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Summary. The sequence and genetic organization was 
determined of the 2508 bp lactococcal portion of pFX2, 
which was derived from a cryptic Lactococcus lactis 
subsp, lactis plasmid and used as the basis for construc- 
tion of a series of lactococcal vectors. A lactococcal plas- 
mid plus origin and two replication protein-coding re- 
gions (repA and repB) were located. RepA has a helix- 
turn-helix motif, a geometry typical of DNA-binding 
proteins. RepB shows a high degree of homology to 
the plasmid replication initiation proteins from other 
gram-positive bacteria and Mycoplasma. The transcribed 
inverted repeat sequence between repA and repB could 
form an attenuator to regulate pFX2 replication. Up- 
stream of the ori site, and in a region which was non- 
essential for replication, a 215 bp sequence identical to 
the staphylococcal plasmid pE194 and carrying the RSA 
site was identified. The genetic organization of this lacto- 
coccal plasmid replicon shares significant similarity with 
pE194 group plasmids. 
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Introduction 

Cloning vectors for gram-positive organisms were ini- 
tially constructed as chimeric plasmids carrying repli- 
cons from both gram-positive and -negative organisms 
to enable replication in these two genetically divergent 
groups of bacteria. Recently, however, a new class of 
lactococcal vectors has been constructed based solely 
on the replicons from small cryptic lactococcal plasmids : 
pWV01 (2.3 kb) from Lactococcus lactis subsp, cremoris 
Wg2 (Kok et al. 1984), pSH71 (2.1 kb) from L. lactis 
subsp, lactis 712 (de Vos 1987) and pD125 (5.5 kb) from 
L. lactis subsp, lactis 5136 (Xu et al. 1990, 1991). These 
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lactococcal vectors are functional in both lactococci and 
Escherichia coli and have been used extensively for gene 
cloning studies (de Vos 1987; Xu et al. 1990, 1991). 

In our laboratory, the lactococcal vector pFX1 was 
constructed by combining the 4.5 kb HpaII-MboI frag- 
ment of pDI25 with a I kb fragment carrying the chlor- 
amphenicol acetyl transferase (cat) structural gene from 
staphylococcal plasmid pC194. Plasmid pFX2 was de- 
rived from pFX1 by deletion of a non-essential 1.9 kb 
ClaI region (Xu et al. 1990). Based on pFX2, a family 
of lactococcal vectors was constructed for gene cloning 
and translational fusion studies (Xu et al. 1991). 

The genetic organization of many plasmid replicons 
from gram-positive bacteria such as Staphylococcus (No- 
vick 1989), Bacillus (Gruss and Ehrlich 1989), Strepto- 
coccus (del Solar et al. 1989), Lactobacillus (Bates and 
Gilbert 1989), Streptomyces (Kendall and Cohen 1988) 
and Clostridium (Garnier and Cole 1988) is now well 
established. In contrast, very little is known about lacto- 
coccal plasmid replicons at the molecular level. A plus 
origin (or 0 site has been found in lactococcal plasmid 
pSH71 (Gruss and Ehrlich 1989) and the minimum repli- 
con regions located in two other plasmids from L. lactis 
subsp, lactis strains UC317 (Hayes et al. 1990) and 
SSD207 (von Wright et al. 1990). In lactococci, several 
industrially important genes are plasmid encoded, such 
as those for lactose utilization, proteinase and citrate 
utilization. The elucidation of plasmid replication mech- 
anisms is fundamental to further vector development 
and to understanding gene expression in lactococci. In 
this paper, we describe the sequence and genetic organi- 
zation of pFX2 DNA. 

Materials and methods 

pFX2 sequence determination, pFX2 DNA was linearized 
with HpaII and cloned into SmaI sites of the sequencing 
vectors pGEM3Z and pGEM4Z (Promega). Overlap- 
ping templates were created by exonuclease III digestion 
with the Erase-a-Base TM system (Promega). The DNA 
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Hpall 
CCGGTTTAGTAAGACTTTTTTATTGcccAGTTTTcAGTTGcGTAGGcTGAAAGCTGGGCTTTTTTATTATATCACGATTTcTAGGAACGTGAAACCCTTT 100 

AACAATTCCCGTGGGTTTCCACCCAcACcCGAGGAGCGTAGGACGCTCCACCCCACCTCCGAAAAGAATAGTGTTTAGATTGATTTTCAATTCTTTTcTT 
Cfol 

ACGGCTTACACAATCTATCACAATCTCAACAACACTGCAAGGGTCGCTTTCGCTTCCTCCCTTTCCGTTTATGTTGCGCTTGTGATTTTTCGATTGTGCC 
Ct___.~al 

GAcGAAAAGAATTAAAAATcAATCGCTAcAAAGTTATcTCcGAcAAcATCGATTTCATACATGCcAGcTAATTTTTCAAcTTcTAcGATGATATGTGAGG 
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TCTGCTATCGCACACCCTCACGCTTGGAACGGAAATAAACGGAGTGTCTTGAAGTCGATTAACCGACA•TGTCGCTAATAAACTTTTAGTCACTTGCTTT 500 

TCTGCGTCTTTTTGCGTGATATATTTTCCGATTGTCTTCGCCTCgatcgttaaatttatactgcaatcggatgcgattattgaataaaa!•atatgagaga 

tttatctaatttcttttttcttgtaaaaaaagaaagttcttaaaggttttatagttttggtcgtagagcacacggtttaacgacttaattacgaagtaaa 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  R S A - -  

taagtctagtgtgttagactttatgaaatctatatacgtttatatatatttattatccgATTTTTTATTAAAACGTCTCAAAATCGTTTCTGAGACGTTT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

600 

700 

800 

TAGCGTTTATTTCGTTTAGTTATCGGCATAATCGTTAAAACAGGCGTTATCGTAGCGTAAAAGCC•TTGAGCGTAGCGTGGCTTTGCAGCGAAGATGTTG 900 
• Cfol Cfol 

TCTGTTAGATTATGAAAGCCGATGACTGAATGAAATAATAAGCGCAGCGCCCTTCTATTTCGGTTGGAGGAGGCTCAAGGGAGTATGAGGGAATGAAATT 1000 
Cfol 

CCCTCATGGGTTTGATTTTAAAAATTGCTTGCAATTTTGCCGAGCGGTAGCGCTGGAAAATTTTTGAAAAAAATTTGGAATTTGGAAAAAAATGGGGGGA 1100 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

AAGGAAGCGAATTTTGCTTCCGTACTACGACCCCCCATTAAGTGCCGAGTGCCAATTTTTGTGCCAAAAACGCTCTATCCCAACTGGCTCAAGGGTTTAA 1200 

GGGGTTTTTCAATCGCCAACGAATCGCCAACGTTTTCGCCAACGTTTTTATAAATCTATATTTAAGTAGCTTTATTGTTGTTTTTATGATTACAAAGTGA 
_ _ ~ ~ _ _ ~ 2 _ _ _ ~  .... ^^^^^^ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TACACTAACTTIATAAAATTATTTGATTGGAGTTTTTIAAATGGTGATTTCAGAATCGAAAAAAAGAGTTATGATITCTCTGACAAAAGAGCAAGATAAA 
...... o o o o  MetVatIleSerGtuSerLysLysArgValMetIleSerkeuThrkysGluGlnAspLys 

AAATTAACAGATATGGCGAAACAAAAAGGTTTTTCAAAAT•TGCGGTTGCGGCGTTAGCTATAGAAGAATATGCAAGAAAGGAATCAGAACAAAAAAAAT 

LysLeuThrAspMetAlaLysGtnLysGt•PheSerLysSerAlaVa•AtaA•aLeuAtaIteGluGluTyrAtaArgLysGtuSerG•uG•nLys•ys 
Thal 

AAGCGAAAGCTC-~GTTTTTAGAAGGATACGAGTTTTCGCTACTTGTTTTTGATAAGGTAATTATATCATGGCTATTAAAAATACTAAAGCTAGAAATTT 
............ > < .......................... MetAtaI[eLysAsnThrLysAlaArgAsnPh 

IGGATTTTTA~TATATCCTGACTCAATTCCTAATGATTGGAAAGAAAAATTAGAGAGTTTGGGCGTATCTATGGCTGTCAGTCCTTTACACGATATGGAC 
eGtyPheLeuLeuTyrPr~AspSerItePr~AsnAspTrpLysGluLysLeuGluSerLeuGlyva~SerMetAlavalSerPr~LeuHisAspMetAsp 

GAAAAAAAGATAAAGATACATGGAATAGTAGTGATGTTATACGAAATGGAAATGCAcGTcATCAAAAATCCACAcTATcACGTATATATATTGCACGGAA 
GtuLyskyslleLysIleH sGlyI•eVal•a•Met•euTyrG•u•etG•uMetHisVa•I•eLysAsn•r•HisTyrHisVa••yrI•e•euHisG•yA 

ATCCTGTAACAATAGAAAGCGTTAGGAACAAGATTAAGCGAAAATTGGGGAATAGTTCAGTTGCTCATGTTGAGATACTTGATTATATCAAAGGTTCATA 
snPr•VatThrI•eGtu•ervatArgAsnLysIteLysArgLysLeuGtyAsnSerSerVatAtaHis•atG•uIleLeuAspTyrIteLysG•yserTy 

TGAATATTTGACTCATGAATcAAAGGACGCTATTGCTAAGAATAAACATATATACGACAAAAAAGATATTTTGAACATTAATGATTTTGATATTGAccGC 
r•tuTyr•euThrHisGtu•er•ysAspA•aIteA•a•ysAsnkysHisI•eTyrAspLys•ysAsp•teLeuAsnI•eAsnAsp•heAspI•eAspAr• 

TATATAAcACTTGATGAAAGcCAAAAAAGAGAATTGAAGAATTTACTTTTAGATATAGTGGATGACTATAATTTGGTAAATACAAAAGATTTAATGGCTT 
TyrIteThrLeuAspGtuSerGtnLysA~gGtuLeuLysAsnLeuLeuLeuAspItevatAspAspTyrAsnLeuvatAsnThrLysAspLeuMetAtaP 

CfoI 
TTATTCGCCTTAGGGGAGCGGAGTTTGGAATTTTAAATAcGAATGATGTAAAAGATATTGTTTcAAcAAACTCTAG-~cCTTTAGATTATGGTTTGAGGG 
heI~eArgLeuArgGtyAtaGtuPheGtyIleLeuAsnThrAsnAspva~LysAspIleva~SerThrAsnSerSerAtaPheArgLeuTrpPheG~uG~ 

CAATTATcAGTGTGGATATAGAGcAAGTTATGCAAAGGTTCTTGATGcTGAAAcGGGGGAAATAAAATGACAAACAAAGAAAAAGAGTTATTTGCTGAAA 
yAsnTyrGtnCysGlyTyrArgAlaSerTyrAtakysValLeuAspAtaGluThrGlyGtultekys 

ATGAGGAATTAAAAAAAGAAA~TAAGGACTTAAAAGAGCGTATTGAAAGATACAGAGAAATGGAAGT~GAATTAAGTACAACAATAGATTTATTGAGAGG 
• . • • • • 

AGGGATTATTGAATAAATAAAAGCCcCCTGACGAAAGTCGAAGGGGGTTTTTATTTTGGTTTGATGTTGCGATTAATAGcAATA~AATTGCAATAAAcCA 
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A 

S 427 AAAAtATgGGGGGGc TACTACGA cCCCCCCtaT AGTG CC GAGTGCCAA 474 
B 2004 AAAAcAT GGGGG TACTACGAcacCCCCCCAT GTGtCC attgtCCAt 2049 
E 870 AAAAcATaGGGGGG TACTACGAcctCCCCCCtBg GTGtCCattGT CCAt 918 
A 57 tcAcgAccaGGGGGc TACTACGAtag CCCCCAaTgAGTGatt tGTGaCAt 106 
H AAAAAAT GGGGG & TACTACGA CCCCCATTAAGTG CC GAGTGCCAA 
F 1087 AAAAAAT GGGGGG & TACTACGA CCCCCCATTAAGTG CC GAGTGCCAA 1155 

. . . . . . . . .  > < . . . . . . . .  

(&: 23 bp, aaaggaagcgaattttgcttccg) 
. . . . . . . .  > <  . . . . . . . .  

Fig. 2A and B. The plus ori site of lactococcal plasmid pFX2. 
A Comparison of ptasmid plus ori sites. The gaps in the sequence 
alignment have been introduced for maximum homology. S, pLS1 ; 
B, pLB4; E, pE194; A, pADB201; H, pSH7/; F, pFX2. Inverted 
repeat sequences are indicated by facing arrows and the nicking 

T 
A T 
A T 

GT 

B CG 
GC 
AT 
AT 
GC 
GC 

A A GTAC T 
A AGCA 

GC ~ 
GC 
GC 
GC 
GC 
GC 
TA 
AT 1155. 

( 1087)AAAAATAAGT GCCGAGT GCCAA 

site in pLS1 is arrowed. The conserved, inverted sequence of 23 bp 
of pFX2 and pSH71 is shown below. B A loop structure in the 
plus ori locus of lactococcal ptasmid pFX2 (A G°= - 2 2  kcal/mol). 
The possible nicking site is arrowed 

sequence of each strand was determined using sequenase 
(USB) and the dideoxynucleotide chain-termination 
method (Sanger et al. 1977) in the presence of [c~-35S] 
dATP (Amersham). All enzymes were used according 
to the recommendations of the manufacturers. The soft- 
ware package developed by the University of Wisconsin 
Genetics Computer Group, USA was used for analyses 
of DNA sequences and translated peptides. 

DNA manipulation. L. lactis subsp, lactis 4125 (Crow 
et al. 1983) and E. coli JM109 (Yanisch-Perron et al. 
1983) were transformed by electroporation as previously 
described (Xu et al. 1990). Other methods of DNA ma- 
nipulation were according to Maniatis et al. (1982). 

Results and discussion 

General features of the sequence 

As the cat gene DNA sequence has been described pre- 
viously (Horinouchi and Weisblum 1982), only the lacto- 
coccal portion of pFX2 (2508 bp) is presented here 

Fig. 1. Nucleotide sequence and inferred amino acid sequences of 
the lactococcal portion (HpaII-MboI) of pFX2. Coding regions 
are RepA (positions /341-1499) and RepB (positions 1569 2267). 
Nucleotides in lower ease letters represent the region identical to 
staphylococcal plasmid pE194. A possible plus ori site (solid under- 
line) and direct repeat regions (double dashed line) are indicated. 
Within the second direct repeat region are three iterons (indicated 
by asterisks). The inverted repeat region that could form an atten- 
uator is indicated by facing arrows. Putative promoter regions and 
ribosome binding sites are indicated below the sequence by inverted 
letter v and open circles respectively. RSA and important restriction 
sites are marked 

(Fig. 1). The G + C content of the lactococcal DNA was 
35.2%, within the range for lactococci (34.4% 36.3%) 
reported by Garvie et al. (1981). The complete pFX2 
DNA sequence including the cat gene sequence 
(1032 bp) was 3536 bp, close to the size of 3.6 kb esti- 
mated by agarose gel analysis (Xu et al. 1991). The es- 
tablishment of the pFX2 sequence enables pFX3 (Xu 
et al. 1991) to be used as a sequencing vector, as the 
entire pFX3 sequence (4473 bp) comprises the known 
sequences of pFX2, lacZ' and the polylinker regions. 
All polylinker restriction sites in pFX3 and in pFX4, 
5 and 6 (Xu et al. 1991) are unique and hence available 
for cloning. 

Lactococcal plasmid plus ori site 

The essential region for plasmid pFX2 replication has 
been previously located within a 1.2 kb Cfo I-ThaI-Cfo I 
region (Xu et al. 1991), i.e. positions 1050-2176. By com- 
paring this sequence with three classes of plus origin 
sequences (Gruss and Ehrlich 1989), a region homolo- 
gous to the plus ori sites of pE]94 group plasmids was 
identified (Fig. 2). Recently, the precise nicking site in 
pLSI was located between bases G (448) and A (449) 
in the ori site (Fig. 2A) (de la Campa et al. 1990). The 
pFX2 ori sequence differed slightly from that of lacto- 
coccal plasmid pSH71 with additional bases G (1099) 
and C (1131). The location of the ori site in pFX2 was 
confirmed by deleting the region between positions 1 
and 1151 with exonuclease III, making the plasmid non- 
functional in lactococci. 

In contrast with the ori sequences of other plasmids 
in this group, lactococcal plasmids pFX2 and pSH71 
have an additional conserved, inverted sequence of 
23 bp, forming an extended stem-loop structure with a 
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Chou ... / , ' - - -"  ". _-. . . J  , / '  .. , '  ". / '  .-- Beta ( ) 
and 
Fasman - -  - - -  1.0 

A lpha ( . . . . . .  ) 

B 

1.5 

0.5 

F MAI . . . . . . . . . . . .  KNTKA . . . . . . .  RNFGFLLYPDSIPNDWKEKLESLGVSMAVSPLHDMDEK . . . .  KIKIHGIVVMLYEMEMHVIKNPHYHVYILHG 

S MA . . . . . . . . . . . . . .  KEKA . . . . . . .  RYFTFLLYPESIPSDWELKLETLGVPMAISPLHDKDKS . . . .  SIK . . . . . . . . . . . .  GQKYKKAHYHVLYIAK 

B MKSESKIDWTVPRPNKNPKTKQPYKRGRNWGIVVYPESLPENW--KD••RQEPIAVSP•HDKDVNPDGEKKKSHYHLVLNYKGNKSFEQ•DE•ARSLRAP 

E MSENVIKETENK---KNSRG . . . . . . .  RNWTFVLYPESAKAEWLEYLKELHIQFVVSPLHDRD . . . . . . . . . . . . . . . . . . .  TDTEGRMKKEHYH--ILVM 

A M-S . . . . . . . . . . . .  TNIKK . . . . . . .  RNWTLLVYPDSAPENWKEILDQNGV-EYFGALHDKD . . . . . . . . . . . . . . . . . .  VNPDGTIKKPHYHIVLAYS 

F NPVTIESVRNKI KRKLGNSSVAHVE I LDY I KGSYEYLTHESKDAIAKNKH I YDKKD I LN I ND FD I DRY I TLDESQKRELKNLLLD IVDDYNLVNTKDLM- 
_- - -__ -  . _ - ;  - - _ -  : _ -  :, : _- : - ' . - - ' . : - : - : - :  : - _  : - :  : :  : :  : : - - : -  : : _ -  : - :  : : : . : :  

S NPVTADSVRKKI KLLLGEKSLAMVQVVLNVENMYLYLTHESKDA I AKKKHVYDKAD I KL INN FD I DRYVTLDVEEKTEL FNVVVSL I RAYTLQN I FDLY- 
: . . . . .  : 1 :  1 : :  : 1  ._ : _. : 

B APQRISS . . . . . . . . . . . . . . . . . . . . . .  LTGAVRYLTH . . . .  MDNPEKYQYDNAD I ETFGGFDLESCLALSTGDKRQALRDMLAF I SENE IMHLKDFA- 
: .. : - . .  . : : : 1_" . : _" : : _ - .  - : • 

E YEGNKSYEQIKI ITEELN . . . . . .  AT I PQIAGSVKGLVRYMLHMDDPNKFKYQKEDMI VYGGVDVDELLKKTTTDRYKL I KEMI EF I DEQG IVEFKSLMD 
. . _. _. _- .- -_ : : : 

A GPTT . . . .  FNNVKTLCNTLNSPKPLPLDGVGGMWRYMTH . . . .  KDNPEKYQYDDS I I FTGNGFD I SNYKELTKKE I SD I KLGL ID I . . . . . . .  IKNKQI- 

F -AFIRLRGAEFGILNTNDVKDIVSTNSSAFRLWFEGNYQCGYRASYAKVLDAETGEI . . . . . . . . . . . . . . . . . . . . . . .  K (233) 

S -DFIDENG-ETYGLTINLVNEVIAGKTGFMKLLFDGAYQRSKR . . . . . . . .  GTKNEE . . . . . . . . . . . . . . . . . . . . . . .  R (210) 

B -DYCMSEEAPAG . . . . . . . . . . . . . . . .  WFELLTERN . . . . . . . . . . . . . . . .  TLFIKEYIKSNWQKQQQYASKNINKMSD (217) 

E YAMKFKFDDWFPLLCDNSAYVI . . . . . . . . . . . . . . . . .  QEYIKSNRYKSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  R (199) 

A -TEYSTFIDVVSNLGNIDVFDVASKNTIFF . . . . . . . . .  TSYINSFRFKLREEMEQEKYT . . . . . . . . . . . . . . . . . . . .  K (196) 

Fig. 3A and B. Replication proteins of lactococcal plasmid pFX2. 
A Graph (PEPPLOT) of e-helix and /~-sheet probabilities in the 
RepA secondary structure, predicted according to Chou and Fas- 
man (1974). Bold type letters represent the amino acids homologous 
to RepA of pLS 1, and the 20-residue helix-turn-helix motif showing 

consensus to the major domain of DNA-binding proteins is under- 
lined. B Comparison of RepB (pFX2) with plasmid replication initi- 
ation proteins. F, pFX2 (RepB); S, pLS 1 (RepB); B, pLB4 (RepB) ; 
E, pE194(RepF); A, pADB201 (RepA). The total number of resi- 
due of these peptides are indicated in brackets 

possible nicking site on the side of the stem (Fig. 2B). 
A stem-loop structure in the pLS1 ori site has been found 
to be the signal for plasmid replication initiation (de 
la Campa et al. 1990). Two regions carrying direct re- 
peats were found flanking the ori site, at positions 1054- 
1093 and 1211-1148. The latter direct repeat region was 
similar to the direct repeat region (iterons) of pLS1 (po- 
sitions 534-566) (del Solar et al. 1989) with respect to 
GC-content (50% G +  C), number of repeats (3 repeats; 
11 bp for pLS1 and 9 bp for pFX2) and in the repeat 
position relative to the ori and promoter regions for 
the replication proteins. In pLS1, the region with the 
three direct repeats was shown to be involved in the 

initiation protein and repressor binding (Puyet et al. 
1988; del Solar et al. 1989; de la Campa et al. 1990). 

Lactococcal plasmid replication proteins 

Downstream of the ori site, two open reading frames 
ORFI  and ORF2 were located, with 54 and 234 codons 
respectively (Fig. 1). Eight bp upstream from the ATG 
site of ORF1 (positions 1341-1343), there was a poten- 
tial ribosome-binding site (RBS) G G A G  ( A G ° = - -  
9.4 kcal/mol), preceded 11 bp upstream by a lactococcal 
promoter sequence TATAAA ( -  10) and ATTACA ( -  
35) separated by 17 bp. This promoter arrangement is 
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homologous to those published previously (Lakshmidevi 
et al. 1990; van der Vossen et al. 1987). The region from 
positions 1241 to 1328 including the promoter and up- 
stream DNA was very AT-rich (82%), similar to the 
strong promoter regions in Bacillus subtilis (Doi 1984). 
The - 1 0  and - 3 5  hexamers were also similar to the 
E. coli consensus promoter (TATAAT and TTGACA, 
respectively) (Harley and Reynolds 1987), which probab- 
ly explains why pFX2 is functional in E. coli. Ten bp 
upstream from the ATG start codon of ORF2 (positions 
1569-1571), another possible RBS was located, AAGG 
(A G ° = - 8.4 kcal/mol). 

ORFI (repA) encoded a predicted 53-residue peptide 
with molecular mass of 6.0 kDa. The RepA amino acid 
sequence had a high degree of homology with the trans- 
lated peptides which precede the replication initiation 
proteins from pLSI (RepA), pADB201 (RepB), pLB4 
(RepA) and pE194 (RepG) (Bates and Gilbert 1989). 
Prediction of the secondary structure and characteristics 
of the RepA peptide of pFX2 was determined using pro- 
tein analysis programs. RepA had a predicted isoelectric 
point of 10.50, and was positively charged due to its 
12 strongly basic residues. The secondary structure of 
RepA predicted by the PEPPLOT program showed a 
helix-turn-helix motif, typical of many DNA-binding 
proteins (Pabo and Sauer 1984) (Fig. 3). This motif ex- 
tended from residues 16-27 (helix-l), and from residues 
34-52 (helix-2). A /~-sheet structure was observed be- 
tween residues 10 and 13. A flexible segment was also 
found between residues 28-33 (the turn motif). The cen- 
tral helix-turn-helix 20-residue (22-41) motif of RepA 
fitted well with the requirements proposed for binding 
site geometries of repressor proteins (Pabo and Sauer 
1984; Ohlendorf et al. 1983). Conserved hydrophobic A, 
G and V residues were located at the relative positions 
26, 30 and 36. Residues at the relative positions 25 (M), 
31 (F), 39 (L), 40 (A) were also hydrophobic. Hydrophilic 
residues were at positions 24(D) and 28(Q). RepA of 
pFX2 showed strong homology with the RepA repressor 
of pLS1, especially in the N-terminal and helix-turn- 
helix domains (Fig. 3). The relatively conserved N-termi- 
nal domains in repressors (Lambda repressors, 
RepA(pLS1) and TrfB (RK2) are believed to play a func- 
tional role in DNA binding (Jordan and Pabo 1988; 
del Solar et al. 1989). 

ORF2(repB) encoded a 233-residue peptide with mo- 
lecular mass of 26.9 kDa with no homologous promoter 
region, suggesting polycistronic transcription with 
ORFI. The well-characterized replication initiation pro- 
teins of pTlS1 (Novick et al. 1989) and pLSI (Puyet 
et al. 1988) also do not have their own separate promot- 
ers. The RepB amino acid sequence showed substantial 
homology throughout the whole sequence to the pLS1 
replication initiation protein (RepB) (de la Campa et al. 
1990), but homology only to the N-terminal regions of 
replication initiation proteins from pE194 (RepF) (Villa- 
fane et al. 1987), pLB4(RepB) (Bates and Gilbert 1990) 
and pADB201 (RepA) (Bergemann et al. 1989) (Fig. 3). 
RepB of pLS1 has recently been shown to bind at the 
three-direct-repeat region, and plasmid replication is ini- 
tiated at the nicking site 86 bp upstream from the first 
basepair of the direct repeats (de la Campa et al. 1990). 
In pFX2, the putative nicking site is 84 bp upstream 

from the three iterons. RepB is therefore most likely 
to be the replication initiation protein of pFX2. 

It was previously shown that the 1.2 kb CfoI-ThaI- 
CfoI region (positions 1050-2176) could be ligated to 
give a functional replicon (Xu et al. 1991). In this con- 
struct, 29 amino acids had been deleted from the C- 
terminus without affecting replication function. A simi- 
lar observation was reported with pE194 where 43 C- 
terminal amino acids of the replication protein were 
found to be non-essential (Villafane et al. 1987). A coin- 
tegrate plasmid of pFX2/ThaI and E. coli plasmid 
pUBS/SspI was previously shown to replicate in E. coli 
but not in lactococci (Xu et al. 1991), suggesting that 
the insertion in the Thai site of pFX2 disrupted RNA 
transcription through repB. The failure of this cointe- 
grate plasmid to replicate in lactococci was unlikely to 
be due to the E. coli insert, because another similar con- 
struct (pFX2/HpaII and pGEM3Z/SmaI) expressed the 
Cm r marker in lactococci. 

Most plasmids so far examined from gram-positive 
bacteria replicate by a rolling circle mechanism via a 
single-stranded DNA (ssDNA) intermediate (Gruss and 
Ehrlich 1989). Plasmids showing DNA or amino acid 
sequence homology to pFX2 are of the ssDNA replica- 
tion type, suggesting that pFX2 also replicates in this 
manner. It has been demonstrated that insertion of pBR- 
type DNA into plasmids of ssDNA type results in the 
generation of high-molecular-weight plasmid multimers 
(Gruss and Ehrlich 1989); such forms could also be seen 
with the cointegrate plasmids of pFX2 and pGEM3Z 
(data not shown). By analogy with pE194 (Scheer-Abra- 
mowitz et al. 1981) and pLS1 (Puyet et al. 1988), pFX2 
replication would then proceed towards the MboI site, 
i.e. anticlockwise on the circular map (Xu et al. 1991). 

Possible regulatory mechanisms for lactococcal plasmid 
replication 

Regulation systems for plasmid replication have been 
extensively studied for plasmids ColE1 (Tomizawa 1986) 
and IncFII (Praszkier et al. 1989) from gram-negative 
bacteria and plasmids pT181 (Novick 1989), pLS1 (del 
Solar et al. 1989), pC194 (Alonso and Tailor 1987) and 
pE194 (Villafane et al. 1987) from gram-positive bacte- 
ria. These systems all involved negative regulation of 
the synthesis of replication initiation proteins by anti- 
sense RNA. In pLS1, the repressor protein (RepA) was 
shown to bind specifically to the operator/promoter re- 
gion of the repAB polycistron (de1 Solar et al. 1989). 
Considering the similar structure and organization in 
replication proteins and their promoter regions, RepA 
of pFX2 might also bind to a putative operator/promot- 
er region and prevent RNA polymerase from binding. 
This would be a self-regulated feedback mechanism as 
the repA and repB of pFX2 appear to be transcribed 
from the same operon. 

Recently, plasmid replication regulation by transcrip- 
tion attenuation was proposed for plasmid pT181 (No- 
vick et al. 1989). A similar attenuation model is postu- 
lated here as a second regulatory mechanism for pFX2 
replication. In the presence of the appropriate regula- 
tors, a rho-independent terminator structure consisting 
of a GC-rich hairpin followed by a stretch of U-residues 
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Fig. 4. Computer-generated transcrip- 
tional attenuation model for regulation 
of lactococcal plasmid replication. Bases 
marked with open circles represent the 
potential ribosome-binding site; dots in- 
dicate the start codon for RepB(pFX2) 

(Rosenberg and Court 1979) could be formed in the 
inverted repeat region between repA and repB (Fig. 4). 
Terminators of this type have been found in several lac- 
tococcal genes (de Vos 1987) but not in the replicons 
of other pE194 group plasmids. The terminator would 
prevent RNA polymerase from transcribing through to 
the repB. In the absence of the regulators, a RNA poly- 
merase read-through structure could be formed (Fig. 4) 
in the same inverted repeat region. The regulators in 
this system might be antisense RNA as was found with 
pT181 plasmid (Novick et al. 1989), and here could bind 
to a region upstream from the inverted repeat sequence, 
preventing pairing of the A-rich (positions 1491 1497) 
and U-rich (positions 1546-1552) regions. 

A region identical to staphylococcalplasmidpEI94 

The pFX2 sequence contains a 215 bp region (positions 
545-759) with 100% homology to staphylococcal plas- 
mid pE194 (positions 2925-3139) (Horinouchi and 
Weisblum 1982). In pE194, this region carried the com- 
plete RSA (recombination site A) locus and the staphylo- 
coccal pre (plasmid recombination enzyme) promoter re- 
gion (Gennaro et al. 1987) (Fig. 1). In pFX2, however, 
there was no analogous ORF for the staphylococcal con- 
sensus Pre protein which nicks specifically at RSA (Gen- 
naro et al. 1987). Staphylococcal plasmid pE12 has also 
been reported to carry RSA without the pre (Novick 

1989). Plasmid recombination/cointegration mediated 
by the pre-RSA process is common in staphylococci and 
bacilli (Gruss and Ehrlich 1989; Novick 1989) and is 
recA independent (Gennaro et al. 1987). RSA has also 
been postulated to act as the oriT site for conjugative 
mobilization of streptococcal plasmid pMV158 (Priebe 
and Lacks 1989). 

In E. coli, small plasmids such as ColE1, which can- 
not mediate their own transfer during conjugation, can 
be mobilized by a conjugative plasmid. A mobilization 
protein (Mob), which is encoded by this small plasmid, 
nicks at a specific site oriT on the plasmid. Palindromic 
sequences are found near the oriT sites of six plasmids 
from gram-negative bacteria (two conjugative, F and 
RK2; and four non-conjugative, ColE1, CloDF13, 
pSC101 and RSF1010) (Willetts and Wilkins 1984). Sev- 
en plasmids from different gram-positive bacteria 
(pUB110, pMV158, pTB913, pT181, pE194, pNE131 
and pT48) are also known to carry almost identical pa- 
lindromic sequences in the putative oriT site RSA (Priebe 
and Lacks 1989; van der Lelie etal. 1989). The RS A 
site in pFX2 might also act as a generalized nicking 
site for the formation of cointegrate plasmids during 
conjugative mobilization. While no Pre-like proteins to 
mediate this process are encoded downstream of RS A 
in pFX2, it has yet to be established whether such a 
gene is present elsewhere on plasmids or the chromo- 
some of the original lactococcal host. It has been sug- 
gested that although the presence of Pre is a requirement 
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for  RSA-media ted  r e c o m b i n a t i o n ,  the  hos t  rec sys tem 
m a y  func t ion  to s t imula te  this r e c o m b i n a t i o n  process  
( G e n n a r o  et al. 1987). 

Recent ly ,  a RSA sequence has also been descr ibed  
in the Lactobaci l lus  p lan ta rum p l a smid  pLB4  (Bates and  
Gi lbe r t  1989). A fea ture  o f  fur ther  in teres t  is tha t  plas-  
mids  f rom different  g ram-pos i t ive  genera  i so la ted  f rom 
different  geograph ica l  or igins share  the same regions  in- 
vo lved  in genet ic  exchange,  and  also have  s imilar ly  ho-  
m o l o g o u s  regions  for  p l a smid  rep l i ca t ion  (de la C a m p a  
et al. 1990). 
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