (notsub((b n a), (a n b)) �9 (b n a)),
(notsub((a n b), (b n a)) �9 a)

[hyper, 157, 153].

[hyper, 164.24].

[hyper, 164, 23].

AUTOMATED DEDUCTION IN NBG SET THEORY

181 -. (notsub((b n a), (an b)) ~ (b n a)),
(notsub((a n b), (b n a)) ~ (b n a)) [hyper, 167, 25, 166].

240 --. (notsub((b n a), (an b)) ~ (b n a)) [hyper, 181,154, unit_del, 157].
242 --, (notsub((b n a), (a c~ b)) ~ a) [hyper, 240, 24].
243 --, (notsub((b n a), (an b)) ~ b) [hyper, 240, 23].
248 ---, (notsub((b n a), (an b)) c (an b)) [hyper, 243, 25, 242].
251 --. (notsub((a nb), (b n a)) ~ (an b)) [hyper, 248, 155, unit_del, 157].
261 ~ (notsub((a nb), (b n a)) ~ b) [hyper, 251,24].
262 ~ (notsub((a nb), (b n a)) ~ a) [hyper, 251,23].
269 --, (notsub((a nb), (b n a)) ~ (1o n a)) [hyper, 262, 25, 261].
273 ~ ((an b) = (b n a)) [hyper, 269, 156, 248].
282 ~ [binary, 273, 157].

107

6. Boolean Demodulators

If we use the standard operation symbols ',~ ', ' u ' , and '~ ' , it is difficult to know what
set of rewrite rules to incorporate. There is no complete set of reductions for free
Boolean algebras, since there may be more than one minimal set of prime implicants

[18t.
Alternatively, we may eliminate ' u ' in favor of the symmetric difference functor ' + '

by using

x u y = x + y + (x n y) .

We can then use the complete set of reductions derived from those for a Boolean ring,
and thus reduce every Boolean term to a unique form. The drawback to this approach
is that it is more natural to express theorems in terms of ' u ' than in terms o f ' + '. The
approach of [7] also requires us to eliminate the complement functor ' ~ ' via

~,.x = x + V .

Below I supply such a complete set of reductions. I have modified the reductions given

in [7] in the following respects:

1. To keep the canonical form as nearly natural as possible, I have retained the ' ~ '
functor. The rules will reduce any term containing ' ~ ' to one in which ' ~ '
appears at most once, and that appearance is initial. Correspondingly, 'V ' will
never appear as a summand in a reduced term.

2. The reductions in [7] are complete with respect to associative-commutative unifi-
cation. Since neither of these unification options are available in OTTER, we
must use lex-dependent demodulators to write each term as a unique fight-asso-
ciated sum of products. We also need to add a demodulator under (I6) and one
under (E6), to effect the reductions from this lex-ordered right-associated form.

BOOLEAN DEMODULATORS REPLACING UNION BY SYMMETRIC DIFFERENCE

These demodulators should be used with the lexical order specifier

lex([O, 1/, ~ (x), (x n x), (x u x), (x + x)]).

To assure uniqueness of the canonical form, we also should select the O TTER option
lex_order_vars, which defines and uses a lexical ordering of variables.

108 ART QUAIFE

INTERSECTION

(12) Commutative law of intersection.
((x n y) = (y n x)).

(13) Lexical ordering within associations.
- , ((x n (y n z)) = (y n (x n z))) .

(14) Intersection with O.
--, ((O n x) = o).

(15) Intersect ion with V.
- , ((V n x) = x).

(16) Idempotent law of intersection.
-~ ((x n x) = x).
Corollary.
--, ((x n (x n y)) = (x n,v)) .

COMPLEMENT

(C1) Complement of complement.
- , (- (- (x)) = x).

(C2) Special cases.
(- (o) = W .

--, (- (v) = o) .

(C3) Elimination of complement in intersection.
((- (x) n y) = (y + (x n y))).

(C4) Moving complement out in symmetric difference.
((- (x) + y) = - ((x + y))).

SYMMETRIC DIFFERENCE

(El) Elimination of union.
((x u y) = ((x n y) + (x + y))].

(E2) Commutative law of symmetric difference.
- , ((x + y) = (y + x)).

(E3) Lexical ordering within associations.
((x + (y + z)) = (y + (x + zJ)).

(E4) Symmetric dif ference with O.
--, ((o + x) = x).

(ES) Symmetric difference with V.
((v + x) = - (x)) .

(E6) Nilpotent law of symmetric difference.
((x + x) = o) .

Corollary.
((x + (x + y)) = y).

DISTRIBUTIVE LAW

(D1) Intersection distributes over symmetric difference.
- ((x n (y + z)) = ((x n y) + (x n z))) .

AUTOMATED DEDUCTION IN NBG SET THEORY 109

These demodulators should be useful in any study that heavily involves Boolean
algebra. But for the further development reported in this paper, I continue to use 't3'
rather t ha n ' + '. I found the Boolean demodulators used rarely, and that those given
in Appendix 2 more than sufficed. With that incomplete set of reductions, it is not
clear which orientation of the distributive laws is most useful. In Appendix 2 I have

oriented them to factor rather than distribute.

7. Sko|em Functors and the Axiom of Choice

Skolem functors serve much the same purpose as Hilbert e-terms - they provide
names for objects that are guaranteed to exist by existential assertions. Unless there
is exactly one object satisfying the existential assertion, the object named is
indeterminate.

Since equality is ubiquitous, the Skolem functor notsub appearing in the definition
of the subclass relation sees much duty in our system, Note that notsub(x, O) acts as

a universal choice term, in that we have the Theorem (SP4):

(x = 0), (notsub(x, O) �9 x). (1)

Several textbooks in set theory (for example, [2]) give, as a very strong version of the

Axiom of Choice, the Axiom of Global Choice:

c ~ 0 ~ a (c) e c , (2)

where 'c' is a variable restricted to sets, and 'a ' is a unary functor. Since we already
have such a functor in (l), why do we need Axiom E of Choice in addition?

The answer is that set theories using (2) also have an Axiom Schema of Replace-
ment which allows a to appear in the formula of the schema. In Grdel 's system the
corresponding schema is the class existence theorem, which only applies to formulas
of the basic theory in which there are no functors. In particular it does not apply to
formulas containing the Skolem functor 'notsub', so there is no way to prove intbur
clausal system that the intuitively conceived class {(x, notsub(x, 0)): x e V} exists.
That is, there is no way to reify the term notsub(x, O) into a function, whereas Axiom
E explicitly assumes the existence of such a function.

I have introduced several Skolem functors, such as "1st' and "2nd', via uniqueness
theorms of the form F(Vx~ . . . Vx,) (9! Y)4~- The uniqueness theorems guarantee that
such functors are eliminable, and thus they may be included in formulas to which we
apply the class existence theorem. But there is no way to define notsub(x, O) uniquely,
or else we could prove the Axiom of Choice!

We see that the real power of the Axiom of Choice is not that it allows one to make
infinitely many arbitrary selections, but that it asserts the existence either of a set (or
class) containing the selected entities, of the corresponding function (class of ordered
pairs) that makes the choices.

1 l0 ART QUAIFE

8. Theorems Proved

Appendix 2 contains a list of most of the theorems I have proved to date from the
above axioms. I selected these theorems while producing my own development of
elementary set theory; they turn out to constitute a fair sampling of the theorems
found in the first 90 pages of Suppes [19].

These theorems were proved automatically, using OTTER. The proofs were not
hand-guided as in [4]. Since OTTER is not interactive, user guidance comes princi-
pally from assignment of weights and selection of inference rules before a proof run,
as described in Section 10. It is also up to the user to organize the sequence of
theorems proved so that a proof attempt can build upon previous results without
biting off too large a new chunk.

9. Use of Previously Proved Theorems

Bledsoe [3] obtained proofs of theorems in set theory by only loading those reference
theorems needed in the proof. He pointed out that "A different set of reference
theorems would have yielded a different proof or no proof, and too large a set would
have lead to no proof at all".

If I only loaded reference theorems needed in a proof, I believe that almost all the
400-plus theorems in Appendix 2 would have been proved very easily (see, for
example, the end of Section 13). Adopting such a strategy trivializes the problem, at
least using OTTER on the theorems listed. Since I am conducting a systematic
development of set theory, when I prove a theorem I add its clausal version to the
Axiom list (see Appendix 2). I always load all previously proved theorems. The
computer should be able to bring to bear everything it knows in proving the theorem
at hand. An exception is that I do not load the Axiom of Choice. It is not needed in
elementary set theory, and it is bad form to use it when it is not needed. Of course
I also do not load the few theorems that are subsumed by later theorems (see the
beginning of Appendix 2).

Thus, along with a few theorems that are relevant to the proof of the theorem at
hand, I load many irrelevant theorems that act as noise in producing many irrelevant
conclusions. To overcome that problem, I frequently find it necessary to intervene to
a much lesser extent than only loading relevant theorems. Instead I assign low weights
to functors I expect must appear in the proof (see Section 10). Proof runs then still
produce many irrelevant conclusions, but fewer of them move to the top of the set of
support to be further considered.

10. Heuristics and Option Settings

The weighting option in OTTER is described in Section A11 of Appendix 1. I assign
weight 1 to every term, including every subterm, appearing in the theorem. Without
this heuristic almost all the proof attempts would have run on until user termination.
This weighting heuristic is so universally useful that I recommend its incorporation

AUTOMATED DEDUCTION IN NBG SET THEORY 1 1 1

into OTTER as an auto-weighting option. It is a first step toward an automated deter-
mination of optimal weight assignment. The next step to explore is the automatic
assignment of low weights to all 'sufficiently similar' terms; for example if f (a) is
assigned weight 1, should all terms f (x) also be assigned weight 1?

If the conclusion of the theorem is of the form (tl ~ t2), I also use the template

weight(notsub(1, 1), - 1).

Most of the theorems I have proved are universal statements, in which the clausal
version of the negation of the theorem contains no free variables. In such cases I also
assign a high enough weight to variables so that all deduced clauses containing
variables will be discarded. Thus any proof obtained will be a ground proof. This
heuristic is successful in the large majority of cases.

The set-of-support strategy, the assignment of low weights to terms in theorems,
and the discarding of formulas containing free variables, all work to keep OTTER
focusing upon the objects named in the theorem. In this respect the object-oriented
inference mechanisms used by McAllester in the system Ontic [8] are strongly anal-
ogous to my rules.

For use with lex-dependent demodulators, I use the lexical specifier

lex([O, V, ,,~ (x),
a, b, c, d, f, g, gl, g2, h, hl, h2,
notsub(x, x), {x}, memb(x), memb'(x), {x, x},
(x, x), (x • x), lst(x), 2nd(x), lst'(x),
2nd'(x), E, restrict(x, x, x), D(x), rotate(x), flip(x), inverse(x), R(x),
dom(x, x, x), ran(x, x, x), (x " x) succ(x), SUCC, 09, U(x), e(x), (x o x),
svl(x), sv2(x), sv3(x), SS, regular(x), (x 'x), choice,
S, I, diag(x), cantor(x), nothoml(x, x, x), nothom2(x, x, x),
(x c~ x), (x vo x), (x + x)]),

where the order is from most preferred to least preferred. The first and last lines of
this specification are significant. The second line consists of Skolem constants used in
expressing the negation of a theorem. The order of the remaining functors matters
little.

In my first attempt at a proof, I turn on UR-resotution, paramodulation into and
from, and back demodulation. If these settings fail to obtain a proof within a
reasonable length of time, I try turning on hyperresolution. I then also assign low
weights to other functors that I expect must appear in the proof. This step is
frequently necessary.

Suppose, as is frequently the case, that the theorem we are trying to prove is a Horn
clause. If one puts all literals from the theorem in the set of support, then the proof
will consist of some true statements (in any model of the hypotheses) that follow from
the hypotheses, plus some false statements that follow from the negation of the
conclusion. The user may find it confusing to look through such a proof and keep in
mind which statements he is to believe, and which he is to disbelieve.

112 ART QUAIFE

One doesn't have this problem while reading a proof in which every deduced line
is true. Thus I prefer proofs that proceed in a completely forward direction from the
hypotheses of the theorem, and only use the negation of the conclusion in the last line
where the contradiction is recognized (and which step is then superfluous). One might
expect such proofs to be difficult to obtain, because the prover is not making any use
of the goal for guidance. Nonetheless many, perhaps the majority, of the proofs of the
theorems listed in this paper were obtained in this way. I do this by putting the
negation of the conclusion in the axiom list, outside of the set of support.

An especially pleasing subset of such proofs is formed by those in which (almost)
every deduction line consists of a positive literal obtained by UR-resolution, in that
negative deduced literals are one level more psychologically complex than positive
literals. To assist in obtaining such proofs, one can assign a high weight to the
negation sign, so that the prover will focus on positive (unit) clauses. I did that in
obtaining all but one of the proofs presented in Sections 12 and 13. Without that
weight template, the contradiction in the proof of Theorem (CO9) below comes at line
8179 and takes 375.53 seconds.

I have not tested this last heuristic extensively enough to know how widely
applicable it is. It is unlikely to work if the negated theorem contains a positive literal
of the form ~ (x ~ ~ (y)), since this probably will have to be converted to (x e y) -}.
It also will not work when the conclusion contains Skolem constants not appearing
in the hypothesis+ since the forward proof would require derived clauses containing
variables, which I discard. Otherwise, it certainly appears promising.

I never use binary resolution, since it generates far too much junk to use regularly
in automated proofs. Rather than succumb to the temptation to use binary
resolution when other methods fail, one should instead try to figure out what changes
need to be made so that more efficient resolution rules may be used.

The heuristics presented above have evolved from those presented in [16] and [17].

11. Proof Finder or Proof Verifier?

My heuristic of assigning weight 1 to terms appearing in the theorem statement
normally suffices to obtain proofs in which no other functors appear. But if other
functors are needed in the proof, it is often necessary to assign them low weights as well.

Theorems in this paper typically required a handful of computer runs to obtain
a proof. The most difficult theorem, the composition of homomorphisms theorem in
Section 13, took more than 20 runs spread over a week. When it was necessary to add
weight templates, I could do so without great difficulty, since I normally had an idea
of how the proof should proceed - or would work out a proof sketch while watching
OTTER fail. Sometimes it was necessary to backtrack and ask OTTER to prove a
simpler theorem first. Further, if OTTER obtained a proof that was longer or less
elegant than my hand proof, I would tinker with the settings for several more runs
until it obtained my proof.

The continuum between proof finder and proof verifier is largely measured by the

AUTOMATED DEDUCTION IN NBG SET THEORY 113

degree of user guidance supplied to the prover. Almost all my heuristics and para-
meter settings are or can be made automatic, except for the frequent need to supply
additional weighting templates. When such additional templates are necessary, I call
the proof semiautomatic.

Of course, if we are asking OTTER to act solely as a proof verifier, we can
automatically supply low weights to all terms appearing in the proof outline, and
expect that OTTER will then normally find the full proof. Remember also that even
when the user supplies weights in advance, OTTER must still proceed without further
guidance to generate proofs requiring up to about 30 deduction steps.

Thus we may say that the main obstacle to OTTER acting as a fully automatic
proof finder in set theory is automation of the method of selecting weights. Wos [22]
presents this as Problem 27. It is closely related to the problem of automatically
determining which of a large body of previously proved theorems are most relevant
to the proof of the theorem at hand.

12. Proof of Cantor's Theorem

The next two sections contain several OTTER proofs. The proof traces show only
the axioms and the deduction steps that actually contribute to the proof. For example,
in the proof immediately below, 352 previously proved theorems were loaded but only
8 used in the proof. There were at least 269 retained conclusions, but only 8 of these
contributed to the proof. While I do not turn on binary resolution as an option,
OTTER uses binary resolution to obtain the final unit conflict.

I now prove Cantor's theorem that there can be no function mapping a set onto
its power set. I first define the Cantor class by

cantor(x) = D(x) n diag((inverse(E)ox)) ,

which can be simplifed to

cantor(x) = D(x) ~ ~ D ((E n x)).

I have previously proved the membership conditions 350-352 below of the Cantor
class.

Theorem (CA4) S/NGVAL(x), (D(x) �9 V), (P(D(x)) ~ R(x)) ~ .

Axioms and Previously Proven Theorems:

2 (uex) , (x c y) --, (uey) .
266 (y �9 R(z)) - , (dora(z, V, y) ~ O(z)).
289 (z e V), (z c x) - . (z e P(x)).
301 (y e V), (x c_ y) --, (x e V).
333 (y �9 R(z)), SINGVAL(z) ~ ((z' dora(z, V,)1)) = y).
350 --, (cantor(x) c_ D(x)).
351 (z E cantor(xr)), (z �9 (xr' z)) --,.
352 (z �9 D(xr)) ~ (z F. (xr ' z)), (z E cantor(xr)).

Negation of Theorem:

353 --, SlNGVAL(f).

114 ART QUAIFE

354 -- , (P(D(f)) c_ R(O).
355 --* (D(O E V).

T h e Proof:

432 ~ (cantor(O F_ V)
456 -- , (cantor(O E P(D(O))
554 ---, (cantor(f) ~ R(O)
586 -~ ((f ' dom(f, V, cantor(O)) = cantor(O)
5 9 0 -- . (dom(f, V, cantor(O) ~ D(O)
696 ~ (dorn(f, V, cantor(O) ~ cantor(O)
6 9 7 (dom(f, V, cantor(f)) E cantor(f)) --.
7 0 0 ---

[ur, 355, 301,350].
[ur, 432, 289, 350].
[ur, 458, 2, 354].
[ur, 554, 333, 353].
[ur, 554, 266].
[para..from, 586, 352, unit_del, 590].
[para_from, 586, 351].
[binary, 696, 697].

This proof required 10.95 seconds on a VAX 8800.
Could OTTER reinvent the diagonal argument? It could certainly construct the

Cantor class 'on the fly', not requiring my previous definition. But it may be too much
to expect OTTER to prove its membership conditions 350-352 while trying to prove
this theorem. Nonetheless, given a class with these membership conditions, OTTER
is able to polish off the proof in a sprightly and natural manner.

13. Proof that the Composition of Homomorphisms is a Homomorphism

Boyer et al. offer this theorem as a challenge problem. They then provide a sequence
of 27 lemmas that lead to its proof, together with hand-guided proofs of the lemmas.

It is clear that one could not obtain most of their proofs, as presented, by a standard
resolution theorem prover using hyperresolution and/or UR-resolution. Here is one
line in their proof of Lemma 18, using my notation:

(flZb ~ V), ((f2b, x) 6 (V x V)), (lst((f2b, x)) = fl7b),

((f2b, x) ~ V), (f2b ~ V), (x ~ V), (f3b ~ V), ((f3b, x) ~ V) ~ ,

where f2b, f3b, and f l 7b are abbreviations for other complex terms.
Even using binary resolution, this complex clause would never automatically move

to the top of the set of support to be considered again. Nonetheless, I have been able
to obtain semiautomatic proofs of the lemmas and of the theorem.

The most difficult of the lemma proofs they present is, in my notation:

Lemma 18: (R(x) ~_ D(y)) -* (O(x) = D(yox))).

Their hand-guided proof requires 25 reference theorems, 2 clauses for the denial of the
theorem, 65 lines of deduction, and 12 lines of abbreviations, for a total of 94 lines.

] will prove this theorem in two parts, showing inclusion in both directions. We do
not need the hypothesis of the theorem for the easier direction. Because of the deep
nesting of terms that occurs, I will also introduce abbreviations into OTTER's proof.
I produced these abbreviations by hand after OTTER obtained the unabbreviated
proof.

Theorem (CO6) -4 (O((y o x)) c_ O(x)).

A b b r e v i a t i o n s :

notsub = notsub(D((g o O), D(f))

AUTOMATED DEDUCTION IN NBG SET THEORY 115

ran = ran((g o O, notsub, V)
dora = dom(g, (f " {notsub)}. ran)

Axioms and Previously Proven Theorems:

3 ~ (notsub(x, y) �9 x), (x c y).
4 (notsub(x, y) e y) --, (x C y).

261 (x �9 D(z)) --, (<x, ran(z, x, V) > ~ z).
262 (<x, y> �9 (V x V)), (<x, y> E z) --, (x e D(z)).
342 (<l l , v> �9 (xf o YO) ---' (<u, dom(xf, (yf = {u}), v) > ~ yf).
343 (<u, v> E (xf o yf)) ~ (<u, dom(xf, O/f " {u}), v)> �9 (V • V)).

Negation of Theorem:

350 (D((g o t)) c D(I)) - . .

The Proof:

434 (notsub �9 D(t')) --.
435 ---, (notsub e D((g o f)))
440 --, (<notsub, ran> e (g o O)
454 -. (<notsub, d o m > E (Vx V))
455 --, (<notsub, dom> e t)
577 --. (notsub E D(f))
590

[ur, 350, 4].
[ur, 350, 3].
[ur, 435, 261].
[ur, 440, 343].
[ur, 440, 342].
[ur, 455, 262, 454].
[binary, 577, 434].

This proof required 10.89 seconds on a VAX 8800.

Theorem (C09) (R(x) c__ D(y)) --. (D(x) c_ D((y o x))).

Abbreviations:

notsub = notsub(D(f), D((g o t))).
ran = ran(f, nots//b, V).
ranran = ran(g, ran, V).

Axioms and Previously Proven Theorems:

2 (u � 9 (xc__y) .-, (u � 9
3 .-, (notsub(x, y) �9 x), (x c y).
4 (notsub(x, y) e y) --* (X C y).

92 (z �9 (yr o xr)) --. (zE(VxV)) .
259 (x �9 D(z)) --. (<x, ran(z, x, V)> �9 (V x V)).
260 (x ~ D(z)) --. (<x, ran(z, x, V)> e. z).
261 (<x, y> e. (V x V)), (<x, y> e Z) --* (X e D(z)).
267 (x e D(z)) ~ (ran(z, x, V) e R(z)).
340 (<x, y> �9 (V x V)), (<y, z> �9 (V x V)), (<x, y> �9 xr), (<y, z> �9 yr) ~ (<x, z> E (yr o xr)).

Negation of Theorem:

347 --, (R(f) c_ D(g)).
346 (O(O C D((g o O)) -- '.

The Proof:

432 (notsub �9 D((g o f))) --,
433 - . (notsub e. D(f))
437 --. (ran �9 R(f))
438 --, (<notsub, ran> �9 f)
439 --, (<notsub, ran> �9 (Vx V))
469 - , (ran �9 D(g))

[ur, 348, 4],
[ur, 346, 3].
[ur, 433, 267].
[ur, 433, 260].
[ur, 433, 25g].
[ur, 437, 2, 347].

116

577 ---. (<ran, ranran> E g)
576 --. (<ran, ranran> e (V x V))
671 - , (<notsub, ranran> e (go f))
791 -., (<notsub, ranran> E (Vx tO)
873 ---, (notsub E D ((g o f)))
880 - ,

[ur, 469, 260].
[ur, 469, 259].
[ur, 578, 340, 438, 577, 439].
[ur, 671, 92].
[ur, 791,261,671].
[binary, 873, 432].

ART QUAIFE

This proof required 20.56 seconds on a VAX 8800.
Even if we double-count the clauses that are common to the two proofs, the two

theorems require 6 lines of abbreviation, 15 reference theorems, 3 clauses for the
negations of the theorems, and 19 lines of deduction, for a total of 43 lines. This is
less than half the length of the hand proof of Boyer et al., the number of deduction
lines is less than one third, and each deduced clause is a unit. While some of the saving
is due to splitting the theorem in half, most of it is due to better clauses. Furthermore,
OTTER's two proofs are precisely the proofs that I produced by hand, so I consider

them very natural.
In addition to my usual weighting heuristics described above, to obtain these proofs

I used the templates:

weight(dom(1, 1, 1), -2) .

weight(ran(l, 1, 1), -2) .

weight((l, 1), - 1).

weight((1 "1), - 1).

weight({1}, 0).

As remarked above, use of these templates makes the proofs less than fully automatic.
However, a user would easily intuit that these functors will be needed in the proof,
and thus assign them low weights.

Lemma 19 of Boyer et aL, slightly restated, is that the composition of single-valued
classes is single-valued. Their definition of single-valued is the natural one (see
(SVI)-(SV3) in Appendix 2), but it generates three Skolem functors. And their
hand-guided proof requires 77 lines. ,

I avoided the Skolem functors by defining

SINGVAL(x) ~ (xo inverse(x) ~_ I),

and this definition permits an elegant proof of their Lemma 19 using the relational
calculus.

Theorem ($V6) S/NGVAL(x), SINGVAL(y) --. S/NGVAL((y o x)).

Axioms and Previously Proven Theorems:

64 S/NGVAL(x) --. ((x o inverse(x)) ~ I).
65 ((x o inverse(x)) c I) - . SINGVAL(x).
97 (xc_y), (y ~ z) --. (x cz) .

305 ~ (((xr o yr) o zr) = (xr o (yr o zr))).
310 (xr c_ l) - . ((zr o (xr o ur)) E (zr o ur)).
311 ~ (inverse((xr o yr)) = (inverse(w) o inverse(xr))).

AUTOMATED DEDUCTION IN NBG SET THEORY 1 17

Negation of Theorem:

375 SINGVAL((g o f)) -+.
376 ---, SINGVAL(f).
377 ~ SlNGVAL(g).

The Proof:

456 (((g o 19 o inverse((g o f))) ~ 0
457 ~ ((f o inverse(f)) ~ 0
458 ~ ((g o inverse(g)) c_ 0
473 (((g o f) o (inverse(f) o inverse(g))) ~ I)
538 (((g o 19 o (inverse(f) o inverse(g))) c_ (g o inverse(g))) --,
660 ((g o (f o (inverse(f) o inverse(g)))) c_ (g o inverse(g))) --,
839 ((g o ((f o inverse(f)) o inverse(g))) ~ (g o inverse(g))) --.

1051 ((f o inverse(f)) c I) -~
1060 --,

[ur, 375, 65].
[ur. 376, 64].
[ur, 377, 64].
[para_into, 311,456].
[ur, 473, 97, 458].
[para_into, 305, 538].
[para_into, 305, 660].
[ur, 839, 310].
[binary, 1051,457].

This proof required 19.09 seconds on a VAX 8800.

Theorem (HO1) HOM(xhl . xf l , xg l) , HOM(xh2, xg l , xg2) -~ HOM((xh2 o xhl) , xft, xg2).

AbbreviatLons.

n l = nothoml ((h2 o h l) , f l , g2)
n2 = nothom2((h2 o h l) , f l , g2)

Axioms and Previously Proven Theorems:

67 FUNCTION(d) --, SlNGVAL(d).
86 COMPATIBLE(xh, xf, xg) ~ FUNCTION(xh).
90 HOM(xh, xf, xg) ~ OPERATION(d).
91 HOM(xh, xf, xg) -., OPERATION(xg).
92 HOM(xh, xf, xg) --, COMPATIBLE(xh, xf, xg).
93 (<x, y> e O(d)), HOM(xh, xl, xg)

--. ((xg ' <(xh 'x) , (x h ' y) >) = (xh ' (xf ' <x, y>))) .
94 COMPATIBLE(xh, xf, xg), OPERATION(d), OPERATION(xg)

-~ (<nothoml (xh , xf, xg), nothom2(xh, xf, xg)> E D(d)), HOM(xh, xf, xg).
95 ((xg ' <(xh ' nothoml(xh, xf, xg)), (xh ' nothom2(xh, xf, xg))>) =

(xh " (xf ' <nothoml (xh , xf, xg), nothom2(xh, xf, xg)>))) ,
COMPATIBLE(xh, x'f, xg), OPERATION(d), OPERATION(xg) --, HOM(xh, xf, xg).

228 (< u , v > ~ (x x y)) --. (u~x) .
229 (<u, v> ~ (x x y)) -~ (v ~ y).
373 (x E D((yt o d))) , SINGVAL(d) ---, (((yf o d) ' x) = (yf" (xf" x))).
393 COMPATIBLE(xh, xf, xg), OPERATION(d) --, ((D(xh) x D(xh)) = D(d)).
396 (<x, y> ~ (D(xh) x D(xh))), COMPATIBLE(xh, xf, xg), OPERATION(d)

((x l ' <x, y>) E D(xh)).
397 (<x, y> e (D(xh) x D(xh))), COMPATIBLE(xh, xf, xg) ---* (<(xh" x), (xh ' y)> E D(xg)).
398 COMPATIBLE(xhl , xf l , xg l) , COMPATIBLE(xh2, xg l , xg2)

COMPATIBLE((xh2 o xhl) , xf l , xg2).

Negation of Theorem:

399 HOM((h2 o h l) , f l , g2) 4 .
400 --, HOM(h l , f l , g l) .
401 --, HOM(h2, g l , g2).

The Proof.

477 ~ COMPATIBLE(hi , f l , g l) [ur, 400, 92].
479 - , OPERATION(f1) [ur, 400, 90].

118

495 --, COMPATIBLE(h2, g l , g2)
496-- , OPERATION(g2)
512 ..-, ((O(hl) x O(h l)) = D(f l))
513 -... FUNCTION (h 1)
525 .--. SINGVAL(hl)
533 --., COMPATIBLE((h2 o h l) , f l , g2)

ART QUAIFE

[ur, 401,92].
[ur, 401,91].
[ur, 477, 393, 479].
[ur, 477, 86].
[ur, 513, 67].
[ur, 495,398,477],

589 --. ((D((h2 o h l)) x O((h2 o h l))) = D(f l)) [ur, 533, 393, 479].
590 ((g2 ' <((172 o h l) ' n l) , ((h2 o h l) ' n2)>) = ((h2 o h l) ' (f l ' < n l , n2>))) .-,

[ur, 533, 95, 479, 496, 399].

701 --,

738---,

591 -.-, (< n l , n 2 > ~ D(f l)) [ur, 533, 94, 479, 496, 399].
597 --. ((g l " < (h l ' n l) , (h l ' n2)>) = (h l ' (f l " < n l , n2>))) [ur, 591,93, 400].
600 --, (< n l , n 2 > E (D((h2 o h l)) x D((h2 o h l)))) [para into, 589, 591].
601 ~ (< n l , n 2 > E (D(h l) x D(h l))) [para_into, 512, 591].
810 --, ((f l " < n l , n 2 >) ~ D((h2 o h l))) [ur, 600, 396, 533, 479].
611 --, (n2 ~ D((h2 o h l))) [ur, 600, 229].
612 --. (n l ~ O((h2 o h l))) [ur, 600, 228].
616 - , (< (h l " n l) , (h i ' n2)> ~ D(g l)) [ur, 601,397, 477].
639 - . (((h2 o h l) ' (f1 ' < n l , n2>)) = (h2 ' (h l ' (f l ' < n l , n2>))))

[ur, 61 O, 373, 525].
646 --, (((h2 o h l) ' n2) = (h2 ' (h l ' n2))) [ur, 611,373, 525].
652 --, (((172 o h l) ' n l) = (h2 ' (h l ' n l))) [ur, 612, 373, 525].
660 ---, ((g2 ' < (h 2 ' (h l ' n l)) , (h2" (171' n2))>) =

(h2 ' (g l ' < (h l ' n l) , (h l ' n2)>)))
[ur, 616, 93, 401].

((h2 ' (g l ' < (h i ' n 1) , (h i ' n 2) >)) = ((h2 o h l) ' (f l ' < n l , n2>)))
[para into, 597, 639].

((g2" <((h2 o h l) " n l) , (h2" (h l ' n2))>) =
(h2" (g l " <(171" n l) , (h l ' n2)>)))

[para into, 652, 660].
774 - , ((g2 ' <((h2 o h l) ' n l) , ((h2 o h l) ' n2)>) =

(172' (g l ' < (h l ' n l) , (171' n2)>)))
[para into, 646, 738].

805 ~ ((g2 ' <((h2 o h l) ' n l) , ((h2 o h l) ' n2)>) = ((h2 o h l) ' (f1 ' <n l , n2>)))
[para into, 701,774].

806 --. [binary, 805, 590].

This proof required 157.89 seconds on a VAX 8800.
In contrast to all other proofs I have obtained of theorems of set theory, this one

is rather unsatisfactory in that I had to use very many weight templates to put OTTER
on the right track. Without these weights, it appears that OTTER version 1.01 would
not have obtained this proof within acceptable limits of computer time. Because of the
substantial hints given to OTTER, this particular proof comes closer to a verification
than a proof discovery. But even with these initial hints, OTTER had to make it
through the deduction steps shown without further interaction.

Normally in a proof requiring equality substitutions, I want to use the back
demodulation option. However, I had to turn this option off to obtain this proof.
There are various equations relating the domains, such as line 512. If we use this to
canonicalize the domains, then line 601 will no longer unify with line 397.

For comparison, I reran Theorem (HO1) with only the 18 'Axioms and Previously
Proven Theorems' and 'Negation of Theorem' clauses loaded. I eliminated all

weights, except the high weight on variables. OTTER found the proof in 4.62 seconds!
This is pleasantly surprising, considering the deep nesting of terms that occurs in the
derived clauses. It illustrates my claim that the frequent need to set weights is due to
my practice of loading all previously proved theorems in each proof run. If the user

AUTOMATED DEDUCTION IN NBG SET THEORY 119

applies his wisdom to load only the reference theorems needed for the proof, the
problem of obtaining automated proofs is trivialized by at least an order of
magnitude.

14. Developing a Unification Algorithm Appropriate to NBG Set Theory

Using Robinson's standard unification algorithm, the term ~ (x) will not unify with,
for example, an individual constant c. However, I have recently built the law
~(~(x)) = x into OTTER's (Robinson's) unification algorithm, which permits
these terms to unify with the substitution x = ~,(c). In very limited testing on
"natural" theorems, this improved algorithm has not produced shorter proofs.

Commutative unification, to treat '~ ' , 'c~', and '=" among others, would be a
welcome addition to OTTER. Are there other laws of NBG set theory that can
profitably be incorporated into the unification algorithm? Would use of a more
general unification algorithm permit a resolution theorem prover to reinvent Cantor's
diagonal argument?

Bailin [1] has modifed Huet's type theory unification algorithm to provide a
semidecision algorithm for the unifiability of two formulas of ZF set theory modulo
a sequence of contractions (x ~ { y: ~b(y)}) ~ qS(x). His work does not directly apply
to NBG set theory, since Axioms BI-B8 have eliminated the need for the set builder

and the doubly-recursive definition of terms and formulas. Is there any part of his
algorithm that has a useful analog in NBG set theory?

15. Conclusion

No one shall be able to drive us from the paradise that Cantor created for us.

David Hilbert

Boyer et al. paint a somewhat pessimistic picture of the possibility of developing set
theory (at least using their clauses) with current theorem provers. My experience has
been much more positive. With my revised clausal form of the axiom system, along
with the heuristics I use, theorems in elementary set theory can be proved semi-
automatically without great difficulty. There is no apparent obstacle to the develop-
ment of set theory through considerably more difficult theorems. In particular the
other challenge problems presented in their paper should be within near reach (except
the two unsolved problems, which will take a little longer).

Of course, there is a substantial gap in difficulty between reproving known theorems
and attacking open problems on the frontiers of research. But we are witnessing a
steady increase in the intelligence of theorem proving software. More dramatically,
the number of computations per dollar obtainable by computer hardware is approxi-
mately doubling every two years. Moravec [14] extrapolates that $1000 personal
computers with the computational power of the human brain should be available by
year 2030. The time will come when such crushers as Riemann's hypothesis and

120 ART QUAIFE

Goldbach's conjecture will be fair game for automated reasoning programs. For those
of us who arrange to stick around, endless fun awaits us in the automated develop-
ment and eventual enrichment of the corpus of mathematics.

A c k n o w l e d g e m e n t

I thank J. W. Addison, Robert Boyer, and two anonymous referees for encourage-
ment and many useful comments on earlier drafts of this paper.

Appendix 1. Introduct ion to Reso lut ion Theorem Proving

A1. INTRODUCTION

I will provide a brief overview of the principal methods used in resolution theorem
proving, with particular reference to the system OTTER. This appendix is expository,
and no proofs are provided. For further discussion, the reader may consult [21, 10,

5, 9 and 15].

A2. CLAUSES

Many computer implementations of first-order logic use the clausal form, which is an
equivalent formulation of this logic. I will use the following language conventions in
describing clausal form.

Names are arbitrary strings over the uppercase and lowercase English alphabet.
Names beginning with lower case 'u' through 'z' are variables. All other names are
either individual constant symbols, function symbols, or relation symbols, depending
upon the context.

Terms are defined inductively in the usual way, as the least class such that

(1) A variable or an individual constant symbol is a term.
(2) I f f is a function symbol and h, t 2 , . . . , t, are terms, then f (t l , h , . . . , t,)

is a term.

I f R is a relation symbol and fi, t2 , t, are terms, then R(f i , h , t ,) is an
atomic formula.

If A~ A,,, B~ B, are atomic formulas, then A, & . . . & Am
B a v . . . v B, is a clause. I will always abbreviate this clause as A j Am

B~ B,, so that commas appearing before the conditional sign stand for &, while
those following the conditional sign stand for v . ! will use the conditional sign ' ~ '
in clauses (sequents), and reserve '=~' for use in ordinary formulas of first-order logic.

Special cases of clauses:

m = 0 (no hypotheses):

B z B. iff (Bj v . . . v B.)

AUTOMATED DEDUCTION IN NBG SET THEORY

n = 0 (no conclusions):

Al A n ~ iff - a (A l & . . . & A m)

where with rn = 1, we see how negations are represented.
m = 0 and n = 0 (no hypotheses or conclusions):

is the null clause, which is false.

n = 0 or n = 1 (Horn clause):

Ai A m ~ [B]

which are the rules used in the logic programming language Prolog.

121

A3. CONVERSION TO CLAUSAL FORM

It is often necessary to convert formulas written in standard frst-order notation into
clausal form. I have written a Prolog program (using many routines supplied by
William McCune) to do this conversion. The principal steps taken by my program are:

(1) Verify that the input formula is well-formed.

(2) Replace the formula by its universal closure.
(3) Eliminate ~ and r in favor of--7, v and &.
(4) Drive all negation signs in to the atomic formulas.

(5) Optimize the placement of quantifiers, to reduce the number and arity of the
Skolem functions introduced in (6).

(6) Replace existentially quantified variables by Skolem terms.
(7) Delete universal quantifiers.

(8) Place the matrix in conjunctive normal form (a conjunction of clauses).
(9) Delete any clause that is a tautology.

(10) Check whether any clause can be subsumed by a simpler factor.
(11) Delete any clause that is subsumed by another clause.
(12) Write each clause as a sequent.

Every step of this procedure produces output that is logically equivalent to the input
- except for step (6), which only preserves satisfiability. Thus the universal closure of
the resulting conjunction of clauses is satisfiable iff the universal closure of the original
formula is satisfiable.

The skeleton of this procedure may be found in many texts, such as [9]. OTTER
also includes a module to carry out most of the above steps.

A4. CUT RULE

We let Greek capitals F, E, O, | stand for finite lists of atomic formulas, separated

122 ART QUAIFE

by commas. The cut rule in Gentzen systems is the propositional inference rule

F ~ Z , R

R , r 1 7 4

F , ~ ~ Z , |

This rule is a generalization of the chain rule of inference.

AS. SUBSTITUTIONS

An expression is either a term, a list of terms, an atomic formula, or a list of atomic
formulas. A finite set rr = {(v~, ti) , (v , , t ,)} of ordered pairs is a substitution
iff every v, is a variable, every t, is a term, and the variables are distinct. Conventionally

'e' denotes the null substitution.
If a is a substitution and E is an expression, then Ea, the instance of E by a, is the

expression obtained from E by simultaneously replacing each occurrence of the

variable v, by t,, for i = 1 , n.
I f # = {(u~, s I) , . . . , (Urn, Sin) } is another substitution, then the composition #a

of p and a is the substitution obtained from the set

{ (U l , SIO") (Urn, S m ~) , (V l , t l) , . . . , (V n , t n) }

by deleting any pair (u,, s,a) for which u, = s,a, and deleting any pair (%, tj) for

which v, �9 {ul , u,,}.
For any substitutions #, a, r and expression E, we have the following:

0"~ ~--- ~0" ~ (7,

(zp)~ = E(~a) ,

(~a)~ = ~(a~).

A6. U N I F I C A T I O N A L G O R I T H M

The unification algorithm is a method for finding the most general substitution that
will make two expressions identical, if any such substitution exists. If a most general
unifier exists, it is unique up to a renaming of variables. The method is similar in spirit
to the solution of a system of linear equations by the successive elimination of variables.

We let unify(E1, E2, rr) mean that the substitution a is a most general unifier of the
expressions E1 and E2. Computer scientists often specify algorithms in pseudo-
Pascal. It is an embarassment that such procedural specifications are even used in
works on logic programming! Since I endorse the thesis that computation is con-
trolled deduction, ! will instead specify the algorithm for computing unify in pseudo-

Prolog.

AUTOMATED DEDUCTION IN NBG SET THEORY

unify(VorC, VorC, ~) ,--
VorC is a variable or an individual constant.

unify(V, T, {<V, T> }) , -
V is a variable, T is a term,
V does not occur in 7".

unify(T, V, {<V, T> }) .--
V is a variable, T is a term,
V does not occur in T.

unify(T1, 72, O)
T1 =.. [Funct I Args l] , T2 =.. [Funct [Args2],
unify_list(Arcjsl, Args2, o).

unify.Jist([], [1, ~).
unify_list([T1 I rls], [7"2 I r2s], (p o)) .-

unify(T1, 1"2, 12),
uni~/_tist((Tls p), (T2s p), o).

123

The principal theorem concerning this algorithm is that it always terminates, and if
it terminates in success, the output a is indeed a most general unifier of E l and E2.
We can even use the above two procedures to find the most general unifier of any finite
list [El E,] of unifiable expressions, by calling unify list([E~ E , _ j ,
[E 2 e.], ~).

A7. BINARY RESOLUTION

For each inference rule described below, the premises of the inference are first
standardized apart by renaming variables so that they have no variable in common.

Combining the cut rule with the unification algorithm, we obtain the binary
resolution inference rule.

Almost General Case:

F "-* Z, R

R ' , d o - ~ |

(F, do ~ Z, | a,

where R and R' are unifiable with most general unifier a.

In the fully general case, we allow a to unify R, R', and other literals from Y~ and do,
which are also deleted from the conclusion. If we do not permit such additional
unifications, then we also must use factoring, a separate rule of inference, to obtain
refutation completeness.

The intuitive importance of using the unification algorithm while computing resol-
vents is that it only instantiates variables to the minimum degree necessary, thus
keeping deduced information in the most general form possible. The algorithm makes
intelligent substitutions for variables, as opposed to the blind substitutions used in
early theorem provers based upon Herbrand's theorem.

Binary resolution is a refutation-complete rule of inference for first-order logic
expressed in clausal form. By this we mean that if a set of clauses is unsatisfiable, then

124 ART QUAIFE

by a series of applications of binary resolution to the clauses it is possible to derive
the null clause - signifying a contradiction. Thus in the use of binary resolution (or
other resolution rules discussed below), we convert the negation of the proposed
theorem to clausal form, and attempt to derive the null clause.

I never use binary resolution, since it generates far too much 'junk' to use regularly
in automated proofs. Usually the binary resolvent is a longer clause than either of the
input clauses. Deriving longer clauses is heading in the wrong direction from trying
to derive the null clause, that is from proving the theorem. The reasoning steps taken
by binary resolution are too small. Binary resolution deserves a large historical
accolade, but today it is of interest mainly as the basis for more powerful procedures
such as hyperresolution and UR-resolution.

A8. HYPERRESOLUTION

Special Case: Forward chaining from a Horn clause.

A1 , A,. ~ B

-~ A~

- , A; .

---) Bf f ,

where a is the most general unifier making A,tr = A~a for all i.

Almost General Case: Non-Horn clause nucleus.

A1 Am --) (~

-~ 01 , A'I

r

| Am

(O , O i , �9 �9 � 9 O m) a .

The almost general case is the same as the special case, except for the extra disjuncts
that tag along for the ride. Note that every input clause but one is a positive clause,
and the conclusion is a positive clause.

In the fully general case, just as with binary resolution, we allow tr also to unify
other literals from the | which are also deleted from the conclusion.

Hyperresolution (like binary resolution) is a refutation-complete rule of inference.

A9. UR-RESOLUTION

The disjunctions produced as output of hyperresolution are waffling conclusions.

AUTOMATED DEDUCTION IN NBG SET THEORY 125

Deriving further clauses from such a conclusion means treating several cases
simultaneously, when it would usually be more efficient to treat them serially. But
OTTER lacks a case-analysis mechanism.

Intuitively speaking, unit clauses are the powerhouses of an automated reasoning
system. They assert that something definitely is (or is not) the case. A unit clause is
just one literal away from the null clause - proof of the theorem.

UR-resolution (unit-resulting resolution) is to unit clauses as hyperresolution is to
positive clauses.

Ai A., ~ B 1 B.

A t
m

B~ --,

B.a,

where tr is the most general unifier making A,tr = A~r for all i and B,a = B;tr for
i # n .

Every literal but one (which, unlike the illustration, does not have to be the last one,
and can be positive or negative) is cancelled from the nucleus under a most general
unifier tr. So the conclusion is another unit clause.

UR-resolution is refutation complete for a system of assumptions all of which are
Horn clauses. (It is a very useful rule in any case.)

Both hyperresolution and UR-resolution are substantial improvements over binary
resolution, in that they make larger inference steps in one fell swoop, without saving
the intermediate results to further clog up the clause space. They are effective steps in
fighting the combinatorial explosion.

AI0. EQUALITY REASONING

The equality relation is one of the most important relations used in mathematical
reasoning. Its principal logical feature is that one can substitute equals for equals in
any expression.

In the standard treatment of equality as an addition to first-order logic, we add
reflexivity, symmetry, and transtivity axioms, together with substitutivity axioms for
every function symbol and relation symbol in the system. While this treatment also
will work in an automated reasoning system, it is very slow and inefficient. Using these
axioms, several chaining steps are needed to carry out simple substitutions.

126 ART QUAIFE

Paramodulation

Paramodulation is a clausal equality inference rule that permits us to make equality
substitutions directly at the term level.

Let C[r] be a clause containing a term r at some designated position. If t is another
term, we let C[t] be the result of replacing this single designated occurrence of r by
r The paramodulation rule of inference is

C[r] ('into' clause)

F ~ (s = t), Z ('from' clause)

(r, c[t], ~) ~,

where a is the most general unifier of r and s. Note that C carries the sequent sign.

Paramodulation provides a logically complete treatment of equality, without the need
to add the special axioms mentioned above, except reflexivity.

Paramodulation, like binary resolution, has the potential to generate large amounts
of 'junk' that clogs up the clause space. This is particularly true if one allows the terms
r or s to be variables. But most of the theorems I prove are universal statements, in
which the clausal version of the denial of the theorem contains no free variables. In
such cases I also assign a high enough weight to variables so that all deduced clauses
containing variables will be discarded. Thus any proof obtained will be a ground
proof. This heuristic is quite successful in pruning the output of paramodulation to
a manageable set of more useful clauses.

Demodulation

Demodulators (rewrite rules, reductions) are positive unit equality clauses that are
used to simplify or canonicalize other expressions. A single demodulation occurs as
follows:

C[r]

--, (s = t)

c[t~],

where a is a substitution such that scr = r. Note that here we are using one-way
matching, rather than unification.

Normally, all demodulators in the system are applied to any newly derived clause until
it cannot be further simplifed. The derived clause is then discarded in favor of the
simplifed clause. OTTER also provides a back demodulation option, wherein newly
derived demodulators are used to simplify all clauses already in the system.

Use of equality simplifications is a powerful, fast, and particularly easy to under-
stand reasoning procedure. Knuth and Bendix [8] provided an algorithm for a class

AUTOMATED DEDUCTION IN NBG SET THEORY 127

of equational theories that permits the computation of a set of rewrite rules sufficient
to check the truth of every equation of the theory by requiring that equal terms reduce

to the same normal form. Following their seminal work, complete sets of reductions

have been found for a number of equational theories (see, for example, Section 6 of
this paper).

Lexical Ordering.

A demodulator --, (s = t) is lex-dependent iff s and t become identical when all

variables are replaced by the same symbol, say 0. An example of a lex-dependent
demodulator is ~ ((x + y) = (y + x)), which will loop if applied without restric-
tion. But one can use the lex command of OTTER to assign a lexical ordering on
function symbols and individual constants. This ordering induces a lexical ordering
on all terms. A lex-dependent demodulator is then applied only if it produces a
lexically smaller term.

Lexical ordering is also used to determine the order of deduced equality literals.
Normally the term of lowest weight is placed on the fight side of the equality. If both
terms have the same weight, the lexically smallest term is placed on the right side.

A11. OTHER STRATEGIES FOR FIGHTING THE COMBINATORIAL EXPLOSION

I will briefly summarize a few other significant strategies used by resolution theorem
provers.

Set-of-Support Strategy

As normally used, this strategy demands that each conclusion drawn be relevant to
the particular theorem we are trying to prove, by requiring that at least one of the
premise clauses of the inference have a clause from the theorem as an ancestor.

Subsumption

Clause A subsumes clause B if there exists a substitution cr such that Aa _c B. The

subsumption procedure discards any derived clause that is less general than another
clause already in the clause space.

Weighting

The default weight of a clause is just the sum of the number of individual variables,
individual constants, function symbols, and relation symbols it contains; connectives
are not counted. One can use weight templates to modify this default computation.
For example, the weight template weight(f (g(2), 3), 50) assigns weight (2. weight
of r) + (3 �9 weight of s) + 50 to the termf(g(r), s). We normally use weights in two

128 ART QUAIFE

ways: to discard any generated clause with weight beyond a specified maximum, and
to select the clause of smallest weight from the set of support as the next clause from
which to draw inferences.

AI2. RUNNING OTTER

The basic loop carried out by OTTER, as I normally use it, is in pseudo-Prolog:

proof
the null clause is derived.

proof
the set of support is empty, !, fail.

proof
the alotted resources are exceeded, !, fail.

proof
let the given clause be the clause of lowest weight in the set of support,

use the chosen rules of inference to derive all consequences of the given
clause and the axiom list (the given clause must participate in the inference),

process the derived clauses by demodulation, subsumption checks, etc.,

move the given clause to the axiom list, and add the processed derived
clauses to the set of support,

proof
Once I prove a theorem, ! add it to the axiom list or to the demodulator list so that
it may be used in the proof of further theorems.

Appendix 2. Theorems Proved

I only supply the first-order form of the theorem in a few cases where it is not obvious
from the clauses. Equality theorems preceded by '%' are not loaded with the axiom
list, but rather with the demodulator list. To save space, I have not provided that
separate list. The few theorems preceded by '% %' are subsumed by other theorems.

PARTIAL ORDER

(P01) Reflexivity.
- . (x ~ x) .

(P02) Antisymmetry is part of Axiom A-3.
%%(xcy), (ycx) --, (x=y) .

(P03) Transitivity.
(xc_y), (ycz) - , (xcz).

EQUALITY

(EQ1) Boyer et al.'s equality axiom.
vx(x = x).

-. (x =x).

AUTOMATED DEDUCTION IN NBG SET THEORY

(EQ2) Expanded equality definition.
.-, (x = y), (notsub(x, y) ~ x), (notsub(y, x) e y).

(notsub(x, y) E y) --. (x = y), (notsub(y, x) e y).
(notsub(y, x) E x) --, (x = y), (notsub(x, y) �9 x).
(notsub(x. y) �9 y), (notsub(y, x) e x) --. (x = y).

SPECIAL CLASSES

(sin) Lemma.
(F E (x o -(x)) --..

(SP2) Existence of 0 (null class).
3x vz(~(z e x)).

(z E O) .-~ .

(SP3) 0 is a subclass of every class.
- . (o c x) .
Corollary.
(x;O) --, (x = O) .

(SP4) Uniqueness of null class,
--, (z = 0), (notsub(z, O) E z).

(SP5) 0 is a set (follows from axiom of infinity).
- . (O e t o .

129

UNORDERED PAIRS

(UP1) Unordered pair is commutative.
--, ({x, y } = {y, x}).

(UP2) If one argument is a proper class, pair contains only the other,
- , ({x, x } C. {x, y}).

(y E V), ({x, y } = {X}).

(UP3) If both arguments are proper classes, pair is null.
- , ({x, y} = O), (X E tO, (F e V).

(UP4) Left cancellation for unordered pairs.
({x, y} = {x, z}), (<y, z > e (V x v)) - . (y = z).

(UPS) Right cancellation for unordered pairs.
({x, z} = Of, z}), (<x, y> E (V x tO) --, (x = y).

(UP6) Corollary to (A-4).
(x e V), ({x, v} = o) - . .
(y �9 tO, ({x, y } = o) - - . .

(UP7) If both members of a pair belong to a set, the pair is a subset.
(x ~ z), (y e z) --. ({x, y} c z).

SINGLETONS

(SS1) Every singleton is a set.
- . ({ x } e tO.

(SS2) A set belongs to its singleton.
(x ~ to - . (x e ~x}).
Corollary.
(x ~ tO, ({x} = o) - . .

130 ART QUAIFE

(SS3) Only x can belong to {x}.
(y e { x }) ~ (y = x).

(SS4) If x is not a set, {x} = 0.
-~ (x e tO, ({ x } = O).

(SS5) A singleton set is determined by its element.
({X} = {y}), (x ~- V) --* (x = y).
({ x } = {y }) , (y e V) -~ (x = y).

(SS6) Existence of memb.
vx(3u((u e V & x = {u}) v (-~ 3y(y e V & x = {y}) & u = x))).

(y e V) --., (memb({y}) e I/).
(y e V) .-., ({memb({y}) } = {y}).
--,, (memb(x) e 1/), (memb(x) = x).
--, ({memb(x)} = x), (mernb(x) = x).

(SS7) Uniqueness of memb of a singleton set.
Yx vu(((u e V) & x = {u}) =~ memb(x) = u).

(u e I/) --, (memb({u}) = u).

(SS8) Uniqueness of memb when x is not a singleton of a set.
vx vu((", 3y((y e I/) & x = {y}) & u = x) =~ memb(x) = u).

-~ (memb'(x) e V), (memb(x) = x).
- , ({memb'(x)} = x), (memb(x) = x).

(SS9) Corollary to (SSt).
({memb(x)} = x) --. (x e V).

(SS10).
({mernb(x)} = x), (y e x) --, (memb(x) = y).

(SS11).
(x e y) --. f i x } ~ y).

(ssl 2).
(x c_ 5 , }) -~ ({ y } = x), (x = O).

(SS13) A class contains 0, 1, or at least 2 members.
(notsub((-({notsub(x, 0)}) n x), O) F. (-({notsub(x, 0)}) n x)), ({notsub(x, 19)} = x), (x = 0).

Corollaries.
--, (notsub((~({notsub(x, 0)}) n x), O) E x), ({notsub(x, 0)} = x), (x = 0).

(notsub((~({notsub(x, 0)}) n x), O) = notsub(x, 19)) --, ({notsub(x, 0)} = x), (x = 0).

ORDERED PAIRS

(OP1) An ordered pair is a set.
- . (<x, y> e V).

(OP2) Members of ordered pair.
--. ({x} e <x, y>).
- , ({x, {y}} e <x, y>).

(OP3) Special cases.
- , ({{x}, {x, 0}} = <x, y>), (ye V),.
- . ({o, { { y } } } = < x , y >) , (x e V) .
--. ({0, {0}} = <x, y>), (x E V), (y e tO.

(OP4)-(OP5) An ordered pair uniquely determines its components.

AUTOMATED DEDUCTION IN NBG SET THEORY 131

(OP4).
%%(<w, x> = <y, z>), (w ~ V), (y ~ V) -~ (w = y).

(OP5).
% % (< w , x > = <y, z>) , (x ~ V), (z ~ V) -~ (x = z).

(OP6) Existence of 1st and 2nd.
Vx 3u 3v((<u, v> ~ (Vx V) & x = <u, v>) v

('~ 3)1 3z(<y, z> ~ (V x V) & x = <y, z>) & u = x & v = x)).

(<y, z> F_ (Vx V)) ~ (< l s t (< y , z>) , 2nd(<y, z >) > c= (Vx V)).
(<y, z> E (V x V)) -~ (< ls t (<y , z>), 2nd(<y, z >) > = <y, z>).

---, (<1st(x), 2nd(x)> ~. (Vx V)), (1st(x) = x).
---, (< Is t (x) , 2nd(x)> ~. (Vx V)), (2nd(x) = x).
-~ (<1st(x), 2nd(x)> = x), (1st(x) = x).
- , (< 1st(x), 2nd(x) > = x), (2nd(x) = x).

(OP7) Uniqueness of 1st and 2nd when x is an ordered pair of sets.
vx vu v ((< u , v> ~ (V x V) & x = <u, v>) =~ 1st(x) = u & 2nd(x) = v)

(<u, v> ~ (t / x V)) -~ (l s t (<u , v>) = u).
(<u, v> ~ (Vx V)) --, (2nd(<u, v>) = v).

(OP8) Uniqueness of 1st and 2nd when x is not an ordered pair of sets.
vx vu Yv((3 } /~ . ((<y , z> ~ (V x V)) & x = <y, z>) & u = x & v = x) v 1st(x) = u & 2nd(x) = v).

--, (< l s r (x) , 2nd ' (x)> ~ (V x V)), (1st(x) = x).
- , (< lst '(x), 2nd'(x) > F. (V x V)), (2nd(x) = x).
--, (< l s r (x) , 2nd ' (x)> = x), (1st(x) = x).
--, (< l s r (x) , 2nd ' (x)> = x), (2nd(x) = x).

(OP9) Corollaries to (OP1),
(<1st(x), 2nd(x)> = x) --, (x E V).

(OPIO) Improved version of (OP4).
(<w, x> = <y, z>), (w ~ v) -~ (w = y).
Corollaries.

(x ~ V), (l s t (<x , y >) = <x, y>) .
--, (x ~. V), (2nd(<x, y >) = <x, y>).

(0Pl l) Improved version of (OP5).
(< w , x > = <y, z>), (x~ V) -~ (x = z).
Corollaries.
--* (y E V), (l s t (<x , y>) = <x, y>) .
-~ (y ~ V), (2nd(<x, y >) = <x, y>) .

BOOLEAN ALGEBRA

INTERSECTION

(11) Associative law of intersection.
-* (((x n y) n z) = (x n (y n z))) .

02) Commutative law of intersection.
%-~ ((xny) = (ynx)) .

(13) Lexical ordering within associations,
% - . ((x n (y n z)) = (y n (x n z))) .

04) Intersection with O.
%-, ((O n x) = o).

132 ART QUAIFE

(15) V is an identity for intersection.
%-. ((V n x) = x).

(16); Idempotent law of intersection.
%--. ((x n x) = x).
Corollary.
% - , ((x n (x n y)) = (x n y)),

COMPLEMENT

(C1) Complement of complement.
% - . (~ (- (x)) = x),

(C2) Special cases.
% - (~(o) = v).
% - (-60 =o).

(C3) Intersection and union with complement.
% - . ((~(x) n x) = o).
%-, ((~(x) u x) = v).

(C4) DeMorgan's laws,
% .-+ (~((x u y)) = (- (x) n ~(y))).
% .-, (~((x n)1)) = (~(x) u ~(y))).

(C5) Uniqueness of complement.
((x u y) = V), ((x n y) = O) --, (- (x) = y).

UNION

(U1) Associative law of union.
- - (((x u y) u z) = (x u (y u z))) .

(U2) Commutative law of union
%--* ((x u y) = (y u x)).

(U3) Lexical ordering within associations.
%--, ((x u (y u z)) = (y u (x u z))).

(U4) 0 is identity for union.
% - . ((O u x) = x).

(U5) Union with V.
%--. ((V u x) = v).

(U6) Idempotent law of union.
%--. ((x u x) = x).
Corollary.
% - . ((x u (x u y)) = (xuy)) .

(U7) Members of union.
(xE (y u z)) ~ (XEF), (XEZ),
(x ~_ y) --* (X E (y u z)).
(X E Z) --. (x E (y u z)).

DISTRIBUTIVE LAWS

(DI) Intersection distributes over union.
%--., (((x n y) u (x n z)) = (x n (y u z))) ,
%-, (((x n z) u (y n z)) = ((x u y) n z)),

AUTOMATED DEDUCTION IN NBG SET THEORY

(D2) Union distributes over intersection.
-~ (((x u y) n (x u z)) = (x u (y n z))) .
- , (((xu z) n (y u z)) = ((x n y) nz)) .

(D3) Absorption for intersection.
--, ((x n (x u y)) = x).
Corollary.
- . ((x n (y n (x u z))) = (xny)) .

(D4) Absorption for union.
((x u (x n y)) = x).

Corollary.
-~ ((x u (y u (x n z))) = (x u y)).

(D5).
--, ((x u (-(x) n z)) = (x u z)).
Corollary.
- , ((x u fy u (- (x) n z))) = (x u (y u z))).
- , (((x n z) u (- (x) n (y nz))) = ((x n z) u (y nz))) .

(D6).
--, ((- (x) u (x n z)) = (- (x) u z)).

Corollary.
- , ((- (x) u (y u (x n z))) = (- (x) u (y u z))).

(D7).
--, (((- (x) n y) u (x n y)) = y).

133

SUBCLASSES

(SUl).
(x r --, ((x n y) = x) .

(su2).
((x n y) = x) --, (xc_y).

(su3).
(xc_y) .-, ((x u y) = y) .

(SU4).
((xuy) =y) - , (xc_y).

(su5).
(x c y) --, ((- (y) n x) = o).

(su6).
((- (y) n x) = 0) --, (x c_ y).

(suT).
(x c_ y) ..-, ((-(x) u y) = v).

(SUB).
((- (x) u y) = V) --, (x c y).

(su9).
(x c_ y) --, (~(y) c_ -(x)).

(suio).
(- (y) c_ -(x)) - , (x c_ y).

134

LATrlCE

(LA1) Upper and lower bounds.
- , (x r (x u y)).
.--, (y r (xuy)) .
--, ((x o y) r x).
.-, ((x n y) ~ y) .

(LA2.) Least upper and greatest lower bounds.
(x ~ z), (y ~ z) -~ ((x u y) ~ z).
(z r x), (z ; y) - . (z r (x n v)).

(LA3) Union and intersection are monotonic.
(xr -~ ((x u z) ~ (y u z)) .
(xr --, ((x n z) r (y n z)) .

CARTESIAN PRODUCT

(cm).
- . ((x x y) c_ (v • v)).
Corollary.
(u ~ x), (v ~ y) - . (<u, v > ~ (v • v)).

(CP2).
(< u , v > ~ (x • y)) --, (<v , u > ~ (y • x)) .

(CP3) Special cases.
%--. ((x • O) = o).
%-- . ((o •

(CP4).
- . ((x n (V x V)) c_ (D(x) x V)).

(CP5) x is monotonic.
(xc_y) .-, ((xxz) c_(yxZ)).
(y c_ z) .-, ((x x y) c_ (x x z)).
Corollaries.
--, ((x x Z) c_ ((x u y) x z)).
--, ((/ x z) c ((x u y) • z)).
--, ((x • y) c_ (x • (y u z))).

((x • z) c_ (x x (y u z))).
--, (((x n y) x z) c_ (x • z)).
--, (((x n y) • z) c_ O, • z)).
- . ((x ,, (/ n z)) c_ (x x y)).
--, ((x• (y n z)) c_ (x •

(CP6) x distributes over union.
%-, (((xxZ) u (yxZ)) = ((xu y) xZ)).
%-, (((x x y) u (x x Z)) = (x x (y u z))).

(CPT) x distributes over intersection.
Special case of (CPg).
%--, (((x x z) n (y x z)) = ((x n y) x z)).
%-- , (((x x y) n (x • z)) = (x • (y n z))).

(CPS) Lemma.
--, (((wxx) n (yxz)) c_ (wxz)) .

(CP9) Double distribution for intersection.
%-, (((w x x) n (y x z)) = ((w n y) x (x n z))).

(CPIO) Inverse of square.
% --, (inverse((xx x)) = (x • x)).

ART QUAIFE

AUTOMATED DEDUCTION IN NBG SET THEORY

(CPIO)
((u • v)
((u x v)

Left cancellation law.
= (w x x)) -~ (u = o), (v = x).
= (w • x)) -~ (w = O), (v = x).

(CP11)
((u x v)
((u x v)

Right cancellation law.
= (w x x)) --. (v = O), (u = w).
= (w • x)) --. (x = O), (u = w).

(CP12) Corollary.
((u • u) = (w x w)) -~ (u = w) .

135

RESTRICTION

(RS1)-(RS4) Alternate definition of restrict.

(RSl).
(<u, v > E restrict(xr, x, y)) -~ (<u, v > E xr).

(RS2).
(<u, v > ~ restrict(xr, x, y)) --, (u ~ x).

(RS3).
(<u, v > ~ restrict(xr, x, y)) -~ (v ~ y).

(RS4).
(<u, v> ~ xr), (<u, v> ~ (x x y)) --. (<u, v> ~ restrict(xr, x, y)).

(RS5).
% --, (restrict(restrict(xf, x l , y l) , x2, y2) = restrict(xf, (x l n x2), (}/1 n y2))).

(RS6) Special cases.
% --, (restrict(V, x, y) = (x x y)).
% ~ (restrict(O, x, y) = 0).
% --, (restrict(xr, O, y) = 0).
%- - , (restrict(xr, x, O) = 0).

(RS7) restr ict preserves intersections.
--, ((restr ict(xr l , x l , y l) n restrict(xr2, x2, y2)) = restr ict((xr l nx r2) , (x l n x2), (y l n y2))).

(RS8).
.-. ((restr ict(xr l , x, y) u restrict(xr2, x, y)) = restr ict((xr l u xr2), x, y)).

Corollary.
--, ((restrict(x, y, y) u inverse(restrict(x, y, y))) = restrict((x u inverse(x)), y, y)).

(RS9) Restriction of E.
(y ~ V) --, (restrict(E, x, {y}) = (x n y)).
- . (restrict(x, y, z) ~ x).
--, (restrict(x, y, z) c_ (y x z)).

(RS10).
--, (restrict(x, y, z) c_ x).
--, (restrict(x, y, z) ~ (y x z)).

(RS11) restr ict is monotonic.
(x l c_ x2) --, (restrict(x1, y, z) c_ restrict(x2, y, z)).
0 / I ~ y2) --. (restrict(x, y l , z) c_ restrict(x, y2, z)).
(z l ~ z2) --, (restrict(x, y, z l) c_ restrict(x, y, z2)).

(RS12).
% ~ (restrict((x x y), x, y) = (x x y)).

136 ART QUAIFE

DOMAIN

(DO1) Alternate version of Axiom B-4.
vz vxr((z e D(xr)) r (z e V) & 3y((y e V) & (<z, y> Exr))).

(x ~ O(xr)) --. (<x, ran(xr, x, v)> ~ (v x v)).
(x e D(xr)) - . (<x, ran(xr, x, V) > ~ xr).
(<x, y> e xr), (<x, y> e (V x V)) --, (x e D(xr)).

(DO2) Special cases.
%-, (D(O)=O) .
% - . (D(V)=V~.

(DO3) Domain preserves union.
- * ((D(x) u D(y)) = O((x u y))).
Corollary: domain is monotonic.
(x c y) ~ (O(x) c_ O(y)).

(O((x n y)) E D(x)).
- , (D((x n y)) c D(y)).

(004).
-~ ((x n (V x V)) c _ (D (x) •

(DO5) Domain only considers ordered pairs.
% - . (O((x n (V x V))) = O(x)).

(DO6).
(D ((x x y)) = x) , (y = O) .

%- - , (D ((x x x)) = x).

(DO7).
% ~ (restrict(x6 (D(xr) n x), y) = restrict(xr, x, y)).
Corollary.
% ~ (restrict(x6 D(xr), y) = restrict(xr, V, y)).

(DO8).
%--, (D(restrict(x, y, V)) = (O(x) n y)).
Corollaries.

(D(restrict(x, y, z)) r (D(x) n y)).
((D(restrict(x, y, z)) x u) c ((D(x) n y) x u)).

--, ((u x D(restrict(x, y, z))) c_ (u x (D(x) n y))).
--. ((D(restrict(xl, y l , z l)) x D(restrict(x2, y2, z2))) ~ (y l x),2)).

INVERSE

(IN1)-(IN3) Proof of G6del's Axiom B-6.
vx(inverse(x) ~ (V x tO).
vu w vx((<u, v> e inverse(x)) ~=~ (<u, v> e (V x V)) & (<v, u> e x)).

(IN1).
--, (inverse(x) ~ (V x V)).

(IN2).
(<u, v> e inverse(x)) ..~ (<v, u> ~ x).

(IN3).
(<v, u > E x), (<u, v> e (V x V)) ~ (<u, v> e inverse(x)).

(IN4) Special cases.
%--, (inverse(O) = 0).
% - . (inverse(V) = (V x V)).

AUTOMATED DEDUCTION IN NBG SET THEORY

(IN5) Inverse distributes over union and intersection.
% ~ ((inverse(x) u inverse(y)) = inverse((x u y))).
% .-, ((inverse(x) n inverse(y)) = inverse((x n y))).

(IN6) Domain and range of inverse.
%-- , (D(inverse(x)) = R(x)).
%- - , (R(inverse(x)) = D(x)).

(IN7) Inverse of complement.
--, (inverse(- (x)) = (- (inverse(x)) n (1t x tO)).

(IN8) Inverse of product.
%-. . (inverse((x x y)) = (y x x)).

(IN9) Inverse of inverse.
% - . (inverse(inverse(x)) = restrict(x, V, V)).

(INIO) Inverse commutes with restrict.
-.. (restrict(inverse(xr), x, y) = inverse(restrict(xr, y, x))).

137

RANGE

(RA1) Alternate definition of range.
(y ~ R(z)) - , (<dora(z, V, y), y> ~ (V • V)).
(y ~ R(z)) --, (<dora(z, V, y), y> ~ z).
(<x, y> ~ z), (<x, y> ~ (V x V)) - , (y ~ R(z)).

(RA2) Special cases.
% - , (R(O)=O).
% - , (R (V) = V) .

(RA3) Range preserves union.
- . ((R(x) u R(y)) = R((x u y))).

Corollary: range is monotonic.
(x ; y) --, (R(x) c_ R(y)).
--, (R((x n y)) ~ R(x)).
--, (R((x n y)) ~ R(y)).

(~4).
--, ((x n (v x v)) c (v x R(x))).

(RA5) Range only considers ordered pairs.
% - , (R((x n (V, , V))) = R(x)).

(RA6).
- , (R((x•

(RA7).
% --. (restrict(xr, x, (R(xr) n)1)) = restrict(xr, x, y)).
Corollary.
% --, (restrict(xr, x, R(xr)) = restrict(xr, x, V)).

(RAe).
% --* (R(restrict(x, V, z)) = (R(x) n z)).
Corollaries.
-+ (R(restrict(x, y, z)) c_ (R(x) n z)).
- , ((R(restrict(x, y, z)) x u) c_ ((R(x) n z) x u)).

((u x R(restrict(x, y, z))) c_ (u x (R(x) nz))) .
-~ ((R(restr ict(xl , y l , z l)) x R(restrict(x2, y2, z2))) c (z l x z2)).

138

(RA9).
0I e R(z)) --, (dom(z, V, y) e O(z)).
(x e D(z)) - , (ran(z, x, V) e R(z)).

IMAGE

(IM1)-(IM4) Alternate definition of image.

(IM1).
(y e (xr " x)) ~ (dom(xr, x, y) e x).
Corollary.
(y e. (xr �9 {x})), (x e V) --, (<x, y> e xr).

(IM2).
(<x, y > e xr), (<x, y> e (V x V)), (x e z) ~ (y e (xr "z)).
Corollary.
(<x, y> e xr), (<x, y> F. (V x V)) --, (y e (xr " {x})).

(IM3).
(y e (xr , x)) --, (<dom(xr, x, y), y> ~ (V x V)).

(IM4).
(y e (x r ' x)) --, (<dom(xr, x, y), y> exr).

(IM5) Range is image of the domain.
% -* ((xr �9 O(xr)) = R(xr)).
Corollary.
%---, ((xr " V) = R(xO).

(IM6) Image is monotonic.
(y c z) --, ((xr " y) ~, (xr " z)).
(x r ~ y r) --, ((x r ' z) r

(IM7).
((x n D(z)) = 0) --, ((z = x) = 0).
Corollaries.
% . - , ((z , o) = o) .
--, (x E O(z)), ((z " { x }) = O).

(IMS)-(IM9) Alternate definition of subset.

0MS).
(x ~ -((E " ~(y)))) --, (x c_ y).

(IMg).
(x ~ y), (x e V) --, (x e ~((E " ~(y)))).

(IM10) image under V.
- , ((V , x) = V), (x = O).

SUM CLASS

($C1)-(SC2) Alternate definition of sum class.

(scl).
(x e U(y)) .-, (x E ran(E, x, y)).
(x e U(y)) --, (ran(E, x, y) E y).

(sc2).
(z e y) , (y ~ x) --, (zeU(x)).

ART QUAIFE

AUTOMATED DEDUCTION IN NBG SET THEORY 139

(SC3) Special cases.
%-, (U(O)=O) .
%--, (u (v) = v) .
% .., (u ({o}) = o).

(SC4) Sum of singleton.
(x ~ v) -.. (u({x}) = x).

(SC5) Sum of pair.
(<x, y> ~ (1/x V)) --, (U({x, y}) = (x u y)).
Corollary.
(<x, y > ~ (Vx V)) --, ((x u y) e v).

(SC6) Sum of ordered pair.
(<x, y> �9 (Vx V)) - , (U(<x, y>) = {x, { y } }) .

(SC7) An element of y is a subset of its union.
(x ~ y) --, (x c U(y)).
Corollary.
--+ (y c_ P(U(y))).

(SC8) Alternate definition of sum class.
% --, ((inverse(E) "x) = U(x)).

(SC9) Sum distributes over union.
--, (U((x u y)) = (U(x) u u(y))).

(SC10).
--, (Uf(x n y)) c_ (U(x) n U(y))).

(SCll) Domain and range.
--, (O(x) ~ U(U(x))).
- , (R(x) ~ U(U(x))).

POWER CLASS

(PC1)-(PC2) Alternative definition of power class.

(PC1),
(ZEP(x)) - , (z r

(PC2).
(z ~ x), (z e V) -.-, (z e P(x)).

(PC3) Power is monotonic.
(x c__ y) ~ (P(x) c P(y)).

(PC4) Special cases.
.-, (o ~ P(x)).

(P(x) = o) - , .
%.- , (P (V)=V) .

(PC5) Power class of a set.
(x ~ V) - , ((inverse(S) = {x}) = P(x)).

(PC6).
((x x y) ~ P(P((x u y)))).

(PC7).
.--, (x c U(P(x))).

(PCS).
((P(x) n P(y)) = P((x n V))).

140

RELATIONS

(RL1).
--. (restrict(xf, x,)1) ~ (V x V)).

(RE2).
(x c_ (V x v)) --. (x c (O(x) x R(x))).
Corollaries.
(x c (v ~ v)) -~ (x c (O(x) ,< (x , O(x)))).
(x c (v x v)) ~ (restrict(x, D(x), R(x)) = x).

(RL3).
(x c_ (V x V)) --, (inverse(inverse(x)) = x).
Corollaries.
% - - , (inverse(inverse(inverse(x))) = inverse(x)) .
% - ~ (inverse(inverse(E)) = E).
% --, (inverse(inverse(I)) = I).

ART QUAIFE

COMPOSITION

(C01)-(C02) Alternate definition of composition.

(cot).
(<u , v > ~ (xf o yl)) --, (<u , dom(xf , (yf " {u }) , v) > �9 yf).
(<u, v> ~ (xf o yO) -~ (<u, d o m (~ (y f " {u}), v)> ~ (v • v)).
(<u , v > E (x f oy f)) --, (<dom(x f , (y f " {u }) , v), v> Ex f) .
(<u, v> ~ (xf o yO) -~ (<dom(xf, (yf " {u}), v), v> ~ (V • V)).

(C02).
(<x , y > E xr), (<y , z > E yr), (<x, y > ~ (V x V)), (<y, z > E (V x V)) ~ (<x, z > E (yr o xr)).

(C03) I is identity for composition.
% - , ((x o i) = x) .
% - ~ ((I o x) = x) .

(co4).
--, (restr ict(I , O(x), I/) ~ (inverse(x) o x)).

(C05) Relation to image.
% 4 (((xr o yr) " z) = (xr " (yr " z))).

(C06) Domain and range of composition,
(D((xr o yr)) c_ D(yr)) .
(R((xr o yr)) c_ R(xr)).

(C07) Composition is associative.
(((xr o yr) o zr) = (xr o (yr o zr))).

(C08) Special cases.
%-. ((Oox) = 0).
% - ~ ((x o O) = O) .
% - . ((V o x) = (V x D(x))) .
% ~ ((x o V) = (R(x) x V)).

(C09) Boyer Lemma 18.
(R(xr) c_ D(yr)) --. (D((yr o xr)) = D(xr)) .

(C010) Dual version of (C09).
(D(yr) ~ R(xr)) --, (R((yr o xr)) = R(yr)).

(COlt) Composition is monotonic.
(xr c_ yr) --, ((zr o xr) c_ (zr o yr)).
(xr E yr) ~ ((xr o zr) E (yr o zr)).

AUTOMATED DEDUCTION IN NBG SET THEORY

Corollaries.
(xr c_ yr) ~ ((zr o (xr o ur)) c (zr o (yr o ur))).
(xr c_ l) - . ((zr o (xr o ur)) ~ (zr o ur)).

(CO12) Inverse of composition.
--. (inverse((xr o yr)) = (inverse(yr) o inverse(xr))).

(CO13) Composition of element relation.
(<x, y> ~ (E o E)) .-, (x E U(y)).
(x ~ U(y)), (y ~ v) -~ (<x, y > ~ (E o E)).

(C014DEF) Definition of singleton relation.
-~ ((~((E o ~(I))) n E) = SS).

(C015)-(C017) Membership conditions for SS.

(C015).
(<x, y> e SS) -~ (x e V).

(COt 6).
(<x, y> �9 Ss) -~ ({x} = y).

(CO17).
({x} = y), (x e. V) --, (<x, y> ~ SS).

SINGLE-VALUED CLASSES

(SV1)-(SV3) Alternate definition of SINGVAL

(SV1).
SINGVAL(z), (<u, v> ~ (V x V)), (<u, w > ~ (V x V)), (<u, v> E z), (<u, w> E z) -~ (v = w).

(SV2DEF) Definitions of terms for (SV3).
--, (lst(notsub((x o inverse(x)), I)) = svl(x)).
.-. (2nd(notsub((x o inverse(x)), I)) = sv2(x)).
- . (dom(x, (inverse(x) �9 {sv l (x) }), sv2(x)) = sv3(x)).

(sva).
.--, (<Sv3(x), Sv l (x)> ~ x), SINGVAL(x).
.-, (<sv3(x), sv2(x) > ~ x), SINGVAL(x).

(svl (x) = sv2(x)) .--, SINGVAL(x).

(SV4) A subclass of a single-valued class is single-valued.
SINGVAL(x) - , SINGVAL((x n y)).

(SV5) In a single-valued class, the image of each domain element is a singleton.
SINGVAL(x), (z E D(x)) .-, ({memb((x �9 {z}))} = (x = {z})).

(SV6) The composition of single-valued classes is single-valued.
SINGVAL(xr), SINGVAL(yr) ~ SINGVAL((xr o yr)).

FUNCTIONS

(FU1) The restriction of a function is a function.
FUNCTION(xf) --, FUNCTlON(restrict(xf, x, y)).

(FU2) The intersection of functions is a function.
FUNCTION(xf), FUNCTION(yf) .-, FUNCTION((xf n YO).

(FU3) The composition of functions is a function.
FUNCTION(x't), FUNCTION(yf) --, FUNCTION((xf o yf)).

141

142

(FU4) Restriction of function.
FUNCTION(xf) --, (restriot(xf, V, V) = xt).

ART QUAIFE

SUBSET RELATION

(SR1)-(SR3) Alternate definition of S.

(sin).
-~ (s c (v . v)).

(SR2).
(<x, y> e S) -~ (x ~ y).

(SR3).
(X c_ y), (<x, y> E (V x V)) --* (<X, y> e S).

IDENTITY

(ID1)-(ID3) Alternate definition of I.

Ore).
-~ (i c_ (v • v)).

OO2).
(<x, y > e l) --, (x = y).

003).
(x e v) -~ (<x, x > e t).

(ID4) Identity is a function.
--, FUNCTION(I).
Corollary.
--, FUNCTION(restrict(I, x, y)).

(ID5) Domain and range of identity.
%--. (D(I)=V) .
% - . (R (I) = t O .
% --, (D(restrict(I, x, y)) = (x n y)).
% --, (R(restrict(I, x, y)) = (x n y)).
Corollary.
%-- ((l ' x) = x) .

(ID6) Image of a class under identity.
% - , ((restrict(I, x, x) "y) = (x n y)).

(ID7) Identity is one-one.
--, ONEONE(/).

(ID8) Inverse of identity is identity.
% - , (inverse(I) = I).

(ID9) Sets with at most one member.
((x x x) c_ l) - , ({memb(x)} = x), (x = O).
(x = O) - . ((x x x) ~ l).
({memb(x)} = x) ~ ((x x x) c_ I).

(IDIO) Sets with more than one member.
(U e X) ~ (notsub((x n - ({u})) , (3) E X), ((X x X) C I).
(U e X), (notsub((x n ~({u})), O) = x) --+ ((x x x) ~ I).

(IDl l) .
-~ ((x n I) ~ (x n inverse(x))).

AUTOMATED DEDUCTION IN NBG SET THEORY 143

REPLACEMENT

(RP1) Axiom of Subsets.
(y ~ V), (x c_ y) - , (x e V).
(y e V) - ((x n y) ~ V~.

(RP2).
(x e V) -~ (O(x) e V).
(x e V) - (R(x) e V).

(RP3).
(<x, y> E (Vx V)) --, ((xxy) E V).

(RP4).
(<O(x), R(x)> e (V x V)), (x c_ (V x V)) - . (x �9 V).

(RP5).
(x �9 I/) ..-, (inverse(x) E V).

(RP6).
FUNCTION(xf), (D(xt) E V) --, (xf �9 V).

(RP7).
SINGVAL(x), (y E V) ~ (restrict(x, y, V) E V).

(RPS).
(U(x) e V) -~ (x e tO.

(RP9).
(P(x) ~ V) ~ (x e V).

(RP10).
((x u y) e V) --. (x e V).

(RP11).
((x x y) ~ V~ -~ (x ~ V), (y = O).
((x x y) e V~ --, (y e V), (x = O).

DIAGONALIZATION.

(DI1) Lemma.
(< x , x > ey) - , (x � 9
(x E O((y n I))) - , (<x, x> �9 y).

(DI2) Alternate definition of diagonalization.
--, (D((-(x) n y)) = diag(x)).

(DI3)-(DI4) Alternate definition of diagonalization.

(DI3).
(z �9 diag(xr)), (<z, z> �9 xr) - , .

(DI4).
(z �9 V) ~ (z �9 diag(xr)), (<z, z > �9 xr).

(DI5)-(DI6) Special case of the Russell class, NOT using the axiom of regularity.

(DI5).
(z �9 diag(E)), (z �9 z) 4 .

(DI6).
(z E V) --, (z E diag(E)), (z E z).

144 ART QUAIFE

(DI7) The Russell class is not a set.
(diag(E) ~ V) - , .

(DI8).
-~ (~(R((xr n I))) = diag(xr)).

(DI9).
-~ (diag((inverse(xr) o xs)) = ~(D((xr n xs)))).
-~ (diag((xr o inverse(xs))) = ~(R((xr n xs)))).

SPECIAL CLASSES (CONTINUED)

(SP6) V is not a set.
(V ~ x) - , .

Corollaries.
(V ~ (x x y)) -~ .
(<x, v> ~ (v x v)) -~.
(<v, y > ~ (V • v)) -~ .

(SP7).
(v = o) -~ .
(v ; o) -- , .

(SP8) Corollaries to (UP2).
% - ({x, v} = {x}).
% -~ ({v, x} = {x}).

(SP9) Corollary to (SS4).
% - ~ ({ v } = o).

(SPIO) Corollaries to (OP3).
--. ({{x}, {x, o} } = <x, v>).
--. ({o, { { y } } } = <v, y>) .
% - ~ (<v, v> = {o, {o}}) .

(SP11) The class of ordered pairs is not a set.
((V x V) ~ x) - - . .

REGULARITY

(RE1) No class can belong to itself.
(x~x) - , .

(RE2) Corollary to (RE1).
({x} = x) - . .

(RE3) If memb(x) = x , then x is not a singleton of a set.
({memb(x) } = x), (memb(x) = x) --4.

(RE4) There are no cycles of length 2.
(x ~ y) , (y ~ x) --,.

(RE5) Corollaries to (RE4).
(<x, y> = x) -~.
(<X, y > = y) -~ .

(RE6) Converses to (OPIO), (0P l l) corollaries.
(lSt(<X, y >) = <x, y>) , (<x , y > E (V x 'tO) -~ .
(2nd(<x , y >) = <x, y>) , (<x, y > E (V x I/)) -~ .

AUTOMATED DEDUCTION IN NBG SET THEORY

(RE7) x and its complement can't both be sets.
(x E y), (~(x) E z) --*.

(RES) Equivalent conditions for x not to be an ordered pair.
(1st(x) = x) --* (2nd(x) = x).
(2nd(x) = x) --. Ost(x) = x).

(RE9) The components of an ordered pair are sets.
(< 1st(x), 2nd(x)> = x) --+ (1st(x) ~ V).
(<1st (x) , 2nd(x) > = x) - , (2nd(x) E V).
Corollary.
(<1st(x), 2nd(x)> = x) --. (x E ~ /x V)).

(REIO) Corollaries to (RE9).
(< l s t (<x , y>), 2nd(<x, y >) > = <x, y>) --, (x E V).
(< l s t (<x , y>), 2nd(<x, y >) > = <x, y>) - . (y E V).

APPLICATION
(AP1).
SINGVAL(z), (x E D(z)) --. (memb((z = {x})) = (z ' x)).
SINGVAL(z), (x ~ O(z)) --. ((z = {x}) = { (z ' x)}).

(AP2)-(AP3) Range of z is class of applications of z to domain.

(AP2).
SINGVAL(z), (x E D(z)) --. ((z ' x) E R(Z)).

(AP3).
SINGVAL(z), (y ~ R(z)) - . ((z' dora(z, V, y)) = y).

(AP4).
(y E (xf " {x})) --* (y E (xf ' x)).
Corollaries.
-~ ((xt " (x}) c P((xt" x))).

(<x, y> E xl), (<x, y> E (V x V)) - , (y c_ (xf ' x)).

(AP5).
- , (((inverse(E) o xf) = {x}) = (xf ' x)).

(AP6).
(z ~ (xt ' z)), (z E diag((inverse(E) o xf))) - . .
(z e V) --, (z E (xf ' z)), (z e diag((inverse(E) o xf))).

(AP7).
- . ((z ' x) = o), (x e O(z)).

(AP8).
SINGVAL(xO ,-.-, ((xf ' x) ~ V).

(AP9).
SINGVAL(xf), (<x, y> E xt), (<x, y> E (V x V)) - , ((xf' x) = y).

(APtO).
SINGVAL(xt), (x E D(xf)) - , (<x, (xf ' x)> E xf).

(AP11).
SINGVAL(x/), (x E D(xf)) - , (((yf o xf) ' x) = (yf ' (xf ' x))).
Corollary.
SINGVAL(xf), (x E D((yf o xf))) ~ (((yf o xf) ' x) = (yf ' (xf ' x))).

(APt2).
-~ ((xf" x) = 0) , (x ~ D(xO).

145

146 ART QUAIFE

(AP13).
SINGVAL(xf) --, ((Off o xf) ' x) c (yf' (xf' x))).

(AP14) Special cases.
(x ~ V) - . ((V' x) = v).
.-. ((o ' x) = O), (x ~ V).

% - . ((x ' V) = O) .

CANTOR CLASS

(CA1)-(CA3) Alternate definition of Cantor class.

(CAI).
--, (cantor(x) c_ O(x)).

(CA2).
(z ~ cantor(xr)), (z ~ (xr ' z)) -~ .

(CA3).
(z ~ O(xr)) --, (z E (xr ' z)), (z ~ cantor(xr)).

(CA4) Cantor's Theorem.
SINGVAL(xf), (D(xf) E V), (P(D(xf)) ~ R(xf)) 4 .

COMPATIBLE FUNCTIONS

(CF1)-(CF3) Alternate definition of COMPATIBLE

(CF1).
OPERATION(x1), COMPATIBLE(xh, xf, xg) -~ ((D(xh) x D(xh)) = O(xf)).

(CF2).
OPERATION(xg), COMPATIBLE(xh, xf, xg) --, ((R(xh) x R(xh)) c_ O(xg)).

(CF3).
FUNCTION(xh), ((D(xh) x O(xh)) = O(xf)), ((R(xh) x R(xh)) c_ O(xg)) --, COMPATIBLE(xhl, xf, xg).

(CF4).
OPERATION(xf), COMPATIBLE(xh, xf, xg), (<x, y> E (D(xh) x D(xh))) --, ((xf" <x, y>) E D(xh)).

(CF5).
COMPATIBLE(xh, xf, xg), (<x, y> ~ (D(xh) x O(xh))) --, (<(xh ' x), (xh' y)> E O(xg)).

(CF6).
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl, xg2) --, (R(xhl) c_ D(h2)).
Corollaries.
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl, xg2) ~ (D((xh2 o xhl)) = D(xhl)).
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl, xg2)

-~ ((D((xh2 o xhl)) x D((xh2 o xhl))) = (D(xhl) x O(xhl))).

(CF7).
COMPATIBLE(xhl, xfl, xgl), COMPATIBLE(xh2, xgl, xg2)
--, COMPATIBLE((xh2 o xhl), xfl, xg2).

HOMOMORPHISMS

(HO1) The composition of homomorphisms is a homomorphism,
HOM(xhl, xfl, xgl) , HOM(xh2, xgl, xg2) --, HOM((xh2 o xhl), xf l , xg2).

AUTOMATED DEDUCTION IN NBG SET THEORY 147

References

1. Bailin, S., 'A 2-Unifiability Test for Set Theory', Journal of Automated Reasonmg 4(3), 269-286
(September 1988).

2. Bernays, P., and Fraenkel, A., Axiomatic Set Theory, Amsterdam: North Holland (1958).
3. B~eds~e~ W.~ ̀ Sphtting and Reducti~n Heuristics in Aut~matic The~rem Pr~ving~ Arti~c~al ~ntelligence

2(1), 57-78 (1971).
4. Boyer, R , Lusk, E., McCune, W., Overbeek, R., Stickel, M., and Wos, L., 'Set Theory in First-Order

Logic: Clauses for Grdel's Axioms', Journal of Automated Reasoning 2(3), 287-327 (1986).
5. Chang, C., and Lee, R., Symbolic Logic and Mechanical Theorem Proving, New York: Academic Press

(1973).
6. Grdel, K., The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with

the Axioms of Set Theory, Princeton: Princeton University Press (1940).
7. Hsiang• J.• `Refutati•na• The•rem Pr•ving using Term-Rewritmg Systems•• Arti•cia• •nte••igence 25(3)`

255-300 (1985).
8. Knuth, D., and Bendix, P., "Simple Word Problems in Universal Algebras', in Computational Problems

in Abstract Algebra, J. Leech (ed.), New York: Pergamon Press (1970).
9. Loveland, D., Automated Theorem Proving: A Log&al Basis, Amsterdam: North Holland (1978).

I0. Lusk, E., and Overbeek, R., 'Experiments with Resolution-Based Theorem-Proving Algorithms',
Computers and Mathematics with Applications 8(3), 141-152 (1982).

11. McAllester, D., Ontic: A Knowledge Representation System for Mathematics, Cambridge: MIT Press
(1989).

12. McCune, W., Otter 1 0 User's Guide, ANL-88/44, Argonne National Laboratory (1989).
13. Mendelson, E., Introduction to Mathematical Logic, Third Edition, Monterey: Wadsworth & Brooks/

Cole (1987).
14. Moravec, H., Mind Children" The Future of Robot and Human Intelligence, Cambridge: Harvard

University Press (1988).
15. Robinson, J., 'A Machine Oriented Logic Based on the Resolution Principle', J. Assoc. Comp. Mach.

12, 23-41 (1965).
16. Quaife, A., "Automated Proofs of Lrb's Theorem and G6del's Two Incompleteness Theorems',

Journal of Automated Reasoning 4(2), 219-231 (June 1988).
17. Quaife, A., 'Automated Development of Tarski's Geometry', Journal of Automated Reasoning 5(1),

97-118 (March 1989).
18. Quine, W., 'The Problem of Simplifying Truth Functions', American Mathematical Monthly 59(8),

521-531 (October 1952).
19. Suppes, P., Axiomatic Set Theory, New York: Dover (1972).
20. Winker, S., and Wos, L., 'Procedure Implementation through Demodulation and Related Tricks',

Proceedmgs of the Sixth Conference on Automated Deduction (ed. D. Loveland), New York: Springer-
Verlag (1982).

21. Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning, Englewood Cliffs: Prentice Hall
(1984).

22. Wos, L., Automated Reasoning: 33 Basic Research Problems, Englewood Cliffs: Prentice Hall (1988).

