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VON NEUMANN’S PROJECTION POSTULATE AS A 

PROBABILITY CONDITIONALIZATION RULE 

IN QUANTUM MECHANICS 

If the transition from classicaI to quantum mechanics is to be understood as 
the transition from a Boolean to a non-Boolean possibility structure, several 
questions arise concerning the representation and interpretation of prob- 
abilities, since classical probability theory is essentially a Boolean theory. I 
want to sketch a representation of classical probability theory as an operator 
calculus, anaIogous to the operator calculus of quantum mechanics, and 
show that the classical conditionalization rule in this calculus is just von 
Neumann’s projection postulate (actually, a corrected form of this postulate 
first proposed by Luders).’ I propose this construction in support of the 
thesis that von Neumann’s projection postulate (more correctly, the Luders 
rule) is the appropriate rule for conditionalizing probabilities in the non- 
Boolean possibility structure of quantum mechanics. 

Von Neumann introduces the rule which has become known as the 
“projection postulate” in Section 3 of Chapter III of his book Mathematical 
Fo~&~tio~s of Quantum Mechanics. In its simplest form, the postulate 
states that if a measurement of a maximal magnitude A with eigenvalues 
h,a2,. . . and corresponding eigenvectors czl, 02, . . . yields the result ai, 
then the initial quantum state of the system is transformed to the state oj. 
Von Neumann goes on to consider the case of a non-maximal measurement. 
If the eigenvalue ~~ has multiplicity &, then the corresponding eigenvectors 
span a &-dimensional subspace Koi, the range of a projection operator Pa,. 
Von Neumann argues that after a measurement yielding the result ai, the 
system is represented by the statistical operator 

Note that this represents a mixture, not a pure state. In the general case of 
a magnitude -4 represented by an operator with a continuous spectrum, he 
concludes that after a measurement yielding the result u E S, the system is 
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represented by the unnormalized statistical operator PA @)/PA (,S), where PA (S) 
is the projection operator in the spectral measure of A corresponding to the 
range S(A = Jr dPA@)). The operator PA(S) generates relative probabilities. 

Now, quite apart from any objections to a measurement postulate of 
this sort, it is generally agreed that von Neumann’s rule can only be correct 
for maximul measurements. The accepted rule was first proposed by Ltiders.2 
The Liiders rule states that a (possibly non-maximal) measurement of a 
magnitude A yielding the result Ui leads to the following transition in the 
statistical operator W of the system: 

and not 

pUi wpOi 
w-' w' = Tr (PaiWP,,J (Luders)3 

(von Neumann) 

What is the difference between these two rules? The two rules agree in 
only two cases: (i) if W = I(unnormalized) where I is the unit operator, and 
(ii) for maximal measurements, i.e., when each Pai is the projection operator 
onto a (different) 1 dimensional subspace spanned by the vector oi- 

Case (i) is immediately obvious: 

For case (ii), the von Neumann rule yields: 

w+w' = Pq 

for the transition corresponding to the result Ui. The Liiders rule yields this 
transition too: 

phi wp~i 
wj w’ = Tr (P&.WP%) = '%* 

(Note that PaiWPai = (cY~, Wai)Pq = Tr (WPai)Pai.) 
To bring out the difference between the Liiders rule and the von Neumann 

Neumann rule, consider an initial pure statistical operator W = P$ and a 
non-maximal measurement, i.e., where the projection operators are not in 
general l-dimensional. 

The Luders rule yields 
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where 

The von Neumann rule yields 

PlXi WCp++W’C- 
Tr Pai) 

or W’ = Pai (unnormalized) if Tr(PGi) = = 

According to the von Neumann rule, IV’ is a W-xr~e w/rk/r &es nor 
depend on the initial quantum state $. According to the Liuders rule, W’ is 
a pure state t?;, which does depend on the initial state $, In fact, 0; is the 
normalized projection of I$ onto the subspace which is the range of P%, i.e., 

‘ai$ 
ei = llP& 11 . 

To show that the Liiders rule, and not the von Neumann rule, is the 
appropriate rule for conditionalizing probabilities in the non-Boolean possi- 
bility structure of quantum mechanics, consider for simplicity a countable 
classical probability space (X, 3, p). I shall label the atomic events or 
elementary possibilities by x1, x2, . . . These are associated with singleton 
subsetsXi,Xa,. . , , or indicator functions (characteristic functions) 
Zl,IZ,.... I shall label other, possibly non-atomic, events by a, b, . . . . 
Thus,thesetar,aa,... might denote a set of non-atomic mutt&y exclus- 
ive and collectively exhaustive events (F lai = 1; &Iaj = 0, i #j). 
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Now, for any probability measure p, it is possible to introduce a 
“statistical operator” W = ~i~i~~, where nisi = 1, Wi 2 0, for all i, in 
terms of which the probability of an event u may be represented as: 

I shall write pW(u) for p,,(u), where IV corresponds to & i.e. 

To simplify notation, I shall abbreviate this expression as 

where a summation s&n without an index is understood as summing over aU 
the atomic events x). This convention will be used below. 

In terms of the statistical operator, the conditional probability (relative 
to an initial measure p associated with the statistical operator IV) of an event 
b given an event ai, may be represented as: 

To see this, simply notice that 

Thus, the transition 

on conditionalization with respect to u, (where JL’ is defined by H’(X~) = 
&Xai n Xe)/&Yq) = p,,(e [ar) for any event e) may be represented as the 
transition 
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The statistical operator construction allows the replacement of the 
measure function /.I, which is a set function whose domain is the field of 
measurable subsets of X, by a corresponding random variable W, a point 
function whose domain is X. If we regard the probability space as associated 
with a physical system with magnitudes ,4, B, etc., whose possible values 

al,a2,...;bl,b2,.. . ; etc. correspond to the possible events represented 
by the field 3, then the statistics of this system is now represented by a 
physical magnitude W belonging to the algebra of magnitudes of the system. 
In fact, W is a linear combination of atomic magnitudes of the system. The 
advantage of this construction is that it provides a purely algebraic way of 
representing the statistics of a system, which is appropriate whether or not a 
representation of the algebra of magnitudes as real-valued functions on a 
space is possible. I want to suggest that we take W as representative of the 
statistics in a primary sense - the measure function fi exists only if the 
algebra of magnitudes is commutative. In this special case (a classical prob- 
ability space), the subalgebra of idempotent mdgnitudes forms a Boolean 
algebra, svhich has a representation as a field of subsets of a set, by Stone’s 
theorem. The measure function defined as a set function on this field is 
essentially the “Stone representative” of the statistical operator W, which is 
the element in the algebra of magnitudes incorporating the statistics. Bearing 
in mind the possibility of non-commt&.:ive algebras of magnitudes as in 
quantum mechanics (i.e., non-Boolean possibility structures), it seems 
appropriate to represent the transition corresponding to conditionalization 
with respect to an event af by the symmetrical expression: 

Now, this is just the Liiders version of von Neumann’s projection postu- 
late. In quantum mechanics, the statistics of a system is represented by a 
statistical operator W which may be represented as: 
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where the Pai are projection operators onto atomic events (i.e., projection 
operators onto l-dimensional subspaces spanned by the vectors pi). Thus, IV 
is a linear combination of atomic idempotent magnitudes of the system. In 
terms of this operator, the probability of an event b is represented as: 

Notice that the trace of an operator 0 is just the sum of the eigenvalues of 
0, i.e., the sum of the possible values of 0 at each atom in the maximal 
Boolean subalgebra defined by 0. Thus, the operation Tr in the non- 
commutative algebra of magnitudes of a quantum mechanical system is 
completely analogous to the operation Z in the commutative algebra of 
magnitudes of a classical mechanical system. 

According to the Liiders rule, the conditional probability (relative to an 
initial measure associated with the statistical operator IV) of an event b 
given an event Ci is: 

If we assume an a ptiori probability assignment given by the unnormal- 
iced statistical operator W = I, representing an equiprobable initial 
distribution over every complete set of orthogonal atomic properties 
(associated with the possible vahres of a maximal magnitude), then 
conditionallization with respect to an atomic property cf yields the 
transition 

where Pci is the projection operator onto the l-dimensional subspace 
spanned by the eigenvector Try say, corresponding to ci. This means that the 
probability of a property ZJ conditional on cr (where b may be incompatible 
with ci) is to be computed according to the rule: 

PW@ ICh = n Q’$r,F 

If b is atomic, corresponding to the vector 0, we have 
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Thus, the probability assigned by the “state vector” yi (representing the 
association of the property C~ with the system) to an incompatible property 
b, according to the quantum mechanical rule, may be interpreted as the 
conditional probability of the property b given the property Ci relative to 
an initial probability distribution with is equiprobable with respect to every 
complete set of atomic properties of the system. 

A number of problems of interpretation are resolved if we interpret the 
quantum mechanical speciftcation of a system by its state vector as a 
statistical specification in the above sense, in which the statistical operator 
P+ determined by the state vector $ is understood as the algebraic counter- 
part of the classical measure function P, which does not exist in this case 
since the possibility structure is non-Boolean. (Of course, the state vector 
cannot be interpreted in this way if the possible values of the maximal 
quantum mechanical magnitudes are represented as generating a classical 
probability space - whatever initial probability distribution we choose.) 

For example, the 2-slit experiment can be analyzed as a problem in con- 
ditional probabilities on a non-Boolean possibility structure. It can be shown 
that the von Neumann rule gives the wrong result (no interference} while 
the Liiders rule gives the correct result. We have a screen with two slits, A 
and B, and a second detecting screen or photographic plate. A photon in a 
pure quantum state represented by a plane wave moves towards the slits. 
Each slit can be regarded as localizing the photon to a region, AA or AB, in 
the plane of the slit screen. In other words, there is a magnitude M, 
representing position in the slit screen plane, and the passage of a particle 
through a slit is a measurement of the magnitude M, in the sense that a range 
range, A.., or An, is assigned to M for the photon at the time of passage. We 
are interested in the probability that the photon will arrive at a certain 
region on the detecting screen, conditional on localization to a certain 
range of vahres of M (AA, An, or AA U AB). Localization to a region A on 
the detecting screen is a measurement of a magnitude ,V, representing 
position in the detecting screen plane. IV may be taken as the same magni- 
tude M, if the regions are the same size as the slits, or at least as compatible 
with M otherwise. 

It is easy to show that the conditionalized statistical operator for the 
photon, immediately after the photon has passed through the slit system 
with both slits open, is: 
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wAB = PM (AA ) + PM (AB) (von Neumann, unnormahzed) 

wAB = pt3 (Luders) 

where PM(AA), PM(Aa) are the projection operators in the spectral 
measure of M corresponding to the ranges AA, AB, respectively, and 0 = 
($A + tiBMZ dwe $A is the normalized projection of the initial state $ 
(plane wave) onto the subspace which is the range of the projection operator 
PM(AA) (and similarly for GB). 

Notice that according to the von Neumann rule WAB represents a mix- 
ture which does not in any way depend on the initial quantum state of the 
photon. But the initial state is required to be a plane wave (and not, say, a 
mixture of plane waves, as might be obtained by placing a candle to the 
left of the slit screen) in order to obtain interference effects. it follows that 
the probability of the photon arriving at region A on the detecting screen 
with both slits open is simply one half the sum of the probabilities with 
either slit ,4 or slit II open, irrespective of the distance between the slit 
screen and the detecting screen. This is what one would expect on a classical 
analysis, and is contradicted by the interference pattern. 

According to the Liiders rule, WAB is a pure statistical operator, and the 
probability of the photon arriving at region A on the detecting screen with 
both slits open is equal to one half the sum of the probabilities with either 
slit A or slit B open only when the slit screen and the detecting screen are 
zero distance apart. For a non-zero distance between the screens, the prob- 
ability assigned by the time-evolved statistical operator WAB = PO differs 
from the sum by a non-zero “interference term”. 

This analysis of the 2.slit experiment makes clear the role played by (i) 
the initial quantum state, and (ii) the non-zero distance between the slit 
screen and the detecting screen. The explanation of the interference effect 
depends on the difference between the Liiders conditionahzation rule and 
the von Neumann rule. Von Neumann’s rule: 

p=i ~-+&?‘~------ 
n Pai) (assuming Tr(P,,i) < a) 

is the analogue of the classical rule: 
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representing a conditionalization and rundomiza?ion of the initial measure 
within the subset Xai - i.e., the initial measure is not merely “renormalized” 
to include the new information (that the value ofA is ai), but replaced by a 
uniform measure over the set Xai (so that information contained in the 
initial measure concerning the relative probabilities of properties represented 
by subsets in Xai is lost). Thus, the “paradox” involved in the 2-slit exper- 
iment is resolved by showing precisely how t,he assumption of a non-Boolean 
possibility structure explains the existence of the “anomalous” interference 
effect .4 

On the usual interpretation, the projection postulate is a rule represent- 
ing the effect of the necessarily tinite and uncontrollable disturbance of a 
system involved in any quantum mechanical measurement process. My point 
is that the projection postulate in its corrected Luders version is properly 
understood as mere conditionaiization on a non-Boolean possibility 
structure, since it is the analogue of mere conditionalization on new infor- 
mation in the Boolean case. The effect of a measurement disturbance 
involved in obtaining this information would be represented as an additionaf 
change in the statistical operator, over and above the change defmed by the 
Liiders rule. Such a measurement disturbance may be more or less violent. 
The von Neumann rule corresponds to the most violent disturbance possible, 
in which ~11 initial information concerning the system is lost, and only 
information represented by the measurement result is retained.’ 

A similar analysis of the Einstein-Podolsky-Rosen experiment as a 
problem in conditional probabilities shows how the peculiar quantum mech- 
anical correlations between conditional probabilities involving the separated 
systems s and s’ arise on the non-Boolean possibility structure. In this case, 
again, conditionalization with respect to non-atomic properties is involved 
(an s-magnitude or St-magnitude is non-maximal in the Hilbert space of the 
composite system s + .S’) so that the difference between the Liiders and 
von Neumann versions of the projection postulate comes into play. 

In general, then, insofar as problems of interpretation in quantum mech- 
anics have their source in probability relations which are anomalous classic- 
ally, these problems are resolved by recognizing the projection postulate in 
its corrected Eluders version as the appropriate conditionalization rule on 
the non-Boolean possibility structure of a quantum mechanical system. If 
the logical interpretation of quantum mechanics can make sense of truth, 
it can make sense of probability. 

University of Western Ontario 
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r 
NOTES 

A non-commutative extension of the classical notion of conditional probabihty 
(more generally, conditional expectation) has been extensively investigated by Umegaki 
(H. Umegaki, ‘Conditional Expectation in an Operator Algebra’, 1. To!roku M&b. J. 6, 
177-181 (1954); KS, 86-100 (1956);HI. Ko&&furIr. Semi. Rep. Ll,Sl-64 
(1959); IV. Ko&r &fur/r. Semi. Rep. 14,59-85 (1962)). Umegaki’s theory has recently 
been extended to magnitudes with continuous spectra by Davies and Lewis (E. B. 
Davies and J. T. Lewis, Commun. Mzth. Phys. 17, 239-260 (1970)). Using the 
Umegaki theory, Nakamura and Umegaki have shown that von Neumann’s projection 
postulate is just the conditionalization of the statistical operator relative to an event in 
the non-Boolean possibility structure. (M. Nakamura and H. Umegaki, ‘On von 
Neumann’s Theory of Measurements in Quantum Statistics’,&fufA. @I. 7, 15 1- 157 
(1961-62)). Their demonstration considers only maximal (i.e., nondegenerate) magni- 
tudes with discrete spectra, in which case the Luders rule coincides with von 
Neumann’s rule. A discussion of the Luders rule vis u vrs von Neumann’s rule follows. 
’ G. Luders, Ann. d. Physik 8,322 (195 1). The Luders rule is discussed at some length 
by Furry in W. H. Furry, ‘Some Aspects of the Quantum Theory of Measurement’, 
Lectures in Theoreticul Physics Volume VIII A, Stutisticul Physics und Solti Stute 
Physics, University of Colorado Press, Boulder, 1966. 
’ By the properties of the trace operation, 

Tr (P,$VPai) = Tr (WPai) = Tr (P,+V). 
I shall continue to’write such expressions in symmetrical form below. 
’ Compare this analysis with Putnam’s discussion in H. Putnam, ‘Is Logic Empirical?‘, 
Boston Studies in the Philosophy of Science, R. Cohen and M. Wartofsky (eds.), 
Reidel, 1969. Putnam’s solution to the problem posed by the phenomenon of inter- 
ference is to block the application of the distributive law in transforming the con- 
ditionaJ probability on passage of the photon through both slits, to a sum of con- 
ditional probabilities for each of the slits separately. This solution is spurious, however, 
because the usual classical notion of conditional probability is inapplicable if the possi- 
bility structure is non-Boolean. Notice that the initiaJ quantum state plays no role in 
Putnam’s analysis, and there is no explicit recognition of the significance of the dis- 
tance between the slit screen and the detecting screen (although a non-zero distance 
is implicitly required for the nondistributivity of the events considered). 
’ At first sight it might seem that the application of the von Neumann rule is appro- 
priate in the case of the 2-slit experiment when some physicaJ device is incorporated 
into the experimental arrangement for detecting the passage of an individual photon 
through either slit A or slit B exclusively, when both slits are open. Now, while it 
might indeed be the case that certain devices of this sort introduce a disturbance 
represented by the von Neumann rule, there is no theoreticul reason I can see why 
such devices should not operate with minimal disturbance. In this case, both the von 
Neumann rule and the Lttders rule yield the same result: no interference. On the von 
Neumann rule, the statisti& operator of the photon immediately after passing through 
the slit system with the detection device is the mixture: 

WAB = P&A) + &,@B) (unnormalized) 

On the Ltiders rule, the statistical operator is the mixture: 

Both mixtures yield no interference at the detecting screen, for any distance between 
the slit screen and the detecting screen. 


