RICHARD B. WHITE

THE CONSISTENCY OF THE AXIOM
OF COMPREHENSION IN THE INFINITE-VALUED
PREDICATE LOGIC OF£UKASIEWICZ

It is natural to suggest that the paradoxes of naive set theory can be avoided
not by asserting only special cases of the axiom of comprehension
(Ex)(»)(y €x <= A(»)), as in set theories like ZF formulated in classical
predicate logic, but rather by retaining the unrestricted comprehension
axiom while weakening the underlying logic. Various experiments have been
made with such “type-free” logics by Ackermann [1], Fitch [3], Schiitte
[6], and others. One of the most interesting proposals is Skolem’s. After
showing that versions of Russell’s paradox can be produced from the
unrestricted comprehension axiom in any finite-valued Lukasiewicz
predicate logic, Skolem conjectured that the axiom can however be con-
sistently added to the infinite-valued Lukasiewicz predicate logic [7]. He
also suggested that it may be possible to derive a significant amount of
mathematics in a set theory based on this logic.

Skolem’s conjecture about the consistency of the axiom of comprehen-
sion in the infinite-valued logic has been partially confirmed by Skolem
himself and by Chang and others [2]. In this paper I shall prove Skolem’s
conjecture by using some simple modifications of methods from classical
proof theory and model theory: normalization of proofs in a natural-
deduction calculus and the use of maximally consistent sets of formulas. It
remains to investigate the mathematical strength of the system, and I
conclude the paper with some remarks on this subject.

In outline the consistency proof proceeds as follows. Louise Hay [4]
has provided a complete axiomatization of the infinite-valued predicate
logic, although her formalization is not an axiomatization in the strict sense
since it requires an infinitary inference rule. (It follows from work by
Scarpellini [5] that this is the most one can hope for.) The result of adding
the comprehension axiom to Hay’s predicate logic, with only the dyadic
predicate “‘e” is here called H, it is therefore sufficient to prove that H is
consistent. For this purpose H is enlarged by adding certain Hilbert 7-terms
to obtain a system H, . Every theorem of H is a theorem of H, . H, is then
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proved consistent by the use of a natural-deduction calculus G in the
language of H,. G is shown to be consistent, and therefore there exist sets
of formulas which are maximally consistent with respect to G. Not every
theorem of H, is a theorem of G, but every closed theorem of H; belongs
to every maximally G-consistent set. Therefore a contradiction cannot be a
theorem of H, or H, and H is consistent. The consistency of the natural-
deduction system G follows from the fact that certain proofs in G can be
normalized in the sense explained below; it is for this normalization that the
7-terms are required. (e-terms could have been used instead, but since the
universal quantifier is primitive in G it is slightly more natural to use

T-terms.)
The language of H has free variables aq, 2, , . . . and bound variables
Uy, V1, . - . . The terms and formulas of H are determined recursively as

follows. Every free variable is a term. The constant f is a formula, read
“the false.” If 4 and B are formulas, (4 - B) is a formula. If s and ¢ are
terms, s € ¢ is a formula. For any free variable 4, bound variable x, and
formula A(a), the class abstract (x: A(x)) is a term and the universalization
(x)A(x) is a formula. (4(x) is the expression which results from replacing
all occurrences of a in A(a) with occurrences of x, changing bound variables
in A(a) as necessary to avoid unintended bindings. Similarly, for any term
t, A(?) is the result of substituting ¢ for a in A(4).) A formula or term is
closed if it contains no free variables.
The following abbreviations are convenient

—Ais(4-=>f).

(AvB)is((A > B)—>B).

(A&B)is—(—Av—B).

(A<= B)is((A~>B)& (B~ A)).

(A +B)is(—A—>B).

(4-B)is— (4 ~—B).

"Ais(A-(4-+-A)) (nconjuncts).

(A4' >B)is(A~>B),and (A"*! > B)is(4 > (A" = B))

forn>1.

s§tis—s€Et.
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Parentheses may be omitted from terms and formulas in accordance
with the usual conventions. It will aiso sometimes be necessary to dis-
tinguish symbol tokens from symbol types. In particular, “formula,” uniess
qualified, will be taken to mean “formula token.” Thus in the sequence
A, B, A there are three formulas; two of these are of the same type, type 4
as we shall say.

The axiomatic system H has the following axiom schemes.

H1. A~ (B~ A).

H2. A->B)>(@B~+C)*>A ().

H3. AvB->BvA.

H4. (—A—+—B)>(B—>A).

H5. (Ex)A(x)* (Ex)A(x) > (Ex)(A(x)* A(x)).

Hé. A(D) > (Ex)A(x).

H7. (Ex)A(x) > (Ey)A().

H8. (x)(A(x) = B) = ((Ex)A(x) = B), if no occurrence of x in
B is bound to the initial quantifier of (x)(4(x) = B).

H9. (A - (Ex)B(x)) =+ (Ex)(A - B(x)), if no occurrence of x in

A is bound to the initial quantifier of (Ex)(4 - B(x)).

H10. A(D) > tE(x: A(x)).

Hi11. tE(x: Ax)) > A(2).

The inference rules for H are modus ponens, generalization, i.e.,
F (x)A(x) if - A(a), and the infinitary rule (inf): -A if - (4" > /)=> A
for every n > 1. (Instead of inf Hay used the rule: |- A if |- "4 + 4 for
every n > 1. Since in the infinite-valued sentential logic '4 + A is— A4 +> 4,
24 + A is— — (A > — A) - A which is equivalent to (42 » ) > A, and in
general "4 + A is equivalent to (4™ - f) = A, rule inf is equivalent to
Hays’ infinitary rule.)

From the axioms a € (x: A(x)) > A(a) and A(a) > a € (x: A(x)) one
easily derives 2 € (x: A(x)) «—> A(a) by use of H1 —H4 and modus ponens.
Therefore - (¥)(¥ € (x: A(x)) < A(»)) by generalization, and

b (Ex)(»)(y € x < A(»)) by H6 and modus ponens. The principles of
comprehension are therefore theorems in H.
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The language of the systems H, and G extends that of H by enlarging
the definition of “term’ with the clause: for any bound variable x and
formula A(a) whose only free variables are of type a, TR A(x) is a term for
every positive integer n. The set of formulas is of course thereby also
enlarged, since formulas of H, may contain 7-terms. (The reason for supply-
ing infinitely many 7-terms for each formula A(z) with only free variables
of type a will become clear in the consistency proof for G.)

“The system H,; has axiom schemes H, 1 —H, 11 which are just H1—-H11
for formulas of H,. The inference rules of H; are again modus ponens,
generalization, and inf. Every axiom of H is also an axiom of H,, and so
H, is an extension of H. (It is a conservative extension, but this fact is not
needed for the theorems below.)

The scope of 7 in a term 73B(x) is the expression B(x). Notice that in an
instance of H, 6, i.e., A(¢) = (Ex)A(x), the term ¢ cannot occur in the scope
of a 7 in A(¢), since otherwise (Ex)A(x) would not be a formula of H,. For
example, if A(f) were t E73¢ €y, (Ex)A(x) would be (Ex)x ETix €y
which by the recursive definition of “formula” would be a formula of H,
only if 2 € r},a € y were a formula for some free variable a. This is
impossible since 71a €y is not a term. (A similar observation about the
natural-deduction rule — ui to be introduced below is important in the
consistency proof for G.)

The crucial contribution of G and its consistency proof is to provide
maximally G-consistent sets for Theorem 9 below. The r-terms were intro-
duced to extend H to H,, because without them the H theorem
(A - (Ex)B(x)) > (Ex)(A - B(x)), for example, is not provable in G.
Proofs in G are upwardly branching finite trees. Each node of a proof tree
is a formula, and the topmost formulas are assumption formulas. Each
assumption formula is assigned a positive integer which is written directly
above it, and if two assumption formulas in a proof have the same number
they must be formulas of the same type. When reference is made to the
type of an assumption, as opposed to an assumption formula, the number

L . 2 3 .
of the assumption is to be taken into account. Thus A and A as assumptions

in a proof are assumptions of different type. Certain of the inference rules
of G may close assumptions in a proof, An assumption which has not been
closed in a proof is open in that proof. A proof without open assumptions
is a categorical proof. A formula is a theorem of G if it is the conclusion of
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a categorical proof in G. A categorical proof whose conclusion is of type f
is a contradictive proof.
Capital sigma and pi, sometimes with subscripts, will be used to denote
k
proofs in G. f is a proof whose conclusion is A. (4) is a proof with zero
pX
k

or more open assumptions of type j, 30 (;)
. B s k=

and perhaps open assumptions of type 4 For any proofs 4 and (4), (4)
nn

is a proof with conclusion B

is the proof which results from first forming the proof ?; by replacing

n X m+n
each assumption _in | with , where m is the least natural number

C 4 C

z .
sufficient to insure that no assumption number in Al is an assumption

k k
numbser in (4), and then replacing each open assumption of type 4 in
n

k
(A) with the conclusion of a proof of type i’ . Two proofs X and Il are
n

said to be disjoint if for no A and k do Z and Il both have an open
assumption of type j .
The inference rules for G are the eight following.

Implication Introduction (= i)
z

B C el . k
A_’B,cloung,nfdemed,allopenammptxonsoftypel‘ in
z

5’ for some k. (If an application of > i closes assumptions



514 RICHARD B. WHITE

of type: this is indicated in a proof by writing “k” to the

right of the line above the conclusion of the inference. )

Implication Elimination (- ¢)

zZ n
A A->B

z I .
, id d isjoint.
provi edthatA an A_’Ba:e disjoint.

Disjunction (v)
p)

AvB
BvA’

Ex falso quodlibet (q)
z
f . .
Z’ provided A is not of type f.

Universal Quantifier Introduction (ui)
z
A@ZAKX)
(*)A(x)

variable.

» provided of course that A(a) has only one free

Negative Universal Quantifier Introduction (— ui)
z
—A@)
—(x)A()
Class Introduction (ci)
z
A(D
tE(x: AX))’

, provided that ¢ is a closed term,
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Negative Class Introduction (— ci)

2z
— A
tE(x: ARx)’

In addition to these primitive rules the following four derived rules will
be used in the proof of Theorem 1 below.
Double Negation (dn)
p>

£—, closing, if desired, all open assumptions of type _k in z

A f

If no assumptions of type __k 4
is not of type f, dn is simply an application of the rule q. If 4 is of type f
the rule is obviously justified. If some assumptions are closed by the rule
and A is not of type f the following proof justifies dn:

are closed by an application of dn and 4

k
-4)
m z
f .
A7 A ohk
—-DA-H’mf—vA v
f e,
A
Universal Quantifier Elimination (ue)
z
(j‘-)‘%)x) , provided that 7 is closed.

This is justified by
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k
z —A(t)
(x)A(x) -—(x)A(x)

A_(tidnk

Existential Quantifier Introduction (ei)

pX
AQ®)
(Ex)A(x)’

This is justified by:

provided ¢ is closed.

k
I @-4AE)
AY —4Q)
f
Ex)AG)

=ik

Existential Quantifier Elimination (ee)

z

(Ex)A(x)
A(AK)’

and (Ex)A(x) is closed.
This rule is justified by

k

—A€4E) 3

() —40)  (EAR)

_r
@Ay ™k

Not every axiom of H, can be proved in G, but every closed axiom is
provable in G, as our first theorem shows.

, where €2 A4(x) is an abbreviation for 7% — A(x)

THEOREM 1. Every closed axiom of H, is a theorem of G.
Proof. Axioms H, 1—H, 4 are easily proved in G as follows.
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1 1 2
A AA-B 3
—_— e
B->A il B B~C
A->@B~4) ,
-+i 1
1 A->C i3
AvB B>C)~(4~C) " aia
BvA® . @~B~>@B-0O~@-0) T
AvB-»BvA’

A closed instance of H, 5 is proved in G as follows, since if (Ex)A(x) is
closed the term €2 A(x) must be closed.

1

3 EXAE) 2
(EAG)  AEAR) ©  AllA)~>—A€A@) |
A6 —ACAG)
—L i
“EAn) " 4
(EDAG)~—ENAG) "~ (EAE) ENAK) |
f .
ACAG) ACAD) )
(Ex)AE)-AG)

EDAG) - ED)AG) + EDARE) AE) "

A closed instance of H, 6 is trivially proved by use of ei, since ¢ must be
closed:

1
A0,
EAE " |
A0~ EAE

Closed instances of H, 7, H, 8, and H, 9 are proved as follows.
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1 2 1
(ExAR) EDAX) (A~ B)
AEAR) AEAC)"  AEA)B "
ENAG) . B i,

EDAR) > ENA0) VORI

@AE) > B)~> (EDAC)-B) '

2 1
A A-(Ex)B(x) N
EDBG)
BEBG)
A-B(elBRx)
EA-Be) ©
(A~ (Ex)B(x))~> (Ex)(4 > B(x))
Proofs of H,10 and H, 11 are:
1 1
AQ) 2 —A()
[€EAE)” || 1€AG) €6 AR)
A tEX AX) ~ —f—dn .
a9 ____,,,

LE (x: A(x)) > A(?)

This completes the proof of Theorem 1.

A 7-term T3 A(x) is said to be used in a proof T if T has a part

n n
A(1zA(x)) A(zAX))

ui. A proof is pure if for every part

(x)A(x) (x)A()

ui in the proof

the term 73A(x) is not used in Clearly every proof can be

I
A(zAX)
converted to a pure proof, for a part
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1,
AGAG)
(©)46)

1,
AGZAR)

— ., u

(x)A(x)
can be changed to

m;
AGEAG)
©46))
I,
AGIAG)
@A)

where k is a number such that no 7-term rzB(y) was in the original proof
and 11, is the result of substituting 7*A4(x) for 724(x) throughout I1,. By a
series of such changes any proof which is not pure can be transformed to a
pure proof, and so henceforth it will be assumed that every proof is pure.
The next two theorems are lemmas for the proof of the consistency of G.

k
THEOREM 2. If a proof (A) has an open assumption of type j, then it
z

has exactly one open assumption of typej.

This theorem results from the restriction on - e. The proof is by
k
induction on the length of (4), where the length of a proof is simply the
z
k
number of formulas occurring in it. The shortest proofs (4) consist of a
z

single assumption j , s0 the theorem is obviously true of these. Assume the
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k
k k k (?I)
theorem true for proofs (4) shorter than a proof (4). If (4) is — r, where
n z z
ris—>i,q,v,ui,—ui, ci, or — ci, the theorem follows obviously from the
k
induction hypothesis. If (4) is
z
k k
“) “)
21 22 23 24
B B—*C_)e or B B-*C_)e
C C
the theorem also follows from the induction hypothesis, since by the
- . k. Z,
trict - e th tb t f
restriction on -> e there cannot be open assumptions o typeA in BoC
2
or B

For any proof X let E{z““") be the result of substituting terms of type ¢
for all terms of type 73A(x) in Z, i.e., the result of replacing each formula
B(RA(x)) in Z with B(r). The following theorem shows that sometimes the
result of such a substitution is a proof.

THEOREM 3. If ¢ is a closed term and 13 A(X) is not used in Z, then
ETA™) js 4 proof. .
Proof. The proof is by induction on the length of 2. “IITxA%" will be

abbreviated to “Tl,”. If Z is an assumption then since # is closed

k
B(rzA(x))’
all 7-terms in B(r3A(x)) remain 7-terms in B(z) and B(7) is a formula, so

B’zt) is a proof. Suppose the theorem true for proofs shorter than a proof Z.
I
IfXis m r in which ris =i, q, v, ci or — ci the theorem clearly

follows by the induction hypothesis, as it also does if Z is
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Z z
B(rzA()) B(1:A(x)) > C(r2AK)) |
C(rzA(x))
nn
— B(s(124(x))

IfXis — ui, where s(r3A(x)) is a term which may contain

—()B0)
TeA(x), then no occurrence of y in — (¥)B(¥) can lie within a 7-term
122 C(z) in — (¥)B(») unless y is of type z. By the induction hypothesis
I,
—B'(s(1))
in B(s(r2A(x)). But then Z, is a proof. (In general this would not be the
case if free variables were permitted in r-terms, for then, for example,

is a proof where B'(s(¢)) is the result of substituting ¢ for 7RA(x)

n
™MxEsé¢s
"yEyE 1d be a f la and f —
(»)72x €y €y would be a formula and a proo TOYIxEyEy ui
It
would by the substitution of ¢ for ‘r"xesbecome—-——tfi———ui
y ¥ —(Qyx€yey

which is no longer a proof because — (¥ )rex € y €y cannot be inferred
from ¢ € s by — ui.)
n

IfXi %%(% ui then 73 A(x) is not of type 73 B(y), sincé 73 A(x)

n
is not used in Z. By the induction hypothesis , . ¢, is a proof, where
B(ry'B'()
nn
B'(y) is the result of substituting ¢ for 724(x) in B(»). Then B (S;;B(S» ui

is also a proof. This completes the proof of Theorem 3.

The consistency of G will follow from the fact that every contradictive
proof in G can be reduced to a proof which is “normal” in a certain sense.
It is then easy to see that there can be no normal contradictive proof. To
prove the consistency of G first the following operations called “reductions”

to be performed on contradictive proofs are required. Let z

f

be any contra-
dictive proof.
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p> n 3
f-reduction: 1If , then . is replaced
f A

with such a proper contradictive part which itself has no proper contra-
dictive part.

has a proper contradictive part

- reduction: If z has a part

f
k
“)
Z2
z, B 3
4 a8 0k
> e ,
B
I
that part is replaced with (A). If z has a part
Z, f
B
2
Z, _B
A A->B
N

. , . , a2
in which the — i closes no assumption, then that part is replaced with B’.

u-reduction: If ? is

n I,
ACAR) | _—A®
@A " C@am
f E]
it is replaced with
1) m,
A(r) —A(1) e

f
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By Theorem 3 the result of this reduction is a proof, since ¢ must be closed

and we may assume that ? is pure.

c-reduction: If z is

f
Z zZ,
A0 __ ci __AO ci
tE(x: A(x)) t & (x: A(x)) e
f
zZ, Z,
then it is replaced with M e,

!
A proof is weakly normal if no reduction can be made in it. By Theorem
2 any -> reduction in a contradictive proof results in a shorter proof, since it
z

is clear from that theorem that the length of a proof (':]) must be less than

B
z

the sum of the lengths of :: and (ﬁ). 1t is obvious that the other reductions

B
shorten proofs. Therefore we have

THEOREM 4. Every contradictive proof can by a finite number of
reductions be reduced to a weakly normal contradictive proof.

An application of the rule v will be referred to simply as “a v.” An
z

AvB
instance Y2 ofvis categorical if the proof z is categorical. A contra-
BvA AvB

dictive proof is normal if it is weakly normal and contains no categorical V’s.

THEOREM 5. If there is a contradictive proof, then there is a normal
contradictive proof.
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An example suffices to show that every contradictive proof can be
converted to a normal contradictive proof. Let

Z,

‘FVvE
EVF)

Z Z3
AvB DvC

Bva' cvD’
"

be a weakly normal proof with only the three v’s as indicated. If none of
these V’s is categorical, the proof is already normal. If not, suppose for

Zy
AvVB. . .
example that Bvd is categorical. Then form the categorical proof
Z,

FvE
(EvF)

m 23

A o DvC

Bva ' CcvD

%q _(assuming B is not of type f)
-im Z

A->B AvB
B

—>e.

(The disjointness restriction for the —> e is satisfied because 4 1B is

v

categorical.) Let this proof be 2 Now form the contradictive proof
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Z2
FvE
EVF)
S I O
DvC = B B-A
Bvd C\\//D , where Bvd is short for ———T*e,
: : rRd)
. . BvA

’3
for appropriate j. Reduce this contradictive proof to a weakly normal
contradictive proof which may be symbolized as

e s

FVE FVE

EvF’ EvF'

D{/cV DvC

CvD cvp "
"

If none of the v’s here is categorical, the proof is normal. On the other hand,

if for example F?ISE is categorical form the categorical proof

71 Ja
F ,
> ->1
EvF EvF
DQCV DQCV
CvD CvD
e
A
—— i Zs
F->E FVvE
- -
—_— ] Zs
F->E FVE
->e
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Let this be 2,‘. Next form the contradictive proof

I, I,
E E
EVvF EvF
-f .

and reduce this to a weakly normal proof, which in general will have the
form

26 27 23 29
DvC DvC DvC DvC
cvp 'cvb 'cvp Y evp ¥

.f .
If none of the v’s in this proof is categorical, the proof is normal. Otherwise,

suppose that D?C is categorical. Form the categorical proof

k, ky ks ks
D . D D . D ,
Cv.D C\{D CvD CvD

Cf
———Cq ik Zs
DvCc "' DvC
>e
< i,k Z
D~C "% DvC
c
, Ze
p>c "™ bpyc
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Let this be I::, Then form the contradictive proof
H2 Hz n2 n2

c c c c
CvD CvD CvD CyD’

AP
This proof no longer contains any v’s, and so when it is reduced to a weakly
normal proof that proof must be normal. It is evident that the procedure of

this example will work in general.
The consistency proof for G is completed by the next theorem.

THEOREM 6. There can be no normal contradictive proof in G.

The theorem is proved by showing that a normal contradictive proof
must have an infinite path, which is impossible. Suppose z is a normal

f
E1 22

A A
contradictive proof. z must be ———— > ¢, since z can only be

f f f

inferred by - e. Since zZ, is normal, the conclusion of Z; —4 cannot be by

f

- i, q, or v. — A cannot be inferred by ui or ci. Therefore the conclusion of

2 must be by — ui, — ci, or -> e. Suppose the conclusion of _2; is by

—ui. Then A is (x)B(x), which cannot be inferred by =i, v, —ui, ci, or
— ci because of its form, and which also cannot be inferred by ui or q
Iy I,
A

because the proof is normal. j' must therefore be g——g— —e. The

conclusion of Cz-:: 4 cannot be by - i, v, or ¢ because the proof is normal,

and because of its form C - A4 cannot be inferred by ui, —ui, ¢i, or —ci.



528 RICHARD B. WHITE

Zs Zs
Z, D D~ (C-4) T
Therefore CoA must be Cod = e. By continuing in this

fashion we see that i‘ must contain an infinite path, which is impossible. A

similar argument shows that i’ would have an infinite path if the

I, 1%
conclusion of _E; were by — ci. Therefore _E; must be B _B ; —A —e.

z
Since f is normal B -+ — A4 cannot be inferred by = i, g, or v, and it
cannot be inferred by ui, — ui, ci, or — ci because of its form. Therefore
IT, I,

B—4 must be )

z
- ¢, and again we see that f must

have an infinite path. Therefore there cannot be a normal contradictive
proof, and the theorem is proved.

A set X of formula types is G-inconsistent if there is a proof ? in G all
of whose open assumption formula types are in X. X is G-consistent if X is
not G-inconsistent. A set M of formula types is maximally G-consistent if
M is G-consistent and, for any formula type A4, if MU {4} is G-consistent
then A is in M. G-consistency is a property of finite character — if every
finite subset of a set X is G-consistent then X is G-consistent. Therefore as
in classical logic it follows that any G-consistent set can be included in a
maximally G-consistent set.

THEOREM 7. Any maximally G-consistent set M has the following
properties:

MI. If A is a theorem of G then the formula type A isin M.
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M2. If the types A and A — B are in M, then the typeBisin M.

M3. If (x)A(x) is a closed formula, so that T3 A(x) is a term, then
if the type A(T3A(x)) is in M the type (x)A(x) is in M.

M4, For any formula A, if the type A is not in M then A™ — f is
in M for some positive integer n.

To prove M1, suppose that there is a categorical G-proof of 4 but that
the type A is not in M. Then M U {4} must be inconsistent, and there is a

I} whose open assumption formula types are in M or of type A.

Replacing each open assumption formula of type 4 in ? with the conclusion

all of whose open assump-

proof

I,
Iz
tion formula types belong to M, and M is inconsistent. To prove M2, assume
that the type B is not in M while the types 4 and 4 = B are in M. Then
z
f
formula types are B or are in M. Replacing each open assumption formula
i i
A A-B
B
priate i’s and /’s, then gives a proof which makes M inconsistent. The proof
of M3 is similar, replacing open assumption formulas of type (x)A(x) with

of a categorical proof f then gives a proof
MV {B} is inconsistent and there is a proof

all of whose open assumption

of type Bin ? with the conclusion of a proof - ¢, for appro-

k
the conclusions of proofs M ui. If A is not in M, then there is a
(x)A(x)
proof ? with open assumptions:i, . ,;:,Z‘, ... ,’:4"' with the By’s, if

any, belonging to M. n + m applications of =i to ?, then yield a categorical
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proof of By > (c** > (B, >(A™ >f))**+),and A™ > fisinM by n
applications of M2. This proves M4.

It remains now to be shown that every closed theorem of H, is in every
maximally G-consistent set. To do this, it is necessary to describe H, proofs
more precisely and to assign an ordinal number, for use in a transfinite
induction, to each H; proof. Proofs in H; may be regarded as trees
determined recursively as follows. An H, axiom is a proof of height zero. If

z
z AQ@)

is an H; proof of height a,
A(2) tP Bt LA

is an H, proof of height a + 1. If

z n

j andA EB are H, proofs of heights @ and , thenA——;:E is an H,
proof of height max (a, 8) + 1. If { %

is a sequence of
(Al"f)‘*A]1<i<u qu

et

“ "f)‘:iA 1<i<w ;oo
H, proof of height Sup{a;/1 <i < w}, the least ordinal greater than all
the a;’s.

H, proofs of heights a,, a, . . ., etc., then

z
A(a)
(x)A¢x)

If a proof is not pure it clearly can be

.An H, proof is pure if for every subproof in the proof the

. . Z
variable a occgrs only in Ay
converted to a pure proof. For example, even if all the free variables
a4, 4dy,4a,, . .. appear in the proof, these can be replaced with gy, a3, 4,4, . . .
leaving infinitely many free variables not appearing in the proof. Then a
1
A(a)

(x)A(x)

subproof in which the variable a occurs in the main proof outside

I3
n Ab)
A(@@) DAE)’
in the original proof and I1§ is the result of replacing the free variables of

can be replaced with where b is a free variable not appearing
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type a with free variables of type b throughout II. By a series of such
changes any proof can be converted to a pure proof.
Corresponding to Theorem 1.3 for G we have for H, the following.

THEOREM 8. For any H, proof T and closed term t, 113, is a proof if the
' I

A() inX
(x)A(x)

free variable a is not the variable of any generalization

The straightforward proof by transfinite induction on the height of £
is omitted.
The next theorem implies the consistency of H.

THEOREM 9. Let j be a pure H, proof in which the conclusion A is

closed. Then the type A is in any maximally G-consistent set.

The proof uses transfinite induction on the height of i Let M be
maximally consistent, and suppose the theorem true for proofs whose
heights are less than the height of j’ If j consists only of a closed axiom

of H,, then by Theorem 1 A is a theorem of G and so by Theorem 7 is in

%
Ai—> > A4 .
M. If i is A’ >7) y 1SIS® then since A is closed each (4™ - f) >4

is closed and by the induction hypothesis is in M. Therefore A must be in
M, since by property M4 of Theorem 7 if A is not in M then 4™ - fisin M
2 Z,

B B4
5

then B need not be closed. Let by, . . ., b, be the free variables of B, so that

z
for some M, and so again by Theorem 7 A4 is in M. If A is

B may be designated by “B(b,, ..., b,)" . Sincei is pure, no b; is the

variable for an application of the generalization rule in EBI or Bi’ ’
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v z
Therefore by Theorem 3 th fs ? d y
refore by Theorem erearePf°°sB(t,_,.,t)an B(t,...,n~>A’

where ¢ is any fixed closed term, which are the results of substituting ¢ for

22 The heights of %3 and Z

z
the b;’s in ~! and .
eorsin g an B—+A B(t,...,D B(t,...,H>4

B

are equal to those of i‘ and B i’ 0 respectively, and so by the induction

hypothesis the closed formula types B(t,...,t)and B(z,...,1)> A are in
M. By property M2 of Theorem 7 it follows that A4 is in M. Finally, if i is

I
B(b)
(09): 2%

.2, b . . .
every n. Since 4 ispure I 2 B() is a proof of height less than the height of

then b is the only free variable of B(b), and 77 B(¥) is a term for

?, and so by the induction hypothesis B(r3 B(»)) is in M. By property M3

of Theorem 7 (¥)B(») is then in M.

COROLLARY. H is simply consistent in the sense that for no A are A and
— A both theorems of H.

Proof, If A and — A are theorems of H, f is a theorem of H and so also
of H,. The formula f is closed, so if fis a theorem of H, fis in every
maximally G-consistent set. Obviously f cannot be in any G-consistent set,
and there do exist maximally G-consistent sets since the set of all theorems
of G is consistent.

As a set theory H has some serious disadvantages. First, the axiom of
extensionality (x)()((z)(z € x <z €y) =+ x =y), where x =y is defined
to be (z)(x €2z <=y € z), cannot be consistently added to H. The reason is

that x = y vx #y is easily proved in H; here is a proof in G, lettingy Ey

be a categorical proof of y =y and tbe (z: z=y >z #y):
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1 2
x=y->x#y |, x=y
i ue
x€Et xEt=>yeEt
e
z Y€1
Y=y y=y>y#y

z
y=y_ y*y_,

class elimination, easily derived in G
e

-2

xXF#y il

X=yvxX#y

There is an analogous proof in H. It follows that A v— A4 can be proved for
arbitrary 4 from the axiom of extensionality by using (x: x = x & A4), call
it s, and the provable formula (x: x = x) = s v (x: x = x) # 5. Second, it is
apparently not possible to derive even classical first-order number theory in
H. This is because the failure of the distributive law (4 - (B = C)) >

((4 = B) > (4 = C)) makes it impossible to prove that the class of natural
numbers & is closed under the successor operation, if N is defined in the
natural way as (x: (»)(0 €Y & (z)(z Ey > 2’ €Ey) > x €y)), where z’ is the
successor of z.

It therefore seems reasonable to look for a rather different way of
extending the Lukasiewicz sentential logic to a set theory. A natural course
is to add another implication 4 = B which may be thought of as the infinite
disjunction (4 = B) v(42 > B) v(43 = B) v« *. It is evident that this
weak implication distributes over the Lukasiewicz implication. I have
investigated the following system S, and have proved that it is consistent
and contains at least classical first-order number theory. The axioms of §
are:

1. A~ (B~ A).
2 (4 ~B)=>(BC)~> (A~ C).

3 AvB->BvA (AvBisstill (4 > B)—B).
4, A

5 (A—>B)—>(A=B).

6 A=B>C)*>(A=B)>A=0)).
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7. (x)(A>B)>(A~>(x)B), xnotfreeinA.

8. (xX)A@x) > A(D).

9. Gepesexp AQey XNty st > A(t " 1,).
10. A(ty s ooty > (e o ox,n Ay 2 X, Dty o o o 8.

(It is convenient to use relation abstracts and to dispense with €.) The
inference rules are modus ponens, generalization, and the rule

F@A=B)>A~B)if-Av—A.

N is defined as (x: (»)((¥0 & (z)(yz - yz')) = yx)), and by using
Axiom 6 one easily proves (x)(NVx ~ Nx'). It is also not difficult to prove
(x)(Nx v— Nx). In fact, excluded middle is provable in S for many classes.
The axiom of extensionality in the weaker form (x)(»)((z)(xz <> yz) =
x = y) is probably consistent with S, but I have not found a consistency
proof.

Of course, the chief open problem for any set theory based on the
infinite-valued logic is to find a natural interpretation for it, an interpret-
ation which justifies the formal system in the way in which the cumulative
type structure justifies the axioms of ZF.

Centre College of Kentucky
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