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THE CONSISTENCY OF THE AXIOM 

OF COMPREHENSION IN THE INFINITE-VALUED 

PREDICATE LOGIC OF-LUKASIEWICZ 

It is natural to suggest that the paradoxes of naive set ,theory can be avoided 
not by asserting only special cases of the axiom of comprehension 
(,!?x)~)O, E x -A@)), as in set theories like ZF formulated in classical 
predicate logic, but rather by retaining the unrestricted comprehension 
axiom while weakening the underlying logic. Various experiments have been 
made with such “type-free” logics by Ackermann [l] , Fitch [3] , Schtitte 
[6] , and others. One of the most interesting proposals is Skolem’s. After 
showing that versions of Russell’s paradox can be produced from the 
unrestricted comprehension axiom in any finite-valued Lukasiewicz 
predicate logic, Skolem conjectured that the axiom can however be con- 
sistently added to the infinite-valued Lukasiewicz predicate logic [7]. He 
also suggested that it may be possible to derive a significant amount of 
mathematics in a set theory based on this logic. 

Skolem’s conjecture about the consistency of the axiom of comprehen- 
sion in the infinite-valued logic has been partially confirmed by Skolem 
himself and by Chang and others [2]. In this paper I shall prove Skolem’s 
conjecture by using some simple modifications of methods from classical 
proof theory and model theory: normalization of proofs in a natural- 
deduction calculus and the use of maximally consistent sets of formulas. It 
remains to investigate the mathematical strength of the system, and I 
conclude the paper with some remarks on tbis subject. 

In outline the consistency proof proceeds as follows. Louise Hay [4] 
has provided a complete axiomatization of the infinite-valued predicate 
logic, although her formalization is not an axiomatization in the strict sense 
since it requires an inftitary inference rule. (It follows from work by 
Scarpellini [S] that this is the most one can hope for.) The result of adding 
the comprehension axiom to Hay’s predicate logic, with only the dyadic 
predicate “e” is here called H, it is therefore sufficient to prove that H is 
consistent. For this purpose His enlarged by adding certain Hilbert r-terms 
to obtain a system Hr. Every theorem of H is a theorem of Hr. Hr is then 
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proved consistent by the use of a natural-deduction calculus C in the 
language of Hr. C is shown to be consistent, and therefore there exist sets 
of formulas which are maximally consistent with respect to G. Not every 
theorem of Hr is a theorem of G, but every closed theorem of Hr belongs 
to every maximally G-consistent set. Therefore a contradiction cannot be a 
theorem of Hr or H, and His consistent. The consistency of the natural- 
deduction system G follows from the fact that certain proofs in G can be 
normalized in the sense explained below; it is for this normalization that the 
r-terms are required. (e-terms could have been used instead, but since the 
universal quantifier is primitive in G it is slightly more natural to use 
r-terms.) 

The language of H has free variables uo, al , . . . and bound variables 
VO,Vl,... . The terms and formulas of H are determined recursively as 
follows. Every free variable is a term. The constant f is a formula, read 
“the false.” If A and B are formulas, (A + B) is a formula. Ifs and t are 
terms, s E t is a formula. For any free variable (I, bound variable x, and 
formula A(Q), the class abstract (x: ,4(x)) is a term and the universalization 
(x),4(x) is a formula. (A(x) is the expression which results from replacing 
all occurrences of II in A(Q) with occurrences of x, changing bound variables 
in A(u) as necessary to avoid unintended bindings. Similarly, for any term 
t, A(r) is the result of substituting t for a in A(u).) A formula or term is 
closed if it contains no free variables. 

The following abbreviations are convenient 

--A is (A +f). 

(A vl3) is ((A + B) --f B). 

(A&B)is-(--v-B). 

(A wB)is((A+B)&(B+A)). 

(A +B)is(-A +B). 

(A*B)is-((A+-@. 

“A is(A*(A * * *A)) (n conjuncts). 

(A’+B)is(A+B),and(A”+‘+B)is(A+(A”+B)) 
fern> 1. 

setis-ssr. 
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Parentheaesmaybeomittedfromtennsandfonmdasinsco&nce 
withtheusualconvmtions.Itwm~anmtimcsben~todis- 
tinguish symbol tokens from symbol types. ln particular, ‘Yom&” u&m 
qualified, will be taken to mean “formula token.” Thus in the seqwnce 
A,B,Atherearetbreefomwlas;twooftheseareofthesametype,typeA 
asweshallsay. 

The axiomatic system H has the followiug axiom schemes. 

Hl. A+(B+A). 

H2. (A+B)+((B+C)+(A+C’)). 

H3. AvB+BvA. 

H4. (-A +-B)+(B+A). 

l-u. 
@WW @W(x) + @O@(x) l A(x)) .  

H6. 46 + W4x). 

H7. @W(x) * QDWCV). 

H8. (x)(A(x) + B) + ((Er)A(x) + B), if no occurrence of x in 
B is bound to the initial quantifier of (x)@(x) + B). 

H9. (A + (Esc)B(x)) + (EC)@ -t B(x)), if no occurmm of x in 
Aisboundto~initirlqurn~of(Ejr)CI-+B(x)). 

HlO. A(r) -+ t E (x: A(x)). 

Hll. t E (x: A(x)) + A(t). 
The inference rules for H are modus ponens, genemliatioq i.e., 

I- (x)A(x) if I- A(u), and the i&Mary rule (inf): I- A if I- (A” +n + A 
foreveryn>l.(Inst#dofinfHrylrrtdtherab:~Aif~”A+Afa 
everyn>l.Sinceiathein~e-rahledsententirllogic’A+A~-A~A, 
‘A+Ais--(A -*-A)~A~isequirdentto(A’-+n-*A,mdin 
gemrat”k+Aisequirrlentto(A”~n~A,nrleinfirbcphrbntto 
Hays’ idlltary rule.) 

FromtbeaxiomsaE(x:A(x))+A(u)andA(u)+oE(x:A(x))one 
easIlyderivesoE(x:A(x))c*‘A(u)byweofHI-H4admoduspaaarr 
Therefore I- QD E (x: A(x)) - AQ)) by maedab, msd 
I- @w6NP Ex -A(y))byH6andmodusponea’Ihe@nclpksof 
comprehension are therefore &orems inR. 
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The language of the systems Hr and C extends that of H by enlarging 
the definition of “term” with the clause: for any bound variable x and 
formula A(a) whose on& fke variables are of @pe a, djA(x) is a term for 
every positive integer n. The set of formulas is of course thereby also 
enlarged, since formulas of Hr may contain r-terms. (The reason for supply- 
ing infinitely many r-terms for each formula A(a) with only free variables 
of type a will become clear in the consistency proof for C.) 

The system Hr has axiom schemes Hr 1 -H, 11 which are just Hl -Hl 1 
for formulas of Hr. The inference rules of Hr are again modus ponens, 
generalization, and inf. Every axiom of H is also an axiom of Hr , and so 
Hr is an extension of H. (It is a conservative extension, but this fact is not 
needed for the theorems below.) 

The scope of r in a term Q(X) is the expression B(x). Notice that in an 
instance of Hr 6, i.e., A(t) + @x).4(x), the term r cannot occur in the scope 
of a T in A(t), since otherwise (Ex)A(x) would not be a formula of Hr. For 
example, ifA were t E r$t Ey, @x),4(x) would be @x)x E rix Ey 
which by the recursive definition of “formula” would be a formula of Hr 
only if a E 7:a Ey were a formula for some free variable a. This is 
impossible since ria Ey is not a term. (A similar observation about the 
natural-deduction rule - ui to be introduced below is important in the 
consistency proof for G.) 

The crucial contribution of G and its consistency proof is to provide 
maximally G-consistent sets for Theorem 9 below. The r-terms were intro- 
duced to extend H to Hr , because without them the H theorem 
(A + (Ex)B(x)) + (Ex)(A + B(x)), for example, is not provable in G. 
Proofs in G are upwardly branching finite trees. Each node of a proof tree 
is a formula, and the topmost formulas are assumption formulas. Each 
assumption formula is assigned a positive integer which is written directly 
above it, and if two assumption formulas in a proof have the same number 
they must be formulas of the same type. When reference is made to the 
type of an assumption, as opposed to an assumption formula, the number 

of the assumption is to be taken into account. Thus 2 3 and 
A A 

as assumptions 

in a proof are assumptions of different type. Certain of the inference rules 
of G may close assumptions in a proof. An assumption which has not been 
closed in a proof is open in that proof. A proof without open assumptions 
is a categorical proof. A formula is a theorem of G if it is the conclusion of 
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a categorical proof in G. A categorical proof whose conclusion is of type f 
is a connradicfive proof. 

Capital sigma and pi, sometimes with subscripts, will be used to denote 

proofs in G. R” 
k 

is a proof whose conclusion is A. (A) is a proof with zero 
c 

k 

or more open assumptions of type k (4 , so 
A C 

is a proof with conclusion f? 

B k Z 
and perhaps open assumptions of type k 

A 
. For any proofs A” ~d@L(A) 

n n 
is the proof which results from fti forming the proof El A by replacing 

n. Z: each assumption =rn A with 
m+n 

c 
, where m is the least natural number 

sufficient to insure that no assumption number in Cl 

A 
is an assumption 

k 
number in (A), and then replacing each open assumption of type : in 

n 

&with the conclusion of a proof of type “AI. Two proofs C and Il an 
n 

saidtobedfsiointiffornoAandkdoCandIIbothhaveanopen 

assumption of type k 
A’ 

The inference rules for G are the eight following. 

Impiication InnomcCtion (+ I) 

z 

A~,cloain&Pdeahsd,rllopmuarmptionsoftype: in 

z 
B 

, for some k. If an application of + i closes assumptions 
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of type i this is indicated in a proof by writing 3” to the 

right of the line above the conclusion of the inference. 

Implication Elimination (+ e) 

z n 
A A+B 

, provided that i and n 
B A+B 

are disjoint. 

Digiunction~(v) 

B 
AvB 
BvA’ 

Ex fdso quodlibet (q) 

I: 

f , provided A is not of type f. 

Univd Quantifir Intiction (ui) 

c 
A(CA(xN 
WA(x) 

, provided of course that A(a) has only one free 

variable. 

Negative Unipersvd &m f@h Jwtvduction (- ui) 

c 
-40 

- WA(x) 
, provided that t is a closed term. 

CT&w In~tion (ci) 

z 

t E (x: A(x)) ’ 
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Ncsrtipc Ckss Innoalicc~ (- ci) 

c 
-NO 

t$(x: A(x))’ 

In addition to these primitive rules the following four derived rules will 
be used in the proof of Theorem 1 below. 

Double Negation (dn) 

c 

f k . c 
A’ 

closing, if d&red, all open assumptions of type 
-Arnf. 

k 
Ifnoassumptionsoftype-A are closed by an application of dn and A 

is not of type f, dn is simply an application of the rule q. If A is of type f 
the rule is obviously justified. If some assumptions are closed by the rule 
and A is not of type f the following proof justifies dn: 

f -+i,k 
Avf 

f-'A -+i3mfvAV 
A 

+e. 

Univd Quantifier Eltinination (2447) 

- , provided that t is closed. 
A(0 

This is justified by 
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k 
- 48 

(x&x, -(x)A(x) 1: 
f 

. 

JMslent&l Quan@erMnniWion (ei) 

c 
40 

@%W 
, protided t is closed. 

Thisisjustifiedby: 

k 
c 

A(0 
@)-A@) w 

-40 
f 

+ e. 

(&;A(x) + ” ’ 

EklstenticJ Quantijkr Ellmlnation (ee) 

z 
WW 
ANMx)) 

, where elA(x) is an abbreviation for < -A(x) 

and (Ex)A(x) is closed. 
This rule is justified by 

@I -A(x) 
f 

@94x) + e 

A&(x)) “’ k 

Not every axiom of HI can be proved in G, but every closed axiom is 
provable in G, as our first theorem shows. 

THEOREM 1. Every closed axiom of HI is a theorem of G. 
Z%ofi Axioms HI 1 -HI 4 are easily proved in G as follows. 
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1 1 2 
A i&p AA-‘B+e 3 

A+(B+A)+i’l 
B B+C 

c 
A+C -+i, 1 1 

AvB 
BvAV 

(B+c)+(A+c)+i’3 
i, 1 (A+B)+((B+C)+(A+C))+i’2. 

AvB+BvA 

A closed instance of HI 5 is proved in G as follows, since if (Ex)A(x) is 
closed the term &A(X) must be closed. 

1 
(E~)A(xx) 

(Ex):(x) A&A(x)) ee 
2 

A(e;A(x)) ee 
4&W) 

--@4(x)) 
--,--A&WI ~ e 

+e f- 

- (Ex;A(x) + ” * 
(Ex)A(x) + - (Ex)A(x) + ” 3 (Ex)A(x)~(Ex)A(x) -* e 

F 

A(& A(x)): A(&A(x)) ;; 2 
W(AWA(x)) 

(fiM(x) l @W(x) -* @%‘W *A(x)) 

+ i, 4. 

A closed instance of HI 6 is trivially proved by use of ei, since t must be 
closed: 

1 

(Ex)A(x) ei 
A(t) + (Ex)A(x) + ” ‘* 

Closed instances of HI 7, HI 8, and HI 9 are proved as follows. 
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2 1 
(WA(x) 

A(e:A(x)) ee 
(x)tAtx) -+ B) 

A(&A(x)) + B “,” e 
n 

D 

(Ex)A(x) + B 
+ i, 2 

(x)(A(x)+B)+((Ex)A(x)+B)*~’ ’ 

2 1 
A A + (Ex)B(x) 

(Ex)B(x) + e 
B(e: B(x)) ee 

A + B(E: B(x)) + .j9 2 
(Ex)(A + B(x)) ez 

(A + (EWW --, @)(A *B(x)) 

ProofsofH1lOandH1llare: 

1 
40 . 

~~W4x))Cz +i 1 
A(t) + t E (x: A(x)) ’ 

+i, 1. 

1 
2 -A(t) 

tE (x: A(x)) te(x: A(x))-‘i 

fd?Z, 1 
A(0 

tE(x: A(x))+A(f) 
+ i, 2. 

This compietes the proof of Theorem 1. 

A r-term rFA(x) is said to be used in a proof Z if 2 has a part 

l-l n 
AGAtxN 

(x)4x) 
ui. A proof is pure if for every part A(?XxN 

W(x) 
ui in the proof 

the term ala is not used in l-l 
A(GW) 

. Clearly every proof can be 

converted to a pure proof, for a part 
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~Gw) ui 

(W(x) 

can be changed to 

n3 m:Aw ((XMW ui 
fl2 4?3(x)) . WA(x) uz 

where k is a number such that no r-term 7@(y) was in the original proof 
and II, is the result of substituting r$(x) for <A(x) throughout II r . By a 
series of such changes any proof which is not pure can be transformed to a 
pure proof, and so henceforth it will be assumed that every proof is pure. 

The next two theorems are lemmas for the proof of the consistency of C. 

k 
THEOREM 2. If a proof (A) has an open assumption of type :, then it 

c 

has exactly one open assumption of type A”. 

This theorem results from the restriction on + e. The proof is by 
k 

induction on the length of (A), where the length of a proof is simply the 
z 

k 
number of formulas occurring in it. The shortest proofs (A) consist of a 

c 

single assumption k 
A 

, so the theorem is obviously true of these. Assume the 
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k k k 
theorem true for proofs (A) shorter than a proof (A). If (A) is $ I, where 

II z I2 
r is + i, q, v, ui, - ui, ci, or - ci, the theorem follows obviously from the 

k 
induction hypothesis. If (A) is 

2 

21 & x3 z4 

B B-tC B 
+e or B+c+, 

C C 

the theorem also follows from the induction hypothesis, since by the 

restriction on + e there cannot be open assumptions of type 
k. & 
A lnB+C 

or x3 

B’ 
For any proof X let & rzA:A(x) be the result of substituting terms of type c 

for all terms of type T!JA(x) in 2, i.e., the result of replacing each formula 
B(T,“A(x)) in Z with B(f). The following theorem shows that sometimes the 
result of such a substitution is a proof. 

THEOREM 3. If t is a closed term and r!jA(x) is not used in ZZ, then 

$Acx) is a proof. 
Proof. The proof is by induction on the length of 2. YI~~Acx)” will be 

abbreviated to “II,“. 
k 

If X is an assumption B(rlA(x)), then since t is closed 

all r-terms in B(TGA(x)) remain r-terms in B(t) and B(t) is a formula, so 
k 

B(t) 
is a proof. Suppose the theorem true for proofs shorter than a proof Z. 

If X is 
l-l 

BG”A (xl) 
r in which r is + i, q, v, ci or - ci the theorem clearly 

follows by the induction hypothesis, as it also does if I: is 
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If Z is - B~sG4x))) 
- WHY) 

- ui, where s(<A(x)) is a term which may contain 

7$4(x), then no occurrence of y in - (y)m) can lie within a r-term 
CC(z) in - (y)B(y) unless y is of type z. By the induction hypothesis 

l-4 
- B’W)) 

is a proof where B’@(t)) is the result of substituting t for &4(x) 

in B(s(TIA(x)). But then Ct is a proof. (In general this would not be the 
case if free variables were permitted in r-terms, for then, for example, 

l-l 

(Y)T~X Ey Ey would be a formula and a proof _ :i:z LyEy - ui 

would by the substitution oft for r:x E s become 
t4s 

-(y)T:XEyEy-Uis 
which is no longer a proof because - (y)$x Ey Ey cannot be inferred 
from t $ s by - ui.) 

II 

lf x is B(?XA) 
WW 

ui then &4(x) is not of type $BCy), since~$4(x) 

is not used in C. By the induction hypothesis nt 
B’(6’B’O)) 

is a proof, where 

l-l 

B’(y) is the result of substituting t for $4(x) in B(y). Then B’(C’B’W) ui 
6W’W 

is also a proof. This completes the proof of Theorem 3. 

The consistency of G will follow from the fact that every contradictive 
proof in G can be reduced to a proof which is “normal” in a certain sense. 
It is then easy to see that there can be no normal contradictive proof. To 
prove the consistency of G first the following operations called “reductions” 

to be performed on contradictive proofs are required. Let c 
f 

be any contra- 

dictive proof. 
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II 
f-reduction: If ; has a proper contradictive part f, then 7 is replaced 

with such a proper contradictive part which itself has no proper contra- 
dictive part. 

+ reductioh: If ’ has a part 
f 

that part is replaced with ;) ): 
x2 

. If f has a part 

B 

x2 

& B - + i 
A A+B+e 

B 

in which the + i closes no assumption, then that part is replaced with 
22 

B’ 

u-reduction: If ’ is 
f 

A(7=AWUi --NO 
‘WA(x) - @)A&);“, 

f 
, 

it is replaced with 
I+-=) 

fll 

NO ---A(0 

f 
+ e. 
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By Theorem 3 the result of this reduction ls a proof, since t must be closed 

and we may assume that z 
f 

is pure. 

c-reduction: If ’ is 
f 

21 & 

A(0 

tE(x: A(x))~~ 
-49 . 

t $! (x: A(x))- ” 
+e 

f 

then it is replaced with 40 -40 
f 

+ e. 

A proof is weakly normal if no reduction can be made in it. By Theorem 
2 any + reduction in a contradictive proof results in a shorter proof, since it 

is clear from that theorem that the length of a proof G, 
n mustbelessthan 

B 

6 the sum of the lengths of z and n . It is obvious that the other reductions 

B 
shorten proofs. Therefore we have 

THEOREM 4. Every contnzdictive pnwf can by a finite number of 
reductions be reduced to a weakly normal contmd&ive proof. 

An application of the rule v will be referred to simply as ua v.- An 
72 

AvB 2 - 
instance B v A 

of v is categorical if the proof 
AvB 

is categorical. A contra- 

dictive proof is normal if it is weakly normal and contains no categorical v’s. 

THEOREM5. Ifthereisacontmdictiveprvo~thendrnrisanownal 
contmdictive proof. 
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An example suffices to show that every contradictive proof can be 
converted to a normal contradictive proof. Let 

& 
.FvE 

(E vF) 
El & 

AvB DvC 
BVAV cvDv 

'f' 

be a weakly normal proof with only the three v’s as indicated. If none of 
these v’s is categorical, the proof is already normal. If not, suppose for 

El 

AvB 
example that - 

BvA 
is categorical. Then form the categorical proof 

(E ~0 

A 
BvA+ 

DvC 
CvD 

$ q (assuming B is n$ of type f) 
AT+i,m A vlB 

B 
--t e. 

The disjointness restriction for the + e is satisfied because ,“vl, is 

categorical. Let this proof be II B. Now form the contradictive proof 
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II 
B 

BvA 

z2 

FvE 

(EvO 
23 

DvC 
CyD ’ 

II 
B 

where - 
BvA 

is short for 

for appropriate j. Reduce this contradictive proof to a weakly normal 
contradictive proof which may be symbolized as 

x4 & 
FvE FvE 
EvFV EvFV 

Dk Did 
cvDv KiP . . 

. . 
f 

If none of the v’s here is categorical, the proof is normal. On the other hand, 

if for example & 
FvE 

is categorical form the categorical proof 

il i2 

F 
ET+ 

F - + i 
EvF 

. 

D;C Dk 
zi7 cvDv 

F+E+i’il & 

E 
FVE -be 

E+i,il 
& 

FvE 
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Letwe;. Next form the contradictive proof 

fll nl 

E E 

. 
. 

'f' 
and reduce this to a weakly normal proof, which in general will have the 
form 

x6 & G3 x9 

DvC DvC DvC DvC 
cvDvcvDvcvDvcvDv . 

. . . . . 

If none of the v’s in this proof is categorical, the proof is normal. Otherwise, 

suppose that x6 

PVC 
is categorical. Form the categorical proof 

D - + i D D D 
CvD 

- -b i 
CvD 

-+ i 
CvD . CvD+ 

C 
-+i,k2 z6 

D+C 
C 

DvC+e 
. 

i: 
-+i,k4 x6 

D-‘C 
C 

Dvc+e. 
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Let this be n;. Then form the contradictlve proof 

n2 n2 n2 n2 

c c c c - P - - 

CvD CVD CyD CVD’ . . . . . . . - * . 
. 

.‘f’ * * 

This proof no longer contains any v’s, and so when it is reduced to a weakly 
normal proof that proof must be normal. It is evident that the procedure of 
this example wilI work in general. 

The consistency proof for C is completed by the next theorem. 

THEOREM 6. There can be no normal contmdictive proof in G. 

The theorem is proved by showing that a normal contradictive proof 

must have an infinite path, which is impossible. Suppose 
x 
f 

is a normal 

contradictive proof. 
z A -A c 
f 

must be 
f 

+ e, since 
f 

can only be 

inferred by + e. Since ls normal, the conclusion of 22 

-A 
cannot be by 

+i,q, orv. -A cannot be inferred by ui or ci. Therefore the conclusion of 
z2 

-A 
must be by - ui, - ci, or + e. Suppose the conclusion of z2 

-A 
isby 

- ui. Then A is @)I?@), which cannot be inferred by + i, v, - ui, ci, or 
- ci because of its form, and which also cannot be inferred by ui or q 

z3 z4 

because the proof is normal. A”’ must therefore be ’ C+A+e me 
c * 

conclusion of 24 

C+A 
cannot be by + i, v, or q because the proof is normal, 

and because of its form C+ A cannot be inferred by ui, - ui, ci, or - ci. 
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Therefore x4 D D+(C+A) 
C+A 

must be 
C+A 

+e. Bycontinuinginthis 

& fashion we see that A must contain an infiite path, which is impossible. A 

similar argument shows that Cl 
A 

would have an infmite path if the 

conclusion of 22 were by - ci. Therefore z2 

-A 
B B+-A+e 

-A 
must be 

-A ’ 

Since “f is normal B + -A cannot be inferred by + i, q, or v, and it 

cannot be inferred by ui, - ui, ci, or - ci because of its form. Therefore 

n2 C+@+--A) x 
must 

B+-A 
mwtbe C 

-A 
+ e, and again we see that 

f 

have an inftite path. Therefore there cannot be a normal contradictive 
proof, and the theorem is proved. 

A set X of formula types is G-inconsistent if there is a proof 
z 
f 

in G all 

of whose open assumption formula types are in X. X is G-consistent if X is 
not G-inconsistent. A set M of formula types is mraimally Gconsistent if 
M is G-consistent and, for any formula type A, if M U (A} is G-consistent 
then A is in M. G-consistency is a property of finite character - if every 
finite subset of a set X is G-consistent then X is G-consistent. Therefore as 
in classical logic it follows that any G-consistent set can be included in a 
maximally G-consistent set. 

THEOREM 7. Any rnarimally G-consistent set M has the following 
properties: 

Ml. If A is a theorem of G then the fomzulrr rype A is in M. 



COMPREHENSION IN INFINITE-VALUED LOGIC 529 

M3. If (x)A(x) is a c&wed fomak 50 that PA(x) is a tam, then 
if the type A(PJ(x)) is in M tire type (x)A(x) ia in K 

M4. For~yfoPmulaA,ifdretypcAisnotinMdhmA”~fis 
in M for some positive integer n 

To prove Ml, suppose that there is a categorid G-proof of A but that 
thetypeAisnotinM.ThenMU(A)mustbeinconsistent,andthereisa 

proof n 
f 

whoseopenassumptionformulatypesareinMoroftypeA. 

Replacing each open assumption fommla of type A in.7 with the conclusion 

of a categorical proof fi” then gives a proof n1 
f 

allofwhoseopenassump 

tion formula types belong to M, and M is inconsistent. To prove M2, assume 
thatthetypeBisnotinMwbilethetypesAandA~Banin~..Thm 

MU {B} is inconsistent and there is a proof z 
f 

all of whose open assumption 

formula types are B or are in M. Replacing each open assumption formula 

i i 

oftypeBin z A A+B 
f 

with the conclusion of a proof 
B 

+ c, for appro- 

priate i’s and j’s, then gives a proof which makes M inconsistent. The proof 
of M3 is similar, replacing open assumption formulas of type (x)A(x) with 

the conclusions of proofs A:::? ui. IfA is not inM, then there is a 
x x 

proof I: with open assumptions kl &I PI 
f 4 

, . Pm with the B,‘s, if 
“‘Bn’A “--‘A 

any, belonging to M. n + m applications of + i to z 
f 

then yield a categorical 
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proofof& ‘(***‘(B,-r(Am-+f))***),andAm~fisinMbyn 
applications of M2. This proves M4. 

it remains now to be shown that every closed theorem of Hr is in every 
maximally Gconsistent set. To do this, it is necessary to describe Hr proofs 
more precisely and to assign an ordinal number, for use in a transfiite 
induction, to each Hr proof. Roofs in Hr may be regarded as trees 
determined recursively as follows. An Hr axiom is a proof of height zero. If 

2 
2 A(n) . 

44 
is an Hr proof of height a, (x)A(x) 1s an Hr proof of height a + 1. If 

I: 
A 

and n 
A+B 

are Hr proofs of heights a and /I, then A A-+BismH 
B 1 

proof of height max (a, 0) + 1. If 

H, proofs of heights al, a,, . . . , etc., then Li+fl’,),<i<w ism 
A 

HI proof of height Sup{q/l < i < w}, the least ordinal greater than all 
the ai)s. 

z 

,. An Hr proof is pure if for every subproof A(a) - in the proof the 
WA (4 

variable a occurs only in x 

4) 
. If a proof is not pure it clearly can be 

converted to a pure proof. For example, even if all the free variables 
ao, al, a2, . . . appear in the proof, these can be replaced with ao, a2, a4, . . . 
leaving infinitely many free variables not appearing in the proof. Then a 

l-l 
A(a) 

subproof (x)A(x) 
- in which the variable a occurs in the main proof outside 

no, 
l-l A(b) 

4) 
can be replaced with (x)A(x), - where b is a free variable not appearing 

in the original proof and Ilt is the result of replacing the free variables of 
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type a with free variables of type b throughout II. By a series of such 
changes any proof can be converted to a pure proof. 

Corresponding to Theorem 1.3 for G we have for Hr the following. 

THEOREM 8. For any HI proof X and closed term t, ll$ is a proof if the 
rI 

44 free variable a is not the variable of any generalization - ’ 
(x)A(x) In ” 

The straightforward proof by transfmite induction on the height of z1 
is omitted. 

The next theorem implies the consistency of H. 

THEOREM 9. Let 
z: 
A 

be a pure H, proof in which the conclusion A is 

closed. Then the type A is in any maximally G-consistent set. 

The proof uses transfmite induction on the height of A”. Let M be 

maximally consistent, and suppose the theorem true for proofs whose 

heights are less than the height of z 
A’ 

If z consists only of a closed axiom 

of HI, then by Theorem 1 A is a theorem of G and so by Theorem 7 is in 

M. If 2 is 
(A’+f):A 

A 
‘<i<w , then since A is closed each (A” + f) +A 

is closed and by the induction hypothesis is in M. Therefore A must be in 
M, since by property M4 of Theorem 7 if A is not in M then A”’ + f is in M 

& x2 

r,. B B+A 
for some M, and so again by Theorem 7 A is in M. If A is B , 

then B need not be closed. Let b, , . . . , b,, be the free variables of B, so that 

B may be designated by “B(bl, . . . , b,)“. Since z is pure, no bi is the 

variable for an application of the generalization rule in x1 22 

B Or B +A’ 
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Therefore by Theorem 3 there are proofs ” and x4 

B(f, . . . , r) B(t,...,t)+A’ 

where t is any fured closed term, which are the results of substituting t for 

the bf’s in x1 and B :A. The heights of ” and z4 

B B(t, . . . , f) B(t, . . . , f)+A 

are equal to those of hand z2 

B B*A’ 
respectively, and so by the induction 

hypothesis the closed formula types B(t, . . . , t) and B(t, . . . , f) + A are in 

M. By property M2 of Theorem 7 it follows that A is in M. Finally, if A 1s 

l-l 
B(b) 

WW ’ 
then b is the only free variable of B(b), and ~780) is a term for 

z. 
every n. Since A 1s pure II$ntuj is a proof of height less than the height of 

z 
f' 

and so by the induction hypothesis B(r,“B@)) is in M. By property M3 

of Theorem 7 Q)Bo) is then in M. 

COROLLARY. His simply consistent in the sense that for no A are A and 
-A both theorems of H. 

Roof: If A and -A are theorems of H, f is a theorem of H and so also 
of Hr. The formula f is closed, so if f is a theorem of H, f is in every 
maximally C-consistent set. Obviously f cannot be in any G-consistent set, 
and there do exist maximally G-consistent sets since the set of all theorems 
of G is consistent. 

As a set theory H has some serious disadvantages. First, the axiom of 
extensional@ (x)(y)(( )( E z z x*zEy)+x=y),wherex=yisdefmed 
to be (z)(x E z - y E z), cannot be consistently added to H. The reason is 

that x = y vx #y is easily proved in H, here is a proof in G, letting z 
Y’Y 

be a categorical proof of y = y and f be (z: z = y + z # y): 
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1 2 
x=y+x#y 

ci 
x=y 

XEf 
ue 

xEi+yEt -bo _ 
z YEt 

Y=Y Y=Y+YfY 
class elimination, easily derived in G 

x 
+e 

Y=Y 
c ‘#‘-be 

J --ii,2 
XfY 

x=yvx#y 
+i, 1. 

There is an analogous proof in H. It follows that A v-A can be proved for 
arbitrary A from the axiom of extensionality by using (x: x = x &A), call 
it s, and the provable formula (x: x = x) = s v (x: x = x) # s. Second, it is 
apparently not possible to derive even classical first-order nwnber theory in 
H. This is because the failure of the distributive law (A + (B + C)) + 
((A + B) + (A + C)) makes it impossible to prove that the class of natural 
numbers N is closed under the successor operation, if N is defined in the 
natural way as (x: (y)(O Ey‘ & (z)(z E y + z’ E y) +x E y)), where z’ is the 
successor of z. 

It therefore seems reasonable to look for a rather different way of 
extending the Lukasiewicz sentential logic to a set theory. A natural course 
is to add another implication A * B which may be thought of as the infinite 
disjunction (A + B) v (A2 + B) v (A3 + B) v l l l . It is evident that this 
weak implication distributes over the Lukasiewicz implication. I have 
investigated the following system S, and have proved that it is consistent 
and contains at least classical first-order number theory. The axioms of S 
are: 

1. A-‘(B+A). 

2. (A -W+W+C)+(~ ‘c)). 

3. AvB+BvA (AvBisstdl(A+B)+B). 

4. f+A. 

5. (A+B)+(A=‘B). 

6. (A*(B+C))+((A=‘B)+(A*C)). 
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7. MA + B) -+ (A + (x)B), x not free in A. 

8. (x)4x) -+A@). 

9. (Xl l ~*x”:A(x,~~~X”))t,~~~f” +A(r,*--r,). 
10. A(r, **or, -+(x1 l *-x,: A(xl***x,))fl~*~tn. 

(It is convenient to use relation abstracts and to dispense with E.) The 
inference rules are modus ponens, generalization, and the rule 

I-(A*B)+(A+B)ifl-Av-A. 

Nis defined as (x: (.Y)(QO & (Z)(YZ +uz’)) *vx)), and by using 
Axiom 6 one easily proves (x)(Nx + Nx’). It is also not difficult to prove 
(x)(Nx v - Nx). In fact, excluded middle is provable in S for many classes. 
The axiom of extensionality in the weaker form (x)Q)((z)(xz t*yz) * 
x = y) is probably consistent with S, but I have not found a consistency 
proof. 

Of course, the chief open problem for any set theory based on the 
infinite-valued logic is to find a natural interpretation for it, an interpret- 
ation which justifies the formal system in the way in which the cumulative 
type structure justifies the axioms of ZF. 

Centre College of Kentucky 
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