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Summary. This  paper  presents  a uni form a p p r o a c h  to k n o w n  and new results  
on relat ive comple teness  of Hoare - l ike  calculi  for languages  of  A L G O L - l i k e  
p r o g r a m s  with p rocedures  as p rocedure  parameters .  F i r s t  the no t ion  of a copy  
rule is in t roduced.  I t  p rovides  a uni form f ramework  for deal ing with different 
var iants  of semant ics  reaching  from dynamic  to s tat ic  scope. Then  for each 
copy  rule c~ a Hoare - l ike  calculus ~4~ is presented,  the soundness  of  which 
is shown by using an a p p r o x i m a t i n g  semantics.  The  key to the comple teness  
results lies in a general  comple teness  theorem on the calculi  ~ ( c g )  which has 
these results as corol lar ies .  F ina l ly ,  a new type of theorem on Hoare - l ike  
calculi  is p roved  by which the no t ion  of formal  p rovab i l i ty  in )ff(cg) is com- 
pletely character ized.  This  cha rac te r i za t ion  theorem is the ma in  result  of the 
paper .  It covers bo th  soundness  and comple teness  of  the calculi  ~ (c s  and 
add i t iona l ly  gives an idea of what  the l imits of  present ly  k n o w n  Hoare - l ike  
p r o o f  techniques for p r o g r a m m i n g  languages  with p rocedures  are. 
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I. Introduction 

Hoare-like proof systems [,181 have been proposed for various language con- 
structs [2, 61. Since they are intended to capture the (partial) correctness theory 
of these constructs, it is necessary to supply rigorous proofs of soundness and 
completeness (in some appropriate sense) for these systems. Among the language 
constructs which are difficult or even impossible to deal with in such a way is the 
procedure concept. 

The purpose of this paper is to present a uniform approach to known and 
new results on (soundness and) relative completeness of Hoare-like systems. This 
is done in the framework of ALGOL-like programs where the attention is re- 
stricted to problems which are due to procedures. For a better understanding of 
these problems let us briefly discuss several approaches which can be found in 
the literature. 

The first major investigation of the completeness problem for Hoare-like sys- 
tems was presented by Cook [101. He introduced the notion of relative complete- 
ness and proved his system to be relatively complete for programs with non- 
recursive procedures. Gorelick [13] extended Cook's result to programs with 
recursive procedures. Languages of programs allowing procedures as procedure 
parameters were studied by Clarke [9]. He proved that it is impossible to obtain 
a sound and relatively complete Hoare-like system for such languages unless 
some restrictions of the procedure concept are accepted. Clarke proposed several 
such restrictions and stated corresponding completeness results which are rarer 
reaching than those of Cook and Gorelick. Further completeness results can be 
found in Apt [1], de Bakker [6] and Harel et al. [17]. 

However, these results are not completely satisfying. Both Cook [101 and 
Gorelick [13] consider dynamic scope instead of static scope semantics as ob- 
served in Donahue [12]. Also Clarke [91 proves only his result on dynamic 
scope. (As we shall see in our paper, his methods must be extended in order to 
prove his claimed results on static scope.) Static scope semantics is used in Apt [11 
and de Bakker [.6], but neither Apt's nor de Bakker's proof techniques - though 
very sophisticated - are sufficient to prove Clarke's results since Apt considers 
parameterless procedures only whereas de Bakker disallows procedure nestings. 
Also in Harel et al. [17] procedure nestings are disallowed. 

Additionally, in all papers above restrictions are imposed on the actual 
parameters of procedure calls: Sharing (or aliasing) cannot occur or is explicitly 
disallowed. This is also true for the programming language EUCLID, a major 
design goal of which was the verifiability of programs [16, 34]. 

Sound and relatively complete rules which deal with sharing are proposed in 
Cartwright and Oppen [8]. On the other hand, this paper disallows procedures 
as parameters and restricts global variables in such a way that static scope reduces 
to dynamic scope. 

According to this discussion the aims in our paper are the following. Firstly, 
we would like to provide rigorous proofs for Clarke's completeness claims on 
languages with static scope and procedures as parameters. Our proof methods 
should also cover previous results dealing with dynamic scope only. Secondly, 
our completeness results should hold for languages without restrictions con- 
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cerning sharing, procedure nestings and global variables. Thirdly, since the first 
two aims clearly lead to a discussion of various cases of languages we would like 
to prove all these completeness results in a uniform way, namely by deducing 
them from one general completeness theorem. Finally, we would like to have 
some clear idea of what the limit of our method proposed here is and thus - by the 
first aim - what the limits of presently known Hoare-like proof techniques are as 
far as procedures are concerned. 

To explain how we try to reach these aims let us now outline the structure of 
this paper. Section 2 introduces a number of basic notions. Special emphasis is 
put on the concept of program function since it allows us to verify the easy proof 
rules in advance - before introducing the actual syntax of the programs. This is 
done in Sect. 3 where we define the class LAlgol of ALGOL-like programs. 

In order to deal with different variants of semantics for LA~go~ in a uniform 
way we introduce the notion of a copy rule in Sect. 4. A semantics defined in a 
copy rule style is used in several papers (e.g. Clarke [9], Lauer [32]). However, 
our treatment of copy rules is more related to the formal approach presented in 
Langmaack [26]. Three particular copy rules are studied in our paper: the naive 
copy rule (yielding a Semantics closely related to dynamic scope), the "most  
recent" copy rule and the ALGOL 60 copy rule (yielding static scope semantics). 

In Sect. 5 we introduce the concept of substitutional equivalent programs, 
i.e. programs which differ only syntactically by a certain substitution. In the Sub- 
stitution Lemma we show that such programs differ also semantically only by 
this substitution. Because of this lemma the notion of substitutional equivalence 
plays a central role later on in the proof of the Completeness Theorem. In Sect. 6 
we discuss the problems which arise when the sharing or aliasing restriction is 
assumed in programming languages and we show how to overcome this restric- 
tion by using the methods developed in Sect. 5. 

In Sect. 7 a Hoare-like calculus Jg(~), depending on the chosen copy rule cg, 
is presented. The term "calculus" instead of "system" indicates that ~(f(cg) is 
based on the same simple notion of formal proof as Gentzen's sequent calculi 
for first order logic. This leads - together with our particular interpretation of 
proof lines which is defined by means of an approximating semantics - to a fairly 
simple proof of the Soundness Theorem in Sect. 8. 

Section 9 investigates the completeness problem of ~r It is clear from 
Clarke's results that oVf(cg) is necessarily incomplete for the full language LA~go~ 
when the ALGOL 60 copy rule (static scope) is applied [9]. Thus jug(~) can only 
be relatively complete when we restrict ourselves either to proper sublanguages 
of LArgo ~ or to simpler copy rules (inducing simplified semantics). To handle such 
restrictions in a uniform way we introduce the notion of ~-bounded programs. It 
turns out that these are exactly the programs which have a so-called finite cg-index 
w.r.t, the substitutional equivalence. This fact allows us to prove in the Com- 
pleteness Theorem that 3r is relatively complete provided all programs in the 
considered language are Cg-bounded. 

Applications of this theorem are presented in Sect. 10 where we arrive at new 
completeness results on ALGOL-like programs, viz. that the calculi W(cs are 
relatively complete 
- for the full language LAIgo~ provided one of the following copy rules is applied: 
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1. naive copy rule 
2. "most  recent" copy rule 

- for the ALGOL 60 copy rule provided the considered language satisfies one of 
the following restrictions: 

3. no global formal procedure identifiers 
4. the formal "most  recent" property holds. 

In all cases unrestricted use of sharing, procedure nestings and global variables 
is allowed. We relate our results to results and claims published in the literature. 

In Sect. l 1 we investigate the problem whether the converse of the Complete- 
ness Theorem holds, i.e. whether formal provability in o~t~(cg) implies Cg-bounded- 
ness. We show in the Characterization Theorem that this is true. This theorem is 
the main result of our paper since it precisely characterizes power and limits of 
our calculi 9f(cg) and covers both the Soundness and the Completeness Theorem. 

Finally, in Sect. 12, we discuss two issues related to the Characterization 
Theorem. One issue addresses the notion of Hoare logic. The second issue is 
motivated by one of Clarke's [9] completeness claim and concerns programs 
without self-application and without global variables. We show that presently 
known Hoare-like proof methods - including our calculi ~r - are not powerful 
enough to deal with these programs. This observation (stated also in [-31]) in- 
dicates further directions for research. 

2. Preliminary Concepts 

Syntactic objects considered in this paper are strings over an infinite set T of 
tokens or basic symbols ( teT) l .  As usual T* denotes the set of all strings and e 
the empty string over T. In particular we have the disjoint, infinite subsets VI c_ T 
and PI a_ T of variable identifiers or simply variables (x, y, ... ~ VI) and procedure 
identifiers (p, q, . . .sPI)  respectively. Additionally, there are constants, operators, 
relators and special symbols such as begin or end in T. ID = VI w PI is the set of 
identifiers (~, fl . . . .  elD). We use the notation ~ for lists c~1, ..., c~, of identifiers. 
The length n of ~ is denoted by ]~l and the set {el, ..., c~,} of list components 
by {~}. 

As logical basis for our correctness investigations serves a first order language 
FOL with " = "  as equality symbol. FOL determines the sets EX of expressions or 
terms (eeEX), LF of logical formulas or simply formulas (P, Q, . . .eLF) and BE 
of Boolean expressions (b~BE), i.e. of quantifier-free formulas. These sets are 
defined in the usual way using variables, constants, operators and relators. We 
assume that there is a special constant term co. The set of free variables in a for- 
mula P is denoted by free (P). 

Throughout  this paper we assume that a certain interpretation ~ of FOL with 
domain ~ 0  ( d ~ )  is given. J is said to be finite if J~] <oc holds (where ]Dr 
denotes the cardinality of 9). The meaning of expressions and formulas in J 
depends on the values of the (free) variables. These values are determined by 
means of states, i.e. mappings 2 ~: VI--*~. (We shall soon see that this simple 

1 Together with the definition of a certain class of objects we usually list typical elements of this 
class 
2 Unless explicitly stated we always assume mappings (functions) to be totally defined 
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notion of state is sufficient to describe the meaning of blockstructured programs.) 
Now the domain value J(e)(6) of an expression e and the truth value J(P)(6)  of a 
formula P in J w.r.t, a state 6 can be defined in a standard way. We write ~j,~P 
if J (P)(6)  is true and ~ j P  if ~ j . ~ P  is true for every state 6. The set of all states is 
denoted by 5Pg(6eS~L). 6{d/x} is that variant 6' of state 6 with 6 ' ( x ) = d  and 
6'(y) = 6(y) for y + x (cf. [6]). For subsets X ~_ VI the restriction of 6 to X is denoted 
by ~IX. The theory Th(J)  of J is given by T h ( ~ ) = { P  I ~ j P } .  By 5fLJ(P) we 
denote the set of all states expressed by P, i.e. 5r = {61 ~e,~P}. 

Next we develop the concept of substitution which plays a central role in our 
paper. Let [ r l , . . . , r , / a l  . . . .  ,a , ]  with aislD(~_T ) and r i s T w E X  denote the 
following relation p between T and T u  EX: 

P = { (a l ,  ~'1) . . . . .  (an, z,)} w {(t, t) ltr T and t :~ a l ,  . . .  , an}. 

Then a general substitution a is a mapping of the form 

with a(VI)~_ EX and a (PI)~ PI. ~ is called a substitution if additionally a (V I)~_ VI 
(~_ EX) holds, a is said to be injective on X ~_ VI if a IX is an injective mapping. 
We distinguish between several applications of a general substitution ~r: 

(1) A "left-hand" application of a indicates that a is used as a word homo- 
morphism: a(tl...t,)=a(tO...a(t,) where tiG T. 

(2) The notation Pa is well-known. (Recall that bound variables in P have to 
be renamed in order to avoid clashes with inserted variables.) 

(3) If a is a substitution, 6~ denotes the state with ~r(x)=~(a(x)) for all 
x~ VI. 
Further applications will be defined in connection with program functions and 
blocks. 

Subsequently we study those transition functions between states which can 
be specified by ALGOL-l ike  programs, called here program functions. We do 
this to single out several basic properties of these functions - needed later on in 
proofs of soundness and completeness - which do not depend on the actual 
syntax of the programs. 

Let X be a finite subset of VI and f be a partially defined function from 5f~ ' 
to 5PL. Then f is called a program function on X if the following properties hold: 

(1) I f f ( ~ ) = ~ '  then ~ I V I \ X = 6 ' I V I \ X .  
(2) If f ( 6 ) =  6' and 61 IX = ~ ~X for some state 6a then there exists a state 6'~ with 

f(~1)=~'1 and ~'1 ~X=~'IX. 
Intuitively speaking f can manipulate and inspect only the finitely many variables 
in X. Thus X can be considered as the set of input-output or "act ive" variables 
of f According to Schwarz [42] property (1) is called stability and (2) aloofness 
o f f  w.r.t, the "inactive" variables in VI\X.  f is called a program function if there 
exists an X such that f is a program function on X. The image f (5  p) of 5 p ~ 5f~ 
under f is given by 

f ( 5  ~) = {6'1 there exists a state ~ with f(6) = 6'}. 

We now consider several examples of program functions which will be used 
in Sect. 4. Let f and g be program functions on X and Y respectively and a be a 
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substitution which is injective on X. Then the program functions 

(*) f2, assj(x, e), ir~(b,f, g), blockj(x,  f ) , f a  

are defined as follows: 
- f2 denotes the empty function. 
- assj(x, e)(6)=o{J(e)(o)/x}. Note that assj(x, e ) is  a totally defined program 
function on free(e) u {x}. 
- If J (b) (6) is  true then ifx,(b, f g)(6)=f(6 ) holds. Otherwise if,(b,f,g)(o)=g(6). 
Thus ifj(b,f, g) is a program function on f ree(b)wXu Y. 
- blockj(x,f)(6)=6' iff there exists a state J '  with f(o{J(co)/x})=o" and 6 '= 
6"{6(x)/x}. 

This definition for blocks is motivated by Sieber [43]. Due to the implicit 
stack mechanism expressed in the equation 6'=6"{6(x)/x} neither addresses as 
in [1] or [6] nor explicit stack mechanisms as in [9] or [37] are needed here. For 
simplicity we assume that the local variable x is initialized with the value of o) 
when entering the block. Note that b lock j (x , f )  is a program function on X\{x} .  
- (fa) (6) = 6' iff there exists a state 6" with f (6 ~r) = 6" such that for all y e VI 

~6"(a- l(y)) if year(X) 
J (Y) ( 6(y) otherwise 

holds where a - l ( y )  denotes the uniquely determined x e X  with a(x)= y. 
f~r is said to result from f by an application of a and is a program function 

on a(X): the "active" variables x e X  o f f  have been renamed to a(x). This con- 
struction will be used to compare the meaning of programs which differ only 
(syntactivally) by a substitution. The intuitive meaning of this definition is dis- 
played in Fig. 1. 

Vl  ~' V l  
a(x) x o(x) 

Vl  ~ V l  
o-(x) x u(x) 

F i g .  1 
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At the end of this section we state those properties of program functions which 
are important in the proofs of soundness and completeness. For a better readability 
we take f ( P )  ~_ Q as an abbreviation forf(SegJ(P)) _~ JgJ(Q)  

Lemma 1. Let Jlg be program functions on X and a be a substitution. Then 
a) f a(Pcy)c_ Qa if f (P)c_ Q and a is injective on X ~ Jhee(P v Q). 
b) f~r(PG)~_ Q~r if f (P)~_ Q and ~ is injective on X w free(P v Q). 
c) f (Pa)~_Qa i f f (P)~_Q and a =  Ix 1, ..., x , /y  1 . . . . .  y,] 

such that for all k = 1 . . . .  , n 
i) ykCX and ii) x~f~X if yk~fi'ee(Q). 

d) f (P /x R) ~ Q/x R if f (P) ~_ Q and free(R) c~ X = ~. 
e) f2(p)c_Q for all P, QeLF.  
f) ass j (x ,e)(P)~Q iff ~ j P ~ Q [ e / x ] .  
g) ( f o g ) ( p ) ~ Q  ~[" there exists a set Y~_.Yg such that f(P)~_ Yand g(Y)~_Q. 
h) ifj(b,f, g)(P) ~_ Q iff f (P A b) ~_ Q and g(P /x ~ b) ~_ Q. 
i) blockj  (x, f ) (P)  ~_ Q iff f (P [y/x] /x x = o~) ~_ Q [y/x] where y r X w free (P v Q). 

The proof is left to the reader. Observe that f) might fail if assj(x, e) is not 
totally defined and that there might be no formula R with Y=SegJ(R) in g) 
(cf. [I0, 44] and Sect. 9). 

3. ALGOL-like Programs 

In this section we introduce the class of programs we are interested in, and list a 
few notions concerning programs (cf. [26]). First we define the sets STM of state- 
ments (S~STM),  BLK  of blocks (BeBLK)  and E N V  of environments (EeENV) ,  
i.e. sequences of procedure declarations (procedures for short): 

S : :=errorlx:=elSt;  S2lif b then $1 else S 2 filBlp(~:~) 
B:: = begin E S end [ begin var x; E S end 
E:: = e[proc p(y:?); B;IE1E 2 

In the definition of E it is required that the components of the formal parameter 
lists y and ~ are distinct. Furthermore, if E =  proc Pl(.-.); .-. ;---; proe p,(...); ... ;, 
the procedures identifiers p l , . . . ,  p, must be distinct. These are the usual well- 
formedness conditions for procedure declarations. No restrictions are imposed, 
however, on the actual parameter lists ~ and ? /of  procedure calls p(2:?/). For 
simplicity blocks with multiple variable declarations are not allowed. They can 
be considered as abbreviations of nested blocks with single variable declarations. 

We distinguish here between strings and occurrences of strings. Formally let 
S be a statement of the form S = q . . . t ,  with ti~T. Then the pair (i,t~...tj) with 
l < i < j < n  denotes the occurrence of the substring t~...tj at position i in S. Such 
occurrences can be compared by the relations "contained in" and "smaller than" 
which are defined in an obvious way. An occurrence (i, ~) of an identifier e in S is 
either free or bound to a uniquely determined defining occurrence (j, a)=def(i, e) 
of c~, i.e. an occurrence (j, ~) such that (1) a occurs in a formal parameter list or (2) 
the symbol t j_ 1 preceding c~ is var or proe. The identifier occurrence (i, ~) is called 
formal if (1) holds for def(i, ~), otherwise it is non-formal. 
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Now the class LAlgol of ALGOL-like programs or simply programs (TrELAlgot) is 
defined as follows: 

7~Lklgol iff/Z is a block without free occurrences of procedure identifiers. 

Since correctness proofs in Hoare-like calculi proceed by structural induction, 
we need an appropriate way of talking about program segments instead of whole 
programs. To this end we introduce the class U N T  of units which consists of all 
pairs E]S such that begin ES end is a program, i.e. EIS is a closed pair in terms of 
de Bakker [6]. By free (EtS) we denote the set of all variables occurring freely in 
begin ES end. The set of identifiers occurring in ELS is given by idf(E[S). Notations 
as free(S), idf(E) or idf(S) are defined analogously. 

Though an environment is defined to be a certain sequence of procedures, it 
is convenient to identify E with the set of these procedures. (Think of E as a 
standard representation of this set.) Thus we may use set-theoretic operations in 
connection with environments. By add (E, E~) we denote the environment E o w E 1 
where E o is obtained from E by deleting all procedure declarations proc p(...); ...; 
from E for which there exists a (new) procedure declaration with identifier p in 
E 1 [9]. 

A substring of a statement S is said to occur in the main part of S if it occurs 
outside of all procedures declared within S. Given a procedure ~ = p r o e  p(_~:~); B; 
then (y:?); B; is called the extended procedure body of ~ .  Blocks and extended 
procedure bodies form the class of regions. With each occurrence (i, ~) in a pro- 
gram ~ we associate an occurrence of a region denoted by region~(i, ~): This is the 
smallest occurrence of a region which contains clef(i, ~) if def(i, ~) is defined. 
Otherwise region~(i, ~)=(1, ~). 

Consider an occurrence (i, t~...tj) of a substring in a program g. Call an occur- 
rence (l ,~) of a procedure ~=proep( . . . ) ;  ...; in g visible from (i, ti...tj) if re- 
gion,( l+ 1, p) properly contains (i, t~...tj) and there is no other procedure occur- 
rence with identifier p in ~ the region of which is in between region~(/+ 1, p) and 
(i, ti...tj). Additionally an occurrence (k, ~) of an identifier ~ is called visible from 
(i, ti...t j) if (k, ~) is contained either in (i, tl...t j) itself or in a procedure occurrence 
(I, ~ )  visible from (i, t~...tj). The concept of visibility gives the connection between 
units and programs: Given a unit EIS then E is the set of procedures and idf(ElS) 
the set of identifiers visible from S. 

Let a block B and a substitution a be given. Then Ba denotes the result of 
relacing every free occurrence of ~ in B by ~(~) (for all ~idf(B)). In contrast to 
the definition of Pa bound identifiers in B are not renamed. (This definition makes 
sense and is advantageous in connection with the application of copy rules.) 

A program ~ is called distinguished if different defining occurrences of identi- 
fiers are denoted differently and no variable occurs both free and bound in ~. 
Statements S and S' are said to have the same structure if they coincide after 
deleting all identifiers. They are called congruent (S~S '  for short) if they differ 
only by a bound renaming of identifiers. If this renaming is injeetive O.e. if for all 
bound occurrences (i, ~), (j, fl) in S and (i, ~'), (j, fl') in S' ~=f l  holds iff~' = f f  holds) 
we write S~.S'. Note that every program ~z~Lg~gol has (in general infinitely many) 

congruent distinguished programs ~z '~ .  For simplicity we take gd to denote a 
particular distinguished program Jz d ~ ~ depending on ~z only. 
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4. Semantics Defined by Copy Rules 

An ALGOL-like programming language is defined to be a pair I-I=(L, Z) where 
the syntax L is a decidable subset of LArgo1 and where the semantics s is a mapping 
which - given an interpretation J - assigns a program function S~'(rt) to every 
program r~eL. We require that L is closed w.r.t, congruence and that 27 ~" is in- 
variant for congruent programs. To define the semantics we proceed in two 
steps - reflecting the fact that all basic tools for this definition are already developed 
and only procedures need an extra treatment. 

Step 1. Let STM o be the class of all statements without procedures. The semantics 
Z0 J of STM o is a mapping SoJ: S T M o ~  {program functions} defined in an obvious 
way by using the special program functions introduced in Sect. 2, line (*). For  
example 

SoS(begin var x; S end)= block•(x, Z~(S)). 

Note that ZJo(S) is a program function on free(S). 

Lemma 2. For all S, $1, S2ESTMo the following holds: 
a) I f  $1 ~$2 then Z~(SO=Z~(S2). 
b) I f  a is a substitution which is injective on idf(S) then S,~(a(S))=(Z, Jo(S))cr, 

i.e. syntactic and semantic application of a coincide. 

Proof By induction on the structure of S 1 resp. S. []  

Step 2. We use so-called copy rules to extend the semantics Zo s to the whole class 
of programs. These rules explain the semantics of a procedure call by the seman- 
tics of an associated modified procedure body. 

Definition 1. A copy rule ~g is a certain relation between pairs (B, I), consisting of 
a block B and a finite set I of identifiers, and blocks B': (B, I)Cs '. In this paper the 
following three copy rules are studied in detail: 
The ALGOL 60 copy rule ~6o: 

(B, I)Cg6o B' iff B.~.B' and no identifier bound in B' occurs in I. 
lnJ  

The "most recent" copy rule ~mr: 
(B, I)Cg,,,B ' iffB.~.B', no variable bound in B' occurs in I and procedure identi- 

l n j  

tiers have not been renamed. 
The naive copy rule cg.: 

(B, I)~nB' iff B=B'.  
The general definition of ~ runs as follows: 

(B, I)C~B ' iff B~.B', no identifier bound at a position in pos~e(B' ) occurs in I 
m J  

and identifiers bound at positions different from those in pos~(B') have not 
been renamed. 

(Here pos~ is a mapping which assigns to every block B a set of positions in B 
such that pos~(B1)= posse(BE) holds whenever B 1 and B 2 have the same structure. 
For example pos~. (B) = 0.) 

Intuitively a copy rule describes a certain (non-deterministic) renaming 
mechanism for identifiers which will be used to handle scope problems. If we wish 
to restrict this mechanism to a deterministic one, we consider so-called specimens: 

is called a (deterministic) specimen of c~ if ~ is a mapping with ~_ _ r which is 
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defined for all (B, I). Hence B' with (B, I)~B' is uniquely determined and we write 
n '  = (~r I ) .  3 

Next we define how to apply a copy rule to a program. 

Definition 2. Let ~ be a copy rule and ~ be a specimen of c~. The application of ~_ 
is a relation ~ between programs: n ~  n' iff the following holds: 

(1) A correct procedure call p(y:~)occurs in the main part of n, say at posi- 
tion i. Correct means that the procedure declaration belonging to the occurrence 
(i, p) is of the form proe p(~:?/); B; where I~1 = lYl and I~/I = I~l. 

(2) 7z' results from rc by replacing p(y:?)  at position i by the modified procedure 
body B '=  ~(Btr, I) where tr = [y, ?/~, ?/] and 1 = pro j2 (visible(i, p(y:~)). ~ 
As abbreviation we define stm(r~, n')=(i,p(y:~)) and blk(n, n')=B'. The applica- 
tion of c~ is a relation ~ between programs which is defined as the union of all 
relations ~ such that ~ is a specimen of ~, i.e. for B' simply (Ba, I)~B' is re- 
quired. 

This definition generalizes the relation I introduced in Langmaack [26] to 
arbitrary copy rules c~. We give an example for the application of the copy rule 
 e6o: 

= begin 
vary; 
proc p(z:q); begin vat u; u." =z ;  q(z.') end; 
procr (z.'); begin x: = z end; 

end 

rt' = begin...begin var y; y." = x; r (x.') end...end 5 

In Definition 2 re' is obtained from rc by replacing just one correct procedure call 
in the main part of ~z by the associated modified procedure body. We define now a 
mapping c~r LA~gol~LAlgol as follows: ~z'=~/~C~e(g ) if r~' results from g by 
replacing simuli-aneously all correct procedure calls ifi-the main part of r~ by their 
associated modified procedure bodies - modified according to ~. (By convention 
re'= r~ if there is no correct procedure call in the main part of re.) Notice that 
~z _~-~_ ~z' holds. 6 Let c~/~r be the j-th iteration of c~fig~e(j>0 ). Intuitively 

~e 

~/~y~,j  describes the process of simultaneously copying up to-depth j > 0 .  
Next we discuss the following question: What is the relation between 

c~/~r and ~Ka~C~2,j(n ) where ~1 and ~2 are two specimens of the same copy 
rule ~ To this end we-introduce 

3 When renaming an identifier ct in B a copy rule c~ just  requires that  the new identifier ct' in B' is not  
in I whereas a specimen ~_ of ~ could require more  strictly that  ct' is the first identifier not  in I 
4 proj2 is the projection onto  the second componen t  of a pair. Here proj2 is applied to a set of 
identifier ocurrences and yields a set of identifiers 
5 Notice that variable y is not visible from p(x: r) in n. Hence we were allowed to rename the bound  
variable u into y in n' 
6 As usual R* denotes the reflexive, transitive closure of a binary relation R 
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Definition 3. 7[ 1 is strongly congruent to /r 2 rr ,,~Tr for short) if n 1 and the 1 str 2 ~'~ ~2 

following holds: Given any identifier occurrences (i, cq), (j, 31), (k, Yl) in n 1 with 
(i, ~1), (J,/31)~visible 7zl (k, 71) and - at the same positions - identifier occurrences 
(i, "2), (J, fie), (k, Y2) in n2 with (i, ~2), (J, f12) ~visible nz(k, 72) then cq =/31 holds iff 
"2 =/32 holds. 

Note that congruent distinguished programs are strongly congruent, but not 
every program has a strongly congruent distinguished one. By the following 
lemma the relation ,.~ is invariant w.r.t, applications of the copy rule. Such an 

str 

invariance does not hold directly for m. 

Lemma 3. Let cg be a copy rule and n l ~ n  2, nlk-~-n' 1 and n 2 ~ - n '  2 (copied at the 

same position) hold. Then also n' 1 ~ n' 2 holds. 

Proof. A detailed proof is given in 1-37]. [] 

Corollary 1. Let cg__ 1 and ~2 be specimens of the same copy rule ~. Then for all j > 0 
and n~LAlgol 

~e~/z~r 1. j(~) ~ ~e~'~2. j (~). 

We are now prepared to define the semantics of units and programs. 

Definition 4. Let ~ be a copy rule and j_>__0. Then the approximating semantics 
S~, i is defined by 

S~,s (EIS) = 2~o ~(~d(~o/~b,_~ ,s(begin ES end))) 

where ~ is an arbitrary specimen o f ~  and ~ d  is a mapping ~ d :  S T M ~ S T M  o 
such that ~d(S ' )  results from S' by deleting every procedure in S' and replacing 
every remaining procedure call by error. 

The full semantics is given by 

S~(E[S)= ~ Z~.j(EIS). 
j > o  

For programs n we define 

S,~,j(Tr)=X~,j(Olnd) and S~(n)=S~(O[nd) 

where n d,~ n is distinguished. 
By Corollary 1 and Lemma 2, a) the definition of S~,s(EIS ) makes sense. The 

possibility to choose a suitable specimen ~ of r is convenient in proofs, for ex- 
ample of Lemma 4 in the next section. Note that Z~,j(EIS ) and Z~(EIS) are pro- 
gram functions on free(ElS). Further on, the definition of S~(n) shows that all 
renamings of identifiers necessary to handle scope problems are done here firstly 
by a preprocessing step n~Olnd and secondly whenever the copy rule is applied. 

In this paper we study programming languages 

H = (L, S~). 

S%o is the usual static scope semantics for ALGOL-like programs as defined in 
the ALGOL 60 report I-4]. Notice that we use here the parameter mechanism 
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"call by name". Of course, with help of copy rules there is no difficulty to model 
also other parameter mechanism such as "call by value" (in connection with 
arbitrary expressions e instead of simple variables x as actual procedure param- 
eters) or "call by reference" (in the presence of array variables). 

Z~, and Z%,, are simplified semantics. Se, is closely related to what is usually 
called dynamic scope semantics Zdy ..  The only difference is that the preprocessing 
step n ~ 0  Inn is omitted, i.e. Sdy . is defined simply by Zffyn(n ) = Z~,(r In). (Hence 
Say" is not a proper semantics in our sense because it is not invariant w.r.t, con- 
gruence of programs.) Zero" will be important when dealing with programs n 
satisfying the so-called "most  recent" property because for these programs 
~mr (7~)= X~60(T~ ) holds (see Sect. 10). 

Finally, let us study the approximating semantics Z J e,j" 

Corollary 2. Let (g be a copy rule and j > O. Then Z~,j satisfies the following equa- 
tions: 

S~, j (E I error) = O, 

Z~,j(Elx: = e) = ass•(x, e), 

S~,j(EIS1 ; $2)=S,~,j(EISOoS~,j(EIS2), 

Z~,~(Elif b then S~ else $2 fi)= if,(b, S~,~(EIS~), S~,j(EIS2)), 

S~,j(Elbegiu vat x; EoS 1 end)=blockj(x,  S~,j(E 11S1) ) 

where E 1 = add(E, Eo). 

{ Z~.j_I(EIB~) if j> l ,  procp(~:Yt);B;~E 

S~.~(EIp(y:Y))= and I~l=lYl, I~1=1~1 
f2 otherwise 

where (Ba, I)~gBe with a =  [y, Ux, ?/] and I = idf(E]p(y:?)). 

Proof Study the mappings cs162 and apply Definition 4. [] 

Corollary 2 gives the connection to Lemma 1. The equations above show 
that the copy rule approach to semantics leads to a partly operational style of 
semantics. Other papers using operational semantics define their semantics by 
equations of this kind (e.g. Lauer 1-32], Clarke I-9]). In our context this would be 
problematic because B e is not uniquely determined. 

5. Substitutional Equivalence 

In this section we study the computational behaviour of units which differ only 
by a certain renaming of identifiers. These investigations are essential for our 
completeness results and needed for a satisfactory treatment of sharing situations 
(see Sect. 6). 

Given a unit EIS we take min(EIS) to denote that unit EolS where E o is the 
least element w.r.t. ___ within the set {E'lwhere E ' _  E and begin E'S end ELAlgol }. 
Intuitively speaking, E o contains only those procedures which are needed to 
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understand S. With this notation a(min(EIS)) = a(EolS ) = a(Eo)la(S) holds for 
substitutions a (cf. Sect. 2). 

Definition 5. Two units EIS and E'IS' are called substitutional equivalent if there 
is a substitution a with a (min (El S)) = rain (E'l S') which is injective on idf(min (El S)). 
(As a shorthand we write EIS~-E'I  S' or simply EIS~-E'IS' if we do not bother 
about the particular substitution a.) 

Notice that both variables and procedure identifiers may be substituted by a. 
As an example we consider the following units EIS and E'[S' which are sub- 
stitutional equivalent w.r.t, a = [u, v, w, q/x, y, z, p] : 

proe p(x:); begin x: = y +  1 end; 
( E IS, = proe r; begin u: = v end; p (z :) 

-~ "*E'IS =proe  q(u:); begin u : = v +  1 end;[ q(w:) 

Note that the procedure proe r ; . . .  ; does not occur in min(EIS). 
The next lemma states units which differ only syntactically by a substitution a 

(in the sense of substitutional equivalence) differ also semantically only by this a. 

Lemma 4. (Substitution Lemma). Let E[S~ ~- E'[S'. Then for every copy rule cg and 
j>=o 

( , )  J , (z~,~(e I s ' ) = ( Z ~ , j ( E I S ) )  ~. 

For the ALGOL 60 copy rule r the assertion of this lemma looks rather 
natural, but here we deal with arbitrary copy rules c~. To prove the semantical 
equation (,) we study the computational behaviour of EIS and E']S' by means of 
formal computation paths 

•: EIS=EllS1 ~-U~... ~-u~E, IS,, 

i.e. sequences of units generated by a relation ~ between units which is closely 

related to the relation ~ between programs. Formal means that we abstract from 

the actual operations on data. First we define ~ for a specimen ~ of Cs as follows: 

(1) S=S1; S 2 or S = i f b  then S 1 else S 2 fi: 

E I S ~ E [ S  1 and E[S~-t>E[S 2 

(2) S=begin var x; EoS 1 end: 

E l S i e  1 IS 1 where E 1 =add(E,  Eo) 

(3) S=p(y :? )  with proe p(~:~/); B; eE  and I~l =IYl, I?/I =171: 

E I S ~ E I B ~ _  where B~_=~(Ba, I) with a=[y,?/~,?:/] and I=idf(EIS ). 

Now ~ is the union of all relations ~ where ~ is a specimen of oK, i.e. in case 

(3) of the definition above EIS~-v~EIB ~ with (Ba, I)CgB~e holds. A path 
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is said to correspond to a p a t h / / :  E ' ~ I S ' I ~ . . . w - ~ E ' , I S '  . if for every k~{1 . . . .  , n} 

S k and S k have the same structure and in case (1) of the definition above Sk+ 1 and 
S~,+ 1 are chosen to be both the first or both the second substatement of S k and 
Sk respectively. 

We are now prepared for the 

Proof of Lemma 4. Let a = [fl/~] and cg be a copy rule. Then there is a specimen 
~_ of cg with the following properties: For  every block B and every finite set I of 
identifiers 

(i) ~(B, I ) = ~ ( B ,  I w I') where I ' =  idf(E)w idf(E')w {~} w {/~}. 
(ii) _~(a (B), I ) =  a(~(B, I)) if a is injective on idf(B). 

We show that  
(l) a is injective on the set X of all identifiers fl which occur in some unit 

E* IS* with E I S - ~ E *  IS*. 
(2) For every path jZi: E I S = E l l S l ~ - U ~ . . . ~ E i l S i  there is a corresponding 

pathp'i:  E'lS'=E'~lS'~...~--c~E'ilS', w]-th - 

(ai) EiISia=EilSi and 

(b~) (idf(E~)\idf(E'~)) u (idf(E'~)\idf(E,))___ I'. 

(2') Vice versa: For  every pa th / / i :  ... there exists a corresponding path Pi: ... 
with (ai) and (hi). 
Assertion (1) is a consequence of (i). To prove (2) we proceed by induction on i. 
Since the assertion is trivial for i =  1, let us consider the induction step " i ~ i  + 1", 
i.e. a path/~i + 1 : P i ~ E i  + 11Si + 1 : We have to specify an appropriate unit E' i + l I S'i + i 

which extends Fi to/~'~+ 1. The only interesting case is that S~ is a procedure call 
p ( Y : ~ ) :  

Let proep(Yc:Ft);B;eE~ and B'=B[~,-UYc, Ft]. Thus Ei+a=Ei and S i + l =  
cg__(B',idf(Ei]Si)). By (ai) S'i=a(p(y:?)) and ~(procp(~:Ft);B;)~E~. Therefore we 
choose E' i + 1 = El and S'i + 1 = cg--( B'', idf(E'il S'i)) where B " =  u(B) [a(~,-f)/u(~, ~/)]. Note 
that B" =tr(B') holds by (1). Since property (bi+ 1) holds trivially, (ai+ ~) remains to 
be shown: S'i+ 1 = ~ ( B " ,  idf(E'~[S'i))=cg__(B '', idf(E'~[S~)wI') [by (i)] =~ (B" ,  idf(E~lS,) 
w I') [by (ai) and (b~)] = ~(B",  idf(E, IS~)) [by (i)] = tr (~(B', idf(E~lS,)) [by (ii)] = 
a(Si+ l) which implies El+ l lSi+ 1 ~ -  El+ l IS'i+ 1 [by (ai) ]. 

Thus (2) holds. An analogous argument  proves (2'). Using (2) and (2') we can 
conclude that for every j > 0 

holds. Now the semantical equation (.) of the lemma follows by employing (1), 
the definition of 2;~.j and Lemma 2, b). [] 

Remark 1. By Lemma 4, S~,~(EIS) is a program function on free(min(ElS))_~ 
free(ElS). 

6. How to Deal  with Sharing ? 

Starting from Hoare [19] the so-called sharing (or aliasing) of  variables has been 
disallowed in most subsequent papers (e.g. [-10, 13, 9, 32, 12, 34]). In case of the 
copy rule cg = cg60 this restriction can be formulated as follows: 



Sound and Complete Hoare-like Calculi 175 

A distinguished program n is sharing free if for every procedure call p(X:?/) 
with 01n~Etp(X:~-/) the actual variables in X are all distinct and different from 
global (i.e. free) variables in E. 

The motivation for disallowing sharing was of technical nature, namely to 
obtain the following simple substitution rule 

If S~(EIp(X:77))(P)~_Q and {y}nfree(PvQ)=r  
(Subo) 

then S~(Elp(y: 77))(P [y/x]) c Q [y/x]. 

By Lemma 1 and 4 this rule is sound if both units are "generated" by a sharing 
free distinguished program n, i.e. if 0 In ~e--~-~EIp(X:77) and 0 In ~-~EIp(Y:?/) holds. 
Of course, (Subo) is not sound in general as simple examples show (see e.g. Hoare 
[19]). 

But looking at real programs, the sharing restriction is very unnatural. Why 
should a procedure call p(x, y:?/) be more reasonable than p(u, u:#)?(See also [5] 
and [40].) Moreover, we easily run into conceptual difficulties because it is un- 
decidable whether an ALGOL-like program is sharing free. This follows from a 
result by Langmaack [26] stating that the formal reachabiIiey of procedures is 
undecidable for LAlgol when the copy rule Cs is applied. Thus admitting only 
sharing free programs leads in general to an undecidable subset L of LAlgo~ which 
contradicts the concept of syntax (see Sect. 4). If on the other hand we allow 
arbitrary programs, but restrict the application of(Subo) to sharing free programs, 
then this rule in turn becomes undecidable which contradicts the notion of proof 
rule (see Sect. 7). 

Summarizing, we find the only satisfactory solution is here to formulate a rule 
which can deal with sharing. Fortunately the concept of substitutional equiva- 
lence together with the Substitution Lemma leads very easily to such a refined 
substitution rule, namely 

If X~(Elp(~:q))(P)~_Q, 
(Sub 1) EIp(X:?I)~EIp(y:77) and {y}c~free(PvQ)=r 

then X~(EIp(y:77))(P[y/X]) ~ Q [y/x]. 

which is sound without implicit assumptions. 7 
Intuitively speaking, this rule divides the set call(E, p, 7/) of all correct calls of 

the procedure p in E with fixed actual procedure identifiers 77 into sharing classes, 
i.e. equivalence classes w.r.t, the following relation ~ : 

p(~:77)~p(y:7:/) iff Elp(X:g'l)_~Elp(y:?l). 

For example p(x, y:Yl),,~p(a, b:q), but p(x, y:~),~p(u, u:77). The rule (Subx) guar- 
antees that a correctness result proved for a procedure call p(~:77) can be trans- 
ferred only to those calls p(y:77) which are in the same sharing class. 

Observe that there are only finitely many sharing classes in call(E, p, 77). This 
fact guarantees completeness results even in the presence of sharing (cf. Sect. 9). 

Actually we use a more general substitution rule in Yg(~), but to discuss the issue of sharing 
(Sub1) is sufficient 
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Note that in this terminology the restriction to sharing free programs can be 
understood as allowing only one sharing class. In this paper we confine ourselves 
to identifiers called by name as actual parameters of procedure calls, but the basic 
observation that only finitely many sharing classes arise remains valid when ex- 
pressions called by value or array variables called by reference are allowed as 
actual parameters. 

Related approaches to deal with sharing can be found in [3, 5, 8, 15] and 
[40, 41]. Proofs of soundness and completeness are outlined in [-8] only. 

7. The Hoare-l ike Calculi  oW(~)  

Hoare-like systems dealing with recursive procedures have been presented in two 
different ways: Either in the style of Gentzen's systems of natural deduction (e.g. 
in [9, 12, 20]) or in the style of Gentzen's calculi of sequents (e.g. in [1, 6, 17]) (see 
[38] for the logical notions.) In this paper we prefer calculi rather than deduction 
systems because the notion of formal proof is simpler for calculi. This leads 
- together with our particular interpretation of proof lines - to a fairly simply 
soundness proof in Sect. 8 and further on simplifies the proofs in Sect. 11. 

On the other hand, deduction systems are more convenient for practical 
applications because they allow structured proofs with assumptions. This is, 
however, no objection against our calculi since both approaches of presenting a 
proof system are equivalent and each system of natural deduction can easily be 
transformed into a calculus of sequents. (For the case of Hoare-like systems such 
a transformation is described in [2].) 

Before defining a Hoare-like calculus o~f(~) for each copy rule cg we have to 
fix some notation. An atomic Hoare formula is a formula P or a construct of the 
form {P}EIS{Q} or {P} g {Q}. By a Hoare formula we mean a finite set of atomic 
Hoare formulas. We take h as a typical atomic Hoare formula and H as a typical 
Hoare formula. A proof line • is a construct of the form H---,H'; proof lines H ~  {h} 
and O~{h} are abbreviated by I-1--,h and h respectively. A Hoare-like calculus 
is given by so-called proof rules which are decidable (n + 1)-place relations p over 
the set of proof lines (neNo). Instead of the set-theoretic notation p = {((1 . . . . .  
~,, ( ,+  1)lwhere ...} we take the usual notation for proof rules 

1 , . . . , f ,  where ... 
~n+l 

In the case "n = 0" p is called an axiom schema or simply axiom and the notation 
shortens in an obvious way. Proof rules are applied to finite sequences ~ of proof 
lines in the following way: If a proof rule p fits E 1 . . . .  , {, ,  g, + 1 and g 1 . . . . .  E, occur 
in 4, then E, + 1 may be added at the end of ~. 

Definition 6. Let (g be a copy rule. Then the Hoare-like calculus 9ff(cg) is defined 
as follows: 

(1) Axiom of Assumption 
H---, H 
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(2) Axiom of the Error Statement 

{P}Elerror {Q} 

(3) Axiom of Assignment Statements 

{P[e/x]}Elx'. =e{P} 

(4) Axiom of Incorrect Procedure Calls 

{P}EIp(~:Yl){Q} 

where the procedure call p(~:q) is incorrect w.r.t.E. 

(5) Rule of Composition 

H--~{{P}E[S x {R}, {R}E[S2{Q} } 
H ~  {P} EIS, ; S 2 {Q} 

(6) Rule of Conditional Statements 

H ~  {{P A b{EISx {Q}, {P A-7 b}EIS2 {Q}} 

H ~ { P } E l i f  b then S 1 else S 2 fi{Q} 

(7) Rule of Blocks s 

177 

H ~ {P[y/x] A x = ~ole, IS 1 { Q[y/x]l 
H ~  {P}Elbegin var x; EoS 1 end{Q} 

where yCfree(P v Q) w free(min(E 11S1) ) and E 1 = add(E, Eo). 

(8) Rule of Recursive Procedure Calls 

Hu U {{P~}E~Ip~(Yi:-Q{Qi}}-* ~ {{P~}EilBiv{Q~}} 
i= l  i= l  

H--, ~J { { P~} E~Ip~(y~ :-Q { Q~} } 
i=1 

where EilPi(yi:~i)--u~Ei]Biv holds for i=  1 . . . . .  m. 

(9) Rule of Substitution 

H~{P}EIS{Q} 
H--*{Pa}E'IS'{Qa} 

where a is a substitution which is injective on free(Pv Q)widf(min(EIS)) and 
EIS~-E'IS' holds. 

s The case that the variable declaration is missing is trivially subsumed under this rule 
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(10) Rule of Variable Substitution 

H-~{P}EIS{Q} 
H---,{Pa}E[S{Qa} 

where a = [x I . . . . .  x./y~ . . . .  , y.] is a substitution satisfying for all k = 1 . . . . .  n 
i) yk~free(min(ElS)) and ii) xk~free(min(ElS)) if yk~free(Q). 

(11) Rule of Invariance 

H-~{P}E]S{Q} 
H ~ { P A R } E I S { Q A R }  

where free(R) c~ free(min (El S)) = 0. 

(12) Rule of Connection 

H 1 --*H 2 u H3, H' 1 --*H; u H; 

H 1 w H' 1 ~ H 2 U H; 

(13) Rule of Consequence 

P~--* P, H ~{P} EIS {Q}, Q~Q,  
H ~{P~} EIS {Q1} 

(14) Rule of Programs 
H~{P}r 

n-,{eI~{O} 

where ne"~ n is distinguished. 
In order to apply rule (13) in a meaningful way, W(c~) must be augmented 

with an oracle (9 c_ LF for logical formulas, e.g. (9 = Th(A). Formally (9 is treated 
as an additional axiom: 

(15) P where Pc(9. 

We denote the extended calculus by W(c~), (_9. Note that - strictly speaking - (15) 
need not be a "proof  rule" in the sense of our definition since (9 c LF may be 
undecidable. 

A formal proof (of H~H')  in ~(cg), (9 is defined to be a sequence gl...~n of 
proof lines (with # , = H ~ H ' )  such that for all i=  1 . . . . .  n f i  can be added to the 
sequence f~...Ei_ , by applying one of the rules (1)-(15). Then H ~ H '  is called 
formally provable or deducible in 9f(cg), (9( ~-#~),~H--.H' for short). Observe that 
the property whether a given sequence of proof lines is a formal proof in ocf(cg), (9 
is decidable relative to (_9. 

Some comments on the proof rules of o~(cg) may be helpful. Rules of the type 
(1) and (12) occur if Hoare-like deduction systems are transformed into Hoare- 
like sequent calculi (cf. [-2]). Rule (7) combines subrules for variable resp. proce- 
dure declarations introduced in [-32] resp. [9]. As renamings of identifiers are 
only done within the formulas P and Q, it might seem that this rule leads to dy- 
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namic scope. A closer look at J/F(cg) reveals, however, that all renamings needed 
to handle scope problems are done here in rule (8) and rule (14). This is in agree- 
ment with our copy rule approach to semantics explained in Sect. 4 where the 
necessary renamings are done firstly by switching from rc to 01rid (here rule (14)) 
and secondly whenever the copy rule is applied (here rule (14)). 

The recursion rule (8) is the only rule which depends on the chosen copy 
rule cg. Since its syntactical form is similar to the corresponding rule of [9], rule 
(8) is a generalization of a first version of this rule presented in [19]. Rule (9), con- 
structed according to the Substitution Lemma, is new and essential for our com- 
pleteness results in Sect. 9 and 10. Note that the environment extension rule of 
[3] and I-9] is subsumed under this rule. The rules (10) and (11) are due to [13] 
and [12] respectively. 

8. The Soundness Theorem 

In this section we want to show that the calculi W(cg) are "sound".  To this end, 
we present a semantical interpretation of proof lines and show that the proof rules 
"respect" this interpretation. One might think of employing the full semantics. 
Z~ = U 2;~,j to interpret proof lines. However, the presentation in [1] and [6] 

j__>o 
shows that this idea, which seems to be quite natural when denotational semantics 
methods as in [-1, 6] are employed, can lead to a rather complicated interpreta- 
tion, and consequently, to a rather tedious soundness proof. 

We instead use the approximating semantics S,~,~ to interpret proof lines be- 
cause this is in a way simpler than 2; 4. Starting with copy rules to define the 
semantics of programs this is a very natural idea, and it leads in fact to a rather 
simple soundness proof. Although a number of papers (e.g. [1, 9, 13, 20]) have 
employed approximating semantics in order to prove the soundness of their 
recursion rule, they have not used it as a means to interpret proof lines. Apt [2] 
has independently detected this advantage of approximating semantics when 
trying to simplify his proofs in [1]. 

Definition 7. Let cg, cg, be copy rules and j > 0. 
a) We write ~ j ,~ , jP  if ~ j P  holds. 
b) We write ~,/e,j{P}EIS{Q} if S~,~(EIS)(P)~_Q holds. 9 
c) We write ~j ,~, j  {P} n {Q} if S~,i(z)(P ) ~_ Q holds. 
d) We write ~ j ,~ , jH if ~s,~,jh holds for every heH. 
e) A proof line H ~ H '  is valid w.r.t. J and cg if for every j > 0  ~j,~e,jH implies 

~ j, ~e,jH'. 
t) A proof rule p is ~-sound if p preserves the validity w.r.t. J and ~ for every 

interpretation J .  
g) The Hoare-like calculus ~,5~(c~) is sound for a programming l a n g u a g e / / =  

(L, ~ , )  if for every interpretation J ,  7z~L and P, QELF whenever {P}n{Q} is 
formally provable in ~ ( ~ ) ,  7h(J)  then {P} 7z {Q} is valid w.r.t. J and ~'. 

9 Recall the notational convention preceding Lemma 1 
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Note that {P} n {Q} is valid w.r.t. J and cfiff S~(rc)(P)_ Q holds, i.e. for pro- 
grams zc our notion of validity coincides with the usual concept of partial correct- 
ness. 

Theorem 1 (Soundness Theorem). All proof rules of 9f(cf) are C~-sound. 

Proof In detail we study the Of-soundness of the recursion rule (8). [The Of-sound- 
ness of the remaining rules are - unless trivial - immediate consequences of 
Lemma 1 (for the easy rules depending on properties of program functions only) 
and Lemma 4 (Rule of Substitution) together with Corollary 2 and Remark 1.] 

Let H(j), P0') and B(j) be abbreviations for the assertions "~j ,~ ,~H",  
"S~d(EilPi(Yi:~i))(pi) c_ Qi holds for all i=  1 . . . . .  m" and "S~,j(EilBi~)(Pi)~_ Qi holds 
for all i = 1, ..., m" respectively. Now suppose that the premise of rule (8) is valid 
w.r.t. J and cg. We have to show that the conclusion of rule (8) is also valid w.r.t. 
J and oK, i.e. that 

H(j) implies p(j) for all j > 0 .  

We proceed by induction on j. The case "j = 0" is trivial because p(0) is vacuously 
true. Let us now consider the induction step " j ~ j +  1 ", i.e. assume that H(j + 1) 
holds. Then H(j) [because J J of 2;~,j~_S~,j+ 1] and therefore p(j) hold. This implies 
B(j) [premise of rule (8)]. By Corollary 2, we conclude p( j+  1) what had to be 
proved. [] 

Corollary 3. 9f(~) is sound for/7 = (LAlgol , Z ~ ) .  

Finally, let us note that the provision of a semantical interpretation for proof 
lines, especially for the symbol " ~ " ,  ensures that the soundness of ~ ( ~ )  cannot 
be destroyed by introducing additional sound proof rules. This is not necessarily 
true for Hoare-like systems which employ the provability sign ~ in their rules 
(e.g. in [9]) as observed in [36]. 

9. The Completeness Theorem 

For two reasons we cannot expect that all Hoare formulas {P} n {Q} which are 
valid w.r.t. J and cg can be formally proved in ~(cg), even if we admit the full 
theory Th(J) as an oracle. 

Firstly, certain sets X of states may not be expressible by a (first order) formula, 
i.e. there may be no formula P in LF with 5P~'J(P)= X. This phenomenon is due 
to Hoare's approach to describe the correctness of programs by formulas and 
arises already in the context of while-programs. Examples are given in [10, 44] 
and [-7]. To overcome this difficulty Cook [10] proposed to study completeness 
relative to the assumption of expressibility. 

Definition 8. Let cs and of, be copy rules. 

a) FOL is expressive w.r.t. J and cf if for every unit E[S and every formula P 
there exists a formula Q 

S~(EES)( S~J (p)) = Se~J(Q). 
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b) ~(cg) is relatively complete (or complete in the sense of Cook) f o r / / = ( L ,  2;~r 
if for every interpretation J such that FOL is expressive w.r.t. J and cg, the follow- 
ing holds: Whenever {P}n{Q} with n e L  and P, QeLF is valid w.r.t. J and cg, 
then {P} n {Q} is formally provable in o~(cg), Th(J). 

An additional source of incompleteness is the unrestricted use of the proce- 
dure concept in LAlgot. This was first observed by Clarke [9] who showed that it 
is impossible to obtain a sound and relatively complete Hoare-like calculus for 
LAlgol with static scope semantics I;%o. More precisely Clarke showed that this 
incompleteness result holds already for the subset Lpa s c_ LAlgo~ of all PASCAL-like 
programs where procedures which occur as actual procedure parameters are 
disallowed to have own formal procedures as parameters [21]. (Incompleteness 
for the full set LAlgo~ follows already from the undecidability of the formal reach- 
ability of procedures proved in Langmaack [26].) As crucial step Clarke proves 
that even for all finite interpretations J with INI >2  it is undecidable whether 
programs 7ZELpa s a r e  divergent w.r.t. X: %o, i.e. whether Z~o(n)=0 holds. 1~ (See 
[31] for a fuller discussion of this issue.) 

Thus the Hoare-like calculi ~(cg) can be relatively complete only for restricted 
languages/7 =(L, Ze) where either Ze is a simplified semantics as compared with 
the static scope semantics Z%o or L is a proper sublanguage of LAlgo~. To handle 
such restrictions in a uniform way we introduce the concept of ~-boundedness 
and show in the Completeness Theorem that ~(cg) is relatively complete for 
Cg-bounded programs. The development of this theorem takes the rest of this 
section and is divided into four steps. 

Step 1. This step is due to Gorelick [13]. We show that in order to deduce an 
arbitrary valid Hoare formula {P}E[S{Q} in ~ ( ~ ) ,  Th(,/) it suffices to deduce a 
so-called most general formula [13] {G}E[S{G'} where G and G' are special 
formulas which are independent of P and Q. 

Definition 9. Let FOL be expressive w.r.t. J and cg. A Hoare formula {G}E[ S{G'} 
is called a most general formula w.r.t. J and cg if the following holds: 

G=(X=y)  and ~(EIS)(SegJ(G))=SegJ(G') 

where ff and y are disjoint lists of distinct variables with [xl = [Y[ and free(min(E[S)) 
___{if}. (By (~=y)  we denote the formula x ~ = Y l A . . . A x , = y  . provided ~ =  
x I . . . . .  x, and Y=Yl . . . .  , Y,.) 

Intuitively G' describes the final values of the "active" variables ff of EIS in 
terms of the initial values represented by y. 

Lemma 5. Assume that F O L is expressive w.r.t. J and off. Let { G } E[ S { G'} be a most 
general formula w.r.t. J; and cg. 
I f  H~{G}EtS{G'} is formally provable in ~vF(c~), Th(J) 

and {P}E[S{Q} is valid w.r.t. J and 

then H--* {P} E IS {Q } is also formally provable in ~,~(cg), Th(,/). 

~o For 19[ = 1 the divergence problem is still decidable due to Langmaack [28] 
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Proof The case that free(P v Q)c~ {~} =~ is treated in Lemma 5 of [-13]. (Thereby 
the rules (10), (11), (13) and (15) are needed.) The case that free(P v Q)~ {~} +~ 
can easily be reduced to the first case by using a suitable substitution a, Lemma 1, c) 
and rule(10). [] 

Step 2. In this step we reduce the problem of deducing an arbitrary Hoare formula 
{P} E IS {Q} in Jg(J) ,  Th(Cg) to deducing certain most general formulas { G} E'IS' { G'} 
where S' is a procedure call. 

Definition 10. Let cg be an arbitrarily fixed copy rule. We write E0IS o e ~'EIp(ff:~-/) 
if there exists a path /~: EoISo~. . . - -~-~,Erp(,2:rl)  such that p(~:~-/) is correct 

w.r.t. E and Elp(ff:~-/) is the only procedure call unit in/~. 
Note that this definition is independent of the particular cg. Informally 

Eo[So ~ ~'EIp(~:g/) holds iffp(~:q) is a correct procedure call in the main part of 
So equipped with the appropriate environment E. Hence there are only finitely 
many units EIp(g:~/) with EoIS o e ~Eip(~:r/). 

Lemma 6. Let FOL be expressive w.r.t. J and cg and a unit EIS be given. Let 
Eilpi(... ), i=1  . . . . .  m, mEN o, be exactly those units with E[S ~ ~,EilPi(... ) and 
{Gi} Eilpi(...){G'i} be most general formulas w.r.t. J and ~, i= 1,. . . ,  m. 

If H--* ~) {{Gi} EilPi(... ) {G'i}} is formally provable in 
i = 1  

2,~ff(cg), Th(J)  and {P}ELS{Q } is calid w.r.t. J and cg 

then H~{P}EIS{Q}  is formally provable in o~(cg), Th(J).  

Proof We proceed by induction on the structure of S. 

Case 1. S = error or S = x..= e 

In this case m = 0 holds. The assertion of the lemma is proved by using Corollary 2, 
Lemma 1, e), f) and the rules (2), (3), (12), (13) and (15). 

Case 2. S=p(ff:~) 

If p(ff: 7:/) is an incorrect procedure call, m = 0 holds and we use the rules (4) and (12). 
Otherwise m= 1 and E 11Pl(...)=EIp(...). Then we apply Lemma 5. 

Case 3. S =begin vat x; EoS a end 

Let E'~ = add(E, E0). By Corollary 2 and Lemma 1, i) 

{Ply/x] ̂  x = o~} E'll S l (Q  Ey/x]  } 

is valid w.r.t. J and cg (where yCfree(PvQ)wfree(min(E[ISO)).  Observe that 
whenever g;I $1 ~ ~,E'lp'(...) holds then E'lp'(...)= Eilpi(...) for some i e { 1 . . . . .  m}. 
Since S 1 is a proper substatement of S, we conclude by induction hypothesis and 
rule (12) that ~rte) ,rh~j)H~{P[y/x]/x  x=oa}E' 1[S l{Q[y/x]} holds. Rule (7) 
yields ~-~et~), Th(J) H--, {P} El S { Q }. 

Case 4. S = S 1 ; S  2 or S = i f b  then S 1 else S 2 fi 

The argumentation is similar to that of case 3. [] 
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Let us summarize Step 2 as follows: J r (P)  is relatively complete for program- 
ming languages Ff=(L, ~ )  if 3~(P) is able to "master"  all procedure calls in- 
duced by programs in L. 

Step 3. In this step we present two (equivalent) conditions for programs which 
are sufficient for this "mastering" of procedure calls, one is more convenient for 
proving the Completeness Theorem in Step 4 (finite P-index) and the other is 
directed towards the applications of this theorem in the next section (P-bounded- 
ness). 

Consider a unit E 1S. By a reference chain of length n in El S we mean a sequence 
of non-formal procedure identifier occurrences 

(i,, p,)~(i2, p2)~. . .  ~( i , ,  p,) 

in begin ES end such that the declarations of (i 1, Pl),-.-, (i,, p,) are all distinct, 
(il, P0 occurs in S and, for j = 2 . . . . .  n, (ij_ 1, P j -  0~( i i ,  Pj) denotes that (ij, pj) 
occurs freely in the procedure body belonging to (i j_ 1, Pj'- 1). 

Definition 11. A program n is called P-bounded, P a copy rule, if there exists a 
constant k~lN such that whenever r  holds and S is a w.r.t. E correct 

procedure call then the lengths of the reference chains in EIS are bounded by k. 
Intuitively speaking a program is P-bounded if applications of the copy rule 

P do not lead to units with reference chains of arbitrary length. 

Definition 12. A program n is said to have a finite P-index, P a copy rule, if the 
substitutional equivalence -~ induces only finitely many equivalence classes in 
the set 

Ne(~) = {E IS]where 017~ a ~ -~E]  S and S is a w.r.t. E correct procedure call}. 

Thus for programs n with a finite P-index we can split the in general infinite 
set ~e(~z) into finitely many classes of procedure call units which differ only "un- 
essentially". This ability of reducing the infinity of ~e( r  0 is crucial for obtaining 
finite correctness proofs for ~z, i.e. for proving the desired completeness result. 
The basic idea of this proof technique appeared already in [13] and [9] where 
(the equivalent to) ~e(~z) is called recursive cycle resp. range; it is also present 
- in a rather hidden way - in [6] (see Lemma 9.26 in Chap. 9). How powerful the 
completeness results will be depends on how the word "unessential" is inter- 
preted. We interpret it as "substitutional equivalent". In particular, this allows 
us to deal with the problem of sharing as explained in Sect. 6. In contrast Gorelick 
and Clarke essentially required that ~e(n) itself is finite. For ALGOL-like 
programs n such an approach is appropriate only if we restrict ourselves to the 
naive copy rule P = P , ,  i.e. to dynamic scope. 

Lemma 7. A program ~ is P-bounded iff ~z has a finite P-index. 

Proof For both implications we need the following relationship between reference 
chains in a unit EIS and the minimal unit min(EIS): 

(*) If Eo]S=min(EIS ) then E o consists exactly of all procedures proe p(...); ...; 
of E such that p is reachable by a reference chain (il, p l )~ . . .~( i , ,  p,) with p,=p 
in EtS. 
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" / f " :  By (*) the following holds for all units EiS and E'IS'. If there is a reference 
chain of length k in EIS and EIS~-E'[S' holds then there is also a reference chain 
of length k in E'IS'. Thus whenever n has a finite cg-index there exists a constant 
k~lN such that for every unit E[S in ~t,(n) the reference chains in EIS have a 
length of at most k, i.e. n is Cg-bounded. 

"only if": For j~IN let Rj=Yl~e(n)c~{ElSlwhere [min(E[S)l=j}. ([min(E[S)[ 
denotes the length of min(EIS) considered as a string over T.) Observe that for 
every program n and every j ~ N  the substitutional equivalence g induces only 
finitely many equivalence classes in Rj. Now let rc be Cg-bounded. By (,) there 
exists a constant k e n  such that [min(ElS)l<k holds for every EIS in ~ ( n ) .  
Thus N e ( n ) = R  1U...WRk, but this implies that n has a finite %index. [] 

We remark that it is in general undecidable whether an ALGOL-like program 
z is Cg-bounded resp. has a finite r162 For  cg=Cg6o this follows from the un- 
decidability of the macro program problem proved in 1-27]. Hence the set of all 
Cg6o-bounded programs would not form a proper syntax in the sense of Sect. 4. 

Step 4. We are now prepared to prove 

Theorem 2 (Completeness Theorem). Assume that FOLis expressive w.r.t. J and ~. 
Let 7CELAlgol be Cg-bonded and {P} n {Q} is formally provable in ~(cg), Th(J). 

Proof By Lemma 7, rt has a finite cg-index. Thus we can choose a system 931 = 
{Eilp~(...)li---1 . . . . .  m} of representatives for the finitely many equivalence classes 
w.r.t. ~ in 9Le(n) such that 01ha e, ~EIp(...) implies EIp(...)egJt. Let ~_ be a 
specimen of cg and define 

'~l" I where Eilpi(...)~EilBi~<i<m ~ ~'EIp(...)} 9l = 92~ u(EIp ( . . . )  holds for some /wi th  1 

We take the following numeration: 

?R\gJl={E~lp~(...)li=m+ l .. . . .  m+n} with n~lN o. 

Since n has a finite cg-index, we may choose most general formulas {GI}E~Ipi(...) 
{G'i} w.r.t. J and oK, i= 1 .. . . .  re+n, such that for every j 6 { m +  1 . . . .  , re+n} there 
exists an i~{1 . . . .  , n} and a substitution a which is injective on free(GivG'i)~ 
idf(min(EilPi(...)) and satisfies EilPi(...),-~Ejlp~(... ) and Gia=G j. Lemma 1, a) 
and b), implies that ~,G'~a~--,Gj holds. Using the rules (9), (13) and (15) we get 
the following auxiliary assertion: 

(,) For a l l j ~ { m + l  . . . . .  re+n} there exists an ie{1 . . . . .  m} 

such that I---a~t~e),Thty)H--'~{Gi}EilPi(...){G'i} 
implies I--ae~.rh~j)H~{Gj}EjlPj(...){Gj}. 

We are now ready to show the formal provability of {P} n {Q} : 

(1) ~,rC(cg),Th(.r ~J {{a,}Eilpi(...){G'i}} ~ U {{G,}E,[Pi(...){G'~}} by rule (1). 
i = 1  i = 1  
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m + n  

(2) ~-~,,rh~Y) {{Gi}Eilp,(...){G'i}}~ Q) {{Gi}EiIp,(...){G'i}} 
i = l  i = 1  

by (*) and rule (12). 

Define Bi~ - by Eilpi(. . .)~EiIBi~, i= 1, ..., m+n. By Corollary 2 and the defini- 

tion of G~ and G'i, {Gi}EiIBi~{G'i} is valid w.r.t. J and ~ for i = 1 . . . . .  m + n. By the 
definition of 93/, an applicatq-on of Lemma 6 and rule (12) leads to 

(3) ~a~(~),rh(5) U {{Gi}EilPi(...){G'i}}~ U {{Gi}Ei[Bie{G'i}} �9 
i = 1  i = l  

(4) ~ae~e),Tht~ ~ ({Gi}EilPi(."){G'i}} by rule (8). 
i = 1  

By the definition ofgJ/, a further application of Lemma 6 and rule (12) yields 

(5) ~g~,Th~,~{P}rc{Q} what was to be proved. [] 

An equivalent formulation of Theorem 2 is 

Corollary 4. Let L be a decidable subset of LAlgol such that every program n~L is 
Cg-bounded. Then ~(cg) is relatively complete for H=(L, S~). 

The next question is now for which languages L resp. which copy rules cg the 
property of Cg-boundedness is fulfilled. 

10. Applications of the C ompleteness Theorem 

In this section we answer the last question by presenting several corollaries to 
Theorem 2 and relating them to results and claims published in the literature. 
We start with the naive copy rule cg,. 

Corollary 5. ~(cg.) is relatively complete for H=(LAlgol , Z~,). 

Proof Let ~ELAIgol. Since cg, does not rename procedure identifiers (in fact not 
even variables), there is a universal bound k for the number of procedures in E 
whenever 01~a ~ E ] S  holds: Simply take k to be the number of procedures 

in rid. This fact implies the cg,-boundedness of ~. [] 
As mentioned in Sect. 4 the naive copy rule is closely related to the dynamic 

~dyn(7~) ~- z~n(0[TI ' ) ,  thus scope semantics Z~dyn: '~ "~ "~ J S~,(n)=Sdy.(rCd). Adopting this 
little change in rule (14) of ~(~f,), we obtain a relatively complete Hoare-like 
calculus for H =(LAlgo~, Sdyn) by Corollary 5. 

Dynamic scope semantics has been studied by several authors. Sound and 
relatively complete Hoare-like (deduction) systems for dynamic scope are pre- 
sented in [-10, 13] and [9]. In all papers sharing is disallowed; Cook and Gorelick 
don't consider procedures as parameters. Additionally, Cook does not admit 
recursive procedures. 

Sound and relatively complete rules which deal with sharing are presented 
in [8]. Due to some restrictions about procedures (e.g. no procedures as param- 
eters) static scope coincides with dynamic scope in this paper. On the other hand, 
arrays are considered as an additional language feature. 

We now switch to the "most  recent" copy rule ~,,r" 



186 E.-R. Olderog 

Corollary 6. ~u176 ) is relatively complete for H = (LAlgol , Z~mr). 

The proof of Corollary 5 remains valid here because also ~m, does not rename 
procedure identifiers. The "most  recent" copy rule will be used to deal with 
programs with the formal "most  recent" property (see Corollary 8). 

Let us summarize the last results as follows: For simplified semantics such as 
Zdyn, Ze, or Zero r it is no problem to find a Hoare-like calculus which is relatively 
complete for the full ALGOL-like language LAlgol. As mentioned in Sect. 9 this 
is not longer true for the ALGOL 60 copy rule ~6o inducing the static scope 
semantics Z%o. For  ~60 we shall present two sublanguages L_~ LAlgol which have 
a relatively complete Hoare-like calculus due to Theorem 2. 

First we consider the set Lg~ of all programs without global formal procedure 
identifiers. Thereby an identifier fl of a program ~ is called global formal if there 
is an occurrence (i, fl) in n which is free in some extended procedure body in ~z 
and defined as a formal parameter. Of course Lgl is a decidable subset of LAlgol. 

Corollary 7. 3r ) is relatively complete for 11=(Lg~, Z%o ). 

Proof. Let n~Lg s and N be the number of procedures in ha. To  prove cg60- 
boundedness of n we show by induction on k that for all paths 

Pk: Ct~d=E, IS,~...-%--;~o GIS~ 

the lengths of tM reference chains in EkIS k are bounded by N. (Notice that there 
may be no universal bound depending on 7r d only for the number of procedures 
in E k.) 

This is clearly true for k =  1. Consider now the induction step " k ~ k +  1" and 
assume that the assertion holds already for all j ~ k. T he only non-trivial situation 
is that S k is a procedure call S k =p(.. .) .  Let proc p(...); B; EE k and B '=  Sk+ ~. Then 
there is a unique index j =_< k such that proe p(. . . ) ;B; is in Ej + ~, but not in Ej. Con- 
sider now an arbitrary reference chain (i'~, P'I)-*... -~ (i',, p'~) in E a + 1 t Sa + 1 = Ek + 1 [B'. 

Case I. All (i'L, P'I) . . . . .  (i'~, p~) are defined in B'. Then there is a corresponding 
reference chain (i l, p l )~ . . .  ~(i~, p,) in E; ISj where all (i I , Pl) . . . . .  (in, p,) are defined 
in B. 

Case 2. There exists an m < n such that ( i ' ,  p~) is free in B'. 

Subcase 2.1. (i'm, p~) occurs in the main part of B'. (Thus m = 1.) Then there is a 
corresponding reference chain (il, p',)~...-~(i,,p',) either in EjISj or in EklS k 
depending on whether p'~ was already present in B or has just been inserted as an 
actual parameter of Sk = P(...). 

Subcase 2.2. (i'm, p'~) occurs in the body of a procedure in B', 
e.g. B'= begin...proe q'(...); begin...p'...end...end. 
Thus B =begin.. .proc q(...); begin...r...end...end 
where q and q' (r and p~,) occur at the same position in B and B' respectively. Since 
r~sLg I, we conclude r =p~. Thus we can find a corresponding reference chain 

(i~, p~)-~...-,(im_ ~, Pro- ~)--*(im, p~,)-~... ~( i . ,  p~) in EjISj 

where (i~, p~) . . . . .  (ira- ~, Pro- ~) are defined in B. 
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In both cases 1 and 2 there exists a reference chain of length n in EjlSj or 
EklS k. By induction hypothesis n<N holds. [] 

The second sublanguage we investigate in connection with the copy rule Cg6o 
is the set L,,, of all programs satisfying the formal "most recent" property [-35, 22]. 
This property is more complex to define than the ones considered so far. It origi- 
nates from the study of run time systems supporting the execution of ALGOL-like 
programs with recursive procedures. It is well-known such systems work with a 
run time stack of so-called activation records and use so-called static chains to 
access the current activation record of an identifier in this stack [11, 39, 14, 35]. 

Informally speaking a program has the "most  recent" property if at run 
time the static chain pointer of a procedure p always points to the most recent, 
not yet completed, activation record of that procedure q which lexicographically 
encloses p (see [-11], p. 318). Such programs are of interest because run time 
systems can apply a simple "most  recent search strategy" for them (see [-35]). We 
formalize now this property following [-22]. The basic idea is that every state of 
the run time stack corresponds to a certain path ~: nl.~=--....~-~---nk of programs 

"~60 ~ 6 0  

where the single programs ~i correspond to the single activation records in the 
stack. 

Consider a program ~LAlgo~. First we define the notion of an associated 
procedure identifier: Let gd ~-0o g' and (i,p') be an occurrence of a procedure 

identifier p' in ~'. Then the declaration proe p'(...); ...; of p' in ~' is a copy of 
exactly one procedure proe p(...); ...; in ga. We call p the associated procedure 
identifier of (i, p') and write p = ass(i, p'). Consider now a path fi: gd .~ff---g' .~---X" 

" ~ 6 0  " ~ 6 0  

and let stm(~', ~") =(i, p'(...)). (Recall that by Definition 2 stm(~', ~") is the unique 
occurrence of a procedure call p'(...) in ~' which generates z~".) Then we call 
p=ass(i ,p ' )  the associated procedure identifier of x" and write p=ass(~"). In- 
tuitively p tells us which procedure in xn generated the innermost modified proce- 
dure body B=blk(~', ~") in ~". 

Consider now a path 

/~ : 7[ d =  TfO ,~VT---. . . ,~;Z--- 7~k ,~-~V---. . . , ~ - ~  TCl ,~7~---. . . , ~ - - -  TC m _  1 ~ - 6 o  7~m 
~ 6 0  ~ 6 0  ~ 6 0  ~ 6 0  ~ 6 0  "~60 

with m > l  and stm(nm_l,n,,)=(i,p'(...)). Then there is a unique index k with 
t . . . ,  " ~  O<=k<m such that p rocp( . . . ) , .  �9 is defined in all programs ZCk,. ~m, but not 

in ~k- 1' nk is called the static predecessor of ~m and X m ~ k  is the static pointer of 
~,,: we write x k = static(~m). If p-ass(~m) and q = ass(~k) holds the program Xd has 
the following structure: 

~d = begin...proc q(...); begin 

proc p(...); ...; 

end; ... 
end 

Thus procedure q lexicographically encloses p. Further on there is a greatest 
index 1 with k<=l<m such that ass(~)=ass(static(~,,)), x~ is called the "most 
recent" predecessor of ~,, and ~ , , ~  is the "'most recent" pointer of ~,,: we write 



188 E.-R. Olderog 

nl = m r(nm). Examples in [35] and [22] show that in general k 4= 1, i.e. static(n,,)+ 
mr(n,,) holds: see Fig. 2. 

"most  recent" 
pointer 

~d 
T* 

~k 

~t 
7-, static 

pointer 

is a shorthand for +~o~o ") 

Fig. 2 

ass(nk)=q 

ass(hi) = q  

ass(n~)=p 

Now a program n has the formal "most recent" property if for every path 
/ :  ne ~b~-o n' ~b~2U~o n" the static and "most  recent" predecessors of n" coincide: 

static(n') = m r(n"). Due to Kandzia [22] L,,~ is a decidable subset of LArgos. 
When applying Theorem 2 to Lmr we have to face the difficulty that programs 

in Lmr need not be Cg6o-bounded. An example is 

n = begin proc p( :f); begin 
proc q(:r); begin f(:r) end; p(:q) 

end; 
P(:P) 

end 
where applications of the copy rule c~60 lead to units with arbitrarily long reference 
chains due to the global formal procedure identifier f in procedure q. Notice, 
however, that q is "unessential", i.e. it is never called. We solve this difficulty by 
switching to the simpler copy rule Cgm,. 

Lemma 8. For programs n with the formal "most recent" property Z~6o(n)= 
~--~mr(T~) holds. 

Proof. Let n~Lm~. Then the following holds: 

(1) For every path/~k: nd= n l %~0--o ... ~k~-~o nk there exists a corresponding path 

~k: na=n'l ~U~r "'" ~--~, n~ such that nk=ass(nk) holds, i.e. n~ is obtained from n k 

by replacing every procedure identifier p occurring at some position i in ~k by 
ass(i, p). 

(Corresponding means that for every je{1 . . . . .  k} nj and n) have the same 
structure and in nj and n) the copy rule r66o resp. rgm~ is applied at the same posi- 
tion.) 

(1') Vice versa: For every path /~k: ...there exists a corresponding path /~k: 
... with n k-- ass(nk). 
Properties (1) and (1') are shown by induction on the length k of path ~k resp. 
/~. Together with Lemma 3 they imply 2;~6o(n)=Z~m,(n). [] 

Intuitively the lemma states that for programs n~Lm~ no renaming of proce- 
dure identifiers is necessary when applying the copy rule once we have done the 
preprocessing step n-~n a. 

Corollary 8. ~(r~m, ) is (sound and) relatively complete for II =(Lm~ , N~o). 
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Proof By Lemma 8 it suffices to show that Jf(cgmr ) is sound and relatively com- 
plete for F/'=(L,.,  ,2~r ). But this is an immediate consequence of Theorem 1 
and Corollary 6. [] 

Remark 2. Corollary 8 is independent of Corollary 7 since there are programs 
in L,,r\Lg I (e.g. n above) and others in Lgf\Lm, [22]. 

Let us now present some special applications of the last two corollaries: 
Define Lp . . . .  Lpar, Lvp and L,p to be the sets of all programs 
- without procedure nestings 
- with parameterless procedures only 
- without procedure identifiers as parameters 
- in which formally recursive procedures are disallowed to have procedure 
identifiers as formal parameters 
respectively. (A procedure proe q(...); ...; in a program n d is called formally re- 
cursive if there exists a path 

~: red , ~ - n l ~ +  n2 with q=ass(g0=ass(n2) .  ) %0 %0 

By a theorem proved in [23] (see also [22], Theorem 1) we conclude that 
programs in Lp .... Lpa ~ and Lvv have the so-called strong "most recent" property 
[22, 23] which implies the formal "most recent" property defined above. A closer 
investigation of the proof in [23] shows that also the programs in L~v have the 
strong "most  recent" property. Thus 

(*) Lp .... Lpa ~, Lpv, Lr v~ Lm~. 

Moreover, L~v is a decidable subset of LAlgo|. This is true because it is decidable 
whether a procedure in a program with the strong "most  recent" property is 
formally recursive [24] and whether a program has the strong "most  recent" 
property [22]. 

By (.) Jg(C~m~) is (sound and) relatively complete for Hp,e~=(L p .... E%o), 
F/va~=(Lp,~, X~6o), Hpp=(Lpv, S~e6o ) and F/,v=(Lrv, S%o ). By Corollary 7 also 
~(C~6o ) is relatively complete for F/p .... Hv~ , and/ /pp .  Additionally, ~(~6o)  is 
relatively complete for F/~v since it can be shown that every n~L~p is C~6o-bounded. 
For F/p,~ even ~ ( ~ , )  is sound and relatively complete since S~6o(n)= S~(rc) holds 
for every n~Lpa ~. (I.e. apart from the preprocessing step n~r t  d no further renaming 
of variables and procedure identifiers is needed here. Cf. Lemma 8.) 

We conclude this section by comparing our results with other approaches 
dealing with static scope semantics. In [1] and [43] sound and relatively com- 
plete Hoare-like calculi are presented for the case of parameterless procedures. 
In [17] and ([6], Chapter 9) sound and relatively complete Hoare-like calculi for 
programs without procedure nestings and without procedures as parameters are 
given. Both Apt [1] and de Bakker [6] allow array variables as an additional 
language feature. The calculus in [17] can be used also to prove other properties 
than partial correctness, for example equivalence of programs. 

Clarke [9] considers ALGOL-like languages F/=((L, Z~6o) with the general 
restrictions "no sharing" and "no self-application" for L. A program n has no 
self-application if all procedures in n have finite modes in the sense of ALGOL 68 
[45]. In particular no procedure calls of the form p(...p...) are allowed in such 
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programs. Let Lsa denote the set of all programs without self-application (L,.___ 
LA,go, is decidable.). Note that Lp.~ c_ L~. holds since in PASCAL-like programs 
(cf. Sect. 9) every procedure has a finite mode of depth __< 2. 

Clarke [9] claims without proof that relative completeness holds for this 
type of programming languages in the cases that additionally procedure nestings 
or formally recursive procedures or procedure identifiers as parameters or global 
variables are disallowed. The first three cases are covered by the completeness 
results on 17 v .... Hpv and Hrv. The case "no global variables", however, is con- 
siderably more complicated and will be discussed later in Sect. 12. 

11. The Characterization Theorem 

In this section we investigate the problem whether the converse of the Complete- 
ness Theorem holds, i.e. whether formal provability in ~(~g) implies %bounded- 
ness. We show in the Characterization Theorem that this is true. So the calculus 
~(cg) can deal exactly with ~g-bounded programs. To prove this theorem we 
study the structure of the formal proofs ~ in ~(~g) with oracle Th(J) more closely. 

First we show that formal proofs can be transformed into standard proofs. 
By a standard proof we mean a formal proof in ~(cg), Th(J) in which the recur- 
sion rule (8) is applied at most once. Recall that a standard proof was constructed 
in order to show Theorem 2. (A different method of constructing a formal proof 

for a valid Hoare formula {P} ~ {Q} can be found in Apt's completeness proof 
[1] : There the number of applications of the recursion rule in ~ depends on the 
structure of ~ and may be > 1. By the following lemma this method is not farer 
reaching than the standard proof technique used in our paper.) 

Lemma 9. For every proof line H 1 ---* H 2 which is formally provable in ~(~) ,  Th(J) 
there exists also a standard proof 

Proof Let ~ be a formal proof of H , ~ H  2 in ~/g(cg), Th(J). By induction on the 
length of ~ it suffices to consider the case where rule (8) is applied twice in 3. 
Using an obvious symbolic notation we may assume that ~ has the following 
structure: 

~4 

~1 ' ' '  H u Hv-o H a 

(,) H-~Hp 

. . .  

~ 2 H' u n'~--, H'~ 

(**) n'--,n'~ 

~3 { H I ~ H  2 

(rule (8)) 

(rule (8)) 
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Further on we assume: (1) No proof line in 4 is superfluous for proving H a--*H2, 
(2) in 44 no proof rule is applied to a proof line in 41, (3) in 43 no proof rule is 
applied to a proof line in 42 and (4) Hv r~ H = 0 = Hp c~ H'. 

By (2) and (3) the sequence 43 is a formal proof of H a - - * H  2 without application 
of rule (8), but with the assumptions (,) and (**). Let f f l=(H\H'e)wH'.  Because 
o f / ~ _ H  a (by (1)) we can modify 43 into a formal proof ~ of H I ~ H  2 without 
application of rule (8), but with the assumption f f l~Hp w H'p instead of(,)  and (**). 
Now we can construct a formal proof ~' of H x--*H 2 with just one application of 
rule (8) which has the following structure: 

4, {(o) 

(+) 

4~ I(oo ) 

H u H v ~ H  ~ 

H w H v ~ H  u Hp (rule (1)) 

H u H e ~ H  e (rule (12)) 

H ' u H ~ H '  8 or 

H ' u  Hpu  H'e~H' B 

H u H 'u  Hpu  H'p~HBu H' B 

ffI ~ H v u H' P 

(see comment below) 

(rule (12) applied to (o) and (oo)) 

(rule (8)) 

. . ,  

4 3 Ha___~ Hz 

Comment." In 4~ the same rules as in 42 are applied, but all references to (,) in 42 
are replaced by references to (+). Thus the proof lines in 42 are those of 42 with 
possibly H v as additional set in their antecedents. 
This proves the lemma. [] 

Next we show in Lemma 11 that a standard proof of a Hoare formula {P} rc {Q} 
contains already - up to substitutional equivalence - all information about the 
procedure call units generated by 7t. As auxiliary tools for this lemma we need 
Lemma 10 and Corollary 9. 

Lemma 10. Consider an arbitrary formal proof4 of a proof line Ha--*{ {P } EIS { Q } } 
u H 2 where all atomic Hoare formulas h e H  a deal with procedure calls and S is no 
procedure call. Assume that E l S i E " I S "  holds. Then there exists a proof line 

H'a~{ {P'}E'IS'{Q'}} u H 2 in ~ where E'IS' and E"IS" are substitutionally equiva- 
lent. 

Proof Let the proof lines in 4 be marked by natural numbers. Then there is a 
least j e N  such that the j-th proof line in 4 is of the form H1 ~ {{/5}/~1~ {0}} w H2 
where EIS~-[~]S and/4a---Ha hold. The proof l inej  cannot be an axiom. Hence 
it is the result of applying one of the proof rules to some of the preceeding proof 
lines. Since only the rules (5)-(7) have to be considered, there is a proof line i with 
i<j  of the form H'a~{{P'}E'IS'{Q'}} u H  2 where ~ - ' EIS-g4,E IS' holds and ~ is 
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applied at the same position as in E ] S ~ E " ] S " .  Since E]S~-E]S holds, we con- 

clude E'[S'~-E"]S" what was to be proved. [] 

Corollary 9. Consider an arbitrary formal proof ~ of a proof line H 1 --* { {P} E ] S { Q } } 
w H 2 where all atomic Hoare formulas h~H 1 deal with procedure calls. Assume 
that E]Se, ~,E"] S" holds. Then there exists a proof line { {P'} E'[S' { Q'} } u H' a-* H 2 
in ~ with E']S'~-E"]S ''. 

Proof Note that the assertion of Lemma 10 remains true if S is an arbitrary 
statement and E ] S ~ E " ] S "  is replaced by E]S ~ ~E"[S". The assertion of the 

corollary follows by observing that atomic Hoare formulas about correct proce- 
dure calls can - apart from substitutional equivalence - only be introduced in a 
formal proof by rule (1). [] 

Lemma 11. Let ~ be a standard proof of {P} ~ {Q} in which rule (8) is applied as 
follows: 

(k) ~) {{P~}EiIP~(...){Q,}}~ ~ {{P~}E~IB~c{Q~}} 
i=1 i=1 

(I) U {{P~}Eilp,(...l{Qi}} 
i = l  

Then for every path/r 0 ] r c d - U ~ . . . ~ E ] q ( . . . )  where q(...) is correct w.r.t. E there 

is an i6{1 . . . . .  m} such that Ei]pi(...)~-E]q(... ) holds. In other words: rc has a finite 
(g-index and {El]p1(... ) . . . .  ,Em]P,,(...)} is a system of representatives for the 
finitely many equivalence classes w.r.t. ~- in ~l~(rc). 

Proof We may assume that ~ has minimal length. The proof of the lemma is by 
induction on the weight w of fi which is the number of correct procedure call 
units occurring in ~. In the case "w = 1" we have 0Ire a ~ ~'E] q(...). An application 
of Corollary 9 to the particular situation in ~ yields the assertion of the lemma. Let 
us now consider the induction step " w ~ w  + 1 ". Then ;~ is of the form 

fi: O ] ~ z a ~ . . . ~ E ' l q ' ( . . . ) ~ - > E ' l B '  ~ . . . ~ E l q ( . . . )  
where 

and 
~w: O l ~ c a ~ . . . ~ E ' l q ' ( . . . )  

fil : E ' I B ' ~ . . . ~ E I q ( . . . )  

are paths of weight w and 1 respectively. By induction hypothesis Ej[pj(...)~- 
E'lq'(...) holds for some j~ {1 . . . . .  m}. 

Let /71: g j l B j ~ . . . ~ g " l q " ( . . . )  correspond to ill .  The argument em- 

ployed in the case "w = 1" yields 

Eilpi(...)~-E"lq'(...) for some iE{1 . . . . .  m}. 

The assertion of the 1emma follows by observing that E'lq'(...)~--Elq(...) 
holds. [] 
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We are now in a position to prove the main result of our paper: a complete 
characterization of the power of the calculi oV'(cg). 

Theorem 3 (Characterization Theorem). Let FOL be expressive w.r.t. J and cg. 
Then the following assertions are equivalent : 
(1) {P}Tz{Q} is formally provable in 9f(c~), Th(J).  
(2) 7~ has a finite cg-index and {P} ~z {Q} is valid w.r.t. J and cg. 
(3) ~z is Cg-bounded and {P} ~ {Q} is valid w.r.t. J and cg. 

Proof "(1)~(2)": The validity of {P} ~ {Q} follows from Corollary 3 of Theorem 1. 
Lemma 9 guarantees the existence of a standard proof for {P}~{Q}. Now 
Lemma 11 states that Tc has a finite off-index. "(2)~(3)": By Lemma 7. "(3)--*(1)": 
By Theorem 2. [] 

12. C oncluding Remarks 

In this section we discuss two issues related to the Characterization Theorem and 
indicate further directions for research. The first issue concerns the notion of 
Hoare logic and the second one addresses Clarke's completeness claim for the 
case "no  global variables" (see Sect. 10). 

Hoare Logic. The Characterization Theorem leads to the following remark: 
For a given program 7~GLAlgol all valid Hoare formulas {P} 7z {Q} are provable 

in JF(~), Th(J )  provided ~(cg), Th(J)  is able to prove just one Hoare formula 
{Po} rc {Q0}. 

Thus J4"(cg) does not care about the particular situation of {P} ~z {Q}, but re- 
presents a general mechanism designed to deal with program schemas rather than 
with specific programs. In this light the notion "formal proof" has a double 
meaning: On the one hand "formal"  refers to the strict rules of the calculus and 
on the other hand "formal" means that such a proof is independent of the actually 
arising computations. 

This suggests that a notion of Hoare logic should be much more than just a 
(relative to Th(J)) recursively enumerable set of Hoare formulas {P} ~{Q} (Lip- 
ton's definition [-33, 30]). It should also be considered as a sort of acceptor for 
structures of formal computations generated by programs. In our future work 
we intend to explore the relationships between program classes, structures of 
formal computations and basic proof principles needed to understand these 
structures. 

"No Global Variables". Let Lsh , L~a and Lg v denote the sets of programs without 
sharing, self-application and global variables respectively. Then it was Clarke's 
claim [9] that there exists a sound and relatively complete Hoare-like calculus 
for Ilct =(Lsh ~ L~, c~ Lgv, r%o ). (We remark that Lsh ~ L~a c~ Lg v is a decidable 
subset of Lglgol though L~h_ Lklgol itself is undecidable for Cg6o ). The difficulty of 
this claim depends on how we interpret the notion "global variable' .  

The interpretation we had in mind when reading Clarke's paper was that a 
global variable of a program ~ is a variable x which occurs freely in some extended 
procedure body of g. In particular nothing is said about procedure identifiers p 
in g. For a better understanding of the consequences of this interpretation let us 
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look at the following example. 

So = begin 
vat count; 
proe p (xl, x 2 : f ) ;  

begin 
proe q(Yl, Y2 :); begin Ya: = Yl + 1; f(Yl, Y2') end; 
xl:=x 1 + 1; i f x  1 < x  2 then p(xl, x2:q) else f ( x l ,  x2: ) fi 

end; 
proe r (zl ,  z2 :); begin z2.' = zl  end; 
count: = 0; p(count, out:r) 

end 

Of course s o eL~h n L,, n Lg v holds because the global formal procedure identifier 
f does not matter. (Note that zt o os in fact a PASCAL-like program.) If the copy 
rule Cg6o is applied n o terminates and the Hoare formula {out=in}n  0{out= 
2 .  in + 1} is valid w.r.t, the standard interpretation W" of natural numbers and 
(g6o. On the other hand, both Cgm, and cs lead to non-termination o fn  o. Moreover, 
no is constructed in such a way that for all copy rules cg for which So is Cs 
the Hoare formula {true} no {false} is valid w.r.t. X a n d  cg, i.e. no never terminates. 
This leads to the following corollary of Theorem 3. 

Corollary 11. There is no copy rule cg such that 9f'(cg) is sound and relatively com- 
plete for Ilct = (Lsh ~ L~, ~ Lgv, Z%o ). 

Proof Assume that ~,a(cg) is relatively complete for Hc~. Choose the interpreta- 
tion J = ~.. Since FOL is expressive w.r.t. A r and ~6o [10], Theorem 3 implies 
that every program n in Lsh ~ L~,c~ Lgv is Cg-bounded. Considering the sample 
program s o we conclude that ~(cg) cannot be sound for Hc~. [] 

Clarke's original idea (private communication) to verify the claim on language 
Hc~ was to eliminate procedure nestings by a transformation 

T: Lsh ~ L~ ~ L ~  Lp.e~ 

such that n and T(n) are schematically equivalent, i.e. S~o(rO=Z~o(T(n)) holds 
for every interpretation J .  Then by the completeness result on Hp~e~ the calculus 
Jr augmented with T as an additional proof rule, would be sound and 
relatively complete for Hc~. But it is rather doubtful whether such a transforma- 
tion exists in light of the following fact (which can be proved by methods devel- 
oped in 1-25] resp. [27]): 

There is no program n in L p ~  which is formally equivalent [27] to the pro- 
gram s o above. 
(Formal equivalence is a stronger property than schematical equivalence). To-  
gether with Corollary 11 this fact leads to the following conclusion (see 1-31]): 

Presently known Hoare-style proof techniques for ALGOL-like programs 
- which we think are essentially represented in the calculi ~ ( ~ )  - are not sophis- 
ticated enough to deal with the language I-lct. 

All these difficulties do not arise if we use the interpretation Clarke had in 
mind (private communication) when writing "no  global variables", namely that 
- in our terminology - both global procedure identifiers and global variables are 
disallowed. The Lsht"5 L s a ~ L g v ~ L g y  holds. Now there exists a transformation 
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T: Lgf---~Lvnes eliminating procedure nestings [27]. Independent of this transfor- 
mation Jf(Cg6o ) is now sound and relatively complete for IIc~ due to Corollary 7. 

Let us summarize these observations as follows: Interpreted in the strict 
sense Clarke's claim leads to a challenging problem, namely to find a Hoare-like 
proof system for Hc~. At present only first steps towards a solution are known. In 
particular [29] has shown that for finite interpretations d it is uniformly decidable 
whether a program rtEL~anLg v is divergent w.r.t. 27 ~" (Note that the sharing ~'6o" 
restriction is not needed here.) According to a theorem by Lipton [33, 30] this 
result implies the existence of a sound and relatively complete Hoare logic for 
I-I=(L~, n Lgv, S%o ). Of course from Lipton's notion of Hoare logic (see above) 
we don't get any information how a natural syntax-directed Hoare-like system 
would look like, but it can be understood as a first step in this direction. Hence 
the following 

Conjecture. [31] There is a sound and relatively complete Hoare-like system J f  
for l-I=(Lsa~Lgv, S%o ). 

We hope that the decidability proof in [29] will give some hints to attack this 
problem. 

Appendix: Diagram of Languages 

The following languages have been discussed in connection with static scope 
semantics S%o. 

�9 

~r [ Algol ~ J  J 

7 r  . . . .  , \  \ ~ I 
/ /  \ . \ \  ~L I 

L g f  I. mr \ \ s a _ _  I f 

i \ i , i I I I f ~  , 
~(  t rp I . I I i Lsa~  L_v 

/ \  i I ' I 
/ \ I I I I 

I I I t I /  \ .  , I i 
[ 'pr ies L pp ! / L ~ P a s  I 

\ 
p r I I Lpas Lgv 

I ) 

Diagram 1 

(L o denotes the set of all programs without procedures.) 
( ~  ~f~(C#6o ) resp. ~(cgm, ) sound and relatively complete for these languages. 
( ~  No sound and relatively complete Hoare-like calculus [93. 

Only sound and relatively complete Hoare logic in the sense of Lipton, but 
a concrete calculus is not yet known. 
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