
Acta Informatica 16, 219-235 (1981)

�9 Springer-Verlag 1981

An Axiomatic Definition of Synchronization Primitives

Alain J. Martin

Philips Research Laboratories, 5600 MD Eindhoven, The Netherlands

Summary. The semantics of a pair of synchronization primitives is charac-
terized by three fundamental axioms: boundedness, progress, and fairness.
The class of primitives fulfilling the three axioms is semantically defined.
Unbuffered communication primitives, the symmetrical P and V operations,
and the usual P and V operations are proved to be the three instances of
this class. The definitions obtained are used to prove a series of basic
theorems on mutual exclusion, producer-consumer coupling, deadlock, and
linear and circular arrangements of communicating buffer-processes. An
implementation of P and V operations fulfilling the axioms is proposed.

1. Introduction

The purpose of this paper is to define the semantics of any pair of synchroniz-
ation primitives in terms of three fundamental axioms called boundedness,
progress, and fairness. Synchronization constructs that are not a pair of primi-
tives, like "conditional critical regions", are not considered. The class of
constructs considered comprises, besides Dijkstra's P and V operations [1], the
different forms of communication primitive pairs (mostly called "send-receive"
or "input-output" operations) used in distributed programming. Only the
synchronization property of communication primitives will be of interest to us;
the other semantic property - the "distributed assignment" - will be ignored.

It will be shown that the class defined by these axioms comprises three
different types of primitives according to the degree of synchronization free-
dom (we call it the "slack") allowed. The primitives with the largest (infinite)
slack correspond to P and V operations, and to "send" and "receive" oper-
ations via a channel with infinite buffering capacity. The primitives with a
finite but non-zero slack correspond to symmetrical P and V operations, and
to "send" and "receive" operations via a buffer with finite (positive) buffering
capacity. The ones with zero slack correspond to Hoare's primitives [5] for
communication via a channel without buffering capacity.

0001- 5903/81/0016/0219/$03.40

220 A.J. Martin

In the first part, starting from the most general formulation of the three
axioms, an algebraic semantic definition is derived for each of the three types
of primitives. In the second part, the usefulness of the semantic definitions ob-
tained is demonstrated by proving a series of fundamental theorems. Most of
them concern programs using P and V operations; one is about linear and
circular arrangements of buffer processes communicating by means of Hoare's
primitives. The alternative between communication primitives with infinite
slack and those with finite slack is discussed in relation with the producer-
consumer problem.

Finally, in order to verify that the axiomatic definition proposed for P and
V operations does not differ fundamentally from traditional operational de-
finitions, an implementation is derived from the axioms. The reader may
convince himself that this implementation indeed corresponds to one (the
best !) of the traditional definitions.

2. The Synchronization of two Actions

For the sequential program parts, besides the usual assignment statement, we
use Dijkstra's alternative and repetitive constructs [2], with a slightly different
syntax. Following C.A.R. Hoare, we write [. . .] for if . . .f i , and * [. . .] for
do. . . od.

Non-terminating (cyclic) programs of the form

* [true ~ S]

are very frequent in concurrent programming. In such a case, we shall omit the
guard ("true") and simply write:

, IS] .

We view a sequential computation as a (finite or infinite) sequence of
(hence totally ordered) actions; when necessary we shall name the actions after
(the names of) the program commands that provoke them. (The precise
"granularity" of actions not concerned with synchronization is irrelevant for
the purpose of this paper.)

We view a concurrent computation as a number of simultaneous sequential
computations without any intrinsic ordering between actions from different
sequential computations; in this context the constituent sequential compu-
tations will be referred to as "processes".

Let X be a command provoking an "X action" when executed. With X we
associate three fundamental non-negative integer variables, denoted by cX,
qX, and tX. (The convention consisting of denoting these variables by the
name of the action prefixed by the letter c, q, or t will be used all through the
paper.)

�9 The value of cX is defined as the number of X actions completed since the
beginning of the computation.
�9 The value of qX is defined as the number of X actions currently suspended
or queued.
�9 For brevity's sake we shall use tX defined as c X + q X .

Axiomatic Definition of Synchronization Primitives 221

For a given pair (X, Y) of commands, the corresponding X actions and Y
actions are synchronized when there exists an invariant relation between cX
and cY. (Of course, tautologies of the form c X + c Y > c X are excluded as
relations.)

With the usual interpretation of the semicolon, execution of

�9 Ix; r]

maintains the truth of O < c X - c Y < l . But, by definition of a concurrent
computation, c X - c Y has a priori no bounds if the X actions and the Y
actions occur in different processes. When, however, c X - c Y is by definition
bounded while the X actions and the Y actions may occur in different pro-
cesses, we call X and Y a pair of synchronization primitives.

Hence the sequencing of actions inside a process and the use of synchroniz-
ation primitives among different processes are the two means for synchroniz-
ing actions.

3. The Semantic Characterization of Synchronization Primitives

We have met for a pair (X, Y) of synchronization primitives the first require-
ment, to be called "boundedness requirement",

RI : The value of c X - c Y is bounded, either at one side or at both sides.

The requirement of maintaining R1 introduces the notion of suspension of
an action. In order not to violate the bounds, the completion of an initiated
synchronization action may have to be postponed; from initiation until com-
pletion, such a synchronization action is then called suspended.

Note that the completion of an X action - i.e. c X : = c X + l - does not
influence the value of cY+qY: it may be accompanied by cY, q Y : = c Y + l , qY
- 1 , but this does not influence their sum tY. And vice versa.

A trivial way of maintaining the truth of (the initially true) R1 would be to
prevent the completion of any X or Y action. But we would like to ensure
progress of the computation. Hence we impose upon synchronization primi-
tives a second requirement, to be called "progress requirement",

R2: The set of suspended actions is minimal, i.e. the completion of any non-
empty subset of suspended actions would violate R1.

Corollary. Suspended X actions exclude suspended Y actions, and vice versa.

The process to which a suspended action belongs is said to be delayed at
that action.

When a computat ion has reached the point where an X action is suspended
and no Y action of the same pair occurs in any future history of the com-
putation, we say that there is a deadlock: the X action will never be completed,
i.e. a process will be delayed forever at X. (If some future histories of the
computat ion contain Y actions and some do not, we say that there is a
possible deadlock.)

When a computat ion has reached the point where an X action is suspend-

222 A.J. Martin

ed in a process i, and there exists a future history of the computation
containing an unbounded number of Y actions completed while i is delayed at
X, we say that there is a danger of starvation of i at X. (The concept of
starvation has been introduced by Dijkstra in [3].) Observe that, by definition
of R2, the number of X actions and the number of Y actions completed while
an X action of the same pair is suspended are equal. We could therefore as
well define starvation in terms of the number of X actions completed while
process i is delayed at X. The starvation of i at X is caused by the non-
deterministic choice of the suspended X action to be completed upon the
completion of a Y action, and vice versa.

A third requirement, to be called "fairness requirement", can be introduced
to exclude the danger of starvation, namely

R3: During the delay of a process at a synchronization action, only a
bounded number of actions of the same pair can be completed.

We observe the following hierarchy among the three requirements: R2
reduces the implementation freedom of R1 in order to guarantee the progress
of the whole computation. R3 reduces the implementation freedom of R2 in
order to guarantee the progress of each individual process.

Two primitive actions which satisfy R1 and R2, but not necessarily R3 are
called weak synchronization primitives.

Two primitive actions which satisfy R1, R2, and R3 are called strong
synchronization primitives.

4. An Algebraic Formulation of the Synchronization Requirements

4.1. Boundedness Requirement

RI: There exist two integer constants k X and k Y such that:
�9 at least one of the two constants is finite, 1
�9 - k Y < = c X - c Y < = k X .

Corollary. The two constants are non-negative.

Proof. R1 holds at initialization, and thus - k Y <_ 0 <_ k X holds. (End of proof)

4.2. Progress Requirement

From the corollary of R2, R2 implies:

q X = O v q Y = O . (1)

1 The aversion of one referee for infinite constants is understandable; yet it is the only way to
give a unique formulation of R1 and R2

Axiomatic Definition of Synchronization Primitives 223

Assume that qX>O holds. Then, if R2 is to hold, c X = c Y + k X must hold (any
increase of cX would violate R1). Hence, R2 implies:

q X = O v c X = c Y + k X (2)
and symmetrically,

q Y = O v c Y = c X + k Y . (3)

It is easy to prove that, conversely, (1), (2), and (3) imply R2. Hence:

R2: (q X = 0 v c X = c Y + k X) A (q Y = 0 v c Y = c X + k Y) / x (q X = 0 v q X = 0) .

(We shall see that, for each of the synchronization primitive pairs used in
programming, R2 can be drastically simplified.)

4.3. Fairness Requirement

To each process i, an integer variable d i is attached such that d i=0 if i is not
delayed, and if i is delayed - say, at an X action - d i is the number of X
actions completed since i has started the suspended X action. Hence, di > 0. (By
definition of R2, d~ is also the number of Y actions completed since i has
started the suspended X action.)

R3: For each process i, d~ has an upper bound.

Consider a computation consisting of N processes sharing a given pair
(X, Y) of synchronization primitives, and let D be the upper bound of dz for
any process i. Let us assume that the computation is deadlock-free for (X, Y)
weak. In this case, there can be at most N - 1 processes simultaneously delayed
at the same synchronization primitive, say, X. One suspended action, say in
process/,will be the last one to be completed: for process i, d~ will be increased
by at least N - 2.

Hence, a necessary condition for R3 not to introduce deadlock is that D be at
least equal to N - 2 .

There exist strategies for choosing the suspended action to be completed
such that the above condition is also sufficient. In [3], Dijkstra has described
such a strategy. From the above, we conclude that fairness cannot be guaran-
teed for computations comprising an unbounded number of processes.

4.4. An Alternative Definition of Weak Synchronization Primitives

Theorem. X and Y are weak synchronization primitives if and only if:

cX =min(tX, t Y + kX) /x c Y=min(t Y, tX + k Y).

Proof. By definition:
cX<=tXAcY<=tE

224

R1 is equivalent to:
cX < c Y + k X A c Y < c X + k Y .

R2 is equivalent to:

(cX=tX v cX=cY+kX) / x (cY=tY v cY=cX +kY)/x (c X = t X v cY=tY) .

Since, by definition, a = min (b, c) is equivalent to

a < b A a < c A (a = b v a = c) ,

R1 ^ R2 is equivalent to:

cX = min(tX, c Y + kX) A c Y=min(t Y, cX + k Y) A (cX =tX v c Y=t Y).

Which is equivalent to:

cX=min(tX, tY+kX) A cY=min(tY,, t X + k Y) A (cX = tX v cY= tY).

But the first two factors imply the third one. (End of proof)

A.J. Martin

5. The Three Types of Synchronization Primitives

5.1. The Slack

Let K be the sum kX+kY; K is called the "synchronization slack" (kX
+kY 20): the larger the value of K, the more the synchronized processes are
allowed to get out of step.

The class of synchronization primitives defined by R1, R2, and R3 can be
divided into three disjoint subclasses according to whether K is zero, positive
and finite, or infinite. These three subclasses define precisely the three types of
synchronization primitive pairs used in programming:

�9 The case K =0 corresponds to the communication primitives such as pro-
posed by Hoare in [5] for communication via channels without buffering
capacity: since a channel cannot buffer the messages sent, the completion of a
send action must coincide with the completion of the corresponding receive
action,
�9 In the case where K is positive and finite, the primitives, which we call
"symmetrical P and V operations", correspond to send and receive primitives
via channels with finite (but positive) buffering capacity: the value of the slack
equals the maximum number of messages a channel can buffer.
�9 The case where K is infinite corresponds to the usual P and V operations
on a semaphore. It also corresponds to send and receive primitives via a
channel with infinite buffering capacity: a send action is thus never delayed.

Hence the above three types of primitives are the only synchronization
primitives defined by R1, R2, and R3. The specific value of the slack fully
determines the type of primitives; the particular values of kX and k Y for a
given value of K are only a matter of initialization (they are defined by the
initial value of the semaphore or by the number of messages initially present in
the channel).

Axiomatic Definition of Synchronization Primitives 225

5.2. Unbuffered Communication Primitives

For K = 0, which implies

R1 reduces to

As to R2,

k X = O A k Y = O ,

c X = c E

(q X = O v c X = c Y + k X) A (q Y = O v c Y = c X + k Y)

is implied by R1. Hence the following

Definition. The primitives X and Y are unbuffered communication primitives
when the following two requirements are fulfilled:

RI : cX=cY,

R2: q X = O v qY=O.

It is clear that the above definition applies to Hoare's communication
primitives. In [5], Hoare states: "there is no automatic buffering: In general,
an input or output command is delayed until the other process is ready with
the corresponding output or input. Such delay is invisible to the delayed
process."

5.3. The P and V Operations

Definition a. Synchronization primitives with an infinite slack are called P and
V operations. Let kX be finite and kY infinite: X is then a P operation and Y
a V operation.

By substituting the values of kX and kY in R1 and R2, we obtain:

RI : c X < c Y + k X ,

R2: (q X = O v c X = c Y + k X) A q Y = O .

From R2 we immediately conclude that a V operation is never suspended
since q Y= 0 always holds.

Observing that, in R1 and R2, the variables cX, cY, and the constant kX
only occur in the expression

k X - c X + c Z

we can simplify the definition of P and V operations by introducing an integer
variable s equal to k X - c X + c Y . We obtain:

RI : s>0 ,

R2: (qX=Ovs=O)AqY=O.

The variable s is called the semaphore associated with the given pair (P, V). By
definition of s, kX is equal to the initial value of s, say s o. Furthermore, since a
V operation is never suspended, the factor qY= 0 can be omitted from R2.

226 A.J. Martin

Thus we arrive at a second, equivalent, definition of P and V operations:

Definition b. P and V operations are synchronization primitives such that,
given the following variables associated with a pair (P, V):

�9 s is an integer variable called semaphore, the initial value of which is s o,
�9 cP is the number of completed P operations,
�9 cV is the number of executed V operations,
�9 qP is the number of suspended P operations,
the relations:

A0: s>0,

AI: cP+s=cV+so,
A2: qP=Ov s=O,

are invariantly true.

(In the case several pairs (P, V) are simultaneously used, the name of the
associated semaphore uniquely identifies a given pair, and the different in-
stances of the variables cP, cV, qP are distinguished from each other by
postfixing the identifiers eP, cV, qP with the name of the semaphores, e.g. cPs,
cVs, qPs.)

Remark. From the alternative definition given in 4.4., we can immediately
deduce that A0, A1, and A2 are equivalent to:

A': eP=min(tP, eV+so).

This characterization of the semantics of P and V operations has already been
proposed by A.N. Habermann [4].

5.4. The Symmetrical P and V Operations

Definition a. Synchronization primitives for which the slack is finite and posi-
tive are called symmetrical P and V operations.

An equivalent alternative definition can be derived from R1 and R2 by
introducing a semaphore variable as in the case of the usual P and V oper-
ations.

Definition b. Symmetrical P and V operations are synchronization primitives
such that, given the following variables associated with a pair (P', V'):

�9 s is an integer variable called semaphore, the initial value of which is s 0,
�9 cP' and cV' are the number of completed P' and V' operations, respec-
tively,
�9 qP' and qV' are the number of suspended P' and V' operations, re-
spectively,
�9 s,, is a positive integer constant,

Axiomatic Definition of Synchronization Primitives 227

the relations:

B0: O ~ S ~ S m

BI: c P ' + s = c V ' + s o

B2: q P ' = O v s=O

B3: q V ' = O v s = s m

are invariantly true.

(Note that since k X + k Y > O , the factor q X = O v q Y = O is implied by the
first two factors of R2.)

So far, we have given a theoretical justification for the set of axioms
chosen. We shall now supplement this with a practical justification: we shall
show how these axioms can simplify the formal treatment of a number of
synchronization problems.

6. Some Classical Theorems

We shall use the classical notation for identifying pairs of P and V operations
- namely, P(s) and V(s) - where s is the name of the semaphore associated
with this particular pair.

6.1. Mutual Exclusion with Split and Simple Semaphores

Theorem. Consider an arbitrary number of concurrent processes, each consisting
for what concerns synchronization in a strict alternation of P and V operations,
starting with a P and ending with a E on any of the n (n>O) semaphores
si: O<__i<n. I f np is the number of processes having completed a P and not yet
completed the following V, then np<__~ SOl, where sO i is the initial value of s i.

i

Proof. By definition

n p = c P - c V ,
i.e.:

np = ~ (cPs i - c Vsi),
i

so, by AI:

n p = ~ (sO i-si) ,
i

and next by A0:

n p = ~ sO i. (End of proof)
i

Corollary. I f ~ sO i= 1, there is at most one process at a time inside the program
i

part enclosed by a P and the following V.

228 A.J. Martin

The set of semaphores s i forms a so-called "split semaphore". When n = 1,
we obtain the well-known mutual exclusion theorem on a simple semaphore.

6.2. Producer-Consumer

Theorem. Given an arbitrary number of concurrent processes of the "producer"
type defined by the program text:

* [... P(s); PUT; V(r); ...]

and an arbitrary number of concurrent processes of the "consumer" type defined
by the program text:

, [. . . P(r); GET; V(s); . . .],

where P U T and GET are arbitrary atomic actions, then:

-ro <__cPUT-cGET<s o

holds, where s o and r 0 are the initial values of s and r, respectively.

Proof. Thanks to the sequencing of producer process actions:

cPs>__cPUT> cVr.

Thanks to the sequencing of consumer process actions:

cPr>___cGET> cVs.
And thus:

c V r - cPr <= c P U T - cGET <= c P s - cVs.

Thanks to AO and AI :

cPs-cVs<=s o and

c P r - c V r < r o. (End of proof)

6.3. A Theorem on Deadlock

Theorem. Given n processes defined by the program text:

P(a); P(b); V(a); V(b)

and m processes defined by the program text:

P(b); P(a); V(b); V(a)

with m + n > O, the computation is deadlock-free if the following relation holds on
the initial values a o and b o of a and b:

ao>O Abo>O A (ao>n v bo>m).

Axiomatic Definition of Synchronization Primitives 229

Proof Assume there is a deadlock. Each process either is ready or is delayed at
P(a) or P(b); and at least one process is delayed:

qPa + qPb > 0. (4)

From the sequencing in the processes:

(cPa - c Va < n) A (cPb - c Vb N m),
and thus from AI:

(a o - a < n) A (b o - b < m). (5)

Assume qPa=O: either a process is ready or it is delayed at P(b). In both
cases, from the sequencing of actions in the processes we deduce cPb = eVb, i.e.
b o =b. And symmetrically if qPb = 0, hence:

(qPa > 0 v b o = b) A (qPb > 0 v a o = a). (6)
From A2:

(qPa = 0 v a = O) A (qPb = 0 v b = 0). (7)

From (4), (5), and (6), (7) is equivalent to:

a o = O v b o = O v (a o <n A bo <m). (End o f Proof)

7. Linear and Circular Arrangements of Buffer Processes

In this exercise, we use unbuffered communication primitives with the follow-
ing syntax, similar to Hoare's. A pair of primitives comprises an input com-
mand C?x and an output command C!y. The name C (the "channel name")
uniquely identifies a given pair of commands. When a matching pair
(C?x, C!y) is executed, the assignment x : = y is performed.

Since we are interested in synchronization aspects only, we shall omit the
variable names at the right-hand side of the exclamation and question marks.
We consider the concurrent computation consisting of n (n > 0) processes

Bi: 0 < i < n : ,[(i)?; (i+1)!] .

From the sequencing of actions in the processes:

Vi: O<i<n" O < c (i) ? - c (i + l) ! < l . (8)

And thus each process individually can be viewed as a one-place buffer. But
from the semantics of unbuffered synchronization primitives, we have:

Vi: O < i < n : c(i)?=c(i)! (9)

By summing the n inequalities of (8), and by simplification due to (9), we
deduce:

O<c(O)?-c(n) ! <n. (10)

And thus the linear arrangement of n one-place buffers forms an n-place buffer.

230 A.J. Martin

Let us add an extra process

B,: �9 [(n)?; (0)!]

so as to form a ring of processes. From the sequencing of actions in B,:

O<=c(n)?-c(O)! =< 1. (l l)

From AO, (10) is equivalent to:

0 < c (0) ! - c (n) ? < n . (12)

From (11) and (12), we deduce:

c(n)? = c(0) !,

which means that B, never completes an input command. Since the arrange-
ment is symmetrical, this holds for all processes: there is a total deadlock. (It is
left as an exercise to the reader to prove that a circular arrangement of buffer
processes is deadlock-free if it contains processes both of type B i and of type
B'i: * E(i+ 1)!,' (i)?3.)

8. Symmetrical P and V Operations, Producer-Consumer Coupling,
and Message-Exchange Primitives

Let us introduce in the producer-consumer problem the integer variable t and
the actions P'(t) and V'(t) as:

t: c P U T - c G E T + r o

P'(t): P(r); GET; V(s) (13)

V'(t): P(s); PUT; V(r). (14)

We shall prove that the actions P" and V' thus introduced obey definition b of
symmetrical P and V operations such as given in 5.4.

Theorem. I f P'(t) and V'(t) are considered as indivisible actions, the following
relations are invariantly true:

CO: O<_t<_So+r o

CI: c P ' + t = c V ' + r o

C2: q P ' = O v t = O

C3: q V ' = O v t = s o + r o.

Proof CO holds by definition of t, and as a consequence of the producer-
consumer theorem.

By definition of cP' and cV', and since P' and V' are indivisible actions:

cP' = cGET A cV' = cPUT.

By substitution in the definition of t, C1 follows.

Axiomatic Definition of Synchronization Primitives 231

By definition of qP' and qV', and since P' and V' are indivisible actions:

qP' =qPr /x qV' =qPs.

And thus, from the axioms of classical P and V operations on r and s:

q P ' = O v r = O ,
and

From A1 :

and

q V ' = O v s = O .

r = 0 ~ c P r - c V r = r o

s=O <=~ c P s - c V s = s o.

Considering P' and V' as indivisible actions,

and

And thus:

c P r - c V r = c G E T - c P U T ,

c P s - c V s = c P U T - c G E T .

r=O <~ c G E T - c P U T = r o .=> t=O
and

s = O . ~ c P U T - c G E T = s o ~ t = S o + r o

which establishes C2 and C3. (End of proof)
Observing that r o is the initial value of t, and introducing t m for r o + s o, we

can eliminate r o and So, and rewrite:

CO: O<_t<t,,

CI: cP' + t = c V ' + t o

C2: q P ' = O v t = O

C3: q V ' = O v t = t m

thus establishing the equivalence with the definition b of symmetrical P and V
operations.

Consider two processes A and B exchanging messages via a channel of
finite positive capacity: sending a message amounts to putting the message into
a buffer (the channel), and is thus equivalent to a producer action; receiving a
message amounts to removing the message from the buffer, and is thus equiva-
lent to a consumer action. From the above theorem, we can conclude that the
acts of sending and receiving a message via a channel of finite, positive,
capacity are - for what concerns synchronization - semantically equivalent to
symmetrical V and P operations, respectively. The capacity of the channel
equals the upper bound on the semaphore.

When this upper bound becomes infinite, definition b of symmetrical P and
V operations reduces to definition b of usual P and V operations. Hence, send
and receive operations via a buffer of infinite buffering capacity are - for what
concerns synchronization - semantically equivalent to usual V and P oper-
ations, respectively.

232 A.J. Martin

The above implementation - (13) and (14) - of symmetrical P and V
operations in terms of usual P and V operations also provides an implemen-
tation of the communication between A and B in terms of infinite-slack primi-
tives. We see that the transmission of a message from A to B requires the
transmission of two messages: the message proper is sent by A by the action
"PUT; V(r)", and received by B by the action "P(r); GET". Another message
called "acknowledgement" is sent by B by the action V(s), and received by A
by the action P(s).

An advantage of choosing send and receive operations semantically equiva-
lent to symmetrical P and V operations is that the transmission of acknowl-
edgements is made implicit.

9. An Implementation of P and V Operations

In order to verify that the definition of P and V operations in terms of the
axioms A0 through A2 does not differ fundamentally from the traditional
operational definitions, we shall implement the P and V operations on a
general semaphore - i.e. a semaphore the value of which is any non-negative
integer - in terms of P and V operations on binary semaphores only - i.e.
semaphores the values of which are zero or one.

Two pairs of P and V operations (P(m), V(m)) and (P(z), V(z)) are given for
which we postulate that they fulfil the axioms A0, A1, and A2, and for which
we shall prove that m < 1 and z < 1. We shall prove that the following imple-
mentation of the P and V operations on the general semaphore s in terms of the
P and V operations on the binary semaphores m and z also fulfil A0, A1, and
A2.

P(s): P(m);
[s > O ~ s , p : = s - 1, p + l
Ds=O~q:=q+l ; V(m); P(z)
3;
V(m).

V(s): P(m);
[q = O ~ s , r : = s + l , r + l
~q>O~q, p, r : = q - 1 , p + l , r + l ; V(z); P(m)
];
V(m).

Initially: s=s0 , re, z = 1,0 p,q,r=O,O,O.
The variables p and r, which appear neither in a guard nor in an assign-

ment to other variables, are semantically redundant variables introduced for
the purpose of the proof. They are called "auxiliary" or "ghost" variables. (For
a formal treatment of auxiliary variables, see [7].)

Let np be the number of processes that have completed a P operation, and
not yet completed the following V operation. Thanks to the mutual exclusion
theorem, the relation:

m + z +np= l (15)

Axiomatic Definition of Synchronization Primitives 233

holds. And thus:
m_<__l, z < l , np<l. (16)

It is easy to verify that each guarded command in isolation leaves the relation:

(s__>0)^
(p+s=r+sO)A

(q=0vs=0) (17)

invariantly true, and that (17) holds initially provided sO is chosen non-
negative. Since np< 1 implies that the guarded commands are mutually ex-
clusive actions, any concurrent execution of P(s) and V(s) leaves (17) in-
variantly true.

Let nq be the number of processes that have completed the V(m) action in
the third line of P(s), and not yet started the following P(z). The state in which
np=O/x nq=O is called the "stable state". We shall prove the

Theorem T. In the stable state, p, r, q=cPs, cVs, qPs.

T together with (17) establishes that A0, A1, and A2 hold for P(s) and V(s)
in the stable state. Which completes the proof.

Proof of T.
a) We shall prove that the relation:

q=nq+qPz-z (18)
holds when np = O.

Initially, (18) holds and we shall prove that each atomic action modifying a
variable of (18) leaves (18) invariant. (We shall write x : + 1 or x : - 1 to indicate
an increase or a decrease of x by one as a result of the action considered.)

"q . -=q+ l ;V(m)" : q:+l, nq:+l
"P(z)" : if z = 0 nq:- l , qPz:+l

if z > 0 n q : - l , z : - i
"q,p,r: ;V(z)" : if qPz=O q..-1, z : + l

if qPz>O q: - l , qPz: - l .
b) From (18), we deduce:

nq>Ovq=qPz-z . (19)

Since qPz=Ovz=O holds from A2, if z > 0 the second term of (19) reduces to
q = - z . But this is impossible since q> 0. Hence, (19) is equivalent to:

n q > 0 v z=0/x q=qPz. (20)

c) In the stable state, m = l Az=OAq=qPz holds as a consequence of (15)
and (20). Hence a process can only be delayed at P(z), from which follows
that:

q=qPs

234 A.J. Martin

and obviously
r = c V s

hold in the stable state.
d) Let us replace the variable p in P(s) by an extra variable pl, and in V(s)

by an extra variable p2. Initially pl=p2=O, and thus p = p l + p 2 by con-
struction. In the stable state,

cPs=pl +cPz:

cPs equals the number of times the first guarded command of P(s) has been
completed, plus the number of times the second guarded command of P(s) has
been completed.

But:
cPz = c Vz

and

Hence
cVz=p2 hold in the stable state.

cPs =p holds in the stable state. (End of proof of T)

For V(s), we could have chosen the less symmetrical but somewhat simpler
version:

"P(m); [q = 0 ~ s , r := ... ; V(m) Dq>O~q,p, r ; V(z)]".

The above correctness proof holds also for this version. The two versions are
thus strictly equivalent.

I0. Conclusion

It has been shown that the semantics of synchronization primitives can be fully
defined as a set of axioms embodying three fundamental requirements: bound-
edness, progress, and fairness.

The statement that these three axioms are necessary and sufficient for all
synchronization problems is presented here as a conjecture. But the choice of a
linear boundedness requirement of the form - kY < c X - cY< kX can be jus-
tified: by the very nature of cyclic sequential processes, the synchronization
relation should be insensitive to the process histories, which implies that the
relation between cX and cY should not be modified by the increase cX, cY ,=
cX+a, cY+a.

Whether it is possible to define usable synchronization primitive pairs
relying on alternative boundedness relations is an open question.

We have chosen a "strict" progress requirement rather than a "liberal" one
of the form:

"A set of initiated synchronization actions is put in the suspended state if
and only if its completion would violate R1. A set of suspended actions whose
completion would not violate R1 will eventually be completed."

There are several reasons for this choice. First, the strict progress require-
ment guarantees maximal progress of the computation, which is one of our

Axiomatic Definition of Synchronization Primitives 235

main goals. Second, the semantics of the "eventual comple t ion" is difficult to
formalize and to manipu la te in correctness proofs. Third, the liberal progress
requi rement introduces extra danger of s tarvat ion.

For example, with liberal P and V opera t ions the comple t ion of a V
opera t ion while P opera t ions of the same pair are suspended does not imply
the immedia te comple t ion of a P operat ion. It is thus possible for one process
to starve all others, whereas at least two "conspi r ing" processes are necessary
to starve all others with strict primitives. This difference is more impor t an t
than it seems at first sight: J.M. Morr is [6], has p roposed a s tarvat ion-free
solut ion to the mutua l exclusion p rob lem using weak P and V operat ions. The
correctness of the solut ion critically depends on the strict progress p roper ty of
P and V operat ions.

The not ion of slack could help the p r o g r a m m e r to choose between the
different types of primit ives: the quest ion "unde r which condi t ions can one
type of primit ives be replaced by another one?" can be reformula ted as "unde r
which condit ions can the slack be decreased (without in t roducing deadlock) or
increased (without in t roducing unacceptab le non-de te rmin i sm)?"

Anyone who compares the correctness proofs given for, e.g., the mutua l
exclusion, the producer -consumer , or the deadlock p rob lem with al ternat ive
ones to be found in the literature, should be convinced of the suitabili ty of these
axioms for correctness proofs. The guiding principle for using these axioms is
to consider a pair of synchroniza t ion primit ives not as two independent primi-
tives, each with its own semantics, but as one semant ic construct.

Acknowledgement. I am deeply indebted to C.S. Scholten for several important improvements, in
particular the unique formulation of the general progress requirement for all values of the slack.
Acknowledgement is also due to Edsger W. Dijkstra, F.E.J. Kruseman Aretz, I.S. Herschberg,
Martin Rem, and W.M. Turski for invaluable comments and criticisms.

References

1. Dijkstra, E.W.: Co-operating sequential processes. In: Programming languages, pp. 43-112 (F.
Genuys, Ed.), New York: Academic Press, 1968

2. Dijkstra, E.W.: Guarded commands, non-determinancy, and formal derivation of programs.
Comm. ACM 18, 453-457 (1975)

3. Dijkstra, E.W.: A class of allocation strategies inducing bounded delays only. Proc. S.J.C.C.,
pp. 933-936 (1972)

4. Habermann, A.N.: Synchronization of communicating processes. Comm. ACM 15, 171-176
(1972)

5. Hoare, C.A.R.: Communicating sequential processes. Comm. ACM 21, 666-677 (1978)
6. Morris, J.M.: A starvation-free solution to the mutual exclusion problem. Information Process-

ing Lett. 8, 76-80 (1979)
7. Owicki, S., Gries, D.: Verifying properties of parallel programs: an axiomatic approach. Comm.

ACM 19, 279-285 (1976)

Received July 3, 1979 / June 21, 1981

