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Summary. This paper presents new results concerning the use of infor- 
mation theoretic inference techniques in system modeling and concerning 
the widespread applicability of certain simple queuing theory formulas. For 
the case when an M/G~1 queue provides a reasonable system model but 
when information about the service time probability density is limited to 
knowledge of a few moments, entropy maximization and cross-entropy 
minimization are used to derive information theoretic approximations for 
various performance distributions such as queue length, waiting time, re- 
sidence time, busy period, etc. Some of these approximations are shown to 
reduce to exact M/M~1 results when G=M. For the case when a G/G/1 
queue provides a reasonable system model, but when information about the 
arrival and service distributions is limited to the average arrival and service 
rates, it is shown that various well known M/M/1 formulas are information 
theoretic approximations. These results not only provide a new method for 
approximating the performance distributions, but they help to explain the 
widespread applicability of the M/M/1 formulas. 

I. Introduction 

Performance modeling and analysis of computer systems have been important 
computer science problems for many years. Although queuing theory has 
provided the basis for remarkable success in solving these problems [1-3], this 
success has been somewhat puzzling because it is clear that computer systems 
often do not satisfy assumptions made by the stochastic process models that 
are used; it appears that queuing theory equations have wider applicability 
than is suggested by their classical derivations. One possible explanation for this 
is given by operational analysis [4]. Another is based on information-theoretic 
modeling techniques that exploit the principles of maximum entropy and 
minimum cross-entropy (a generalization) [5]. These principles provide meth- 
ods for estimating probability distributions given information in the form of 
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known expected values. The methods can be applied to system modeling 
because expected values of various distributions of interest are often known in 
terms of moments of the arrival and service time distributions. Because en- 
tropy maximization has been shown to be a uniquely correct, self-consistent 
method of inference about probability distributions [5], we refer to the result- 
ing estimates of the performance distributions as information-theoretic appro- 
ximations. The use of maximum entropy in system modeling problems has 
been studied by Ferdinand [6], Beneg [7], and Shore [8]. Recently, Bard [9] 
used entropy maximization in modeling an IBM System/370 I/0 subsystem. 

In this paper, we present new results concerning the use of cross-entropy 
minimization in system modeling and concerning the applicability of certain 
simple queuing theory formulas. One set of results applies when an M/G~1 
queue provides a reasonable system model but when information about the 
service time probability density is limited to knowledge of a few moments. We 
show how cross-entropy minimization yields information theoretic approxi- 
mations for various "performance distributions" such as queue length, busy 
period length, number served during a busy period, waiting time, etc. We also 
show how some of these approximations reduce to exact M/M/1 results when 
G = M. A second set of results applies when a G/G~1 queue provides a reason- 
able system model but when information about the arrival and service distri- 
butions is limited to the average arrival and service rates. We show how the 
well known M/M~1 formulas are information theoretic approximations for the 
G/G/1 system given this limited information. That is, the M/M/1 formulas are 
the best hypotheses about the G/G~1 systems given only the mean arrival and 
service rates. This fact has nothing at all to do with the various assumptions 
that must be debated when considering the applicability of stochastic models, 
and it helps to explain why the M/M~1 formulas have been found to be so 
useful. 

Section II of this paper summarizes the principles of maximum entropy and 
minimum cross-entropy, and discusses informally the sense in which these 
principles provide correct, general methods of inductive inference. Information 
theoretic approximations for M/G~1 performance distributions are discussed, 
with examples, in Sects. III-IV. In these applications we assume uniform distri- 
butions for estimates of the performance distributions available prior to learn- 
ing the service time moments. Applications involving the use of non-uniform 
prior estimates are suggested in Sect. VII. Results for G/G/1 systems are derived 
in Sect. VIII. Discussion follows in Sect. IX. 

II. Cross-Entropy Minimization and Entropy Maximization 

A. General Statement of the Problem and the Minimum Cross-Entropy Solution 

Let x denote a single state of some system that has a set D of possible system 
states and a probability density qt(x) of states. Let ~ be the set of all 
probability densities q on D such that q(x)>O for x~D and 

dx q(x)= 1. (1) 
D 
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We assume that the existence of q t ~  is known but that q* itself is unknown. 
The density q* is sometimes known as a "true" density. 

Suppose pE~  is a prior density that is our current estimate of q*, and 
suppose we gain new information about qt in the form of a set of expected 
values 

dx qt(x) g,(x) = gr, (2) 
D 

for a known set of functions g,(x) and numbers ~,,, r = 0  . . . . .  M. Now, because 
the constraints (1)-(2) do not determine q* completely, they are satisfied not 
only by q* but by some subset of densities J___~. Which single density should 
we choose from this subset to be our new estimate of q*, and how should we 
use the prior p and the new information (2) in making this choice? 

The principle of minimum cross-entropy provides a general solution to this 
inference problem [5]. The principle states that, of all the distributions that 
satisfy the constraints, you should choose the posterior q with the least cross- 
entropy 

H(q, p) = ~ dx q(x)log(q(x)/p(x)) (3) 
D 

with respect to the prior p. That is, the posterior density q satisfies 

H(q, p) = min H(q', p), 
q'eJ 

where J _ ~  comprises all of the densities that satisfy the constraints (2). The 
principle of maximum entropy [10,11] is a special case of cross-entropy 
minimization when the prior p(x) is uniform on D [5]. 

Given a positive prior probability density p, if there exists a posterior that 
minimizes the cross-entropy (3) and satisfies the constraints (1)-(2), then it has 
the form 

q(x)=p(x)exp ( - 2 -  ~ flkgk(X)), (4) 
k = O  

with the possible exception of a set of points on which the constraints imply 
that q vanishes [12, p. 38]-[14]. In (4), 2 and fig a re  Lagrangian multipliers 
whose values are determined by the constraints (1) and (2), respectively. Con- 
versely, if one can find values for 2 and fig in (4) such that the constraints are 
satisfied, then the solution exists and is given by (4). Conditions for the 
existence of solutions are discussed by Csisz/tr [13]. Now, the normalization 
constraint (1) requires that 

M ) 
If the integral in (5) can be performed, one can sometimes find values for the 
flk from the relations 

O2 
~flk --gk" (6) 



46 J.E. Shore 

It unfortunately is usually impossible to solve (6) for the/?k explicitly, in order to 
obtain a closed-form solution expressed directly in terms of the known expect- 
ed values g'k rather than in terms of the Lagrangian multipliers. Computational 
methods for finding approximate solutions are, however, available ([14, 
Appendix A], [15]). 

When D is a discrete state space, the integrals in (1)-(3) and (5) are 
replaced by sums in the usual way. Solutions for maximum entropy are the 
same as (4)-(6) with the prior deleted. 

As a general method of statistical inference, cross-entropy minimization 
was first introduced by Kullback [12] and has been advocated in various 
forms by others [16]-[19]. The name cross-entropy is due to Good [16]. 
Other names include expected weight of evidence [20, p. 72], directed diver- 
gence [-12, p. 7], discrimination information [12, p. 37], and relative entropy 
[21, p. 19]. There is a substantial history of applications of cross-entropy mini- 
mization in various fields [5]. Recent successful applications include spectral 
analysis [22], speech coding [23], and pattern classification [24]. General 
properties of cross-entropy minimization are discussed by Shore and Johnson 
[143. 

B. Justification of Cross-Entropy Minimization 

One could imagine using a procedure that chooses the posterior estimate of q* 
by minimizing some function of q and p other than H(q,p). In what sense does 
minimizing cross entropy yield the best estimate q of q*? One answer to this 
question is provided by recent work of Shore and Johnson [5] that character- 
izes cross-entropy minimization as an inference procedure by means of certain 
consistency axioms. In describing this work, it is usful to view an inference 
procedure as an operator o that takes two arguments, a prior probability 
density p and new constraint information I of the form (2), and yields a 
posterior probability density poI. It is assumed in [5] that o is implemented by 
minimization of some well behaved functional H'(q,p) - that is, that q=poI is 
defined as that density, among all the densities that satisfy the constraints I, 
for which H'(q,p) is least. It is further assumed that the operator o satisfies 
consistency axioms that, informally, require different ways of taking infor- 
mation I into account (for example, in different coordinate systems) to lead to 
equivalent results. It is then shown to follow from the assumptions that poI 
equals the result of minimizing the cross entropy H(q,p). The axioms do not 
imply that H' must be H - for instance a monotonic function of H would do 
just as well - but they do uniquely characterize the result poI of the minimi- 
zation' cross-entropy minimization is uniquely correct in the sense that mini- 
mization of any other functional either gives the same result or leads to a 
contradiction with one of the axioms. 

Other justifications for the use of cross-entropy minimization can be based 
on cross entropy's properties as an information measure [12, 13-15, 19, 25]. 
For instance, H(q,p), informally speaking, measures the distortion, "infor- 
mation dissimilarity," or "information divergence" of q from p. H(q,p) can be 
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interpreted as the amount of information needed to change a prior p into the 
posterior q or to determine q given p [14]; indeed, 

H (q, p) = H (q*, p ) -  H (q*, q) (7) 

holds when q=poI is defined by cross-entropy minimization [13, 14]. In these 
terms the minimum-cross-entropy principle is justified intuitively as the choice 
of posterior q that introduces the least distortion, least additional information, 
or fewest unjustified assumtpions consistent with the given constraints. From 
(7) it follows that H(q t,q)<H(q*,p). Thus the posterior q is closer to qt in the 
cross-entropy sense than is the prior p. 

Yet another justification for cross-entropy minimization is provided by the 
"expectation-matching" property [14], which states that for an arbitrary fixed 
density q* and densities q of the form (4), H(q*,q) is least when the expec- 
tations of q match those of q*. In particular, it follows that q=poI is not only 
the density satisfying (2) that minimizes H(q,p), but also the density of the form 
(4) that minimizes H(qt, q). Hence poI is not only closer to qt than is p, but it 
is the closest possible density of the form (4). The expectation-matching prop- 
erty is a generalization of a property of orthogonal polynomials [26, p. 12] 
that, in the case of speech analysis [27], is well-known as the "correlation- 
matching property" [28, Chap. 2]. 

III. M/G]I Queue Length Distribution 

In Sects. III-VI, we consider M/G/1 systems: customers arrive with independent, 
exponentially distributed interarrival times from an infinite customer pool, wait 
in an infinite capacity queue, are served independently by a single server with 
a general service time distribution, and return to the customer pool. The 
performance of such systems depends on the details of the service time distri- 
bution and is characterized by performance distributions such as queue length, 
busy period length, etc. In principle, given the service time probability density 
s(O, one can compute the performance distributions using standard techniques 
[29-31]. But suppose, instead of s(t), one knows only its first n moments 

sm=~dttms(t), m = l , . . . , n .  

What is the best way to use this information in estimating the performance 
distributions? 

Our approach exploits the fact that moments of the performance distri- 
butions are themselves determined by the service time moments s,, and the 
average arrival time (a sufficient statistic of the exponential interarrival time 
density). Thus, knowledge of the service time moments is equivalent to know- 
ledge of moments of the performance distributions. Given these moments, we 
use the principle of maximum entropy to estimate the performance distri- 
butions themselves. Because entropy maximization has been shown to be a 
uniquely correct, self-consistent method of inference about probability distri- 
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butions [5], we refer to the resulting estimates of the performance distributions 
as information-theoretic approximations. 

Let the M/G/1 system have an average arrival rate 2 and a service time density 
s(t) with moments s i. Let qc(k) be the steady state probability that k customers 
are in the system (queued or being served), and let c m be the moments 

% = ~ k" q~(k). 
k=O 

In this Section, we use the Pollaczeck-Khinchin formula to express the expect- 
ed number of customers c I in terms of the first two service time moments, and 
we derive a maximum entropy estimate of q~(k) given c 1. We then derive a 
formula expressing c 2 in terms of sa,s2, and s3, and we compute maximum 
entropy estimates of qc given c~ and c 2. As examples, we consider M/M/1, 
M/H2/1, and M/D~1 systems. 

The result of maximizing the entropy of q~ subject to the single known 
constraint c a and the normalization constraint ~ q~(k)= 1 is 

k 

where, 
qc(k) = Z -  1 e- ~k, (8) 

Z = e  ~= ~ e t~k=(1-e-P)- I  (9) 
k=O 

(see (4)-(5)). We apply (6) in order to express the multiplier fl in terms of the 
constraints c 1, 

c a = - ~ , ; l o g ( Z ) = ( e  - 1 ) - 1 .  
cO 

Solving this for fi enables us to eliminate fl from (8): 

t ( oi 
qc(k)= 1~1Cl \1 +Cl1 

This expression gives the maximum entropy estimate of qc directly in terms of 
the known information c 1. 

Now, knowledge of s 1 and s 2 yields knowledge of cl by the Pollaczeck- 
Khinchen formula [31, p. 187] 

= p + p 2 (  1 + C 2) 
Cl 2(1 -p)'  

,~2 S2 
= p 4  2 ( 1 - p ) '  (11) 

where p=2s  a, and C is the coefficient of variation C=(s2-s2)~/sl. Thus, (10) 
and (11) provide an information theoretic approximation to qc for an M/G/1 
system given the average arrival rate and the first two moments of the service 
time density. 
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As an example application, we consider an M/H2~1 system solved exactly 
by Kleinrock [31, pp. 195-96]. The service time distribution is 

s(t)=�88188 2).t (12) 

for which p=2s l=5 /8  and C2=31/25. Substituting these values into (11) 
yields c I = 1.79166. The information theoretic approximation (10) then becomes 

q~(k) = 0.358209(0.641791) k. (13) 

The exact solution for q~ is [31, p. 196] 

"k" 3 (2)k j_ 9 ~2]k (14) 

We compare the one-moment  approximation (13) with the exact solution (14) 
in the first three columns of Table 1. The close agreement arises because the 
exact solution (14) is the sum of two similar geometric terms, which can be 
approximated closely by a single geometric term (13). In general, the single- 
moment  result (10) can be thought of as providing the geometric distribution 
that is the best information theoretic approximation to q~. 

Table 1. Comparison of exact and approxi- 
mate solutions for M/H2/1 queue length dis- 
tribution 

k qc(k) qc(k) qc(k) 
(exact) (1 moment (2 moment 

approx.) approx.) 

0 0.375 0.358 0.367 
1 0.225 0.230 0.229 
2 0.140 0.148 0.144 
3 0.0893 0.0947 0.0914 
4 0.0580 0.0608 0.0583 
5 0.0380 0.0390 0.0375 
6 0.0251 0.0250 0.0243 
7 0.0166 0.0161 0.0158 
8 0.0110 0.0103 0.0104 
9 0.00734 0.00662 0.00688 

10 0.00489 0.00425 0.00458 

In the exact solution itself happens to be geometric, then the approxima- 
tion (10) will be the same as the exact solution. For example, suppose that the 
service time distribution is exponential s(t)=l~e -u'. Then (11) reduces to c 1 
= p / ( 1 - p ) ,  with p=2/~, and the approximation (10) becomes qc(k)=(1 _p)pk, 
which is the exact solution for the M/M~1 system [31, p. 96]. 

If other moments  besides c I are known, the maximum entropy estimate of 
qc will no longer in general be geometric. In order to illustrate muit i -moment  
approximations, we begin by expressing c 2 in terms of the service time mo- 
ments s,,. Our starting point is the relation 

C2=C 1 + 2er2, (15) 
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where r 2 is the second moment of the system residence time probability density 
[31, p. 240]. The moments r m are related to the s m and to the moments w m of 
the waiting time probability density by 

r~= ~ (ki)Wk_iSi, (16) 
i=0  

where w0=s0-=l  [31, p. 202], and the w m are in turn related to the s,, by the 
Takacs recurrance formula [31, p. 201] 

"~" ~ (ki) Si+l w (17) 
Wk--l--Pi=l ~ k-/" 

By combing (11), (16), and (17) with (15), we obtain 

/~2S 2 ~.4S 2 ,~383 . ,~3 S1 $2 _ 
c2=P+2(~-p)q- 2(1 _p)2 § 3(1-p~ t- ( 1 - ~ •  s2' (18) 

Now the maximum entropy solution for qe(k) given c 1 and c z cannot be 
expressed analytically in terms of the moments sin, so we resort to numerical 
techniques. We use an APL function written by Johnson [15] that computes 
maximum entropy distributions given arbitrary expected value constraints. For 
the M/H2/1 example, we have ca=1.79166 from before. The moment s 3 is 
easily obtained from (12), and c2=8.68055 follows from (18). Using the APL 
function to find the maximum entropy approximations for qc given c~ and c 2, 
we obtain the results shown in the fourth column in Table 1. This approxima- 
tion, which was computed for 50 points, required 1.5 CPU seconds on a DEC 
PDP-10 KI processor. It is worth noting that single-moment results from the 
APL function agreed with the analytic expression (10) up to eight digits. 

As an additional example, we consider a system with constant ("determinis- 
tic") service time 1/p - i.e., M/D/1. The service time probability density is s(t) 
= 6( t -  1/#), with moments 

s,, = 1/# ~. (19) 

We use (19), (11) and (10) to obtain a single-moment approximation for qc, and 
we use (19), (18), (11), and the APL function to obtain a two-moment approxi- 
mation. For 2=1  and #=2 ,  the results are shown in Table 2 together with 
simulation results. The simulation result qc(k) is the relative amount of time 
the system had k customers present during an overall period covering 5,000 
arrivals. The two-moment approximation in Table 2 required 1.6 CPU seconds. 

Approximations involving more moments can be computed similarly since 
c,, can in general be expressed as a function of s I . . . . .  s,,+ 1 - one method is to 
differentiate the Pollaczek-Khinchin transform equation [31, p. 194]. But the 
accuracy of the two-moment approximation for the M/H2/1 and M/D~1 exam- 
pies, which have radically different service time densities, and the reduction of 
the one-moment approximation to the exact result in the M/M/1 case, together 
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Table 2. Comparison of information theoretic 
approximations and simulation results for 
M/D/I queue length distribution. (2= 1 and 
p=2) 

qc(k) qc(k) qc(k) 
(simulation) (1 moment (2 moment 

approx.) approx.) 

0 0.50 0.57 0.51 
1 0.33 0.24 0.30 
2 0.12 0.10 0.13 
3 0.038 0.045 0.044 
4 0.0093 0.019 0.011 
5 0.0025 0.0083 0.0022 
6 0 .00047  0 . 0 0 3 5  0.00033 
7 0.0000081 0.0015 0.000037 
8 0 0,00065 0.0000032 

suggest that the two-momen t  approx imat ion  will in general  be quite accurate 
for M/G~1 systems. This is only a conjecture,  however, and more detailed 
studies are needed. 

IV. Number Served in a MIG[1 Busy Period 

If the system is empty and  a cus tomer  arrives at t ime t 1, and  if t 2 is the next 

time at which the system is empty, then the period between t I and t 2 is called 
a busy period. Let q,(k) be the probabi l i ty  that the n u m b e r  of customers served 
in a busy period is k, and let n,, be the moments  of q,. 

In  general, n m can be expressed as a funct ion of 2 and  the service t ime 
momen t s  s 1 . . . . .  s,,. For  n 1 . . . . .  n4, explicit formulas are given in [30, p. 158]. 
For  example, we have 

1 
n 1 - (20) 

1 - p  

where p = 2 s  1. Given  the mean  n u m b e r  served dur ing  a busy period (nl), the 
m a x i m u m  ent ropy dis t r ibut ion  is q,(k)=Z l e-~k, where 

Z-- ~ e-Bk=(eP--1) 1. 
k=l 

Apply ing  (6), we el iminate  fl and  express q, directly in terms of the k n o w n  
const ra in t  n I �9 

1 n l _  1 k 
q,(k)=nl_ l ( ~ )  . (21) 
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This result differs from (10) because the domain of q,(k) is k =  1 . . . . .  oo instead 
of k = 0  . . . . .  oo. Combining (20) and (21) yields 

q,(k).=(l_p)pk 1, (22) 

where p = 2 s  I. Equation (22) provides an information theoretic approximation 
to the number served in a busy period for an M/G/1 system given the mean 
arrival rate and the mean service time. 

Now, unlike the case for the distribution qo, the distribution q, for an 
M/M/1 system is not geometric. In fact, the exact result is [31, p. 218] 

q , (k)=~ ,f +ol (23) 

This gives an opportunity to show how knowledge of higher moments  than s 1 
can be used to provide better approximations than (22). Now, for an M/M/1 
system with s(t)=l~e ut, the moments  s m are 

s,, = m !/#". (24) 

For a given 2 and/~, we use (24) and the formulas in [30, p. 158] to compute 
the moments  nm, and we use the APL function to compute the maximum 
entropy distribution q,(k) given the n m. In Table3,  for 2 = 2  and # = 8 ,  we 
compare the exact solution (23) with the single moment  approximation (22) 
and the four moment  approximation computed by the APL function. (Appro- 
ximations based on two and three moments  fall between the approximations 
shown.) In Table 4 we present the same comparison for 2 = 1 and/~ = 2. 

As another example, we again consider the M/D/1 system. As in the 
M/M/1 case, the exact result for q, is known, namely [31, p. 219] 

(kp)k- 1 
q,,(k)- k! e kp. (25) 

For a given 2 and/~, we use (19) and the formulas in [30, p. 158] to compute 
the n m and then the APL function to compute maximum entropy approxi- 

Table 3. Comparison of exact and approxi- 
mate solutions for distribution of number 
served in an M/M/1 busy period. (3~=2 and 
~=8) 

k q.(k) q.(k) q.(k) 
(exact) (1-moment (4-moment 

approx.) approx.) 

1 0.800 0.750 0.793 
2 0.128 0.187 0.142 
3 0.0410 0.0469 0.0372 
4 0.0164 0.0117 0.0133 
5 0.00734 0.00293 0.00611 
6 0.00352 0.000732 0.00334 
7 0.00177 0.000183 0.00205 
8 0.000921 0.0000458 0.00134 
9 0.000491 0.0000114 0.000888 

10 0.000267 0.00000286 0.000567 
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Table 4. Comparison of exact and approxi- 
mate solutions for distribution of number 
served in an M/M/1 busy period. (2= 1 and 
#=2) 

k q.(k) q.(k) q.(k) 
(exact) (1 moment (4 moment 

approx.) approx.) 

1 0.666 0.500 0.629 
2 0.148 0.250 0.195 
3 0.0658 0.125 0.0737 
4 0.0365 0.0625 0.0332 
5 0.0227 0.0312 0.0174 
6 0.0152 0.0156 0.0104 
7 0 . 0 1 0 6  0 . 0 0 7 8 1  0.00696 
8 0 . 0 0 7 6 5  0 . 0 0 3 9 1  0.00511 
9 0 . 0 0 5 6 7  0 . 0 0 1 9 5  0.00404 

10 0 . 0 0 4 2 8  0 .000977 0.00337 

Table 5. Comparison of exact and approxi- 
mate solutions for distribution of number 
served in an M/D/I busy period. (2=2 and 
#=8) 

k q.(k) q.(k) q.(k) 
(exact) (1 moment (4 moment 

approx.) approx.) 

1 0.779 0.750 0.767 
2 0.151 0.187 0.169 
3 0.0443 0.0469 0.0433 
4 0.0153 0.0117 0.0127 
5 0 . 0 0 5 8 3  0 . 0 0 2 9 3  0.00426 
6 0 .0 0 2 3 5  0 .000732 0.00169 
7 0 .000990 0.000183 0.000682 
8 0 .000430 0.0000458 0.000321 
9 0.000191 0.0000114 0.000167 

10 0.0000863 0.00000286 0.0000949 

Table 6. Comparison of exact and approxi- 
mate solutions for distribution of number 
served in an M/D/1 busy period. (2= 1 and 
#=2) 

k q.(k) q.(k) q.(k) 
(exact) (1 moment (4 moment 

approx.) approx.) 

Table 7. Comparison of exact and approxi- 
mate solutions for distribution of number 
served in an M/D/I busy period. (2=7 and 
# = 10) 

k q.(k) q.(k) q.(k) 
(exact) (1 moment (4 moment 

approx.) approx.) 

1 0.606 0.500 0.589 1 0.497 0.300 0.432 
2 0.184 0.250 0.208 2 0.173 0.210 0.218 
3 0.0837 0.125 0.0868 3 0.0900 0.147 0.118 
4 0.0451 0.0625 0.0420 4 0.0556 0.103 0.0673 
5 0.0267 0.0312 0.0230 5 0.0378 0.0720 0.0407 
6 0.0168 0.0156 0.0140 6 0.0272 0.0504 0.0260 
7 0 . 0 1 1 0  0 . 0 0 7 8 1  0.00927 7 0.0204 0.0353 0.0174 
8 0 . 0 0 7 4 4  0 . 0 0 3 9 1  0.00657 8 0.0158 0.0247 0.0122 
9 0 . 0 0 5 1 5  0 . 0 0 1 9 5  0.00490 9 0.0126 0.0173 0.00892 

10 0 . 0 0 3 6 3  0 .000977 0.00378 10 0.0101 0.0121 0.00678 

mations to q.. Results comparing the exact solution (25) with one- and four- 
moment  approximations are given in Tables 5-7. The values for 2 and /t in 
Tables 5 and 6 are the same as those for the M/M/1 examples in Table 3 and 
4. Tab le7  is for 2 = 7  and / t - 1 0 .  The four-moment approximations in 
Tables 5-7 required about 1.5 C P U  seconds each. 

V. MIG]I Busy Period Length 

We n o w  consider  the probabil i ty  density qo(t) for the length of  the busy period. 
In general,  the m o m e n t s  b,, = ~ dt t m qb(t) can be expressed in terms of  2 and the 
service t ime m o m e n t s  s 1 . . . . .  s,,. For  b, . . . . .  b 4, explicit formulas  are given in 



54 J.E. Shore 

[31, p. 213-14]. For example, we have 

s~ (26) b l - 1 - - p  

where, as usual, p=its 1. If only s 1 is known, then only b 1 is determined. The 
resulting maximum entropy solution for qb is qb(t)=(1/bOexp(-t/bO. (We 
omit the standard derivation, which is just the continuous analog of the 
derivation of (10).) Combining this solution with (26) yields 

qb(t) = (kt' - 2) e tu'- ~,)t (27) 

where # ' =  1Is 1. Equation (27) provides an information theoretic approximation 
to the busy period probability density for an M/G~1 system given the mean 
arrival rate and the mean service time. 

If higher moments than s I are known, then better approximations can be 
obtained using the formulas in [31, pp. 213-14] and numerical techniques. As 
in the previous section, the exact solution for an M/M/1 system is known: 

1 e_~+u)~ii(Zt]/~), (28) qb( t )=t] /~  

7 

6 

t 5 

E 

~ 4  

3 

2 

1 

, 'EXACT 

OMENT APPROX. 
_ 

I I [ [ ~ 1  

8 cT 

0,1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0,3 0.4 0.5 
1 t ~  2 t ~ 

Fig. 1. Exact and approximate M/M/I busy period probability densities (2=5, #=  10) 

0.6 

Fig. 2. Exact and 1-moment approximation for M/M/1 busy period probability density (2= 1, 
~= 10) 
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Table 8. Comparison of exact and 
four-moment approximation for 
probability density of M/M/1 busy 
period length (2 = 1 and ,u = 10) 

Time qb(t) q~(t) 
(exact) (4 moment 

approx.) 

0.01 8.96 9.05 
0.03 7.22 7.27 
0.05 5.84 5.87 
0.07 4.74 4.75 
0.09 3.87 3.87 
0.11 3.17 3.16 
o. 13 2.60 2.59 
0.15 2.14 2.14 
0.25 0.861 0.854 
0.35 0.373 0.369 
0.45 0.171 0.171 

where 11 is the modified Bessel function of the first kind (order one) [31, 
p. 215]. We therefore assume s(t) to be exponential, compute various approxi- 
mations based on (24) and the formulas in [-31, pp. 213-14], and compare the 
results with (28). Results for the case 2 = 5  and # = 1 0  are shown in Fig. 1. 
Results for the case 2 =  1 and /~= 10 are shown in Fig. 2 for the one-moment 
approximation and in Table 8 for the four-moment approximation at selected 
points. The single moment approximations, which were computed by the APL 
function, agree in both cases with (27). (Note that, since qb(t) is a continuous 
probability density, appropriate care must be taken when using the APL 
function to compute approximations. For details, see [32].) 

The results in Fig. 2 suggest that (27) might be a good light-load approxi- 
mation for the M/M~1 busy period density (28), a conjecture that has been 
supported by further studies: For p<0.1,  (27) is accurate to within 5-10~o in 
the range where the cumulative probability distribution of qb(t) is as large as 
about 0.95 [-33]. The conjecture is supported further by the following argu- 
ment, which is due to A.E. Ephremides [34]: Equation (27) is identical to the 
exact M/M/1 residence time probability density [31, p. 202]. Since most busy 
periods will consist of single customer residences under light load conditions, it 
makes sense that the busy period should tend to (27). 

VI. M[G[1 Residence Time and Waiting Time 

Residence time is the total time a customer spends in the system. Waiting time 
is the interval between the arrival time and the time at which service begins. 
Moments r,, of the residence time probability density qr(t) can be expressed in 
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terms of the service time moments s,, by using (16) and (17). For example, we 
have 

,;~s 2 p 
q - 2 ( 1 - p )  4 )o. (29) 

where p=)os 1. The maximum entropy density qr(t) given r 1 is just 

qr(t) = ( l /q)  exp ( - t/ri). (30) 

Equations (29)-(30) provide an information theoretic approximation to the 
residence time probability density for an M/G/1 system given the mean arrival 
rate and the first two moments of the service time density. If higher moments 
than s 2 are known, then better approximations for q~ can be obtained by using 
(16), (17), and the computational methods discussed earlier. 

For an M / M / 1  system, (29) reduces to r 1 = p / 2 ( 1 - p )  and (30) becomes g,(t) 
= p ( 1 - p ) e x p ( - # ( 1 - p ) t ) ,  where i~=l / s l ,  which is the exact M/M/1  solution 
[31, p. 202]. This behavior is similar to that of the one-moment approximation 
for qc(k) discussed in Sect. III. The similarity arises from (30) being the con- 
tinuous analog of (10) and from Little's result. 

The situation for waiting times is somewhat more complicated. Let q,,.(t) be 
the waiting time probability density with moments w~. The w,, can be ex- 
pressed in terms of the s,, using (17); for example, 

2s2 (31) 
w~ =2(1 - p )  

where p =2s  1. The maximum entropy solution given just w I is 

q~,,(t) = (1/w 1) exp ( - t/w 1). (32) 

In the M/M/1  case, (31) becomes w I =p / /~(1-p)  and (32) becomes 

q,~(t) = (t*/P) (1 - p) exp ( - p(1 - p) t/p), (33) 

in contrast to the exact M/M/1  result [31, p. 203] 

qw(t) = (1 - p) 6(t) + 2(1 - p) exp ( -  p(1 - p) t). (34) 

Equations (33) and (34) have the same mean w 1, but (33) lacks the impulse 
term at t = 0  that results from the finite probability qe(0) that the system is 
empty when a customer arrives. We can, however, improve on (33) by noting 
that s~ and s 2 provide information about qc(0). In particular, we have 

qc(0) =(1 q-Cl) -1 =(1 + p  +2w 0 -  

from (10) and (31). Now the total probability in q,,(t) that is concentrated at 
t = 0  must equal q~(0). We express this fact as 

limSdtu~(t)q~(t)=q~(O)=(1 + p + 2 w , )  1, (35) 
e ~ O  
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where 

u~(t)={1, t<e 
0, t>~. 

But the integral in (35) is just a constraint (2) that we can impose in addition 
to the moment constraint Sdttqw(t)=Wl. The maximum entropy density that 
satisfies both of these constraints is 

qw(t) = ()~ w~ + p + 1)- l 6(t) + w~ B 2 exp( - Bt), (36) 
where 

p+2wl 
B - w l ( l + p + 2 w l  ). (37) 

Equations (36), (37), and (31) provide an information theoretic approximation 
to the waiting time probability density for an M/G~1 system given 2, sl, and 
s 2. Unlike (32), (36) reduces to (34) in the M/M/1 case w I =p//~(1-p) .  

VII. Some GIGI1 Results 

We consider a G/G~1 queue that has a probability density of interarrival times 
a(t) with moments a m and a probability density of service times s(t) with 
moments sm. We discuss approximations for the case in which only a I and s 1 
are known. 

Equations (10) is the maximum entropy distribution of queue length qc 
given the first moment c 1. The probability that the system is empty is therefore 

qc(0) =(1 +c , ) -1 .  (38) 

Now, if the G/G/1 system is in equilibrium, (1-qc(O))/Sl=l/a I must hold. 
Solving for qc(0) and substituting the result into (38) yields 

s l /a  1 
Cl - (1  - s l /a  O" (39) 

Equation (10) then yields 

qc(k) = (1 - p) pk, (40) 

where p=sl/a 1. This is an information theoretic approximation for the G/G/1 
queue length given the first moments of the arrival and service time densities. 
As was the case for the M/G/1 approximation (10)-(11), Eq. (40) yields the 
exact M/M/I result when a(t) and s(t) are exponential. Stated differently, (40) 
shows that the M/M/1 result is also the proper information theoretic approxi- 
mation for G/G~1 systems given only a I and s 1. 

Next we consider the residence time density qr. Equation (39) and Little's 
result c I =rl/a I yield rl = s ~ / ( 1 - s l / a  O. The maximum entropy density qr given 
r 1 is then 

qr(t) =/~(1 - p) exp( -/~(1 - p)t), (41) 
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where p=sl /a  1 and # =  1/s 1. This is an informatic theoretic approximation for 
the G/G/1 queue length given the first moments of the arrival and service time 
densities. Like the M/G/1 approximation (29)-(30), (41) yields the exact M/M/1 
result when a(t) and s(t) are exponential. This also shows that the M/M~1 
result is the proper information theoretic approximation for G/G~1 systems 
given only a I and s~. 

Similar arguments based on results from Section VI apply in the case of the 
waiting time density w,. In this case, the G/G/1 approximation given aa and s~ 
is 

qw(t) = (1 - p) 6(0 + 2(1 - p) exp ( - #(1 - p) t), (42) 

where p=sl /a  1 and p =  1/S 1. 

VIII. Using non-Uniform Priors 

Since entropy maximization is equivalent to cross-entropy minimization with a 
uniform prior (see Sect. II), the information theoretic approximations discussed 
in Sects. III-VII are properly thought of as being based on uniform prior 
estimates of the performance distributions. If information about the perfor- 
mance distributions in addition to the s,, is available and can be expressed as 
non-uniform prior estimates, better approximations can result. For example, if 
it is suspected that the service time density s(t) is nearly exponential, it is 
reasonable to use M/M/1 performance distributions as prior estimates of 
M/G/1 distributions. Note that the prior distribution reflects one's belief about 
the variable being measured - e.g., the busy period - and not one's belief about 
parameters of the variable's distribution as might be the case in a Bayesian 
context. 

As a specific example, suppose we wish to estimate the busy period density 
qb based on measurements of 2, s 1 and s 2. As a prior estimate, we use the 
exact M/M/1 result (28) with # =  1/s~, and we compute the moments b 1 and b 2 
from the formulas in [31, pp. 231-14]. We obtain a posterior approximation 
by minimizing cross-entropy with respect to the prior subject to the constraints 
involving b I and b 2. If s 2 happens to satisfy s2=2s  2, which would always be 
the case if s(t) were exponential, then the posterior would be unchanged from 
the prior since the M/M/1 prior itself satisfies the contraints bl and b 2 [14]. If 
the M/M/1 prior does not satisfy the constraints bl and b2, the posterior will 
be different. In an information theoretic sense, however, it will be the closest 
density that satisfies the constraints. Figure 3 shows an example in which two- 
moment approximations for qb were computed using both uniform and M/M/1 
priors. The parameters in both cases were ,~=5, s l=0.1 and s2=0.04. The 
second moment is larger than it would be if s(t) were exponential - the 
coefficient of variation is 1.74 instead of one. Since 2 =  5 and 1Is 1 = 10, the non- 
uniform prior used in computing the result in Fig. 3 is the same as the M/M~1 
curve shown in Fig. 1. The results in Fig. 3 were obtained using an APL 
function that finds a minimum cross-entropy posterior given an arbitrary prior 
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Fig. 3. Two-moment approximations for M/G/1 busy period probability density using uniform and 
M/M/1 priors (2=5, s I =0.1, s 2 =0.04) 

and an arbitrary constraint matrix [15]. Note that, although the prior used in 
this example happens to be Markovian, any form of prior can be used. 

IX. Discussion 

We have presented a variety of results concerning the use of information 
theoretic methods in system modeling applications. We have shown that many 
well-known M/M/1 formulas are also information theoretic approximations for 
G/G/1 systems in cases when only the mean arrival and service rates are 
known. That is, the M/M/1 formulas are the best hypotheses about the G/G~1 
systems given only the mean arrival and service rates. This fact has nothing at 
all to do with the various assumptions that must be debated when considering 
the applicability of stochastic models, and it helps to explain why' the M/M/1 
formulas have been found to be so useful. 

Beyond this rather general conclusion, our results can be used in three 
specific ways, First, the techniques presented could be used as a general 
method of computing the performance distributions in cases where all of the 
service density moments are available, i.e., when the density s(t) is known 
exactly. Second, the analytic approximations - (10) and (11), (22), (27), (29) and 
(30), (31) and (36), (40-(42) - could be useful in various studies whenever 
explicit forms for the performance distributions are required. Third, the tech- 
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niques provide a means of estimating the performance distributions when only 
the first few moments of s(t) are known and s(t) itself is not known. If the first 
few moments are estimated rather than known exactly, then it is important 
that unbiased estimators be used and that the resulting set of estimates be 
consistent. 

How accurate are these information theoretic approximations? Unfor- 
tunately, about all that can be said in general is that the approximations are 
the least-biased choices given the information available. To use the language of 
statistics [12, 16], the approximations are the hypotheses best supported by the 
information available. Depending on the actual performance distribution and 
the number of moments considered, an information theoretic approximation 
may or may not be a good approximation in the mean-squared-error sense, 
although it is true that the mean-squared-error can always be made sufficiently 
small by taking sufficiently many moments into account. On the other hand, it 
is not generally known what kind of error measure is best for judging the 
accuracy of performance distribution approximations. It may well be that 
measures such as mean-squared-error are less important than information 
theoretic measures such as cross-entropy. More can be said about the queue 
length distribution qc and the busy period density qb, because, although an 
explicit proof is lacking, it seems clear that these must be monotonically 
decreasing functions for a wide class of M/G/1 systems. If so, then qc and qb 
don't have basic structure that would be seen in approximations based on 
many moments but not seen in approximations based on only a few moments. 
This in turn means that the basic shape will be revealed by approximations 
based on the first few moments, and suggests that a large number of moments 
will not in general be required in order to achieve low mean-squared-error. In 
the case of the queue length distribution, the diverse examples discussed in 
Sect. III suggest that a two-moment approximation may in general be quite 
good. 
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