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A SEMANTICAL THEORY OF ANALYTIC 

IMPLICATION 

The system of Analytic Implication of Parry [Z], [3] is based on the idea 
that for A to imply B every concept occurring in B must also occur in 
A. Dunn [l] proves an algebraic completeness result for an extension 
of Parry’s system. In this paper we extend this completeness result to 
a modal extension of Dunn’s system, for which we also prove decidability. 

1. AXIOMATIC FORMULATIONS 

The systems to be discussed are formulated with denumerably many 
propositional variables P,, . . . . Pk . . . with the connectives +, &, - and 
0 primitive (the 0 operator is present only in the system AIN described 
below); the set of well-formed formulas is as usual. A tf B, A v B and 
AIBaredefinedas(A+B)&(B+A), -(-A&-B)and-(A&-B) 
respectively. 

The axioms of Parry [2] are the instances of the following schemata. 

Al. 
A2. 
A3. 
A4. 
A5 
A6. 
A7. 
A8. 
A9. 
AlO. 
All. 
A12. 
A13. 

A&B-B&A 
A-A&A 
A---A 
N-JA+A 
A&(BvC)+(A&B)v(A&C) 
Av(B&-B)+A 
(A --f B) 8z (B -+ C) + .A --f C 
A+B&C+.A+C 
(A-+B)&(C-+D)+.A&C-+B&D 
(A-+B)&(C-+D)+.AvC+BvD 
(A -+ B) + (A 3 B) 

(A +, 9 &f(A) -+f(B) 
f(A) --) .A + A. 

The sole rule of inference is detachment (from A and A + B to infer B). 
In A12 and A13f(B) is the result of replacing one or more occurrences 
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of A in f(A) by B. Parry [3] adds the rule of adjunction (from A and 
B to infer A & B) and the following axiom schemata. 

A14. (-M-A&(A+B))+-M-B 
A15. w(AxB)+-(A-B) 

where MA is defined to be N (A + N A). 
Dunn [l] adds the schema 

A16. A+.-A+A. 

We shall refer to the system of Parry [3] as Analytic Strict Implication 
or ASI; AS1 with the addition of Al6 we shall refer to as Analytic 
Implication or AI. It should be noted that this formulation of AI does 
not coincide with that of Dunn [l]. Dunn’s formulation is as above, save 
that Al4 is omitted. In fact Al4 is redundant in AI (as pointed out by 
a referee); we shall prove this as T14 below. 

The system which forms the main object of our investigations is formed 
by adding to AI an explicit necessity operator IJ, for which we have the 
additional axiom schemata 

A17. q (A+B)-+.OA+OB 
A18. q (A&B)-+lJA&iJB 
A19. q A+A 
A20. q IA+ClClA 
A21. (A-+4-+CI(A-+4, 

and the rule of necessitation (from A to infer 0 A). To Al2 we add the 
restriction that inf(A) there be no occurrence of A within the scope of a 
necessity operator. This system we shall refer to as AIN, or Analytic 
Implication with Necessity. 

We now list some theorem schemata of AIN, referring the reader in 
most cases to Dunn [l] for proofs. 

Tl. B -+ .A + A, where B is a formula in which occur all variables 
inA. 

Proof. As in [l] T4, using A17, A21. 

T2. A, where A is a tautology of classical logic in 8c and -. 

Proof. See [l], $2. 
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Let us write S+A if A is derivable from the set of formulas S and the 
axioms of AIN by the rules of detachment and adjunction. 

T3. IfSu{A}+B, then SI-AxB 

Proof By T2. 

T4. If S u (A} I- B and every variable which occurs in B also 
occurs in A then SI- A + B. 

Proof By Tl and T3, as in [l], 42. 

T5. A & B + .A *-) B, provided A and B contain exactly the 
same propositional variables. 

Proof: By T4. 

T6. q A,&...&OA,+O(A,&...&A,) 

Proof. By A18. 

l-7. q (ADB)=.C~AD>B 

ProoJ: By T3, A18. 

T8. -A&-B&(-A+-B)+.A+B 

ProoJ See [I], T24. 

T9. A&B&(-A+-B)+.A+B 

Proof. AssumeA&B&(-A+-B).ThenB,and(-A+-B)bythe 
conjunction axioms. Now -A+-AbyA3,A4,Al,hence-A+-A& 
-B by A2, A7, A9. -AC) -A & -B follows by adjunction. Now we 
have A v B --) B by T4, hence A + B by A3, A4, T7 and A12. Thus T9 
follows by T4. 

We take this opportunity to remark that T9 was inadvertently omitted 
from [l], 54. The author is indebted to Professor Dunn for the proof 
given above. 

TlO. -A&B&(A+B)+.-A+B. 

Proof: By [I] T26, and T9 above. 

Tll. -A&-B&(A-+B)-+.-A-+-B. 
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Proof: By T9, A3, A4 

A set S of sentences is consistent if for no B is it the case that SI- B 8c N B, 
maximally consistent if S is consistent but is not properly contained in 
any consistent set. 

T12. Every consistent set of sentences is contained in a maximally 
consistent set. 

Proof. By the methods of the corresponding theorem for classical logic. 

T13. If M is a maximally consistent set, then for any A, B, (i) A 
isinMiffM+A,(ii) -AisinMiffAisnotinM,(iii)A&B 
isinMiffAisinMandBisinM. 

Proof. By T2. 

T14. (NMNA&(A-,B))+-M-B. 

ProoJ First note that in primitive notation T14 reads: 

(-,(-A+--A)&(A +B))+--(-B+--B). 

By A3, A4, adjunction and Al2 this schema is equivalent to 

((-A-+A)&(A+B))+(-B+B). 

Now assume (-A + A) 8z (A + B); assuming further -B, we have 
-A-A and A-B by AS, hence -AvB by All. Hence ((-AvB) BE 
-B), so -A by Al, A5, A6. By detachment, we conclude that A, and 
so B. Hence the above schema follows by two applications of T4. Note 
that in the above proof Al4 is nowhere used; hence Al4 is redundant 
in our formulation of AI and AIN. 

2. SEMANTICS 

Q= (Z, W, W, Q, R, IF) is an aw-model if (i) Z is a non-empty set, (ii) 
WE W, (iii) < is a transitive reflexive relation on W, (iv) Rc Wx I, (v) 
F is a function defined on the non-negative integers taking subsets Z?k 
of Zu Was values. Relative to Q we define two valuation relations, one 
having Z as domain, the other W. 

For x in Z, 
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x koPk iff XEF~, 
xt, A 8z B iff xbo A or x I=, B, 
XPQ” A iff xkpA, 
x!=,A+B iff xkeA or x!=,B, 
xkoOA iff xC,A. 

For u in W, 

u Ik-,P, iff UEF~, 
ull=pA&B iff ulC,A and uICpB, 
ulk,-A iffnot ulk,A, 
u It=, A + B iff for all x in Z such that z&x, if x be B then 
~~~A,andifu]~oAthenu]toB. 
u]I=pOAiffforallusuchthatu<u,v]I=oA. 

Q=(Z, w, F) is an u-model if Z and F are as in an aw-model. The 
consequence relation relative to Zis defined as above, save that the clauses 
for 0 are omitted, and the clause for --) is simplified to read: 

A formula A is true in a model Q if w ]bo A and aw-valid (a-valid) if 
true in all uw-models (a-models). 

An informal interpretation may be attached to these semantics. I may 
be taken to be a set of concepts, while W is a set of possible worlds, w 
being the real world. The relation < is one of relative possibility, while 
for UE W, XEZ, ‘Z.&K’ is to be read as ‘x is a concept conceivable in world 
u’. For x in Z, ‘x bp A’ may be read ‘concept x occurs in sentence A’, 
while ‘u lb0 A’ is to be read ‘A is true in possible world u’. Under this 
interpretation most of the valuation rules are self-explanatory. The only 
rule worthy of comment is that for --f relative to W. According to this 
rule, A+ B is true in world u iff (i) B follows from A in the sense of 
classical logic and (ii) every conceivable concept (that is, every concept 
conceivable in world u) which occurs in B also occurs in A. 

Godel in the discussion reported in [2] raised the question of com- 
pleteness for Parry’s system: 

‘p impliziert q analytisch’, kann man vielleicht so interpre- 
tieren: ‘q ist aus p und den logischen Axiomen ableitbar und 
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enthglt keine anderen Begriffe als p’ und es w&e, nachdem 
man diese Definition genauer prazisiert hat, ein Vollstlindig- 
keitsbeweis fiir die Parryschen Axiome zu erstreben, in dem 
Sinn, dass alle S&e, welche fur die obige Interpretation von 
+ gelten, ableitbar sind. 

The definitions in conjunction with the informal interpretation given above 
can be seen as an attempt at making precise Giidel’s definition. 

3. COMPLETENESS OF AI AND AIN 

THEOREM 1. A formula of AIN is provable in AIN iff it is aw-valid. 

THEOREM 2. A formula of AI is provable in AI iff it is a-valid. 
It is left to the reader to prove semantic consistency. We now proceed 

to prove the converse. Let A be unprovable in AIN. Then {“A} is con- 
sistent, so by T12, -A is in some maximally consistent set M. We shall 
show A aw-invalid by constructing an aw-model Q in which w is M and 
for any B, wj C,B iff BE&Z. 

Let W be the set of all maximally consistent sets of sentences. For 
qvin Wletu<vholdiffforanyA,ifOAisinuthenAisinv.Foran 
arbitrary set of sentences x let Z.&C hold if (i) XCU, (ii) if A, BEX then 
A&BEx, (iii) if A+ Bm and AEX then BEX. Let uR(v, x) hold if U=V 
and vlx. Let u(A) be A or -A according to whether A is or is not in u 
(note that for u in W, U(A)EU by T13). Let (u, x) be in Fk if u(A) is not in 
x,andletuoE;,ifP,~u,foruin W,@,x)inI. 

By A19, < is reflexive and by A20 < is transitive, so Q = (I, W, it4, <, 
R, 8’) is an aw-model. Completeness follows from the following 

LEMMA. For any A, (a) (u, x) !=,A iff u(A)#x, (b) ~lt=~ A iff Am. 
Proof of part (a). Part (a) holds for propositional variables by defini- 

tion. The inductive cases all follow from T5. We illustrate by treating the 
case of+. Firstly, note that u(A) &u(B) & u(A+B)+.u(A) & u(B)- 
wu(A + B) is an instance of T5. Since the antecedent is in u, so is 

Hence : 
u(A) & u(B)wu(A -+ B). 

(u,x) b,A+B iff (u,x)C*A or (u,x)CQB 
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iff u(A)#x or u(B)$x 
iff u(A *B)$x. 

Proof of part (b). The basis case holds by definition. The inductive 
steps for & and N follow by T13. It only remains to prove (b) for the 
cases 0 and + . 

If [~AEu then u ]!=o q A by the definition of <. Conversely suppose 
that 0 A+. Consider S= {B: O&U}. If Su {-A} were inconsistent, 
then SI- A, so that 

+B, &-.- &B,,DA, BiES 
I-•(Bl & -.- t Bn 3 A) (necessitation rule) 
I-O(B~ & .-- &B,,)=,OA by T7 
+nB, & .-- & q B,D~A by T6. 

But then Su {-A} is consistent and by T12 has a maximally consistent 
extension Y. Hence, for some v, u < v but not v] bo A, so that u ] bp Cl A is 
false, as was to be proved. 

Now for the case of +. Firstly, let A + BEU. Then by A 11, T13, either 
A#u or BEU, so by inductive assumption either not u IC,A or u I!=,B. 
Let uIx. We observe that for any u, 

u(A) &u(B) &(A+B) +. u(A) + u(B) is provable by T9, TIO. Hence 
if u(A)Ex, u(B)Ex, so that if (u, X) l=,B then (u, X) be A by part (a). It 
follows that ulCoA + B. Secondly, let A + B#u, but either not u I bp A or 
u] bp B. We aim to show that for some (u, x) such that ulx, (u, x) to B but 
not (u, x) t,A. Let a be the set (C: u(A)+ CEU}. By A7, A9, ula, so 
uR(u, a). Evidently, u(A)ea so (u, a) l=o A is false, by part (a). Now by 
T8, A16, 

u(A) & u(B) & (u(A) + u(B)) +. A + B is provable, since either u(A) is 
-A or u(B) is B. Hence, if u(B)ea then u(A)+u(B)~u, so A +BEu, 
contrary to assumption. It follows that u(B) is not in a, so (u, a) b,B. 
This concludes the proof of the Lemma, and so of Theorem 1. 

The proof of Theorem 2 proceeds just as for Theorem 1, but omitting 
any references to W, < or R. 

It must be emphasized that theorem 2, unlike Theorem 1, is not a new 
result. In [l] Dunn shows completeness of AI relative to a certain class of 
algebraic structures he calls Parry matrices. In $6 Dunn gives a represen- 
tation of Parry matrices and places an intuitive interpretation upon this 
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representation which he credits to Robert Meyer. The net effect of all this 
is that an assignment to a formula of an element in a Parry matrix can be 
looked at as an assignment of an ordered pair whose Grst element is the 
content of a formula, the second element being its truth value. The com- 
putation rules for these pairs correspond exactly to our rules in 52. Thus 
there is no significant difference either mathematically or philosophically 
between Dunn’s semantics and ours, and Theorem 2 is an easy conse- 
quence of Dunn’s work. 

Decidability can be proved for AIN and AI by the method offiltrations 
due to Lemmon and Scott, and applied in Segerberg [4]. As it does not 
involve any new ideas in principle, the proof is omitted here. Decidability 
of AI is already shown in [l] by algebraic matrix methods. 

We conclude with a conjecture concerning the completeness question 
for ASI. For A a formula of ASI, we deGne A’, the translation of A into 
the language of AIN, as follows. Pp is Pk, (A & I?)’ is (A’ & B’), (-A)’ 
is -(A’), (A+@’ * is 0 (A’ + B’). We conjecture that A is provable in 
AS1 iff A’ is provable in AIN. 

I would like to express my thanks to Professor J. Michael Dunn for his 
stimulating correspondence. 

University of Toronto 
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