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Summary. The semantics of a pair of synchronization primitives is charac- 
terized by three fundamental axioms: boundedness, progress, and fairness. 
The class of primitives fulfilling the three axioms is semantically defined. 
Unbuffered communication primitives, the symmetrical P and V operations, 
and the usual P and V operations are proved to be the three instances of 
this class. The definitions obtained are used to prove a series of basic 
theorems on mutual exclusion, producer-consumer coupling, deadlock, and 
linear and circular arrangements of communicating buffer-processes. An 
implementation of P and V operations fulfilling the axioms is proposed. 

1. Introduction 

The purpose of this paper is to define the semantics of any pair of synchroniz- 
ation primitives in terms of three fundamental axioms called boundedness, 
progress, and fairness. Synchronization constructs that are not a pair of primi- 
tives, like "conditional critical regions", are not considered. The class of 
constructs considered comprises, besides Dijkstra's P and V operations [1], the 
different forms of communication primitive pairs (mostly called "send-receive" 
or "input-output" operations) used in distributed programming. Only the 
synchronization property of communication primitives will be of interest to us; 
the other semantic property - the "distributed assignment" - will be ignored. 

It will be shown that the class defined by these axioms comprises three 
different types of primitives according to the degree of synchronization free- 
dom (we call it the "slack") allowed. The primitives with the largest (infinite) 
slack correspond to P and V operations, and to "send" and "receive" oper- 
ations via a channel with infinite buffering capacity. The primitives with a 
finite but non-zero slack correspond to symmetrical P and V operations, and 
to "send" and "receive" operations via a buffer with finite (positive) buffering 
capacity. The ones with zero slack correspond to Hoare's primitives [5] for 
communication via a channel without buffering capacity. 
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In the first part, starting from the most general formulation of the three 
axioms, an algebraic semantic definition is derived for each of the three types 
of primitives. In the second part, the usefulness of the semantic definitions ob- 
tained is demonstrated by proving a series of fundamental theorems. Most of 
them concern programs using P and V operations; one is about linear and 
circular arrangements of buffer processes communicating by means of Hoare's 
primitives. The alternative between communication primitives with infinite 
slack and those with finite slack is discussed in relation with the producer- 
consumer problem. 

Finally, in order to verify that the axiomatic definition proposed for P and 
V operations does not differ fundamentally from traditional operational de- 
finitions, an implementation is derived from the axioms. The reader may 
convince himself that this implementation indeed corresponds to one (the 
best !) of the traditional definitions. 

2. The Synchronization of two Actions 

For the sequential program parts, besides the usual assignment statement, we 
use Dijkstra's alternative and repetitive constructs [2], with a slightly different 
syntax. Following C.A.R. Hoare, we write [. . .]  for if . . .f i ,  and * [ . . . ]  for 
do. . .  od. 

Non-terminating (cyclic) programs of the form 

* [true ~ S] 

are very frequent in concurrent programming. In such a case, we shall omit the 
guard ("true") and simply write: 

, IS] .  

We view a sequential computation as a (finite or infinite) sequence of 
(hence totally ordered) actions; when necessary we shall name the actions after 
(the names of) the program commands that provoke them. (The precise 
"granularity" of actions not concerned with synchronization is irrelevant for 
the purpose of this paper.) 

We view a concurrent computation as a number of simultaneous sequential 
computations without any intrinsic ordering between actions from different 
sequential computations; in this context the constituent sequential compu- 
tations will be referred to as "processes". 

Let X be a command provoking an "X action" when executed. With X we 
associate three fundamental non-negative integer variables, denoted by cX, 
qX, and tX. (The convention consisting of denoting these variables by the 
name of the action prefixed by the letter c, q, or t will be used all through the 
paper.) 

�9 The value of cX is defined as the number of X actions completed since the 
beginning of the computation. 
�9 The value of qX is defined as the number of X actions currently suspended 
or queued. 
�9 For brevity's sake we shall use tX defined as c X + q X .  
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For  a given pair (X, Y) of commands,  the corresponding X actions and Y 
actions are synchronized when there exists an invariant relation between cX 
and cY. (Of course, tautologies of the form c X + c Y > c X  are excluded as 
relations.) 

With the usual interpretation of the semicolon, execution of 

�9 Ix;  r ]  

maintains the truth of O < c X - c Y < l .  But, by definition of a concurrent 
computation, c X - c Y  has a priori no bounds if the X actions and the Y 
actions occur in different processes. When, however, c X - c Y  is by definition 
bounded while the X actions and the Y actions may occur in different pro- 
cesses, we call X and Y a pair of synchronization primitives. 

Hence the sequencing of actions inside a process and the use of synchroniz- 
ation primitives among different processes are the two means for synchroniz- 
ing actions. 

3. The Semantic Characterization of Synchronization Primitives 

We have met for a pair (X, Y) of synchronization primitives the first require- 
ment, to be called "boundedness requirement", 

RI :  The value of c X - c Y  is bounded, either at one side or at both sides. 

The requirement of maintaining R1 introduces the notion of suspension of 
an action. In order not to violate the bounds, the completion of an initiated 
synchronization action may have to be postponed; from initiation until com- 
pletion, such a synchronization action is then called suspended. 

Note that the completion of an X action - i.e. c X : = c X + l  - does not 
influence the value of cY+qY: it may be accompanied by cY, q Y : = c Y + l ,  qY 
- 1 ,  but this does not influence their sum tY. And vice versa. 

A trivial way of maintaining the truth of (the initially true) R1 would be to 
prevent the completion of any X or Y action. But we would like to ensure 
progress of the computation. Hence we impose upon synchronization primi- 
tives a second requirement, to be called "progress requirement", 

R2: The set of suspended actions is minimal, i.e. the completion of any non- 
empty subset of suspended actions would violate R1. 

Corollary. Suspended X actions exclude suspended Y actions, and vice versa. 

The process to which a suspended action belongs is said to be delayed at 
that action. 

When a computat ion has reached the point where an X action is suspended 
and no Y action of the same pair occurs in any future history of the com- 
putation, we say that there is a deadlock: the X action will never be completed, 
i.e. a process will be delayed forever at X. (If some future histories of the 
computat ion contain Y actions and some do not, we say that there is a 
possible deadlock.) 

When a computat ion has reached the point where an X action is suspend- 



222 A.J. Martin 

ed in a process i, and there exists a future history of the computation 
containing an unbounded number of Y actions completed while i is delayed at 
X, we say that there is a danger of starvation of i at X. (The concept of 
starvation has been introduced by Dijkstra in [3].) Observe that, by definition 
of R2, the number of X actions and the number of Y actions completed while 
an X action of the same pair is suspended are equal. We could therefore as 
well define starvation in terms of the number of X actions completed while 
process i is delayed at X. The starvation of i at X is caused by the non- 
deterministic choice of the suspended X action to be completed upon the 
completion of a Y action, and vice versa. 

A third requirement, to be called "fairness requirement", can be introduced 
to exclude the danger of starvation, namely 

R3: During the delay of a process at a synchronization action, only a 
bounded number of actions of the same pair can be completed. 

We observe the following hierarchy among the three requirements: R2 
reduces the implementation freedom of R1 in order to guarantee the progress 
of the whole computation. R3 reduces the implementation freedom of R2 in 
order to guarantee the progress of each individual process. 

Two primitive actions which satisfy R1 and R2, but not necessarily R3 are 
called weak synchronization primitives. 

Two primitive actions which satisfy R1, R2, and R3 are called strong 
synchronization primitives. 

4. An Algebraic Formulation of the Synchronization Requirements 

4.1. Boundedness Requirement 

RI:  There exist two integer constants k X  and k Y such that: 
�9 at least one of the two constants is finite, 1 
�9 - k Y < = c X - c Y < = k X .  

Corollary. The two constants are non-negative. 

Proof. R1 holds at initialization, and thus - k Y <_ 0 <_ k X  holds. (End of proof) 

4.2. Progress Requirement 

From the corollary of R2, R2 implies: 

q X = O v q Y = O .  (1) 

1 The aversion of one referee for infinite constants is understandable; yet it is the only way to 
give a unique formulation of R1 and R2 
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Assume that qX>O holds. Then, if R2 is to hold, c X = c Y + k X  must hold (any 
increase of cX would violate R1). Hence, R2 implies: 

q X = O v c X = c Y + k X  (2) 
and symmetrically, 

q Y = O v c Y = c X + k Y .  (3) 

It is easy to prove that, conversely, (1), (2), and (3) imply R2. Hence: 

R2: ( q X = 0 v c X = c Y + k X )  A ( q Y = 0 v c Y = c X + k Y ) / x ( q X = 0 v q X = 0 ) .  

(We shall see that, for each of the synchronization primitive pairs used in 
programming, R2 can be drastically simplified.) 

4.3. Fairness Requirement 

To each process i, an integer variable d i is attached such that d i=0  if i is not 
delayed, and if i is delayed - say, at an X action - d i is the number of X 
actions completed since i has started the suspended X action. Hence, di > 0. (By 
definition of R2, d~ is also the number of Y actions completed since i has 
started the suspended X action.) 

R3: For each process i, d~ has an upper bound. 

Consider a computation consisting of N processes sharing a given pair 
(X, Y) of synchronization primitives, and let D be the upper bound of dz for 
any process i. Let us assume that the computation is deadlock-free for (X, Y) 
weak. In this case, there can be at most N - 1  processes simultaneously delayed 
at the same synchronization primitive, say, X. One suspended action, say in 
process/,will be the last one to be completed: for process i, d~ will be increased 
by at least N -  2. 

Hence, a necessary condition for R3 not to introduce deadlock is that D be at 
least equal to N - 2 .  

There exist strategies for choosing the suspended action to be completed 
such that the above condition is also sufficient. In [3], Dijkstra has described 
such a strategy. From the above, we conclude that fairness cannot be guaran- 
teed for computations comprising an unbounded number of processes. 

4.4. An Alternative Definition of Weak Synchronization Primitives 

Theorem. X and Y are weak synchronization primitives if and only if: 

cX =min( tX,  t Y + kX) /x c Y=min( t  Y, tX  + k Y). 

Proof. By definition: 
cX<=tXAcY<=tE 
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R1 is equivalent to: 
cX < c Y + k X  A c Y < c X + k Y .  

R2 is equivalent to: 

( cX=tX  v cX=cY+kX) / x  (cY=tY v cY=cX +kY)/x ( c X = t X  v cY=tY) .  

Since, by definition, a = min (b, c) is equivalent to 

a < b A a < c A ( a = b v a = c ) ,  

R1 ^ R2 is equivalent to: 

cX = min(tX, c Y + kX) A c Y=min(t  Y, cX + k Y) A (cX =tX  v c Y=t  Y). 

Which is equivalent to: 

cX=min( tX,  tY+kX)  A cY=min(tY,, t X + k Y )  A (cX = tX v cY= tY). 

But the first two factors imply the third one. (End of proof) 

A.J. Martin 

5. The Three Types of Synchronization Primitives 

5.1. The Slack 

Let K be the sum kX+kY;  K is called the "synchronization slack" (kX 
+kY  20): the larger the value of K, the more the synchronized processes are 
allowed to get out of step. 

The class of synchronization primitives defined by R1, R2, and R3 can be 
divided into three disjoint subclasses according to whether K is zero, positive 
and finite, or infinite. These three subclasses define precisely the three types of 
synchronization primitive pairs used in programming: 

�9 The case K =0  corresponds to the communication primitives such as pro- 
posed by Hoare in [5] for communication via channels without buffering 
capacity: since a channel cannot buffer the messages sent, the completion of a 
send action must coincide with the completion of the corresponding receive 
action, 
�9 In the case where K is positive and finite, the primitives, which we call 
"symmetrical P and V operations", correspond to send and receive primitives 
via channels with finite (but positive) buffering capacity: the value of the slack 
equals the maximum number of messages a channel can buffer. 
�9 The case where K is infinite corresponds to the usual P and V operations 
on a semaphore. It also corresponds to send and receive primitives via a 
channel with infinite buffering capacity: a send action is thus never delayed. 

Hence the above three types of primitives are the only synchronization 
primitives defined by R1, R2, and R3. The specific value of the slack fully 
determines the type of primitives; the particular values of kX and k Y for a 
given value of K are only a matter of initialization (they are defined by the 
initial value of the semaphore or by the number of messages initially present in 
the channel). 
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5.2. Unbuffered Communication Primitives 

For K = 0, which implies 

R1 reduces to 

As to R2, 

k X = O A k Y = O ,  

c X = c E  

( q X = O v c X = c Y + k X ) A ( q Y = O v c Y = c X + k Y )  

is implied by R1. Hence the following 

Definition. The primitives X and Y are unbuffered communication primitives 
when the following two requirements are fulfilled: 

RI :  cX=cY,  

R2: q X = O v  qY=O. 

It is clear that the above definition applies to Hoare's communication 
primitives. In [5], Hoare states: "there is no automatic buffering: In general, 
an input or output command is delayed until the other process is ready with 
the corresponding output or input. Such delay is invisible to the delayed 
process." 

5.3. The P and V Operations 

Definition a. Synchronization primitives with an infinite slack are called P and 
V operations. Let kX be finite and kY infinite: X is then a P operation and Y 
a V operation. 

By substituting the values of kX and kY in R1 and R2, we obtain: 

RI :  c X < c Y + k X ,  

R2: ( q X = O v c X = c Y + k X ) A q Y = O .  

From R2 we immediately conclude that a V operation is never suspended 
since q Y= 0 always holds. 

Observing that, in R1 and R2, the variables cX, cY, and the constant kX 
only occur in the expression 

k X - c X  + c Z  

we can simplify the definition of P and V operations by introducing an integer 
variable s equal to k X - c X + c Y .  We obtain: 

RI :  s>0 ,  

R2: (qX=Ovs=O)AqY=O.  

The variable s is called the semaphore associated with the given pair (P, V). By 
definition of s, kX is equal to the initial value of s, say s o. Furthermore, since a 
V operation is never suspended, the factor qY= 0 can be omitted from R2. 
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Thus we arrive at a second, equivalent, definition of P and V operations: 

Definition b. P and V operations are synchronization primitives such that, 
given the following variables associated with a pair (P, V): 

�9 s is an integer variable called semaphore, the initial value of which is s o, 
�9 cP is the number of completed P operations, 
�9 cV is the number of executed V operations, 
�9 qP is the number of suspended P operations, 
the relations: 

A0: s>0,  

AI:  cP+s=cV+so,  
A2: qP=Ov s=O, 

are invariantly true. 

(In the case several pairs (P, V) are simultaneously used, the name of the 
associated semaphore uniquely identifies a given pair, and the different in- 
stances of the variables cP, cV, qP are distinguished from each other by 
postfixing the identifiers eP, cV, qP with the name of the semaphores, e.g. cPs, 
cVs, qPs.) 

Remark. From the alternative definition given in 4.4., we can immediately 
deduce that A0, A1, and A2 are equivalent to: 

A': eP=min(tP, eV+so). 

This characterization of the semantics of P and V operations has already been 
proposed by A.N. Habermann [4]. 

5.4. The Symmetrical P and V Operations 

Definition a. Synchronization primitives for which the slack is finite and posi- 
tive are called symmetrical P and V operations. 

An equivalent alternative definition can be derived from R1 and R2 by 
introducing a semaphore variable as in the case of the usual P and V oper- 
ations. 

Definition b. Symmetrical P and V operations are synchronization primitives 
such that, given the following variables associated with a pair (P', V'): 

�9 s is an integer variable called semaphore, the initial value of which is s 0, 
�9 cP' and cV' are the number of completed P' and V' operations, respec- 
tively, 
�9 qP' and qV' are the number of suspended P' and V' operations, re- 
spectively, 
�9 s,, is a positive integer constant, 
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the relations: 

B0: O ~ S ~ S  m 

BI: c P ' + s = c V ' + s  o 

B2: q P ' = O v  s=O 

B3: q V ' = O v s = s  m 

are invariantly true. 

(Note that since k X + k Y > O ,  the factor q X = O v q Y = O  is implied by the 
first two factors of R2.) 

So far, we have given a theoretical justification for the set of axioms 
chosen. We shall now supplement this with a practical justification: we shall 
show how these axioms can simplify the formal treatment of a number of 
synchronization problems. 

6. Some Classical Theorems 

We shall use the classical notation for identifying pairs of P and V operations 
- namely, P(s) and V(s) - where s is the name of the semaphore associated 
with this particular pair. 

6.1. Mutual Exclusion with Split and Simple Semaphores 

Theorem. Consider an arbitrary number of concurrent processes, each consisting 
for what concerns synchronization in a strict alternation of P and V operations, 
starting with a P and ending with a E on any of the n (n>O) semaphores 
si: O<__i<n. I f  np is the number of processes having completed a P and not yet 
completed the following V, then np<__~ SOl, where sO i is the initial value of s i. 

i 

Proof. By definition 

n p = c P - c V ,  
i.e.: 

np = ~ (cPs i - c Vsi), 
i 

so, by AI:  

n p = ~  (sO i-si) ,  
i 

and next by A0: 

n p = ~  sO i. (End of proof) 
i 

Corollary. I f  ~ sO i=  1, there is at most one process at a time inside the program 
i 

part enclosed by a P and the following V. 
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The set of semaphores s i forms a so-called "split semaphore".  When n =  1, 
we obtain the well-known mutual exclusion theorem on a simple semaphore. 

6.2. Producer-Consumer 

Theorem. Given an arbitrary number of concurrent processes of the "producer" 
type defined by the program text: 

* [... P(s); PUT;  V(r); ...] 

and an arbitrary number of concurrent processes of the "consumer" type defined 
by the program text: 

, [ . . .  P(r); GET; V(s); . . .],  

where P U T  and GET are arbitrary atomic actions, then: 

-ro  <__cPUT-cGET<s o 

holds, where s o and r 0 are the initial values of s and r, respectively. 

Proof. Thanks to the sequencing of producer process actions: 

cPs>__cPUT> cVr. 

Thanks to the sequencing of consumer process actions: 

cPr>___cGET> cVs. 
And thus: 

c V r -  cPr <= c P U T -  cGET <= c P s -  cVs. 

Thanks to AO and AI :  

cPs-cVs<=s o and 

c P r - c V r < r  o. (End of proof) 

6.3. A Theorem on Deadlock 

Theorem. Given n processes defined by the program text: 

P(a); P(b); V(a); V(b) 

and m processes defined by the program text: 

P(b); P(a); V(b); V(a) 

with m + n > O, the computation is deadlock-free if the following relation holds on 
the initial values a o and b o of a and b: 

ao>O Abo>O A (ao>n v bo>m). 
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Proof  Assume there is a deadlock. Each process either is ready or is delayed at 
P(a) or P(b); and at least one process is delayed: 

qPa + qPb > 0. (4) 

From the sequencing in the processes: 

(cPa - c Va < n) A (cPb - c Vb N m), 
and thus from AI:  

(a o - a < n) A (b o - b < m). (5) 

Assume qPa=O: either a process is ready or it is delayed at P(b). In both 
cases, from the sequencing of actions in the processes we deduce cPb = eVb, i.e. 
b o =b. And symmetrically if qPb = 0, hence: 

(qPa > 0 v b o = b) A (qPb > 0 v a o = a). (6) 
From A2: 

(qPa = 0 v a = O) A (qPb = 0 v b = 0). (7) 

From (4), (5), and (6), (7) is equivalent to: 

a o = O v  b o = O v ( a o  <n A bo <m).  (End o f  Proof)  

7. Linear and Circular Arrangements of Buffer Processes 

In this exercise, we use unbuffered communication primitives with the follow- 
ing syntax, similar to Hoare's. A pair of primitives comprises an input com- 
mand C?x and an output command C!y. The name C (the "channel name") 
uniquely identifies a given pair of commands. When a matching pair 
(C?x,  C!y)  is executed, the assignment x : = y  is performed. 

Since we are interested in synchronization aspects only, we shall omit the 
variable names at the right-hand side of the exclamation and question marks. 
We consider the concurrent computation consisting of n (n > 0) processes 

Bi: 0 < i < n :  ,[( i)?;  ( i+1)!] .  

From the sequencing of actions in the processes: 

Vi: O<i<n"  O < c ( i ) ? - c ( i + l ) ! < l .  (8) 

And thus each process individually can be viewed as a one-place buffer. But 
from the semantics of unbuffered synchronization primitives, we have: 

Vi: O < i < n :  c(i)?=c(i)! (9) 

By summing the n inequalities of (8), and by simplification due to (9), we 
deduce: 

O<c(O)?-c(n) !  <n.  (10) 

And thus the linear arrangement of n one-place buffers forms an n-place buffer. 
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Let us add an extra process 

B,: �9 [(n)?; (0)!] 

so as to form a ring of processes. From the sequencing of actions in B,: 

O<=c(n)?-c(O)! =< 1. ( l l )  

From AO, (10) is equivalent to: 

0 < c ( 0 ) ! - c ( n ) ? < n .  (12) 

From (11) and (12), we deduce: 

c(n)? = c(0) !, 

which means that B, never completes an input command. Since the arrange- 
ment is symmetrical, this holds for all processes: there is a total deadlock. (It is 
left as an exercise to the reader to prove that a circular arrangement of buffer 
processes is deadlock-free if it contains processes both of type B i and of type 
B'i: * E(i+ 1)!,' (i)?3.) 

8. Symmetrical P and V Operations, Producer-Consumer Coupling, 
and Message-Exchange Primitives 

Let us introduce in the producer-consumer problem the integer variable t and 
the actions P'(t) and V'(t) as: 

t: c P U T - c G E T + r  o 

P'(t): P(r); GET; V(s) (13) 

V'(t): P(s); PUT;  V(r). (14) 

We shall prove that the actions P" and V' thus introduced obey definition b of 
symmetrical P and V operations such as given in 5.4. 

Theorem. I f  P'(t) and V'(t) are considered as indivisible actions, the following 
relations are invariantly true: 

CO: O<_t<_So+r o 

CI:  c P ' + t = c V ' + r  o 

C2: q P ' = O v t = O  

C3: q V ' = O v t = s o + r  o. 

Proof CO holds by definition of t, and as a consequence of the producer- 
consumer theorem. 

By definition of cP' and cV', and since P' and V' are indivisible actions: 

cP' = cGET A cV' = cPUT. 

By substitution in the definition of t, C1 follows. 
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By definition of qP' and qV', and since P'  and V' are indivisible actions: 

qP' =qPr  /x qV' =qPs.  

And thus, from the axioms of classical P and V operations on r and s: 

q P ' = O v r = O ,  
and 

From A1 : 

and 

q V ' = O v s = O .  

r = 0  ~ c P r - c V r = r  o 

s=O <=~ c P s - c V s = s  o. 

Considering P'  and V' as indivisible actions, 

and 

And thus: 

c P r - c V r = c G E T - c P U T ,  

c P s - c V s = c P U T - c G E T .  

r=O <~ c G E T - c P U T = r  o .=> t=O 
and 

s = O . ~  c P U T - c G E T = s  o ~ t = S o + r  o 

which establishes C2 and C3. (End of  proof) 
Observing that r o is the initial value of t, and introducing t m for r o + s  o, we 

can eliminate r o and So, and rewrite: 

CO: O<_t<t,, 

CI:  cP' + t = c V '  + t  o 

C2: q P ' = O v t = O  

C3: q V ' = O v t = t  m 

thus establishing the equivalence with the definition b of symmetrical P and V 
operations. 

Consider two processes A and B exchanging messages via a channel of 
finite positive capacity: sending a message amounts to putting the message into 
a buffer (the channel), and is thus equivalent to a producer action; receiving a 
message amounts to removing the message from the buffer, and is thus equiva- 
lent to a consumer action. From the above theorem, we can conclude that the 
acts of sending and receiving a message via a channel of finite, positive, 
capacity are - for what concerns synchronization - semantically equivalent to 
symmetrical V and P operations, respectively. The capacity of the channel 
equals the upper bound on the semaphore. 

When this upper bound becomes infinite, definition b of symmetrical P and 
V operations reduces to definition b of usual P and V operations. Hence, send 
and receive operations via a buffer of infinite buffering capacity are - for what 
concerns synchronization - semantically equivalent to usual V and P oper- 
ations, respectively. 
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The above implementation - (13) and (14) - of symmetrical P and V 
operations in terms of usual P and V operations also provides an implemen- 
tation of the communication between A and B in terms of infinite-slack primi- 
tives. We see that the transmission of a message from A to B requires the 
transmission of two messages: the message proper is sent by A by the action 
"PUT; V(r)", and received by B by the action "P(r); GET". Another message 
called "acknowledgement" is sent by B by the action V(s), and received by A 
by the action P(s). 

An advantage of choosing send and receive operations semantically equiva- 
lent to symmetrical P and V operations is that the transmission of acknowl- 
edgements is made implicit. 

9. An Implementation of P and V Operations 

In order to verify that the definition of P and V operations in terms of the 
axioms A0 through A2 does not differ fundamentally from the traditional 
operational definitions, we shall implement the P and V operations on a 
general semaphore - i.e. a semaphore the value of which is any non-negative 
integer - in terms of P and V operations on binary semaphores only - i.e. 
semaphores the values of which are zero or one. 

Two pairs of P and V operations (P(m), V(m)) and (P(z), V(z)) are given for 
which we postulate that they fulfil the axioms A0, A1, and A2, and for which 
we shall prove that m < 1 and z < 1. We shall prove that the following imple- 
mentation of the P and V operations on the general semaphore s in terms of the 
P and V operations on the binary semaphores m and z also fulfil A0, A1, and 
A2. 

P(s): P(m); 
[ s > O ~ s ,  p : = s -  1, p + l  
Ds=O~q:=q+l ;  V(m); P(z) 
3; 
V(m). 

V(s): P(m); 
[ q = O ~ s ,  r : = s + l ,  r + l  
~q>O~q,  p, r : = q - 1 ,  p + l ,  r + l ;  V(z); P(m) 
]; 
V(m). 

Initially: s=s0 ,  re, z =  1,0 p,q,r=O,O,O. 
The variables p and r, which appear neither in a guard nor in an assign- 

ment to other variables, are semantically redundant variables introduced for 
the purpose of the proof. They are called "auxiliary" or "ghost" variables. (For 
a formal treatment of auxiliary variables, see [7].) 

Let np be the number of processes that have completed a P operation, and 
not yet completed the following V operation. Thanks to the mutual exclusion 
theorem, the relation: 

m + z +np= l (15) 
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holds. And thus: 
m_<__l, z < l ,  np<l. (16) 

It is easy to verify that each guarded command in isolation leaves the relation: 

(s__>0)^ 
(p+s=r+sO)A 

(q=0vs=0) (17) 

invariantly true, and that (17) holds initially provided sO is chosen non- 
negative. Since np< 1 implies that the guarded commands are mutually ex- 
clusive actions, any concurrent execution of P(s) and V(s) leaves (17) in- 
variantly true. 

Let nq be the number of processes that have completed the V(m) action in 
the third line of P(s), and not yet started the following P(z). The state in which 
np=O/x nq=O is called the "stable state". We shall prove the 

Theorem T. In the stable state, p, r, q=cPs, cVs, qPs. 

T together with (17) establishes that A0, A1, and A2 hold for P(s) and V(s) 
in the stable state. Which completes the proof. 

Proof of T. 
a) We shall prove that the relation: 

q=nq+qPz-z  (18) 
holds when np = O. 

Initially, (18) holds and we shall prove that each atomic action modifying a 
variable of (18) leaves (18) invariant. (We shall write x : +  1 or x : - 1  to indicate 
an increase or a decrease of x by one as a result of the action considered.) 

"q . -=q+ l ;V(m)"  : q:+l, nq:+l 
"P(z)" : if z = 0  nq:- l ,  qPz:+l 

if z > 0  n q : - l , z : - i  
"q,p,r: . . . .  ;V(z)" : if qPz=O q..-1,  z : + l  

if qPz>O q: - l ,  qPz: - l .  
b) From (18), we deduce: 

nq>Ovq=qPz-z .  (19) 

Since qPz=Ovz=O holds from A2, if z > 0  the second term of (19) reduces to 
q = - z .  But this is impossible since q>  0. Hence, (19) is equivalent to: 

n q > 0 v  z=0/x  q=qPz. (20) 

c) In the stable state, m = l  Az=OAq=qPz holds as a consequence of (15) 
and (20). Hence a process can only be delayed at P(z), from which follows 
that: 

q=qPs 
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and obviously 
r = c V s  

hold in the stable state. 
d) Let us replace the variable p in P(s) by an extra variable pl,  and in V(s) 

by an extra variable p2. Initially pl=p2=O, and thus p = p l + p 2  by con- 
struction. In the stable state, 

cPs=pl  +cPz: 

cPs equals the number of times the first guarded command of P(s) has been 
completed, plus the number of times the second guarded command of P(s) has 
been completed. 

But: 
cPz = c Vz 

and 

Hence 
cVz=p2 hold in the stable state. 

cPs =p holds in the stable state. (End of proof of T) 

For V(s), we could have chosen the less symmetrical but somewhat simpler 
version: 

"P(m); [ q = 0 ~ s ,  r :=  ... ; V(m) Dq>O~q,p,  r . . . . .  ; V(z)]". 

The above correctness proof holds also for this version. The two versions are 
thus strictly equivalent. 

I0. Conclusion 

It has been shown that the semantics of synchronization primitives can be fully 
defined as a set of axioms embodying three fundamental requirements: bound- 
edness, progress, and fairness. 

The statement that these three axioms are necessary and sufficient for all 
synchronization problems is presented here as a conjecture. But the choice of a 
linear boundedness requirement of the form - kY  < c X -  cY< kX can be jus- 
tified: by the very nature of cyclic sequential processes, the synchronization 
relation should be insensitive to the process histories, which implies that the 
relation between cX and cY should not be modified by the increase cX, cY ,=  
cX+a,  cY+a. 

Whether it is possible to define usable synchronization primitive pairs 
relying on alternative boundedness relations is an open question. 

We have chosen a "strict" progress requirement rather than a "liberal" one 
of the form: 

"A set of initiated synchronization actions is put in the suspended state if 
and only if its completion would violate R1. A set of suspended actions whose 
completion would not violate R1 will eventually be completed." 

There are several reasons for this choice. First, the strict progress require- 
ment guarantees maximal progress of the computation, which is one of our 



Axiomatic Definition of Synchronization Primitives 235 

main  goals. Second, the semantics  of  the "eventual  comple t ion"  is difficult to 
formalize and to manipu la te  in correctness proofs. Third, the liberal progress  
requi rement  introduces extra  danger  of  s tarvat ion.  

For  example,  with liberal P and  V opera t ions  the comple t ion  of a V 
opera t ion  while P opera t ions  of  the same pair  are suspended does not  imply 
the immedia te  comple t ion  of a P operat ion.  It  is thus possible for one process 
to starve all others, whereas  at least two "conspi r ing"  processes are necessary 
to starve all others with strict primitives. This difference is more  impor t an t  
than  it seems at first sight: J.M. Morr is  [6], has p roposed  a s tarvat ion-free 
solut ion to the mutua l  exclusion p rob lem using weak P and V operat ions.  The  
correctness of the solut ion critically depends on the strict progress  p roper ty  of  
P and  V operat ions.  

The  not ion of slack could help the p r o g r a m m e r  to choose between the 
different types of primit ives:  the quest ion "unde r  which condi t ions can one 
type of primit ives be replaced by another  one?"  can be reformula ted  as "unde r  
which condit ions can the slack be decreased (without in t roducing deadlock) or 
increased (without in t roducing unacceptab le  non-de te rmin i sm)?"  

Anyone  who compares  the correctness proofs  given for, e.g., the mutua l  
exclusion, the producer -consumer ,  or the deadlock p rob lem with al ternat ive 
ones to be found in the literature, should be convinced of the suitabili ty of these 
axioms for correctness proofs. The  guiding principle for using these axioms is 
to consider  a pair  of  synchroniza t ion  primit ives not  as two independent  primi-  
tives, each with its own semantics,  but  as one semant ic  construct.  
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