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Summary. A very general lattice-based language of commands, based on 
the primitive operations of substitution and test for equality, is constructed. 
This base language permits unbounded nondeterminism, demonic and angel- 
ic nondeterminism. A dual language permitting miracles is constructed. Com- 
bining these two languages yields an extended base language which is com- 
plete, in the sense that all monotonic predicate tranformers can be con- 
structed in it. The extended base language provides a unifying framework 
for various specification languages; we show how two Dijkstra-style specifica- 
tion languages can be embedded in it. 

1. Introduction 

The weakest precondition calculus of Dijkstra [-9] identifies the meaning of a 
program statement with its weakest precondition predicate transformer. Dijkstras 
"healthiness conditions" state that these predicate transformers for executable 
program statements are strict (they satisfy Dijkstra's "Law of Excluded Mira- 
cle"), monotonic, conjunctive (and-distributive) and continuous (or-continuous). 

Extensions to the Dijkstra-style programming language that drop some of 
the healthiness conditions have subsequently been used to allow treatment of 
specifications, parallel programs and data refinement. Back [1, 2] introduces 
weakest preconditions for specifications. Unbounded nondeterminism is permit- 
ted, thus dropping the continuity condition. Further, a refinement relation on 
statements is introduced, such that S is refined by S' if 

V Q. (wps (Q) ~ wps, (Q)) 

where wps is the weakest precondition predicate transformer for S. The refine- 
ment relation is a preorder, essentially the same as the Smyth ordering of [23]. 
In Hehner [14], Morris [20] statements are identified with predicate transform- 
ers, an approach which we follow in this paper. Thus we write S(Q) for wps(Q ). 
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In de Bakker [6], Nelson [21] the weakest precondition calculus is extended 
to cover partial state transformers, i.e. nonstrict statements. Morgan [19] and 
Morris [20] write specifications as pre-postcondition pairs, thus also allowing 
miraculous (nonstrict) statements. The actions of Back [4], used to model paral- 
lel programs, are also nonstrict. In Gardiner and Morgan [11] a conjunction 
operation on statements is defined, such that the resulting statements are not 
conjunctive. The same holds for the angelic basic statement of Back [5]. General- 
ized specification languages are also considered in Hesselink [15]. Thus, in going 
from a pure programming language to a specification language, we see that 
most of the original healthiness conditions have been questioned, in order to 
gain expressive power. In this sense a specification language is truly more general 
than a programming language, for which all the original healthiness conditions 
are well motivated. 

In [-20] it is noted that the monotonic predicate transformers form a lattice, 
with the partial order corresponding to the refinement ordering of statements. 
This is indirectly noted also in [11], where the operators • (choice) and + 
(conjunction) on statements correspond to the lattice operators meet and join 
on predicate transformers. Similar operators, written n and w, are introduced 
in Hoare et al. [16]. 

Nondeterminism in weakest precondition semantics has generally been 
assumed to be resolved demonically [9]. Angelic nondeterminism has been con- 
sidered in Jacobs and Gries [17] (a relational model of weakest preconditions) 
and more generally in Broy [8]. 

In this paper we show how basic specification languages can be constructed 
within the complete lattice of monotonic predicate transformers, using only 
very simple primitive statements and functional (sequential) composition in addi- 
tion to meets and joins. The languages permit demonic and angelic nondetermin- 
ism as well as mixtures of these. 

The rest of the paper is as follows. In Sect. 2 we present general lattice- 
theoretic concepts and in Sect. 3 some results on lattices of functions on lattices. 
Section 4 contains definitions and results concerning predicates and predicate 
transformers. In Sect. 5 we define a lattice-based command language off• of strict 
monotonic predicate transformers. Section 6 describes a dual language cgT and 
an extended language cg which is a combination of cgl and its dual. In Sect. 7 
we prove completeness results. In Sect. 8 we consider a more conventional Dijk- 
stra-style specification language with assignments, sequential and conditional 
composition, blocks and recursion but permitting demonic as well as angelic 
nondeterminism (the nondeterminism may be unbounded). We show how this 
language can be constructed within cg• In Sect. 9 we show how a more general 
Dijkstra-style language, which permits miracles and which has a self-dual nature, 
can be constructed within cs Proofs of the more important results are included 
in the text, the other proofs can be found in the Appendix. 

2. Partial Orders and Lattices 

In this section, we present the general mathematical concepts of partial orders 
and lattices that will be needed in the subsequent sections. The presentation 
is quite short; proofs of most of the results related here can be found in [7, 
12]. 
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2.1. Partial Orders 

Definition of partial order. A partial order on a set L is a binary relation < 
("less-or-equal") on L that is reflexive, transitive and antisymmetric. If < is 
a partial order on L we say that the pair (L, < )  is a partially ordered set. 
When there is no danger of ambiguity we simply say that L is a partially ordered 
set. If  x and y are elements of the partially ordered set L, we write x < y  when 
x < y  but x+y.  

Lower and upper bounds. Assume that (L, < )  is a partially ordered set and 
that K is a subset of L. An element b~L is a lower bound of K if b<x  for 
every x~K. The element b is a greatest lower bound of K, written 

b = A K  

if b is a lower bound of K and b ' < b  for all lower bounds b' of K. If x and 
y are elements of L we write x ^ y for A{x,  y}. 

Dually to the previous definition we define upper bound and least upper 
bound for a subset K and L. Thus b is an upper bound of K if x < b for every 
xEK, and b is the least upper bound of K if b is an upper bound of K and 
b < b' for all upper  bounds b' of K. The least upper bound of K is written 

b = V K  

and we write x v y for V{x,  y}. 

2.2. Lattices 

Definition of lattice. A partially ordered set (L, < )  (or, for simplicity, just L) 
is called a lattice if x ^ y and x v y exist for all pairs (x, y) of elements of L. 
In a lattice, the operator  ^ is called the meet operator  and the operator  v 
is called the join operator.  

Defining properties of ^ and v .  Assume that L is a lattice. Then the following 
four properties hold for arbitrary element a, b and c of L: 

aAa=a,  
a A b = b ^ a ,  

a ^ ( b A c ) = ( a A b ) ^ c ,  
a ^ ( a v b ) = a ,  

a v a = a  

a v b = b v a  
a v ( b v c ) = ( a v b ) v c  
av (aAb)=a  

(Idempotency) 
( Commutativity) 
(Associativity) 
(Absorption) 

Furthermore,  any operators  ^ and v on an arbitrary set L, satisfying these 
four properties, define a lattice, and the corresponding partial order < is defined 
by 

d e f  
x < y = x / x y = x  

or, equivalently, by 

def  
x ~ y = x v y = y ,  
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Monotonicity of ^ and v .  Both operators ^ and v are monotonic  in their 
arguments, i.e. i f x l < y l  and x2<Y2 then xl  AXz~yl Ay2 and Xl VXz~yl vy2 .  
The same holds for arbitrary (finite or infinite) meets and joins. 

2.3. Special Classes of Lattices 

Complete lattices, bottom and top elements. A lattice L is complete if A K  and 
V K exist for all subsets K _~ L (we define A 0  = V L and V 0  = A L )  �9 Every com- 
plete lattice contains a largest element, called the top element, which is denoted 
T, and a smallest element called the bottom element and denoted •  We note 
that 

• 
T =VL=A0. 

Distributive lattices. A lattice L is distributive if for any elements x, y and z 
of L the following two identities hold: 

x A (y V Z) = (X ̂  y) V (X/x Z), 

x v(y  ^ z)=(x v y) A (X V Z). 

Note that these identities do not automatically generalize to infinite meets and 
joins; we call the corresponding identities for infinite meets and joins the meet 
infinite distributivity condition (MID) and the join infinite distributivity condition 
(JID). These conditions are defined as 

x v (Ax,)= A ( x  v xi) (MID), 
i~ l  i~I 

x ^ ( V x i ) =  V ( x  ^ xi) (JID) 
i~ l  i~ l  

where x and xi, i~I are arbitrary elements of the lattice L, and I is any index 
set. 

Boolean lattices, inverse elements. A complete distributive lattice B is called boo- 
lean if every element x has a unique inverse element x-1 such that x ^ x - 1 =  A_ 
and x v x - 1 =  T. An important  result is the following: Every complete boolean 
lattice satisfies the infinite distributivity conditions (MID) and (JID). 

In a complete boolean lattice the following rules also hold (the DeMorgan 
rules for complete boolean lattices) for any index set I :  

(Ax,)-' =V(xr ' )  (1) 
i~ l  iE l  

(Vx I )  -1 ~--- A (X / -  1) (2) 
i~I i e l  
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2.4. Sublattices 

A subset K of a lattice L is a sublattice of L if K is closed with respect to 
meets and joins, i.e. if x ^ y~K and x v y e K  whenever x, yeK.  Thus K is a 
sublattice of L if and only if K is a lattice and all nonempty  finite meets and 
joins in K yield the same result as when taken in L. We note that any sublattice 
of a distributive lattice is distributive. 

Complete sublattices. A subset K of the lattice L is a complete sublattice of 
L if all meets and joins of subsets of K are in K. Thus it is not enough that 
K is a sublattice that is complete by itself, but all meets and joins in K must 
yield the same result as when taken in L. 

3. Function Lattices 

In this section, we consider the set of all total functions from arbitrary sets 
to lattices and the set of all total functions on a lattice. 

3.I. The Lattice [K -~ L] of Functions from a Set to a Lattice 

Let L be a lattice, K be any non-empty set, and let [K ~ L] be the set of 
all total functions from K to L. We introduce on [K---,L] a partial order, 
called the pointwise extension of the partial order on L, by 

f <  g ~f V x . ( f  (x) < g(x)) 

for any functions f and g from K to L. This makes  [K ~ L] a lattice which 
is complete (distributive, boolean) if and only if L is complete (distributive, 
boolean). The definition of the partial order on [K ~ L] implies that meets 
and joins in [K ~ L] also are defined by pointwise extension from L. 

3.2. Sublattices of the Lattice [ L ~  L] 

We now consider two sublattices of the lattice [ L ~  L] where L is a lattice. 

The monotonic functions. A function f on L is monotonic if 

V x, yeL.  (x < y=:.f(x) <f(y)). 

The monotonic  functions form a sublattice of [ L ~  L], denoted [ L ~  L]M. Meets 
and joins in [L~L]M thus yield the same result as when taken in [L~L] .  
Furthermore,  if L is complete, then [L~L]M is complete and has the same 
bo t tom and top elements as [ L ~  L]. 

The strict monotonic functions. We now assume that L is a complete lattice. 
A function f on L is &z-strict if it maps &ZL to _1_ L. The &z-strict functions 
form a sublattice of [L~L] .  We will not consider this sublattice but instead 
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consider the functions that are both Z-strict and monotonic.  We denote this 
sublattice [L~L]sM. The bot tom element of [L~L]s~t is the same as that 
of [L~L] .  The top element, however, is different from that of [L~L] .  It is 
the function that maps _1_ L to Z L and all other elements of L to TL. 

If  L is a complete boolean lattice then [ L ~  L] is also complete and boolean. 
However, neither [L~L]~t  nor [L~L]s~t is boolean. To see this, take any 
function that maps Z to _1_ and Y to T. Its inverse would have to map  • 
to T and -1- to _1_, thus being neither monotonic  nor strict. 

However  we have the following important  result: The lattices [ L ~  L]M and 
[ L ~  L]s M satisfy the conditions (MID) and (JID). This holds because both are 
sublattices of the complete boolean lattice [ L ~ L ]  and all nonempty meets 
and joins give the same result as in [ L ~  L]. 

We summarize the important  results concerning [ L ~  L]sM in the following 
theorem: 

Theorem 1. The lattice [L~L]sM is a distributive sublattice of [L~L] .  As a 
lattice, [ L ~  L]sM is complete and all meets and joins, except AO, yield the same 
result in [ L ~  L]s M as in [L-~ L]. In particular, • = ILL~L] and the identi- 
ties (MID) and (JID) hold in [ L ~  L]sM. 

3.3. Fixpoints 

Let f be a function on L. An element x of L is a fixpoint of f if f ( x )=x .  
If x is less than all other fixpoints of f we say that x is the least fixpoint 
of f We will need the following result, known as the Knaster-Tarski  fixpoint 
theorem [24]: Every monotonic function on a complete lattice has a complete 
lattice offixpoints. In particular, every monotonic  function on a complete lattice 
has a least and a greatest fixpoint. 

4. The Lattice of Predicate Transformers 

In this section, we define predicate transformers by repeatedly using the function 
lattice construction. 

4.1. The Lattice Bool 

Let Bool be the set of truth values for a two-valued logic, Bool= {ff, t t}. We 
order the two (distinct) elements of Bool so that f f <  t t. Thus the partial ordering 
relation corresponds to logical implication. This makes Bool a complete boolean 
lattice where ^ and v have their usual meaning as logical connectives. In 
Bool, f f  is the bo t tom element and t t is the top element. The two elements 
are the inverses of each other. 

We give the connectives --7 and ~ their usual meanings in Bool, i.e. - i x  
is the inverse of x and x=*.y is an abbreviation for --q x v y. 



Duality in Specification Languages 589 

4.2. Variables, Values and the State Space 

We assume Var is a countable set of program variables. A typical element of 
Var is denoted u while v denotes a typical list of distinct elements of Var (lists 
can be finite or infinite). Sometimes we will need to consider all the elements 
of Vat as a list, which we will then denote V. 

We further assume a nonempty  set D of values, with typical element c and 
typical list of elements d. The length of the list d is assumed to be clear from 
the context. A state is an assignment of a value to each variable, i.e. a (total) 
function from Var to D. We assume that there are no undefined values. The 
set of all states is called the state space and is denoted 2. A typical element 
of Z is denoted a. 

A (semantic) substitution in 27 is defined in the following way. The state 
a with c (semantically) substituted for u, denoted a[c/u], is the state which 
differs from a only in that it assigns the value c to the variable u. Substitutions 
of lists of values for lists of distinct variables are defined similarly. 

4.3. The Lattice of Predicates 

By a predicate we mean an assignment of a truth value to every state in the 
state space X, i.e. a (total) function from X to Bool. We denote the set of all 
predicates Pred; typical predicates are P and Q. Instead of P(a)=t t  we often 
write just P(a), saying that P holds in the state a. 

Note  that every function from 27 to Bool is considered a predicate. Thus 
we do not assume that a predicate can be represented by a finite expression 
in some language. 

By the results of Sect. 2, Pred is a complete boolean lattice for the pointwise 
extended partial order from Bool: 

P =< Q ~f  V a.  (P (a) -<_ Q (a)). 

Note  that we can interpret P < Q as " P  implies Q". Also, the meet operat ion 
can be interpreted as logical conjunction and the join operation as logical dis- 
junction of predicates (this is a straightforward consequence of the fact that 
the partial order on Pred is the pointwise extension of the implication ordering 
on Boot). 

Note  that we allow infinite conjunctions (meets) and disjunctions (joins) of 
predicates. If ~ is a set of predicates we have 

(Ag~)(a)=tt  iff P(a)=t t  forall  P e ~ ,  

( V ~ ) ( a ) = t t  iff P(a)=t t  fo r some P ~  

for all states a. 

Special predicates and notation. If u is a variable and c a value, the testing 
predicate (u = c) is defined by 

(u=c)(a)=t t  iff a(u)=c. (3) 

The predicate (v = d) where v and d are lists is defined analogously. 
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The bo t tom element of Pred is the predicate false which assigns the value 
f f  to every state and, correspondingly, the top element is the predicate true 
which assigns the value t t to every state. The inverse of a predicate P is --1 P 
("not  P")  which assigns tt to a state a if P(a)=ff  and vice versa. 

As noted above, P<Q means " P  implies Q". It would thus be tempting 
to write P=*,Q instead of P<Q. We will, however, reserve the notat ion P=*Q 
for the predicate defined by 

(P=~ Q) (a) ~f P (a) < Q (a). 

The partial order on Pred can then be characterized in the following way: 

P<Q if and only if (P=~Q)=true. (4) 

Substitutions in X are extended to Pred in a natural  way. The predicate 
P[d/v] assigns to any state a the same truth value as P assigns to a[d/v], 
i.e. P [d/v] (a)= P (a [d/v] ). Semantic substitution distributes over meets and joins 
as well as over negation and implication of predicates (this is a straightforward 
consequence of the definitions). 

We say that a predicate P depends on the variable u if there exist values 
cl and c2 such that  P[cl/u] ~P[c2/u]. The set of variables that the predicate 
P depends on is denoted Var(P). We note that if v is a list of variables with 
Var(P) ~_ v then for all lists of values d, the predicate P[d/v] is constant (equal 
to true or false). 

Qualified meets and joins of predicates. Assume that v is a list of distinct variables 
and that {Qa} is a set of predicates indexed by the set of all lists of values 
from D of the same length as v. Further  assume that P is a predicate with 
Vat(P) ~ v. We will often take meets and joins over all those predicates Qd where 
d ranges over all the lists that make the predicate P [d/v] equal to true (we 
call these qualified meets and joins). We introduce the following notations 

A Qa ~fA( d: P [d/v] = true: Qa), (5) 
d: P[d/v] 

V Qa~fv( d: P[d/v] = true: Qa). (6) 
d: P[d/v] 

When the variables v can be inferred from the context we sometimes write 
AQa instead of A Qa, and V Q a  instead of V Qa. Note that the meet 
d: P d: P [ d / v ]  d: P d: P[d/v] 

A Qd where d ranges over all lists of the same length as v, is the same as 
d 

A Qa. Dually, V Qa is the same as V Qa. 
d: t rue  d d: t rue  
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Using the above notations we define quantified predicates. If P is a predicate 
and v a list of variables then we define the predicates V v. P and ~ v .P  in the 
following way. 

v v. P A P [d/v], 
d 

3 v. P ~r W P Idly]. 
d 

We now prove two lemmas on predicates, showing how any predicate P 
can be written as a join of simpler predicates. 

Lemma 1. Assume that P is a predicate and that v is a list o f  variables such 
that Var(P)~_v. Then 

W(v=d)=P. 
d:P  

Proo f  Let a be any state in 2:. 

( V  (v = d))(a)= t t  
d: P 

r [definition of qualified join] 

(W (d: P Idly] = true: (v = d)) ) ( a) = t t 

r [definition of v in Pred] 

W(d: P [d/v] = true" (v = d) (a)) = t t 

r [ v in Bool is logical disjunction] 

(P Idly] = true) ^ ((v = d) (a) = t t) for some d 

,*~ [definition of (v = d)] 

(P Idly] = true) ^ (a(v) = d) for some d 

r [one point rule] 

P [a (v)/v] = true 

r [Var(P) ~_ v so P [d/v] is constant] 

P ( a ) = t t .  [] 

Lemma 2. Assume that P is a predicate and that v is any list o f  variables. Then 

W ((v = d) ^ P Idly]) = P. 
d 

Proo f  The proof  is similar to that of Lemma 1 (see the Appendix). []  
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4.4. The Lattice of Predicate Transformers 

We now introduce predicate transformers as (total) functions from predicates 
to predicates. The set of all predicate transformers, i.e. all total functions from 
Pred to Pred is denoted Ptran, with typical element S. The partial order on 
Ptran is the pointwise extension of the partial order on Pred: 

S < s '~ fv  P.(S(P) <=S'(P)) 

This ordering is equivalent to the refinement ordering of Back [1, 2]. It is also 
used by Morris [20] and Gardiner and Morgan [11]. By the results of Sect. 2, 
Ptran is a complete boolean lattice. The bottom element, which we will call 
abort, maps every predicate to the predicate false and the top element, called 
magic, maps every predicate to the predicate true. Note that abort= V 0  and 
magic= A 0  and that abort and magic are the unit elements of the join and 
meet operators, respectively. 

Predicate transformers interpreted as statements. As noted in the introduction, 
we identify statements with their weakest precondition predicate transformers. 
The intuitive meaning of the statement S, identified with the predicates trans- 
former S, is the following [9]: S is guaranteed to terminate in a state in which 
P holds if and only if it is executed in an initial state in which the predicate 
S(P) holds (where P is an arbitrary predicate). Thus, for example, a statement 
(predicate transformer) that maps true to true is guaranteed to terminate for 
all initial states. Since the statement abort maps true to false, it is never guaran- 
teed to terminate. The statement magic, on the other hand, maps false to true. 
Since the predicate false does not hold in any state, this means that magic 
achieves the impossible; we say it is miraculous. Miraculous statements cannot 
be implemented, but they can be useful in program development [18, 19]. In 
this respect they resemble imaginary numbers. 

Properties of predicate transformers. Four properties of predicate transformers 
are of special interest to us: strictness, monotonicity, conjunctivity and disjunc- 
tivity (we do not consider continuity in this paper, we assume unbounded nonde- 
terminism is always permitted). Assume that S is a predicate transformer. We 
then have the following definitions: 

1. S is strict if S(false) =false. 
2. S is monotonic if for any predicates P and Q we have P<Q=~S(P)<S(Q). 
3. S is conjunctive if for any predicates P and Q we have S(P^  Q)=S(P)^ 

S(O.). 
4. S is disjunctive if for any predicates P and Q we have S(PvQ)=S(P)v  

s(o). 

Sequential composition of predicate transformers. We denote the functional com- 
position (which we will call sequential composition) of two predicate transformers 
$1 and $2 in Ptran by $1 ; $2. Thus, 

d e f  
(S 1 ; 82) (P) = S~ ($2 (P)). 
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Obviously Ptran is closed with respect to sequential composition. Furthermore, 
sequential composition preserves both strictness, monotonicity, conjunctivity 
and disjunctivity. The unit element of sequential composition is the identity 
predicate transformer skip, which maps every predicate to itself. 

4.5. The Lattice of Monotonic Predicate Transformers 

According to the results in Sect. 2, the monotonic predicate transformers form 
a complete, distributive (but not boolean) sublattice of Ptran. We denote this 
sublattice Mtran. 

By the results of Sect. 2, meets and joins in Mtran yield the same results 
as in Ptran. In particular, Mtran has the same bottom and top elements, abort 
and magic, as Ptran. It is straightforward to show that Mtran is closed with 
respect to sequential composition. Also it should be noted that monotonic predi- 
cate transformers need be neither strict, conjunctive nor disjunctive. If D contains 
only one element, then Mtran contains only the three predicate transformers 
abort, skip and magic. To avoid this trivial case, we assume from now on that 
D contains at least two elements. 

Strict and monotonic predicate transformers. By the results of Sect. 2, the predicate 
transformers that are both monotonic and strict form a distributive sublattice 
of Mtran. We call it SMtran. We note that SMtran is not strictly speaking 
a complete sublattice of Mtran since A 0  yields different results in SMtran and 
Mtran. However, we have the following result. 

Lemma 3. SMtran is a complete lattice and all meets and joins, except AO, yield 
the same result when taken in SMtran as when taken in Mtran. In particular 
the identities (MID) and (JID) hold in SMtran. 

5. A Lattice-Based Specification Language 

In this section we construct a very general specification language. We refer 
to this language as the base language and denote it c~• The commands of 
our language form a lattice of predicate transformers (the superscript _1_ in the 
name of the language indicates strictness with respect to the bottom predicate 
false). 

5.1. Primitive Commands 

As a basis for our command lattice we introduce two primitive commands. 
The first primitive command is the (multiple) substitution command, (d/v)  defined 
by 

<d/v> (0.)% ~ O [d/v] (7) 
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for all predicates Q, i.e. the command (d/v} maps a predicate Q to the predicate 
Q [d/v]. Here v is a list of distinct variables and d is a list of values of the 
same length as v. Note that if v is finite then (d/v) can be written as a sequential 
composition of its component substitutions. However, if v is infinite, this is 
not possible. 

Our second primitive command is the (single) test command which tests for 
equality. Testing a variable u for equality with a value c is denoted (u=c)  
and is defined by 

( u = c )  (Q) %e (u=c) ^ O (8) 

for all predicates Q. We also define the multiple test (v=d)  as the meet of 
the component tests, thus 

(v = d)  (Q) = (v = d) A Q. (9) 

5.2. A Lattice of Commands 

Starting from the primitive commands we now generate new commands using 
the following constructors: sequential composition, meet and join. These con- 
structors have their usual meaning in the lattice of predicate transformers. Thus 
the commands of cg• are defined by 

s: : = (d/v) 

( u= c )  

Sl  ; $2 

/~ s~ 
iel 

~/ Si. 
ieI 

(substitution command) 
(test command) 

(sequential composition) 

(meet) 

(join) 

where S, S' and S i are commands and I is an arbitrary (possibly empty, possibly 
infinite) index set. We follow the convention that the constructor " ; "  binds 
tighter than " ^ ", which in turn binds tighter than " v " 

We note that the meet and join constructors distribute over each other. 
Furthermore, sequential composition distributes to the right over meets and 
joins; we have 

(S 1 A $2); S = S 1 ; S A $2; S, 

(S 1VS2) ; S -~ -S1 ; SVS2 ;S  

for all commands $I,  $2 and S. 
The primitive commands (d/v) and (u = c)  are strict and monotonic. Fur- 

thermore, since SMtran is closed under sequential composition and it is a corn- 
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plete lattice we cannot generate commands outside SMtran. Thus all our com- 
mands are in SMtran. Also, since our definition states that arbitrary meets 
and joins are allowed, the set of commands is a complete lattice. 

Intuitive interpretation of the commands. The substitution command (d/v)  is 
interpretated as assigning the values d to the variables v, leaving the rest of 
the state unchanged. It always terminates. The test command (u = c)  terminates 
without changing the state if the value of the variable u in the initial state 
is c, otherwise it aborts. 

Sequential composition has its usual interpretation. Thus, execution of $1 ; $2 
in initial state a 0 is interpretated as first executing S 1 in initial state ao and 
then, provided that $1 terminates in some state a l ,  executing $2 in initial state 
0" 1 . 

The base language permits both demonic and angelic nondeterminism. The 
meet S 1 A $2 is interpreted as a demonic choice between the two commands 
$1 and $2. Thus, for $1 AS2 to establish some condition P we require that 
both S 1 and $2 establish P. The join $1 v $2, on the other hand, is interpreted 
as an angelic choice between $1 and $2. For  S 1 v $2 to establish some condition 
P it is enough that either $1 or $2 establishes P. 

5.3. Example Commands 

As examples, we construct a few commands that will be used later on. We 
first define qualified meets and joins of commands, in the same way as qualified 
meets and joins of predicates (see (5) and (6)). Thus, if v is a list of distinct 
variables and {Sa} is a set of commands in cg-, indexed by the set of all lists 
d of values of the same length as v and P is a predicate with Var(P)~_ v, then 

def  
A Sd = A(d: P Idly] = true: Sa), (10) 
d: P 

V sa ~f V(d:  P [d/v] = true: Sa). (11) 
d:P  

We now look at a few example commands that will be used as building 
blocks later on: 

Lemma 4. Assume that P is a predicate and that v is a list of variables such 
that Var(P) ~ v. Then 

(a) ( V  (v = d)) (Q) = P ^ Q, 
d: P 

(b) ( A  (d/v))  (Q) = V v. (P=*, Q), if n ~ false, 
d: P 

(c) (V (d/v)) (Q)= 3 v.(P ^ Q) 
d: P 

for all predicates Q. 
If P =false then (b) of Lemma 4 degenerates to AO, which is the top element 

of cg• (see (12) below). 
Now let v be any list of variables. As special cases of Lemma 4, with P = true, 

we have the following lemma: 
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Lemma 5. I f  v is a list of distinct variables then the following identities hold 
(d is assumed to range over all lists of values with the same length as v): 

(a) (V (v = d)) (Q) = Q, 
d 

(b) (A (d/v)) (Q)=Vv. Q, 
d 

(c) (V ( d / v ) )  (0.) = 3 v.  O. 
d 

for all predicates Q. 

Proof. Since Var(true)=O, Var(true)~v holds for all variable lists v. Thus we 
can use the results of Lemma 4. [] 

Now we can characterize a few special commands. As stated earlier, V is 
the list of all variables in Var. By Lemma 5, we have 

ftrue if Q +false (12) 
(V(d /V) ) (Q)=3VQ=~fa l se  if Q=false 

d 

and 

~d d V V V true if Q=true  ( ( / ))(Q)= "Q=ua  (13) 
lse if Q 4= true. 

We give the command V ( d / V )  in (12) the name serve and the command 
d 

A ( d / V )  in (13) the name avoid. Note that serve is the top element of SMtran 
d 

(and of cga). It is an extremely angelic command which succeeds always when 
it is possible. On the other hand, avoid is an extremely demonic command 
which is never guaranteed to produce the required final state (however, it always 
terminates). 

We further note that by Lemma 5, the identity predicate transformer skip 
is V (v = d). Noting that abort is obviously the bottom element of c~-, we sum- 

d 

marize: 

serve = V (d/V) skip = V (v  = d) ,  
d d 

avoid = A (d/V> abort = VO. 
d 

The command serve can also be constructed as A 0  and abort also as A (v = d). 
d 

5.4. Properties of the Base Language 

The classical healthiness axioms state that the weakest precondition predicate 
transformers are strict (i.e. satisfy the Law of Excluded Miracle), monotonic 
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and conjunctive. Furthermore,  the conjugated basic statement introduced in 
[5] is disjunctive. We now examine our command lattice with respect to these 
properties. 

Strictness and monotonicity. As noted in Sect. 5.2, all commands of the base 
language are both strict and monotonic. In particular, the predicate transformer 
magic cannot be defined in this language. 

Conjunctivity. The base language commands are not necessarily conjunctive. 
A counterexample is the command (d/v> v (d'/v> where d and d' are distinct. 
Applying this command to the predicate (v = d) ^ (v = d') we have 

(<d/v> v <d'lv> ((v = d) ^ (v = d')) 

= [no state can assign both d and d' to v] 

(<d/v> v <d'/v>) (false) 

= [strictness] 

false 

but, on the other hand, 

(<d/v> v <d'lv>)(v = d ) ^  (<d/v> v <d'lv>)(v = d') 

= [ v is defined by pointwise extension] 

(<d/v> (v = d) v <d'/v> (v = d)) ^ (<d/v> (v = d') v <d'/v> (v = d')) 

= [definition of <d/v>] 

((d = d) v (d' = d)) ^ ((d = d') v (d' = d')) 

= [d and d' are distinct] 

(true v false) ^ (false v true) 

= [true and false are top and bot tom elements of Pred] 

true. 

Since the primitive commands are conjunctive the above counterexample 
shows that joins do not generally preserve conjunctivity. 

Disjunctivity. The counterexample to disjunctivity is the dual of the counterexam- 
ple to conjunctivity, i.e. the command (d/v> ^(d'/v) applied to the predicate 
(v = d) v (v = d'). Thus meets generally do not preserve disjunctivity. 

We summarize the above results in the following theorem. 

Theorem 2. All commands of (~• are strict and monotonic. The primitive commands 
are conjunctive and disjunctive. Sequential composition and arbitrary meets pre- 
serve conjunctivity while sequential composition and arbitrary joins preserve dis- 
junctivity. 

5.5. Monotonicity in Subcommands 

Let T [ X ]  be an expression formed using the symbol X in addition to the 
primitive commands and the constructors of (6 -L. This means that for any com- 
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mand S, T[S] is also a command. We say that T is a command with a command 
variable and that S is a subcommand of T[S]. An important property is monotoni- 
city with respect to subcommand replacement�9 

Theorem 3. Assume that T is a command with a command variable. Then T is 
monotonic with respect to subcommand replacement, i.e. 

VS, S'.(S <S'  ~ TES] < TES']). 

Proof Assume that $1, S], S 2 and S~ are commands of ~• with $1 <S]  and 
< , $2 = $2. It is then straightforward to prove that 

�9 ~ q "  . q,~ 

$1 ,$2~- -~ "1 ,~2 ,  

$1 ^ $2 < S'I A S'2 and 

S1 v $2 < S'~ v S~. 

Using structural induction we can now prove the theorem. [] 

6. A Dual Language with Miracles 

The base language ~• does not permit miraculous (nonstrict) commands�9 In 
this section we consider a command lattice cCL, which is dual to ~• and which 
contains miraculous commands (the superscript T denoting strictness with 
respect to the top predicate true)�9 We begin by defining the dual of any predicate 
transformer and prove some properties of duals. 

6.1. Definition of  the Dual Language 

For every predicate transformers S we define its dual S o by 

S~ (Q) ~f-7 S ('--1 Q) (14) 

for all predicates Q. 
The following lemma shows the relations between a predicate transformer 

and its dual. 

Lemma 6. Let S and Si be arbitrary predicate transformers in Ptran (where I 
is an arbitrary index set). Then 

(a) (S~176 = S 
(b) S monotonic,~ S ~ monotonic 
( c ) ( S l "  o _  o .  o ,$2) -$1,$2 
(d) S 1 ~ S  2 0 0 _ "r 

(e) (AS,)~ = V S~ 
(o (Vs,)~ s~ 
(g) S is conjunctiveo S ~ is disjunctive 
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(h) S is disjunctive~e, S ~ is conjunctive. 

We now define the dual base language as cKT={s0[secg'}. The following 
theorem shows the duality between oK• and cgT. 

Theorem 4. The dual language cg T is a complete lattice and (~T, _>_) is isomorphic 
with (cg• __<). The commands o f  ~ T  are monotonic and strict with respect to 
the predicate true (i.e. they map true to true). 

Proof. Let the function q~ be defined by ~b(S)=S ~ for all SePtran .  Part (a) of 
Lemma 6 shows that ~b is bijective. Furthermore, (e) and (f) show that ~b is 
a lattice-isomorphism between (Ptran, <=) and (Ptran, >=). Since cgT is defined 
as ~b(C~'), it follows from the above that (~T, ____) is isomorphic with (~ ' ,  =<). 
Thus, ~T is a complete lattice. 

Lemma 6(b) shows that all predicate transformers of cgT are monotonic. 
Finally, we show that every command of cgT is strict with respect to true. Assume 
that S is a command in cg-. Then from the definition of S O and the fact that 
S is strict, it follows that 

S ~ (true) = 7 S(false) = 7 f a l s e  = true 

so S O is strict with respect to true. [] 

A command which maps true to true is interpreted as always terminating. 
Thus the commands of cgT- never abort. However, since they are not necessarily 
strict, they may be miraculous (see Sect. 4.4). 

6.2. Generating the Dual Language 

Because of the duality shown in Theorem 4 and Lemma 6, we can generate 
~7- using the constructors " ; ' ,  " A " and " v " and the duals of the primitive 
commands of ~ .  The substitution command is its own dual, while the dual 
of the test command is the miraculous test command <u = c> ~ with 

It is miraculous as 

(u = c> ~ (Q) = (u = c ) ~  Q. (15) 

<u = c> ~ (false) = ((u = c)=~false) = --7 (u = c) 

and D contains at least one value different from c. The top element of ~T 
is magic and the bottom element is avoid. Note that their constructions are 
dual to the constructions of the bottom and top elements of ~r 

abort = V 0  (in cg-) magic = / ~ 0  (in cgT) 

serve = V (d/V> avoid = / ~  <d/V> 
d d 
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Since the cardinality of the value set D is at least 2, we can construct abort 
in cg• and magic in cgT without using the somewhat ambiguous empty meets 
and joins, in a way which emphasizes their duality: 

abort = A <v = d) magic = V (v = d)  ~ 
d d 

where v is an arbitrary nonempty list of distinct variables. 

6.3. Combining the Two Languages 

Since the command ( u = c )  ~ is miraculous, it cannot be generated within cg• 
Conversely, the test command (u=c)  cannot be generated within cgT, since it 
is possibly nonterminating. 

Thus, if we construct commands using sequential composition, meets and 
joins starting from the three primitive statements (d/v) ,  ( u = c )  and ( u = c )  ~ 
we get an extended base language, which we denote cg. This is a command 
lattice which contains both strict and miraculous predicate transformers. In 
fact, as we will show in the next section, it contains all monotonic predicate 
transformers. 

There are other ways of generating the language ~. Adding the single com- 
mand magic to cg• (or, dually, adding abort to cg-r) is sufficient to get all the 
commands in cg. This is seen from the following lemma. 

Lemma 7. Let u be an arbitrary variable and c an arbitrary value. Then 

( u = c )  ~ = V ( (u= c'); magic)v V ( u  = c') 
C':#C C' 

( u = c )  = A ((u = c ')~ abort) ^ A ( u = c ' ) ~  
C' :~ C C' 

(16) 

(17) 

Note that the second disjunct on the right hand side of (16) is V (u = c ')= skip 
c'  

while the second conjunct on the right hand side of (17) is A ( u = c ) ~  
(so skip is its own dual), c, 

7. Completeness of the Command Languages 

In the preceding sections we defined command languages that are lattices of 
predicate transformers. We showed that cg• is a complete sublattice of SMtran, 
the lattice of strict monotonic predicate transformers. Similarly, one can show 
that cg is a complete sublattice of Mtran, the lattice of monotonic predicate 
transformers. In this section we generalize these results. We show that in fact 
all strict monotonic predicate transformers can be generated within c~• i.e. 
that cg• SMtran. In order to show this, we first construct a base for the lattice 
SMtran and then show how every element of this base can be generated in 
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cg• Similarly, we construct a base for Mtran and show that every element 
of this base can be generated in cg. 

We first define the concept of base for a complete lattice. A subset B of 
a complete lattice L is a v -base  (or just base) for L if every element of L 
can be written as a join of elements in B (note that the bo t tom element of 
a complete lattice can be written as the empty join). Equivalently, B is a base 
i f x = V ( b ~ B :  b<x :  b) for all x in L. 

7.1. Bases for Function Lattices 

We now give a construction of a base for the function lattice [ L ~  L]M, given 
a base for L. This base can be considered to be a pointwise extension of the 
base for L. 

Lemma 8. Assume that L is a complete lattice and that B is a base for L. 
For every x ~ K and every b ~ B define gx, b by 

b if x < y 
g~'b(Y)= l L otherwise. 

Then any monotonic function f in [ L ~  L] can be written as 

f = V (  V gx, b) 
xeL  b<-f(x) 

and {gx, b l xeK ,  beB}  is a base for [L ~ L]u .  

Proof From the definition of gx, b it follows that every gx, b is monotonic,  so 
every gx, b is in [ L ~ L ] M .  

Now let f be an arbitrary monotonic  function on L and define fx by 

f~= V gx, b. 
b<=f(x) 

Then for an arbitrary y e L  we have 

fx (Y) = V gx, b (Y) = {f(x) if x =< y 
b~s~x) otherwise. 

This means that for an arbi trary yEL, 

(V  ( V gx,,,)) (y) 
x~K b<=f(x) 

= [definition of fx] 

V (L(Y)) 
x ~ K  

= [fx(Y) is _L unless x<__y] 

V (L(y)) 
x=<y 
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= [fx(Y)=f(x)  when x _-y] 

V (f(x)) 
x<=y 

= [ f  is monotonic]  

f (Y) 

which completes the proof. []  

The same technique is used to construct a base for the strict monotonic 
functions on the lattice L, given a base for L. 

Lemma 9. Assume L and B as in the preceding lemma. For every x e L  except 
x=  _L and every beB define g~,b by 

L otherwise. 

Then any strict monotonic function f in [L--* L] can be written as 

f = V (  V gx.b) 
x e L  b< f ( x )  

and {gx,b[ 1L4 = x~K,  i~I} is a base for [L ~ L]s M. 

Proof. The proof proceeds exactly as the proof of Lemma 8. [] 

A base for Mtran. We now construct a base for the lattice of monotonic predicate 
transformers Mtran. We begin by observing that the set {tt} is a base for Bool. 
By a proof, similar to the proof  of Lemma 8, one can show that the one-state 
predicates {b,I o-~S} form a base for Pred, where b~ is defined by 

, tStl if a' b,,(o')= =tr  
Uf otherwise. 

Using this base, any predicate P can be written as 

P =  V b ~ .  
a:  P (a )  

Using Lemma 8 we construct a base for Mtran. This base is the set of predi- 
cate transformers { Gp, ~ I P ~ Pred, a ~ S} where Ge, ~ is defined by 

Gp,,(Q)= b~f' a if P < Q  (18) 
lse otherwise 

for all states a and all predicates P and Q. 
The base element Gp.~ can be characterized in the following way: Ge,, is 

a command which establishes the condition P (and, by monotonicity, all condi- 
tions implied by P) when executed in the initial state tr, and aborts for all 
other initial states. 
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A base for SMtran. We now construct a base for the lattice of strict monotonic 
predicate transformers SMtran in the same way as we constructed a base for 
Mtran. By Lemma 9, a base is the set of predicate transformers {Gv,,lfalse 
~PePred ,  aeS,} where Gv,, is defined by (18). 

7.2. Completeness of  cg• 

The following lemma shows how every element Gv., of the base for SMtran 
can be generated within cg• 

Lemma 10. Let V be the list of all variables in Var, P an arbitrary predicate 
with P ~- false and a an arbitrary state. Then 

6~,~ = < v =  ~(v)>; A <d/V> 
d: P 

Proof We first note that for arbitrary predicates P and Q, 

= f true if P < Q 
( f  <d/V)) (Q) [false otherwise. 

d : P  

This is seen as follows: 

( A  <d/V>)(Q) 
d: P 

= [Lemma 4(b)] 

V V . ( P ~ Q )  

= [-definition of quantified predicate, (4)] 

fatrUe if P < Q 
Ise otherwise. 

We further note that if a is an arbitrary state in S, then 

< V = a (V) > (true) = (V = a (V)) = b~. 

Now we move to the actual proof: 

(<v= a(v)>; ( A <d/V>))(Q) 
d : P  

= [definition of sequential composition] 

<v= ~(v)> ((A <d/V>)(Q)) 
d: P 

= [(19)] 

{ <V=a(V)> (true) if P < Q  
< V= o (V) > (false) otherwise 

= [(20), strictness] 

(19) 

(20) 
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b~f a if P < Q 
Ise otherwise 

= [(18)] 

Ge,,(Q). [] 

We can now state the completeness theorem. 

Theorem 5. Every strict monotonic predicate transformer can be generated within 
the base language c~• Or, equivalently, 

cg• = SMtran. 

Proof Lemma 10 shows how to generate any element Ge, o in a base for SMtran. 
Since every element in SMtran can be written as a join of elements in the 
base, we have shown that every element in SMtran can be constructed in ~• 

In fact, by Lemma 9 any element S of SMtran can be constructed as 

S= V V ( (V=a(V) ) ;A(d /V) ) "  [] 
PePred  a: S(P) (a) d: P 

We note that a dual completeness theorem holds for ~T : 

Corollary 1. Every monotonic predicate transformer that is strict with respect to 
the predicate true can be generated within the dual base language cgT. 

Proof We first note that the predicate transformers 

{G~ P~Pred, a~Z} 

form a ^-base  for the set of all predicate transformers that are strict with 
respect to true. We then use the dual of the construction in Lemma 10 to generate 
this A -base in cgv. []  

7.3. Completeness of cg 

The completeness of the extended base language cg is shown in the following 
theorem. 

Theorem 6. Every monotonic predicate transformer can be generated within the 
extended base language c~. Or, equivalently, 

= Mtran. 

Proof The same construction of an arbitrary Gv, ~ as in Lemma 10 can be used 
in ~g. Furthermore, this construction holds also when P=false, since in this 
case 

( V =  a(V)); A (d/V) = ( v =  o-(v)); A0  = {b.}; magic = Gp, ~. 
d: P 

The rest of the proof proceeds exactly as the proof of Theorem 6. []  
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8. Derivation of a Simple Language in the Command Lattice 

The base languages constructed in the previous sections are infinitary, in the 
sense that they permit meets and joins over arbitrary sets of commands. The 
definition of commands as predicate transformers is highly semantic, since predi- 
cates are considered to be functions from X to Bool. 

In this section we consider a finitary specification language with a syntactic 
notion of predicates. The language is an extension of the language of guarded 
commands of Dijkstra [9]. We identify the statements of this language with 
their weakest precondition predicate transformers. Our aim is to show how 
this language can be embedded in the base language ~• 

8.1. The Specification Language 

We now consider a slightly modified version of the language of Back [5] (subse- 
quently called the specification language, denoted Stat• This language permits 
input-output-specifications to be embedded as statements in a program. It per- 
mits both demonic and angelic nondeterminism, but not miracles. The nondeter- 
minism of a statement can be unbounded. Ordinary program statements form 
a sublanguage of Stat • The statements of Stat• are defined by 

S: : =v:=v'.P 

v:=v'. P 

[varv; S] 

X 

$1 ; $2 

ifbl~S1 It bE -~ 52 fi 

# X . T  

(demonic assignment statement) 

(angelic assignment statement) 

(block) 

(statement variable) 

(sequential composition) 

(conditional composition) 

(recursive composition). 

Here v is a list of variables, bl and b 2 are  predicates and S, $1 and S 2 a r e  

statements. T is an expression containing statements, statement constructors 
and the statement variable X. In the assignment statements, v' is a list of auxiliary 
variables (i.e. variables not belonging to Vat), and P is a predicate formula 
which may refer to the auxiliary variables in v'. 

Semantic and syntactic predicates. Since the base language treats predicates as 
semantic objects and we now consider a language where predicates are syntactic 
objects we must be careful. 

To avoid confusion, we refer to syntactic predicates as predicate formulas. 
Assume that every value d in D has a name d (so that every value can be 
considered a term). It is then easy to show that every predicate formula P, 
which refers only to variables in Var, has a straightforward meaning as a predi- 
cate in Pred. Furthermore,  this meaning function is preserved by connectives, 
quantifications and substitutions of values d for variables v. 
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However, we note that predicate formulas may refer to auxiliary variables, 
not belonging to Var. Such formulas do not correspond to predicates in Pred 
unless the auxiliary variables have been removed by substitution or bound by 
quantification. 

Meaning of the primitive statements. As noted above, we identify the statements 
of Stat • with their weakest precondition predicate transformers. Thus every 
statement is considered to be a function from predicate formulas to predicate 
formulas. 

The effect of the demonic assignment statement is to assign values v' nonde- 
terministically to the variables v, so that the condition P becomes established 
(unbounded nondeterminism is permitted). Formally, 

(v..= v'. P) (Q) %f (3 v'. P) ^ V v'. (P =~ Q [v'/v] ) (21) 

for all predicate formulas Q. Note that v' is a list of auxiliary variables, so 
we can assume that the predicate formula Q does not refer to v'. 

The angelic assignment statement is like the corresponding demonic state- 
ment but executed with angelic nondeterminism, 

(v..=v' . e )  (Q) %r 3 v'.(P ^ O [v'/v] ). (22) 

Meaning of constructors. For the block statement, sequential and conditional 
composition we give the following definitions: 

( 1'var v; S] ) (Q) ~r V v- S (V v. Q) 

def  
(S~ ; $2) (Q) ---- S 1 ($2 (Q)) 

def b 
(if bl ~ $ 1  II b2 ~ 5 2  )(Q) = ( i vb2)A(b~=c'a~(Q))^(bz=~S2(Q)). 

The block statement assumes that no redeclaration of variables is permitted. 
The local variables become undefined (i.e. their value can be considered to be 
arbitrary) outside the block, as shown by the quantification V v. Q in the defini- 
tion. Thus our definition for the block differs slightly from the corresponding 
definitions of I2, 18, 19, 20], where it is assumed that no predicates refer to 
the local variables. 

The meaning of the recursive composition/~X. T(X) is defined in the follow- 
ing way. Assume that T(X) is an expression built up of the primitive statements, 
the statement variable X and sequential and conditional composition. Then 
2X.  T(X) is a monotonic function on the complete lattice of monotonic predicate 
transformers. Thus, by the Knaster-Tarski fixpoint theorem, 2X.  T(X) has a 
least fixpoint. This least fixpoint is chosen as the meaning of #X.  T(X). This 
definition can be used inductively to define the meaning of #X.  T(X) in the 
case when the expression T(X) itself contains recursive compositions. 
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Definitions of recursion using least fixpoints have been used in e.g. [10, 
13, 22]. We assume that the logic is sufficiently expressive, so that these least 
fixpoints can be expressed as predicate formulas, see [3, 13]. 

The following lemma shows that Stat • is in fact a sublanguage of c~• 

Lemma 11. All statements in Stat • are strict and monotonic. 

Proof The primitive statements of Stat• are easily shown to be strict and mono- 
tonic. It is also straightforward to show that sequential and conditional composi- 
tion preserve strictness and monotonicity. This implies that T(X)  in any recur- 
sion # X .  T(X)  can be viewed as a monotonic function on the complete lattice 
SMtran. Thus it has a least fixpoint in SMtran. Furthermore,  since SMtran = 
{Se Mtran[S <= serve}, this least fixpoint is also the least fixpoint of T(X), viewed 
as a function on Mtran. Thus # X .  T(X)  is in SMtran, i.e. it is strict and monoton-  
ic. []  

Derived statements. The specification language can be extended with derived 
statements, i.e. statements defined in terms of the other constructs of the language. 
As an example, we define two derived statements, the assert statement and the 
(ordinary) multiple assignment statement. The assert statement is defined as a 
demonic assignment statement e ,=e .P  on the empty list e of variables. We 
use the notation {P} for this statement. Thus the following holds: 

{P} (Q) = P ^ Q. 

Recalling the definitions of the statements skip and abort, we note that they 
can be written as special case of the assert statement; skip={true} and abort 
= {false}. 

The multiple assignment v,=e where e is a list of expressions (i.e. functions 
from 2: to D) is defined as the demonic assignment v:=v'.(v'= e) or the angelic 
assignment v ,=v'. (v' = e). Thus the following holds: 

(v.-=e) (Q) = Q [e/v]. 

A game theoretic interpretation of  the specification language. The intuitive inter- 
pretation of statements defined as predicate transformers (Sect. 4.4) has to be 
somewhat extended to cover the angelic assignment statement of our specifica- 
tion language. The non-determinism of the demonic assignment statement is 
demonic, i.e. (v.-=v'. P) (Q) holds in a state a o if and only if all possible executions 
of v:=v' .P in initial state a o lead to final states where Q holds. On the other 
hand, the nondeterminism of the angelic assignment statement is angelic, i.e. 
(v,=v'.P) (Q) holds in a state a o if and only if there exists a possible execution 
of v,=v' .P in initial state a o which leads to a final state where Q holds. The 
execution of a statement in the specification language can be interpreted as 
a game between the system (the demon) and the user (the angel). The demon 
chooses the values in the demonic assignment statement and the angel chooses 
the values in the angelic assignment statement. Also, the demon chooses the 
branch of the if statements in the case when both branches are enabled. Assume 
that the statement S is executed in the initial state ~o. The angel tries to make 
the execution terminate in a state where Q holds, whereas the demon tries 
to prevent this. The state a o belongs to the weakest precondition of S to establish 
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Q, so S(Q) holds in a0, iff the angel has a winning strategy, i.e. no matter what 
choices the demon makes, the angel can force the execution to terminate in 
a final state where Q holds. 

8.2. Construction of the Specification Language Statements in the Base Language 

Since every statement in Star • can be seen as a command in cg• the completeness 
theorems of Sect. 7 show that every statement in Star • can be constructed in 
cg~. However, the constructions in the completeness theorems are very complex 
and require total pointwise knowledge of the statement that is to be constructed. 
We now show how statements of the specification language Stat • can be con- 
structed inductively, with the syntactic structure of the statements as a starting 
point. 

Demonic assignment statement. We begin by showing how the demonic assign- 
ment statement v:=v'.P can be constructed. This will be done in two steps. 
In the first step we show how to construct the demonic update statement v.P, 
which nondeterministically assigns a value to v, such that P holds. This statement 
is defined by 

(v. P) (Q)~f (3 v. P) A V v. ( P ~  Q). (23) 

In the second step we make use of the demonic update statement to construct 
the demonic assignment statement. 

Let us first assume that Var(P)~_v. Then the statement v.P is constructed 
in the following way (note how the two conjuncts in the construction correspond 
to the two conjuncts in (22)). 

L e m m a  12. Assume that Var(P) ~ v. Then 

v. P = ( V  (d/v}); serve A ( A  (d/v}). 
d : P  d : P  

(24) 

Proof. If P=false then V (d /v )=  abort, so the right hand side, applied to any 
d: P 

predicate Q, yields false, which v. P also does. Now consider the case when 
P#false. We have to show that for any predicate formula Q, the right hand 
side applied to Q equals (v. P)(Q). If Q =false then this holds by the strictness 
of all statements in cg• Therefore assume that Q #false. Then 

((V <d/v)); serve A (A  <d/v)))(Q) 
d : P  d : P  

= [-definitions of constructors] 

( V  (d/v)) (serve(Q)) A ( A  (d/v))(Q) 
d : P  d : P  

=[definit ion ofserve] 
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( V  (d/v))(true) A ( A  (d/v))(Q) 
d:P d:P 

= [Lemma 4(b)] 

( V  <d/v>)(true) ^ Vv.(P=~Q) 
d: P 

= [Lemma 4(c)] 

3v. (P ^ true) ^ Vv.(P=>Q) 

= [true is top element in Pred] 

3v . P  ^ V v . ( P ~ Q ) .  [] 

Note that since the statements in Stat • are defined only for predicate formulas, 
the base language construction in (24) should be interpretated as restricted to 
those predicates that correspond to some predicate formula. 

We now consider the general case when Var(P)~_v does not hold. Let w 
be the list of variables that the predicate formula P refers to and which are 
not in v. Then for any list of values d of the same length as w, v .P[d/w] is 
an update statement of the kind considered in Lemma 12. 

Lemma  13. Let v be a list of variables and P an arbitrary predicate formula. 
Let w be the list of variables that P depends on and which are not in v. Then 

v ' P =  V(<w=d> ; v .P[d/w])  
d 

where v. P [d/w] is constructed as in Lemma 12. 

Proof We consider an arbitrary Q #false. 

( V  ((w = d}; v. P [d/w])) (Q) 
d 

= [definitions of constructors] 

V (<w = d> (v" P [d/w] (Q))) 
d 

= [definition of test command]  

V ((w = d) A V. P [d/w] (Q)) 
d 

= [Lemma 12] 

V ((w = d) A 3 v. P [d/w] A V v. (P [d/w] =~ Q)) 
d 

= [using the conjunct (w = d)] 

V ((w = d) A (3 V. P [d/w] ^ V v. (P [d/w] =~ Q) [d/w] )) 
d 

= [substitution distributes over connectives] 

V((w = d) ^ (3v .P A Vv.(P=~Q)) [d/w]) 
d 

= [Lemma 2] 
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3v .P  A Vv.(P::~Q). [] 

In Lemma 13, the disjunction over d is needed to find the value of w in the 
state. 

We can now construct the demonic assignment statement making use of 
the update statement. 

Theorem 7. Consider the statement V ,=v'. P, where P is a predicate formula. Then 

( v . . = v ' . P ) = V ( < v = d > ;  v .P [d, v/v, v']). 
d 

Proof The formula P may refer to variables from Vat and possibly to the auxilia- 
ry variables in v'. Thus for any list of values d, P [d, v/v, v'] refers to only to 
variables in Var, and v. P[d, v/v, v'] is an update statement that  can be con- 
structed as in Lemma 13. 

Now consider an arbitrary predicate Q =t=false. 

( V ( ( v  = d ) ;  v. Prd, v/v, v'])) (Q) 
d 

= [definition of command  constructors) 

V ((v = d)  (v. P [d, v/v, v'] (Q)) 
d 

= [definition of (v = d), demonic update statement] 

V ((v = d) A 3 V. P [d, v/v, v'] A V v. (P [d, v/v, v'] =~ Q)) 
d 

= [renaming bound variables (by definition, Q does not refer to v')] 

V ((v = d) A 3 V'. P [d/v] A V v" (P Idly] =~ Q Iv'Iv] )) 
d 

= [substitution distributes over connectives, Q [v'/v] does not refer to v] 

V ((v = d) A (3 V'. P A V V'. (P =~ Q [v'/v] )) Idly]) 
d 

= [Lemma 21 

3v ' .P  A Vv'.(P=~Q[v'/v]). [] 

In this theorem the disjunction over d is again needed to find the correct 
initial values of v. 

Angelic assignment statement. The construction of the angelic assignment state- 
ment is similar to that of the corresponding demonic statement. We first show 
how to construct the angelic update statement v .P  which is the angelic counter- 
part  to v. P, defined by 

v .P (Q)=3 v . (PA Q) .  

This statement is then used in the construction of v.'=v'. P. 



Duality in Specification Languages 611 

Lemma 14. Assume that v is a list of variables and that P is a predicate formula 
such that Var(P)~_v. Then 

v. P = V <d/v>. 
d : P  

Proof Immediate  from Lemma 4(c). []  

We now drop the assumption that Var(P)~_v. Let w be the list of variables 
that P refers to and which are not in v. Then for any list of values d of the 
same length as w, v .P[d/w] is an update statement of the kind considered 
in Lemma 14. 

Lemma  15. Assume that v is a list of  variables and that P is an arbitrary predicate 
formula. Let w be the list of variables that P refers to and which are not in 
V. T h e n  

v. P = V ((w = d>; v. P [d/w]). 
d 

Proof The proof  follows the proof  of Lemma 13. []  

Now we can construct the angelic assignment statement. 

Theorem 8. Consider the statement v ,=v'. P, where P is a predicate formula. Then 

v . .=v ' .P=V(<v=d>;  v.P[d,  v/v, v']). 
d 

Proof The proof  follows the proof  of Theorem 7. []  

The block statement 

Theorem 9. Assume v is a list of variables and S is a statement. Then 

[var v; S] = ( A  <d/v>); S; (A <d/v>) 
d d 

Proof For  an arbitrary Q we have 

((A <d/v>); s; A (d/v>)(Q) 
d d 

= [definitions of constructors] 

(A < d/v> ) (S ( A < d/v> (Q))) 
d d 

= [Lemma  5 (b)] 
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CA <d/v))(S(V v. Q)) 
d 

= [Lemma 5 (b)] 

Vv.S(Vv.Q). [] 
Sequential and conditional composition. By definition, sequential composition 
in the specification language is the same as sequential composition in cg• 

In order to construct conditional composition we first construct the assert 
statement {P}. 

Lemma 16. Assume that P is a predicate formula and that v = Var(P). Then 

{ P } = V ( v = d ) .  
d : P  

Proof Immediate from Lemma 4(a). [] 

Conditional composition is now constructed in the following way (a similar 
constructions is used in [15]). 

Theorem 10. Assume that bl and b 2 a r e  predicate formulas and $1 and $2 state- 
ments. Then 

i f  b l ~ S1 • b2 ~ $2 fi = {b, v b2} ; (({7 b~ }; serve v S,)/x ({-7 b2 } ; serve v $2)). 

Proof If Q =false then the equality follows from the strictness of all the state- 
ments involved. Now assume that Q :#false. Then 

({bl v bz} ; (({--n bl }; serve v S1) A ({-'-] b2 }; serve v $2)))(Q) 

= [definitions of constructors] 

{b, v b2} (({-1 b, } (serve(Q)) v $1 (Q)) ̂  ({-1 b2 } (serve(Q)) v $2 (Q))) 

= [definition of serve]  

{hx v b2} (({-7 b, } (true) v $1 (Q))/x ({-7 h2 } (true) v $2 (Q))) 

= [definition of assert statement; true is top element of Pred] 

(b 1 v b2) ^ (-7 bl v S1 (Q))/x (--1 b2 v $2 (Q)) 

= [predicate calculus] 

(b, vb2)^(bx=*.Sl(Q))A(b2=~.S2(Q)). [] 

Recursive composition. Assume that T(X) is an expression built from the symbol 
X, the primitive statements, sequential composition, meet and join. Then if X 
is replaced by any statement S of Stat • the result T(S) will be another statement 
of Stat • and it can be constructed as a command in cg• Since the command 
constructors of cgi are monotonic in their arguments, T(X) as a function of 
X is a monotonic function from off• to cg• Since off• is a complete lattice, 
T has a least fixpoint in c6• This least fixpoint equals HX" T(X). 

This construction is generalized to the case when the expression T(X) itself 
contains recursive compositions, by an inductive argument. Note that there 
is no need to introduce an explicit recursion constructor into the base language, 
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as ~X.  T(X) is just an abbreviation for a command that already has a representa- 
tion in terms of the primitive commands and the three constructors sequential 
composition, meet and join. 

Derived statements. We already showed how the assert statement was con- 
structed. Now we consider the multiple assignment statement v.'=e. 

Lemma 17. Assume v is a list of variables and e is an expression. Then 

v = e =  V ((v=d)  ; v.(v=e[d/v])). 
d 

Proof Follows directly from Theorem 7, using the definition of the multiple 
assignment statement v.'=e as v.'=v'. (v'= e). []  

As an example, let us look at the simple assignment statement u . .=u+l .  
Using Lemma 17, Theorem 7 and Lemma 12 we get (after simplifications) 

u.'=u + 1 = V ( ( u =  c) ;  ( c +  l/u)). 
c 

We can consider the substitution command (c+ 1/u) as the assignment while 
the test command (u = c) in combination with the join finds the correct value 
to be incremented. Gardiner and Morgan [11] use their conjunction operation 
(corresponding to our join) in this way to avoid having to mention the initial 
value of a variable in the postcondition. 

9. Derivation of  a Language with Miracles 

In this section we introduce a specification language, denoted Stat, which extends 
the language of Sect. 8 by permitting miraculous statements. This language is 
syntactic and finitary (although permitting unbounded nondeterminism), in the 
same way as the language Stat • In addition, it is self-dual, in the sense that 
the dual of every statement in Star is also in Star. 

9.1. The Specification Language 

We shall refer to the language Stat as the extended specification language. The 
language Stat has two primitive statements, the demonic, miraculous assignment 
statement and the angelic, strict assignment statement. As statement constructors 
we have sequential composition, meet and join and two fixpoint compositions. 
The statements of Star are defined by 

S: : =v:,~v'.P 
v:=v'. P 
X 
S 1 "~ S 2 

S 1 A S 2  

S 1 MS 2 

laX. T 
v X . T  

(demonic, miraculous assignment statement) 
(angelic, strict assignment statement) 
(statement variable) 
(sequential composition) 
(meet, demonic composition) 
(join, angelic composition) 
(least fixpoint composition) 
(greatest fixpoint composition). 
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Here v is a list of variables, b is a predicate and S, $1 and S 2 a r e  statements. 
In the assignment statements, v' is a list of auxiliary variables, not belonging 
to Var, and P is a predicate formula. 

Note that we do not define the block or the conditional composition. We 
shall see later how these can be defined using the other constructs. 

Meaning of the statements. We now give the statements meanings as predicate 
transformers. The angelic strict assignment statement (see (22)) and sequential 
composition have the same meanings as in Stat • while meet and join have 
the same meaning as in the base language c~• The meaning of the demonic, 
miraculous assignment statement differs from the demonic assignment statement 
of Stat • in the following respect: v:.~v' .P succeeds miraculously if it is not 
possible to assign values v' to v so that the condition P becomes established 
(in this situation, v,=v'. P aborts). 

Thus the meanings are as follows: 

(v: ,~v' .P)(Q)d----er V v' . ( P ~  Q [v'/v]) 

(v ,=v'. P) (Q) ~f 3 v'. (P ^ Q [v'/v]) 

def 
( S x ; S g ( Q )  = Sx(S~(O))  

def S 
(S1 ^ Sz) (Q) = 1 (Q) ^ $2 (Q)) 

(S1 v $2) (Q)~f S, (Q) v S2(Q)). 

The fixpoint compositions are given the following meanings: # X .  T(X) is 
the least and vX.  T(X) the greatest fixpoint of the monotonic function 2X. T(X) 
on the complete lattice of predicate transformers. The existence of a least as 
well as a greatest fixpoints is guaranteed by the Knaster-Tarski fixpoint theorem. 
Note that the least fixpoint composition in Stat corresponds to recursive compo- 
sition in Stat +. 

Monotonicity and substatement monotonicity. All statements of Stat • were mono- 
tonic (considered as predicate transformers) and all constructors of Star • were 
shown to be monotonic with respect to substatement replacement. The following 
lemma shows that the same is true for Stat. 

Lemma 18. All statements of the extended specification language are monotonic 
and all statement constructors are monotonic with respect to substatement replace- 
ment. 

Duals in the extended specification language. Let the duality operator (.)o be 
defined by (14), i.e. S~ S(--a Q) for all Q. Then the dual of every statement 
in Star can be constructed using the following lemma. 

Lemma 19. The following dualities hold in Star: 
(a) (v :~v ' .P)~  
(b) (S~; Se) ~ =S~ S ~ 
(c) (s~ ^ s 9  ~ = s  o v s o 

(d) (#X.  T(X)) ~ = vX .  T~ 
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where the expression T O (X) is defined as 

T~  ~e (T(S~ ~ 

for  all statements S in Stat. 

Proo f  We prove (a) here. Parts (b) and (c) follow from Lemma 6 and part (d) 
is proved in the Appendix. 

(v: ~ v'. p)O (Q) 

= [definition of assignments, duals] 

--7 V v' . (P =>-1 Q [v'/v] ) 

= [calculus] 

3v' .  7 ( T P  v---TQ[v'/v]) 

= [calculus] 

3 v"  (P A Q [v'/v]) 

= [definition of assignments] 

v'.=v'. P. [] 

Thus the language has a strong sense of duality. Note that we do not include 
the duality operator as a real statement constructor in Stat. It has the disadvan- 
tage of not being monotonic  with respect to substatement replacement. Further- 
more, the above result shows that it is not needed. 

Derived statements. As in Stat  • we define derived statements in Stat. Let e 
be the empty list and let P be an arbitrary predicate formula. Then we define 
the assert statement {P} and its dual, the guard statement P ~ by 

{ p}  de__~ee:=e, p,  

d e f  p ----~ = e : ,~ e . p 

(the guard statement has been introduced in Hesselink [15]). This gives the 
following meanings: 

{P} (Q) = P/x Q, 

(P ~ ) ( Q ) = P = ~ Q .  

As special cases, wc have {false} =abor t  and (true ~ ) = m a g i c  (note that Stat  
is a lattice with a top and a bot tom element, though it is not complete). 

We can now define the guarded statement P ~ S to be an abbreviation for 
the composition (P ~ ); S. Thus, 

(P ~ S) (Q)= P=*.S(Q) 

which corresponds to the definitions given in [4, 18, 21]. Note that the dual 
of P ~ is {P}, and that we also may use the abbreviation {P} S for {P}; S. 
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Now let v be a list of program variables, v' a list of auxiliary variables 
and P a predicate formula. Then 

(v :=v'.  P; magic  ^ v: ~ v'. P) (Q) 

-- [-definition of constructors] 

(v.-=v'. P(magie (Q)) A (v: ~ v'. P) (Q) 

= [definition of magic] 

(v:=v' .P(true)  A (v: ~ v'. P) (Q) 

= [definition of assignment statements] 

3 v ' . P  i", Yv' .(P=~Q [v'/v]). 

Thus the demonic strict assignment statement (i.e. the demonic assignment state- 
ment (21) of the original specification language Stat • can be defined as 

d e f - -  . ~ l? t v : = v ' . P = v . . = v t . p ; m a g m A v :  .P. 

Dually, we can define the angelic miraculous assignment statement as 

~ d e f  
v : ~ v  .P = v :~v ' .  P; abort v v,--v'. P 

Using the demonic strict assignment statement we can define the ordinary multi- 
ple assignment statement the same way as in Stat ' .  

We now show that the block statement and the conditional composition, 
as defined in Stat  • can be constructed in Stat. 

Let v be any list of variables and S any statement in the extended specification 
language. Then 

((v :=v. true); S; (v :=v. true)) (Q) 

= [definition of sequential composit ion] 

(v :=v. true) (S ((v ".=v. true) (Q))) 

= [definition of demonic assignment statement] 

(v :=v. true)(S(V v. Q)) 

= [definition of demonic assignment statement] 

V v . S ( V v . Q )  

for all predicates Q. Thus we can define the block statement as 

d e f  
[var v; S] = v.'= v. true; S; v.'= v. true. 

This definition clearly shows the intuitive meaning of our block construct; the 
value of v is undefined when entering the block as well as when leaving it. 

Now let bl and b2 be any predicates and $1 and $2 any statements in 
the extended specification language. Then 

({b I v b2}; (bl -~ S 1 A b2 -~ $2)) (Q) 
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= [definition of constructors] 

{b, v b2} ((bt ~ S,)(Q) ^ (b2 ~ $2)(Q)) 

= [definition of assert statement and guarded statement] 

(b 1 v b2) ^ (b t ~ S1 (Q)) ^ (b2 ~ $2 (O)) 

for all predicates Q. 
Thus we can define conditional composition, in Stat called demonic condition- 

al composition as 

i f b ~ S ~ D b 2 ~ S 2  { b ~ v b 2 } ; ( b ~ S ~ ^ b 2 ~ S 2 ) .  

Identifying the symbols 0 and ^ (both standing for a demonic choice) we 
could instead have defined if. . .  fi as a constructor, using the definition of [19, 
21], 

(if S fi) (Q) = --7 S(false) ^ S(Q). (25) 

We have two good reasons for not doing this. The first reason is that this 
definition gives the traditional meaning to the conditional composition if bl 
-~S~Db2~S2 fi only if $1 and $2 are strict (non-miraculous). However, this 
problem can be overcome. As noted in [19], any miraculous statement S can 
be written as b ' ~  S' where S' is strict. Since b ~ ( b ' ~  S')= (b ^ b ' ) ~  S', we can 
always rewrite a conditional composition into a form if b'~ ~ S'~ D bh -~ S~ fi where 
S'~ and S~ are strict. 

Our second and stronger objection to the constructor i f . . . f i  is that it is 
not monotonic  with respect to substatement replacement. This limits its useful- 
ness in program development, as pointed out by Morgan [19]. As we shall 
see, this also means that it cannot be defined using the constructors of our 
extended base language. Hence, we will not accept (25) as a definition. 

We define a second conditional composition; 

dcf  
ifb~ -o StOb 2 ~ S 2 • = ({b~}; $1) v ({b2}; 82). 

This is the angelic conditional composition. When executed in a state where 
both bl and b 2 holds, it makes an angelic choice between $1 and $2. In all 
other states it acts like the ordinary conditional composition. 

When there is only one alternative, the two conditional compositions coin- 
cide; we define 

i fb-o S fi~f {b} ; S. 

9.2. Construction of the Specification Language Statements in ~d 

We now show how all the statements in the extended specification language 
can be constructed within the extended base language cal. The angelic strict 
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assignment statement is constructed as in Sect. 8. Sequential composition, meet 
and join are the same as the corresponding constructors in cg. 

From the duality shown above it follows that the construction of the demonic 
miraculous assignment statement is the dual of the construction of the angelic 
assignment statement. Thus 

v: ~v ' .P= A ( (v=d)  ~ (v~ P[d, v/v, v'])) 
d 

using the demonic miraculous update statement v ~ P, constructed as 

v ~ P = A (d/v> 
d :P  

when Var(P)~_ v, and in the general case as 

v~ P= f ( (w=d)~ v~  P[d/w]) 
d 

where the list w consists of all the variables that P refers to and which are 
not in v. 

Since every monotonic  predicate transformer can be constructed in cg, all 
fixpoint statements have a construction in ~. 

Derived statements. The derived statements were defined in terms of primitive 
statements and the constructors " ;" ,  " A " and " v ". Since the primitive state- 
ments have been constructed in cg, we can also construct the derived statements. 
In particular, we have the two dual constructions 

{ P } = V ( v = d ) ,  
d :P  

P -" = A (v  = d)  ~ 
d: P 

The suggested constructor if . . .  fi cannot  be constructed within cg. This is 
because all the constructors of ~ are monotonic  with respect to substatement 
replacement but i f . . . f i  is not. This does not mean that we cannot construct 
every separate statement if S ft. Rather, it means that there is no expression 
T(X) built up of the primitive statements and constructors of ~ in addition 
to the statement variable X, such that T(S)=ifS fi for all statements S. By 
the same argument,  we can show that the duality operator  ( )0 cannot be con- 
structed within c~. 

I0. Conclusion 

We have shown how every strict monotonic  predicate transformer can be con- 
structed within a lattice-based command  language cg• with very simple primitive 
commands.  We extended the base language cg• to cover all monotonic  predicate 
transformers by combining it with a dual language cgT. This dual language 
was constructed by changing one of the primitive statements of oK• from strict 
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to miraculous. This strict base language cg• was shown to be complete, in the 
sense that all strict monotonic  predicate transformers can be constructed within 
it. Similarly, the extended base language was shown to be complete, in the 
sense that  it contains all monotonic  predicate transformers. 

The weakest precondition predicate transformers for the statements of a 
quite general specification language, permitting both demonic and angelic non- 
determinism, were then constructed within cg• 

Finally we defined a general specification language with a strong sense of 
duality, permitting both demonic and angelic nondeterminism as well as strict 
and miraculous statements, and showed how the statements of this language 
can be constructed using the extended base language oK. 
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Appendix: Proofs of Lemmas 

Proof  o f  Lemma 2. Let a be an arbitrary state. Then 

(V ((v = d) ^ P [ d / v ]  )) (•) = t t 
d 

<=- [ v ,  ^ as pointwise extension] 

V ((v = d) (~) ^ P [d/v] (~)) = t t 
d 

<~- [join in Bool is logical disjunction] 

((v = d) (a) = t t) ^ (P [d/v] (a) = t t), for some d 

<* [definitions of (v = d) and P [d/v] ] 

(a(v) = d) ^ (P(a [d/v] ) =  tt), for some d 

<~- [one-point  rule] 

n (a [a (v)/v]) = t t) 

n(a)  = t t. 

Proo f  o f  Lemma 4. First, we prove (a). 

(V <v=d>)(9 . )  
d:P 

= [definition of qualified join] 

(V(d: P [d/v] = true: <v = d))) (Q) 

= [ v as pointwise extension] 

V(d:  P [d/v] = true: ( v  = d)  (Q)) 

= [definition of <v = d ) ]  
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V(d:  P [d/v] = true: (v = d) A Q) 

= [Join Infinite Distributivity,  Lemma  3] 

V ( d :  P Idly] = true: (v = d)) ^ Q 

= [definition of qualified join]  

( V  (v = d)) ^ Q 
d: P 

= [ L e m m a  1] 

P^Q. 
N o w  we move  to (b). 

(A <d/v))(Q) 
d: P 

= [definition of qualified join, pointwise extension] 

A(d:  P [d/v] = true: ( d / v )  (Q)) 

= [definition of <d/v)] 

A(d:  P [d/v] = true: Q [d/v] ). 

Now let a be an arbi t rary  state. Then  

(A(d:  P [d/v] = true: Q [d/v])) (a) = t t 

r [ ^ is defined as pointwise extension] 

A(d:  P [d/v] = true: Q Idly] (a)) = t t 

�9 ~ [ ^ in Bool is logical conjunct ion]  

(P [d/v] = true)=~ (Q [d/v] (a)= t t), for all lists d 

r ~_ v implies that  P[d/v]  is true or false] 

(P [d/v] ( a )=  tt)=~(Q [d/v] (a)= tt), for all lists d 

[definition of =~ in Bool] 

(P [d/v] (a)=r Q [d/v] (a))-- t t ,  for all lists d 

r [subst i tut ion distributes over  connectives]  

(p=e,Q) Idly] ( a )=  tt, for all lists d 

[definition of quantified predicate]  

(V v. ( P ~  Q)) (a) = t t. 

Thus, (b) is proved.  The  p roof  of (c) proceeds exactly as the p roo f  of (b). 

Proof  of  Lemma 6. Let Q be an arbi t rary  predicate.  First, we prove  (a). 

(s~ ~ (Q) 

= [definition of dual]  

-7 S ~ (-7 Q) 

= [definition of  dual]  

7 (-7 S ( 7  -1Q)) 
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= [property of inverse in the boolean lattice Pred (double negation)] 

S(Q) 

Next, we prove (b). 

S o monotonic 

r162 [definition of monotonicity] 

v Q, Q'.(Q <= Q' ~ s~ <=S~ 

,r [definition of dual] 

V Q, Q'.(Q <Q'=~S(-TQ)< TS(7Q')) 

r [property of inverse in the boolean lattice Ptran] 

v Q, Q'.(O <= Q' ~ s ( - .  03<= s(-7 Q)) 

,~  [property of inverse in the boolean lattice Pred] 

V Q, Q'.(7Q' <-7Q=~ S(-7Q')< S(7Q)) 

[every element in a boolean lattice is the inverse of a unique element] 

V Q, Q'.(Q' < Q=e, S(Q') < S(Q)) 

r [definition of monotonicity] 

S monotonic. 
Now, (c). 

(s~ s o) (Q) 

= [definition of sequential composition] 

S~176 

= [definition of dual] 

s~ s2 (7  (2)) 
= [definition of dual] 

7 S1 (7  7 & (-7 Q)) 

= [property of inverse in the boolean lattice Pred (double negation)] 

7 S1 (S2 (7  Q) 
= [definition of sequential composition] 

-7 (sl; s2) (7  Q) 

= [definition of dual] 

(Sl; $2) 0 (O). 

Next, (d). 

so < s o 

<:~ [definition of partial order in Ptran] 
V Q. S o (Q) = S o (Q) 

[definition of dual] 

621 
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V Q . --a S2 (-n Q) <-n S1 (--a Q) 

<:~ [property of inverse in the boolean lattice Pred] 

VQ.S,(~Q)<=s2(-~Q) 
[every element of a boolean lattice is the inverse of a unique element] 

VQ.S,(Q)<S2(Q) 

<=~ [definition of the partial order in Ptran] 

$1 < $2. 

Then, (e). 

(ASi) ~ (a) 
= [definition of dual] 

-~(AS,)(-1 Q) 
= [DeMorgan rule (1) for complete boolean lattices] 

V(-~S, ( - ,  Q)) 

= [definition of dual] 

Vs~ 

Now, (f) is proved using (a) and (e). To prove (g), assume that S is conjunctive 
and let P and Q be arbitrary predicates. Then 

S O (P v Q) 

= [definition of dual] 

~ S ( - a ( P  v Q)) 

= [DeMorgan rule (1) for predicates] 

-',S(-1Q ^ ~P) 
= [S is conjunctive] 

--a(S(--a Q) ̂  S(--a P)) 

= [DeMorgan rule (2) for predicates] 

- 1 S ( ~  Q) v --q S ( ~  P) 

= [definition of dual] 

S ~ (P) v S ~ (Q). 

Finally, (h) is proved using (a) and (g). 

Proof of Lemma 7. Let Q be an arbitrary predicate. Then 

( V ((u = c'); magic) v V ( u  = c'))(Q) 
c" * c  c' 

= [definitions of constructors] 

V ((u = c')(magic(Q))) v V ( ( u  = c')(Q)) 
c" ~: C c' 

= [definition of magic, Lemma 5(a)] 
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V ( (u=c ' )  (true)) v Q 
C" ~C 

= [definition of test statement] 

V (u=~')vO 
r  =1= r 

= [predicate calculus] 

~(u=c)vQ 
= [predicate calculus] 

(u=e)~Q. 

The second part is proved in the same way. 

Proof of Lemma 18. The monotonicity of the two primitive statements is straight- 
forward to prove. It is equally straightforward to prove that the constructors 
preserve monotonicity. 

Substatement monotonicity of sequential composition, meet and join follow 
from the corresponding results of earlier sections. 

Substatement monotonicity for least and greatest fixpoint composition is 
proved as for recursive composition. First assume that T(X) is an expression 
built up of primitive statements, sequential composition, meet and join. Further 
assume that replacing some substatement of T(X) (except X) with a greater 
statement gives the new expression T'(X). By the substatement monotonicity 
of sequential composition, meet and join, we have 

T(S) < T'(S) for all statements S. (26) 

Let # and/~' stand for the least fixpoints of 2X. T(X) and 2X. T(X), respectively. 
By the definition of least fixpoints we know that 

T(~)=# (27) 

T(S)<S=~#<S for all S (28) 

T ' ( f f )=ff  (29) 
T'(S)<S=~#'<S for all S (30) 

Thus, by (26) and (29), 

and by (28), 

T(#') < T' (if) = #' 

#__<#' 

Dually, by the definition of greatest fixpoints we know that 

T(v) = v 
S < T ( S ) ~ S < v  for all S 

T'(v')=v' 

S < T' (S)=~ S < v' for all S 

(31) 

(32) 

(33) 

(34) 
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where v and v' stand for the greatest fixpoints of 2X.  T(X) and 2X- T(X), respec- 
tively. Thus, by (31) and (26), 

v = T(v) < T' (v) 

and by (34), 

V~<~]? I. 

We have thus shown substatement monotonicity for least and greatest fixpoint 
composition, in the case when T contains no fixpoint composition. The case 
when T contains one or more fixpoint compositions is now proved by an induc- 
tive argument. 

Proof of Lemma 19(d). Let # be # X . T ( X ) .  Then we have to show that #o 
is the greatest fixpoint of T ~ i.e. that the following two conditions hold: 

T O (#o) = #o 

S< T~ ~ for all S. 

We have 

TO(# ~ 

= [definition of T ~ 

(T((#~176 ~ 

= [Lemma 6(a)] 

(T(#)) ~ 

= [# is fixpoint of T] 
#o 

and for arbitrary S, 

S < T~ 

=~/-definition of T ~ 

S <=(T(S~ ~ 

=*- [Lemma 6] 

T ( S~ < S ~ 

= [# is least fixpoint of 7"] 

# < S  O 

=~ [Lemma 6] 

S < #  ~ 
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