
Acta lnformatica 17, 21 29 (1982) InfOrmU=
@ Springer-Verlag 1982

Synchronized Behaviours of Processes
and Rational Relations

A. Arnold

Laboratoire d'Informatique, Universit6 de Poitiers, 40 Avenue du Recteur Pineau,
F-86022 Poitiers Cedex, France

Summary. Synchronized behaviours of processes, specified in three different
ways, are compared with rational relations.

Introduction

A system of concurrent processes is a set of processes, the behaviour of each
one depends on the behaviours of the others, either because some actions of
some processes cannot be done simultaneously, - for example actions using a
same unshareable resource -, or because some actions have to be done in some
temporal order, - for example putting then removing an information in a
buffer -.

Clearly the specification of a system of concurrent processes can be divided
in two parts:

(i) specification of all the possible behaviours of each individual processes;
(ii) specification of the interference between the behaviours of these in-

dividual processes.
A way to realize this second point is to design a mechanism such that the

processes are constrained to behave as requested. Since the main task of such a
mechanism is to control the temporal order of execution of actions of each
process, it is named a synchronization mechanism. The well-known sema-
phores are an example of such a synchronization mechanism [4].

But a synchronisation mechanism is rather the implementation of synchro-
nization constraints. The specification of these constraints must be done on a
more abstract - or less implementation-dependent - level.

Following Campbell and Habermann [3], Lauer, Torrigiani and Shields
[-6] have defined a system of specification based upon the notion of path. A
formal semantics for this system of specification, i.e. for COSY programs, has
been defined by Shields and Lauer [-10] in terms of vector firing sequences.

Similarly, Nivat [8] has defined the set of S-synchronized behaviours of a
set of processes in a way which looks very close to the definition of the

0001-5903/82/0017/0021/$01.80

22 A. Arnold

semantics of COSY programs given by Shields and Lauer. Moreover Nivat
introduces in this paper the notion of finite-state control of a set of processes
which includes the notion of S-synchronization. Finite-state controls are a
special case of controls of systems of processes defined by Arnold and Nivat
[2] but seem to have nearly the same expressive power as COSY programs.

Thus we have three ways for specifying synchronization constraints which
are presumably very close each to the others. The aim if this paper is to
compare precisely their expressive power, when the last two ones are applied
to rational processes, which is always the case for COSY programs.

We prove that the three classes Synchro, Control, Cosy of synchronized
behaviours mentioned above are related together by SynchrocControl
=Sel l(Synchro), CosycSynchro, Proj(Sel_l(Cosy))=Control and mo-
reover, that they are also related to the subclass PcRat of rational relations
recognized by sink-automata by PcRat= Control where Sel_l is the class of
projections of n-any relations on their first n - 1 components, and Proj is the
class of products of strict alphabetic homomorphisms.

These results are not difficult to prove. They just show that the theoretical
framework of rational relations is well suited to give a precise meaning to the
intuitive notion of "similar" synchronization mechanisms. More precisely, the
fact that synchronized behaviours are subclasses of the class of relational
relations suggests that a study of these subclasses can be of some help to deal
with synchronization problems.

In this paper we have not considered infinite behaviours of processes [8].
We believe that similar results can be obtained in the same way, using the
notion of infinitary relation on infinite words introduced by Nivat [9].

The first part of this paper is just some recalls about rational languages,
finite-state automata and rational relations. In the second one the specifi-
cations of synchronization we are studying are defined. These specifications are
compared each other and are compared to rational relations.

This paper is an improved version of a lecture given at the Spring School
on Petri Nets and Concurrency (Colleville, 1980) [1]. This new version has
profited by stimulating discussions with M. Nivat.

1. Rational Languages and Rational Relations

Here we recall some well known facts about rational sets.
Let A be a finite alphabet.
An automaton sd on A is a tuple (A, Q, qo, QP, 6)

where Q is a finite set of states,
q0 is an element of Q, the initial state,
Qr is a subset of Q, the set of final states,
6, the transition function, is a mapping from Q x A into Q.

The transition function 6 is easily extended into a mapping, still noticed by
6, from Q xA* into Q. The language L c A * recognized by is the set L (d)

= {u~A* 16(q0, u)eQF }.
A language L is rational (or regular) iff it is recognized by some automaton.

Synchronized Behaviours of Processes and Rational Relations 23

We say that a state q of an automaton d is a sink-state if V aeA,
6(q, a)=q.

An automaton d is a sink automaton if Q contains one sink-state q~ and
Qv=Q-{q~} .

We say that a rational language is prefix-closed (pc for short) if
Init (L) = L,

where Init (L) = {ueA* I ~ yeA* : uveL}.

Let A and B be two alphabets. A homomorphism ~b: A*--*B* is alphabetic
if c~(A)cBw{A} and strict alphabetic (sa for short) if (a(A)cB.

The following results are obvious

Proposition 1.1. A language L is pc rational ~f tt is recognized by some sink
automaton. The intersection of two pc rational languages is a pc rational lan-
guage.

Let cy: A * ~ B * and (a: B * ~ A * be alphabetic homomorphisms. I f L c A * is
pc rational then 4'(L) and cb-l(L) are pc rational.

Let A1, ..., A, be alphabets and let A = X (A i w { A }) - { (A , ..., A)}.
i = 1

The class Rat(A t , An) of rational relations included in)~ A i is the least
i = l

class containing finite relations and closed under union, product and star.
A relation recognized by a finite au tomaton d on A is the set of images of

words of A recognized by ~r under the canonical mapping n: A * ~)~ A*,
where ~=(7~1, . . . , 7~n) with hi: A* ~A* . i= t

A rational muhimorphism on A t , A, is a (n+l) -uple /t=(q5 t , ~ , , L)
�9 * where L is a rational language on some alphabet A,+ 1 and ~b i. A , + I ~ A * is an

alphabetic homomorphism. We say that a rational mult imorphism is strict if
VaeA,+l , 3ie{1, . . . ,n}: (gi(a):~A. Hence we can associate with a (strict)

rational mult imorphism a canonical (strict) alphabetic homomorphism
fi: A,+* 1 ~ A * defined by

~t(a)={~A c~l(a)''' ' 'ff)"(a)) otherwise.if 3i:ff)i(a)=#A

The relation fi represented by a rational mult imorphism ~t is n(p(L)), i.e. fi
- - { (q~ l (U) , . . . , r e L } .

Let Rat be the class of all rational relations. The following characteri-
zations of Rat are well known [5, 7].

Proposition 1.2. A relation R is rational

iff (i) it can be recognized by a finite automaton.
iff (i i) it can be represented by a rational multimorphism.
iff (iii) it can be represented by a strict rational muttimorphism.

If 0 = (01, ---, 0 ,) is a vector of sa homomorphisms where Oi: A* --,B* and
R a relation in A* x A~... x A* then 0(R) is the relation

. . . X * {(~ '~ (u0 , . . . , O,(u,)) / (u~, , u ,) e R } in B~' x ... B, .

24 A. Arnold

The vector 0 is a projection and Proj is the class of projections. For a class
cg of relations, we denote by Proj(~) the class of all the images of relations in
cg under projections.

For a relation R in A* x ... x A* let sel_ 1 (R) be the relation

{ (u x , . . . , u , _ ,) / 3 u , : (u l , . . . , u , , 1, u ,)~R}

and let S e l 1(,~)= { s e l I (R)/Re~}.

A relation R c)~ A* is said to be recognizable if it is a finite union of sets
n i = 1

in the form X Li where Li is a rational language on A i. It is well known (cf.
[5]) that i= 1

Proposition 1.3. The intersection of a rational relation with a recognizable
relation is a rational relation.

Proj (Rat) = Sel_ 1 (R a t) = Rat.

Let us define now the subclass PcRat of Rat as being the class of relations
represented by a strict rational mult imorphism (q~l, ..-~b,, L) such that L is a
pc rational language. It is clear that PcRat is also the class of relations
recognized by sink-automata.

Similarly we say that a relation R c X A* is pc recognizable if it is a finite
i = l

union of sets in the form X L~ where L~ is a pc rational language on A i.
~=1

From these definitions we get obviously

Proposition 1.4. The intersection of a pc rational relation with a pc recognizable
relation is a pc rational relation.

Proj (PcRat) = Sel 1 (PcRat) = PcRat.

The motivation for introducing pc rational languages, pc rational relations
and pc recognizable relations is that, as a language, a process is prefix-closed
and thus, synchronized behaviours of processes become pc relations, as we
shall see just now.

2. Synchronized Behaviours of Processes

Let A be a finite set of actions. A process P on A performs a sequence of
actions in A. The set of behaviours B(P) of A is the set of all these sequences,
i.e. a language on A. Moreover, since every initial subsequence of a sequence
in B(P) is also performed by P, we get

Init (B(P)) = B(P).

Hence we say that a process P on A is rational if B(P) is a pc rational
language.

Synchronized Behaviours of Processes and Rational Relations 25

Conversely we can assume that every pc rational language L c A * is equal
to B(P) for some rational process P on A.

Let us define now a synchronized system Q of processes as beeing a set
{PI , P,} of processes, where Pi is a process on A i, with some specification of
synchronizat ion constraints. Then the set of synchronized behaviours of this
system (or the set of vector firing sequences) is a subset

i - 1 i = 1

F r o m now on, let P = <P1 , P,) be a vector of rational processes, where
P~ is a process on A~.

2.1, S-synchronization [8]. Let S = A be the set of vectors of actions which can
be performed simultaneously in a system - if a componen t of an element s of
S, say the i th, is the empty word, it means that the i 'h process must wait -.

The set of S-synchronized behaviours of this system is the set

B(P, S)= (iX1B(P~)) c~ It(S*).

Let Synchro be the class of all B(P, S).
Since ~(S*) is obviously a pc rational relation we get, from Proposi t ion 1.4

that B(P, S) is still a pc rational relation hence Synchro c PcRat. Moreover we
can prove a kind of converse inclusion

Propos i t ion 2.1. Synchro ~ PcRat = Sel 1 (Synchro).

Proof Since SynchrocPcRat, we have Sel_t(Synchro) cSel_ l (PcRat)
=PcRat; let us now prove that P c R a t c S e l l(Synchro).

Let R=A* x A~... x A* be a pc rational relation. Hence from definitions, R
= n (L) where L is a pc rational language in A*. We construct the system of
processes Q = <P1 P,, P, + 1 > where

B(p/) = {A* if l < i < n

if i = n + l

and we synchronize this system by S c B = (A ~ ~ A) • ... • (A, ~ A) • A - A" + 1, so
that if P,+I executes a~A, each process P~ simultaneously executes z~/(a) i.e. S
= {7(a)/azA} where 7(a) = <Tr 1 (a), . . . , ~,(a), a>.

Let ~,=<21 ,2 , , 2,+1> with for 1 < i < n ,

2i: B * - ~ A *

2.+ 1 : B* --~A*.

Obviously we have for 1 _<i<n, 2i=~z~. 2,+

and for u~A* 2,+ l (7(u))=u

and for u~B* ~(2,+ ~(u))=u.

26 A. Arnold

It follows that (u~, ..., u ,)sse l_ I(B(P, S)) iff

3 v~S*: ui=)~i(v) and 2,+ l (v) sL iff

3 Un+ 1EL: Ui=2i(y(Un+ 1)) iff

3 U,+ I~L: ui=ni(u,+ 1) iff

(u I , u ,) ~ R ,

since Un+ 1=2n+ I(V) iff v=7(u,+ 0

=gi(Un+ 1). []
and ni(Y(u.+ 1)) =/'r l(~)(Un+ 1))

2.2. Finite state controls [8, 2]. At every step of the evolution of a controlled
system, the control allows a vector of actions to be fired depending on its own
state, and changes its state depending on the vector just fired. Let us give a
formal definition of this.

A finite state control M of the vector P of processes is a tuple (Q, q*, 6, ~)
where

Q is a finite set of states,

q* is an element of Q, the initial state,

6: Q ~ ~'(A),

$: Q • A ~ (Q) .

The set of synchronized behaviours of this system is B(P, M) defined by
uEB(P, M) iff

i) u~ ~(B(P/) and
i--1

ii) 3 p > 0, 3 al apCA, 3 qo , qp~Q such that

-- t t = a l . a 2 , . . . - ap ,

- q0 =q* and

- Vi~{1 , p}, ai~6(qi_l) and qi~t~(qi_l, a/).

In other words B (P , M) = (B (P O • ...B(P,))c~n(L) where L is the rational
language in A* recognized by M, and it is clear from the definition (cf. ii)
above) of M that L is prefix-closed.

Let us denote by Control the class of all B(P, M).
From Proposition 1.4 we get Cont ro l~PcRa t . Conversely let R = n (L) in

PcRat. Then R = (A * • ... • A*)c~n(L), which is in Control. Therefore

Proposition 2.2. PcRat = Control

2.3. C O S Y programs [6, 10]. A COSY program is a vector of cyclic processes
P =(P 1 P,) and another vector of cyclic processes Q = (Q 1 , ..., Q,) named
paths.

A cyclic process is a rational process, which have as a set of behaviours,
Init (L*) where L is a rational language.

The definition of the set of synchronized behaviours of a COSY program is
given in [10]. Let us recall this definition here.

Synchronized Behaviours of Processes and Rational Relations 27

Let (P, Q) be a COSY program with P = < P , , .. . , P,>, Q = <P,+ 1, .. . , P,+,,>
and P~ is a cyclic rational process on A~.

For any iE{1 , n+m}, let a i = A * ~ ({ i } x Ai) and ri: ({1 , n} x Ai)*--*A*
be the sa homomorphisms defined by ai(a)= <i, a) and zi(j, a)=a.

Let us set Li=ai(B(Pi)) for ie{1 ,n}, and Li=z7I(B(Pi)) for ie{n
+1 m}.

At last let S be the subset of B defined by

<s 1, ..., s,+,,>cS iff

n + m

a~ Q) Ai, j6{1 , n} such that
i = 1

Sk={(_AJ, a) if (j,a)G_B k
otherwise.

(C)) The set of behaviours B(P, Q) of this program is z ~1 Li nn(S*) where
is <~1, .--, z,+m)- i

The previous definition of S amounts to say that if an action can be
performed by a set I of processes and a set J of paths, then it must be
performed simultaneously by only one process in I and by all paths in J. Thus

?lq-m

we can define a subset T of A by @1 ,b ,+m)~T iff ae U Ai, 3je{1, ... , n}
such that i= '

b _ J ' a if a~A k and (k=j or n+l<-k<_n+m)
k-- (A otherwise.

And then B(P, Q)= (iX=~B(Pi))nrc(T*). Whence it follows that Cosy~Xynchro.

The difference between the synchronization mechanisms for Cosy and Syn-
chro is twofold. For Synchro simultaneous actions can have different names
(i.e. a vector in S can have different components) while for Cosy these actions
must be the same (a vector in T has the same non-empty components). Thus
this difference is only a matter of names of actions and then Cosy and Synchro
can be easily related by Proj. The second difference is that in COSY processes
are always cyclic. This difference is not important because of the following
"trick".

Let L any pc rational language and let c a new letter not occuring in L.
Then E=Ini t ((Lc)*) is a cyclic process, but the set of words in E in which c
does not occur is exactly L.

So we can prove

Proposition 2.3. Cosy ~ Synchro ;

Proj (Sel_ t (Cosy)) = P c Rat.

Proof To obtain this result we have just to prove

PcRat ~ Proj(Sel_ t (Cosy)).

28 A. Arnold

Let R = n (L) a pc rational relation where L E A * . For every i < n , let Ai
={a~A/rci(a)4:A}u{c } where c is a new letter and A k + i = A w { c } , and let q~i

n + l

the canonical alphabetic h o m o m o r p h i s m from A*--.A*. Let B = X (AiuA)
i = 1

- A "+1 and for every aEA let 7(a)~B be defined by v(a)~=q~(a). Let us
consider the cyclic paths P/such that for l_< i<_n, B(P/)=(Ai-{c})* and B(P,+ 1)
=Ini t ((Lc)*) . The synchronized behaviour of this COSY-p rog ram is R'

n + l

- • * and - X B(P/)c~2(T*)) where 2: B * o A * • ... A,+ 1
i = 1

n + l { a if a~Ai
T= {J(a)/a6 U Ai} with 6(a)i=

i= 1 if a6A i

Hence T = {7(a)/a~A} ~ {(c , c)}.
n + l

But since B(P~) does not contain c for i = 1 , ..., n, we have R ' = X B(P~)c~

It follows that (u 1 , u. + 1) ~R' iff 3 v~(7(A))* : 2 i(v)~(A i - {c})* for 1 < i _< n
and ;t,+l(v)~L. But 2i(v)=(oi(2,+l(v)) and 2 , + l (v) = u , + 1 iff v = 7 (u , + 0 , there-
fore (u 1 ,u ,+l)~R' iff u,+l~L and ui=~i(U,+l). Then sel t(R')
= { (u 1 ,u,) /3u,+l~L:ui=(~i(u,+i) } and since the restriction of n i to
A i - { c } is a strict hom om orph i sm which satisfies ~i(ai(u,+O=rc~(u,+O
we get lt(sel_l(R'))={(U'l,. . . ,u',)/3u,+l~L; ui6rci/U,+l)}=R. Hence
R~Proj(Sel 1(Cosy)). []

2.4. Conclusions. N o w we can collect together the previous results:

Cosy c S ynchro ~ Control = PcRat

PcRat = Sel l(Synchr~ = Proj(Sel l (C~

which makes appear some open questions.

- Are the inclusions in the first line strict? We think they are.
- Proj(Synchro) and Proj(Cosy) and Se l l (COsy) are obviously included in
PcRat; are these inclusions strict? We think they are.
- Does there exist some relationship between Proj(Cosy) and Synchro?

In the definition of Cosy we met the condi t ion that processes have to be
cyclic. If we give up this condi t ion we will get the class Excosy which ob-
viously satisfies Cosy c Excosy c Synchro.

- Then does there exist some relationship between Proj(Excosy) and Syn-
chro? between S e l l(Excosy) and others classes?

Moreover it is possible to consider the class Exproj of projections where
alphabetic homomorph i sms are not necessarily strict. Then we have

P r o p o s i t i o n 2.4. P c Rat = Exproj (S ynchro) = Exproj (Excosy).

Proof Since Exproj(PcRat) included in PcRat it is sufficient to prove that
PcRatcExproj(Excosy). Let R-=n(L). Let us define B - - { (a a) /a~A}. Ob-

Synchronized Behaviours of Processes and Rational Relations 29

viously R'=(Lx L... x L)c~.(B*) is the behaviour of an Excosy program and
(ul, ..., u ,) e R ' iff u 1 = u 2 = ... = u , e L , hence

n(R') = {(re I (u O, . . . , r c , (u ,)) / (u 1 , u ,) e R ' }

={(rc,(u),.. . , ~,(u)F/u~L}=a. []

At last it is also possible to give up the condition that processes are prefix-
closed languages and we will get other classes of synchronized behaviours
which will have to be compared to the class R a t of rational relations.

Thus there exist many subclasses of the class P c R a t (and of the class Rat)

which correspond to behaviours of synchronized systems of processes and
relationship between these subsclasses should be of interest for studying syn-
chronization problems.

References

1. Arnold, A.: A comparison of three specifications of synchronization constraints. Rapport de
Recherche n ~ 5, Laboratoire d'Informatique, Universit6 de Poitiers (1980)

2. Arnold, A., Nivat, M.: Controlling behaviours of systems: Some basic concepts and some
applications. In: 9tb Symposium on Mathematical Foundations of Computer Science, Rydzyna
1980 (P. Dembinski, ed.). Lecture Notes in Computer Science, Vol. 88, pp. 113-122. Springer-
Verlag (1980)

3. Campbell, R.M., Habermann, A.N.: The specification of process synchronization by path
expressions. In: Operating Systems, Int. Syrup. Rocquencourt, 1974 (E. Gelenbe, C. Kaiser,
eds.). Lecture Notes in Computer Science, Vol. 16, pp. 89-102. Springer-Verlag (1974)

4. Dijkstra, E.W.: Co-operating sequential processes. In: Programming Languages (F. Genuys,
ed.), Academic Press, New York 1967

5. Eilenberg, S.: Automata, Languages and Machines, Vol. A. Academic Press, New York 1974
6. Lauer, P.E., Torrigiani, P.R., Shields, M.W.: COSY. A system specification language based on

paths and processes. Acta Informat. 12, 109-158 (1979)
7. Nivat, M.: Transductions des languages de Chomsky. Ann. Inst. Fourier, Grenoble 18, pp. 339-

456 (1968)
8. Nivat, M.: Sur la synchronisation des processus. Revue Technique Thomson-CSF 11, 889-919

(1979)
9. Nivat, M.: Infinitary relations. In: CAAP 81, Genoa, 1981 (E. Astesiano, C. B6hm, eds.). Lec-

ture Notes in Computer Science, Vol. 112, pp. 46-75. Springer-Verlag (1981)
10. Shields, M.W., Lauer, P.E.: A formal semantics for concurrent systems. In: Automata, lan-

guages and programming, 6th Colloquium, Graz (H.A. Maureer, ed.). Lecture Notes in
Computer Science, Vol. 71, pp. 571-584. Springer-Verlag (1979)

Received February 17, 1981 /January 21, 1982

