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SKOLEM’S PARADOX AND CONSTRUCTIVISM 

INTRODUCTION 

Skolem’s paradox has not been shown to arise for constructivism. 
Indeed, considerations that we shall advance below indicate that the 
main result cited to produce the paradox could be obtained only by 
methods not in mainstream intuitionistic practice. It strikes us as an 
important fact for the philosophy of mathematics. The intuitionistic 
conception of the mathematical universe appears, as far as we know, 
to be free from Skolemite stress. If one could discover reasons for 
believing this to be no accident, it would be an important new con- 
sideration, in addition to the meaning-theoretic ones advanced by 
Dummett (1978, ‘Concluding philosophical remarks’), that ought to 
be assessed when trying to reach a view on the question whether 
intuitionism is the correct philosophy of mathematics. 

We give below the detailed reasons why we believe that intuitionistic 
mathematics is indeed free of the Skolem paradox. They culminate in 
a strong independence result: even a very powerful version of intuitionis- 
tic set theory does not yield any of the usual forms of a countable 
downward Lowenheim - Skolem theorem. The proof draws on the 
general equivalence described in McCarty (1984) between intuitionistic 
mathematics and classical recursive mathematics. But first we set the 
stage by explaining the history of the (classical) paradox, and the 
philosophical reflections on the foundations of set theory that it 
has provoked. The recent symposium between Paul Benacerraf and 
Crispin Wright provides a focus for these considerations. Then we 
inspect the known proofs of the Lbwenheim-Skolem theorem, and 
reveal them all to be constructively unacceptable. 

Finally we set out the independence results. They yield, we believe, 
the deep reasons for the localised constructive failures. Besides showing 

Note: ‘E’ is used both as the epsilon of set membership and for the existential quan- 
tifier. Context will always make clear which use is intended. 
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that weak versions of the Lijwenheim - Skolem Theorem cannot be 
proved in extensions of the intuitionistic set theory IZF, we prove 
that the Theorem entails principles which many constructivists would 
reject (e.g., Kripke’s Schema) and is falsified outright by principles 
(Church’s Thesis and Markov’s Scheme) which a number of constructiv- 
ists would accept. Let us also emphasize at the outset that the meta- 
mathematics which we adopt in giving our proofs is itself constructive. 

I 

Skolem’s paradox was thought by Skolem, and has been thought by 
his skeptical successors since, to show that the notion of absolute 
non-denumerability is ineffable. In Skolem’s own words (1922): 

auf axiomatischer Grundlage sind hijhere Unendlichkeiten nur in relativem Sinne 
vorhanden. 
(on axiomatic foundations higher infinities occur only in a relative sense.) 

We say that the paradox has been thought to show this precisely because, 
unlike Russell’s paradox, it does not say anything inconsistent in the 
viciously circular way we have come to associate with the logical and 
set-theoretical paradoxes.’ Skolem’s paradox, unlike Russell’s, is not 
crisply expressed by any one sentence of the object language. Instead, 
it involves a traversing of levels between object and metalanguage. It 
arises because Cantor’s theorem, provable in the object language of 
set theory, says that there is no one-one correlation of the set of nat- 
ural numbers onto the set of all its subsets; while a model existence 
theorem, provable (using informal set theory) in the metalanguage, 
says that the axiomatic set theory of the object language has a count- 
able model. 

Two theorems therefore produce the paradoxical tension. Let M[t] 
be the denotation, in model M, of the term t. Let ‘P(o)’ be the term 
for the power set of w, the set of natural numbers. Suppose M is a 
countable model of set theory. The tension is this: M[P(w)] appears 
‘within’ the countable model M (on pain of contradicting Cantor’s 
theorem) not to be the domain of any one-one mapping, within M, 
onto the set o; the model fails to contain an element in its own domain 
serving as the set of ordered pairs that would establish such a one-one 
correlation. But from ‘outside’ the model M the set M[P(w)] does 
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appear to be the domain of a one-one mapping onto the set o. Cantor’s 
theorem, however, prevents this mapping from being in the model M. 
From ‘inside’ the countable model M, as it were, one fails to appreci- 
ate just how ‘small’ M(P(o)] is. 

That, in a nutshell, is the paradox. The Skolemite Skeptic invokes 
it to undermine our confidence that one can communicate a concep- 
tion of the mathematical universe. If the mathematical universe is rich 
enough to contain the real numbers (in the form of the power set of 
w), the paradox says it can be impoverished. Or, rather, the account 
of it can be so devalued by interpretation in a countable (sub-) 
universe that one cannot gain a purchase on its contents. 

We shall argue that the devalued linguistic currency may be strictly 
classical. The intuitionist or constructivist mathematician appears not 
to be affected by the problem. For one of the two theorems involved 
in the classical case is not intuitionistically true. So, ironically, although 
being able to ‘say’ much more by virtue of his stronger logical methods, 
the classicist appears to speak to less pointed effect than the intuitionist. 

Our method of exposition will be as follows. First we shall examine the 
recent exchange on the problem of Skolem and the Skeptic by Benacerraf 
and Wright. Then we shall look more closely at the method of proof 
of Cantor’s theorem, and bring out its rich constructive import. Then 
we shall inspect the various methods of proof of the countable down- 
ward Lowenheim-Skolem theorem, this being the other result (avail- 
able classically) that produces the paradox, as explained above. These 
methods include Skolem’s original one, using Skolem normal forms, 
another using prenex normal forms, and the one by Henkin expan- 
sion. We shall show how each method fails in the intuitionistic case. 
Finally we shall give a general result behind all these failures: the 
independence, within a strong version of intuitionistic set theory, of 
forms of the arbitrary countable models theorem. This is an interest- 
ing and important phenomenon that deserves further investigation. 

II 

In his searching examination of the source of Skolem’s paradox, 
Benacerraf (1985) reflects on the inadequacy of the formal axiomatic 
method as follows (p. I 11): 
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Despite the imagined possible misunderstandings, mathematical practice reflects our 
intentions and controls our use of mathematical language in ways of which we may not 
be aware at any given moment, but which transcend what we may explicitly set down 
in any given account - or may ever be able to set down. 

The account in question is, of course, an axiomatic one at first order, 
involving only countably many sentences. In his paper Benacerraf 
does attempt to locate more precisely where the trouble lies than 
merely the countable character of our sayings. He suggests that the 
problem lies not so much with the interpretation of ‘a’ (the member- 
ship predicate), but rather with the interpretation of the universal 
quantifier: 

. whether T says that a set is non-denumerable depends on more than whether the 
interpretation is over a domain of sets, ‘E’ of the interpretation coincides with member- 
ship among those sets, and every element of any set in the model is also in the model. 
The universal quantifier has to mean all, or at least all sets - or at least it must range 
over a domain wide enough to include ‘enough’ of the subsets of (the set of natural 
numbers). (lot. cit. p. 103) 

In his reply, Wright (1985) is sympathetic to this diagnosis of the 
classical set theorist’s problem, even if not sympathetic to the classicism 
that generates it. He claims that the diagonal argument establishes a 
result about uncountability only on a nonconstructive interpretation. 
Otherwise, he thinks, all it can be taken to show is that there is no 
effective enumeration of all constructive (that is, decidable) sets of 
natural numbers. As Wright puts it (pp. 134- 135): 

before the informal proof of the power set theorem can lead us to a conception 
of the intended range of the individual variables in set theory which will allow us to 
regard any countable set model as a non-standard truncation . . we need to grasp the 
notion of a non-effectively enumerable denumerably infinite subset of natural numbers. 
This is what, if he is in the business of giving explanations, the Cantorian needs to 
explain. 

We shall now argue that, in this fascinating encounter between a 
classicist and a constructivist, the real problem has been mislocated 
and the proper solution has been missed. The points to be made are 
historical, logical and conceptual. But first, in order to set the stage 
properly for discussion, let us survey the many potential sources of 
the difficulty, and see how far we can agree with Benacerraf and 
Wright in putting them aside. This will enable us to focus more sharply 
on the problem they neglect and on the shape of its solution. 
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III 

The following is a digest of points worth considering in this regard. 

1. What is the classical notion of set? 
a. Can it be communicated only informally? Does it elude axio- 

matic characterization 
i. at first order 
ii. at second or higher order 
iii. in finitary languages 
iv. in infinitary languages 
v. using only countably many sentences 
vi. using uncountably many sentences?* 

b. Does it have built into it the existence of: 
i. an infinite set 
ii. an uncountably infinite set? 

2. How are the two theorems involved in Skolem’s paradox proved? 
Constructively or strictly classically? 

3. What is the significance of having a countable submodel theorem 
as opposed to one which merely guarantees the existence of some 
countable model (whether or not it be a submodel of an intended 
model presumed given)? 

Having posed these questions, let us now sketch what we take to be 
common ground between Benacerraf and Wright. (a) Both take the 
classical notion of set, if communicable, to be communicable only 
informally. (b) Both see no point in considering higher order or infi- 
nitary languages, or uncountable theories in the axiomatic charac- 
terization of the notion. For with all these (it could be argued) the 
notions of set or of non-denumerability are being presupposed in the 
very project of communicating or imparting an understanding of 
them. (c) Both consider worthwhile and admissible only countable 
axiomatic characterizations in finitary first order languages. 

With this much we are in sympathy. Skolem himself remarked on 
the circularity of the presupposition just mentioned (1922, p. 144). 
But Skolem would also have accorded no particular significance to 
the distinction mentioned in (3) above (as historical considerations 
will in due course show); and in this regard we too would be unwilling 
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to move on to the common ground between Benacerraf and Wright. 
For both of them regard the countable submodel theorem as contri- 
buting an important part of the discomfiture produced by Skolem’s 
paradox. Their thought is that a countable submodel extracted from 
the intended model arguably preserves the interpretation of ‘E’, and 
thereby shifts the locus of the difficulty to the interpretation of the 
universal quantifier (at least as it applies to sets). Benacerraf himself 
states as one version of the Liiwenheim - Skolem theorem the following: 

SMT (a transitive submodel version): Any transitive model for ZF has a transitive 
countable submodel. (A model is transitive if and only if each element of each set in the 
model belongs to the domain of the model.) (p. 101). 

And Wright endorses his preference for this version of the countable 
model theorem as follows: 

In order to get a line worth considering we must, I think, go for something like the 
more sophisticated reconstruction of the argument which Benacerraf builds on the tran- 
sitive countable sub-model version of LST (= SMT). The intended interpretation for 
ZF involves, I take it, a transitive model: that is, every member of every set which the 
intended interpretation would include in the subject matter of set theory is likewise part 
of that subject matter. According to SMT, then, if ZF can sustain its intended interpret- 
ation at all, it may be interpreted in a countable sub-domain of the sets involved in the 
intended interpretation, in such a way that %’ continues to mean set-membership and 
every set in the domain of the new interpretation is itself at most countably infinite 
(p. 118; our emphasis). 

In his eagerness to concentrate on the countable submodel version of 
the theorem, Benacerraf even goes so far (p. 94) as mistakenly to 
claim that it was this version that Skolem proved in his 1922 paper. 
In the next section we shall return to the distinction between the two 
versions of the model existence theorem, and argue that it is philo- 
sophically irrelevant. We shall argue also that both Benacerraf and 
Wright have followed a red herring, despite clear contextual clues in 
Skolem’s own writings that the distinction is irrelevant, and that the 
problem cannot be shifted away from the interpretation of ‘E’ and 
onto the interpretation of ‘all sets’ or ‘all subsets of . . . ‘. But first let 
us complete our summary responses to the lists of questions above. 

As to the method of proof of the theorems involved in the paradox 
- Cantor’s theorem and the theorem on the existence of countable 
models of countable theories - Benacerraf says nothing, apart from 
an inaccurate historical remark (p. 91, n. 3) that Liiwenheim employed 
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the axiom of choice in his original proof. In fact, it was Skolem who 
introduced the use of choice in order to simplify Lowenheim’s proof. 
More to the point would be the question whether the countable 
models theorem is constructively provable. Wright enters construc- 
tivist considerations, and sees the embarrassment of Skolem’s paradox 
as affecting, first and foremost, the Cantorian. He makes the Skeptic 
sound thoroughly constructivist; he suggestively asserts (p. 124) that 

the Skeptic will urge (that) a full and complete explanation of the concept of set is 
neutral with respect to the existence of uncountable sets. But if there really were uncount- 
able sets, their existence would surely have to flow from the concept of set as intuitively 
satisfactorily explained. 

And later, on p. 126 he writes: 

. if the ZF-axioms, with ‘E’ interpreted as set membership, did constitute a satisfac- 
tory explication of the extension of the intuitive concept of set, the fact that they do 
not, so interpreted, entail the existence of uncountable sets would force the conclusion 
that there is no such entailment from the intuitive concept of set either. 

It would have been natural, in registering constructivist doubts about 
the existence of (uncountably) infinite sets as completed totalities, to 
have mentioned also the relevance of the more narrowly restricted 
logical methods of which the constructivist may avail himself com- 
pared with the classicist. It would have been appropriate then to ask 
whether indeed the countable models theorem is constructively provable; 
whether, that is, the Cantorian embarrassment arises from paradisial 
logical manoeuvres as much as it does from ontological excess. Now 
Wright did not himself pursue this question; for he was allowing the 
classicist the full use of classical methods in order to bring out the 
inadequacies internal to realism. But it is only natural to ask whether, 
once the problem has been posed by the proofs of the two main theorems 
- Cantor’s theorem, and the countable models theorem - the same 
problem will continue to bedevil the constructivist who cuts back on 
permissible methods of proof. 

IV 

Let us suppose, with all parties to the debate, that what is sought and 
what is being assessed for explicatory adequacy, is some formal 
characterization of the notion of set using a finitary first order language 
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and a countable formulation using rules and or axioms. Let us for the 
moment register, but set aside, the problem of the correct choice of 
logical rules of inference. Note that there are two aspects to the ‘notion 
of set’. One may be called structural-theoretical, the other ontological. 
The structural-theoretical aspect is addressed by such principles as the 
principle of extensionality and Church’s conversion schema. To wit, 
sets with the same members are identifiable; and the members of the 
set of F’s are precisely the F’s. 

The ontological aspect is addressed by such questions as: 
is there a null set? 
is there an infinite set? 
is there an uncountably infinite set? 
is there a universal set? 

and it is not at all clear that (the first three at least of) these questions 
should be answerable by anyone who has mastered the concept of set 
as governed by the principles mentioned earlier. At least, it is not at 
all clear without further argument that this is indeed so. Take, for 
example, a mastery of the concept ‘tiger’. Does that mastery entail 
ability to decide a priori whether there are only finitely, or infinitely 
many, tigers? We should think not. But, it may be objected, this is 
simply because the concept in question applies to what the set-theorist 
calls urelements. Were we to take instead any sensible concept apply- 
ing only to pure sets, then (so this reply goes) answers to such ques- 
tions would be entailed a priori merely by adequate grasp of the con- 
cept involved. 

But would they? Certainly the recent history of mathematics tells 
against such an assertion. Many a writer has denied the existence of 
infinite sets as completed totalities, even though not denying that 
there are infinitely many things of different kinds, such as natural 
numbers. And even if one concedes a priori that there be infinitely - 
indeed, even uncountably - many pure sets, that still falls short of 
securing a pure set with infinitely (or uncountably) many members. 
Are constructivists with reservations such as these to be accused of 
deficient grasp of the concept of set, even though they are perfectly 
well acquainted with the agreed principles governing the interrelation- 
ships among predication, set formation and membership? 
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The point we are making may best be put as follows. There is what 
may be called the logic of sets: a collection of rules governing these 
interconnections between set formation and membership, and predi- 
cation and existence; and it is this logic alone which underlies proper 
grasp of the notion or concept of set. There is then what may be called 
the theory of sets, formulated according to one’s ontological convic- 
tions. One may or may not postulate the existence of o, the set of 
natural numbers. But whether we do or do not, we are all (classicists 
and intuitionists alike) agreed that, if we do, we shall be able to show 
that o has strictly more subsets than it has members. This is because 
Cantor’s proof, using separation most importantly among the ZF 
axioms, is thoroughly constructive (cf. Greenleaf, 1981). It is not even 
necessary to have the power set of o in the picture itself as a com- 
pleted set. 

To see this, let us look more closely at how Cantor’s theorem is 
proved. Cantor’s reasoning shows that it absurd to assume that one 
can correlate subsets of o one-one with members of o, in such a way 
that every subset is dealt with. Given merely that w  exists, the diag- 
onal argument requires only that one be able to ‘cull’ from w  a ‘diag- 
onal subset’ which, on pain on contradiction, cannot be dealt with by 
the method of correlation presumed given. If R is the method in ques- 
tion, so that xRy means ‘the subset x of o is correlated with the 
member y of o, then the diagonal subset is simply defined as the set 
of all z in o such that z is not a member of the y such that yRz. 

Since o is assumed to exist, and since R is assumed to serve up, for 
each z in w, the unique subset y of o such that yRz, it follows, by 
separation, that this diagonal set will exist. Call it d. Consider now 
the member e of o such that dRe. Is e a member of D? It is if and 
only if it isn’t. No appeal is made to the existence of P(w), the power 
set of o. Given this reductio of the assumption that we could have 
any such method R, the constructivist is able to assert that there are 
strictly more subsets of w  than there are members of o. He cannot be 
denied this cardinality reading of his result, since he agrees with the 
Cantorian analysis of equinumerosity in terms of one-one correlations. 
It is not a justifiable move even from the classicist’s vantage point to 
re-interpret the Cantor proof (as Wright does on pp. 133 - 134) as 
establishing, not a result about uncountability (of the subsets of w), 
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but rather one to the effect that there can be no effective enumeration 
of all decidable subsets of o. And certainly the constructivist would 
refuse to be read that way. For the constructivist takes himself to be 
talking about correlations and subsets tout court. Wright himself does 
not do justice to the implicit power, from the constructive standpoint, 
of Cantor’s result. Not only is Cantor’s proof constructively accept- 
able, but, given the constructive interpretations available for the term 
‘countable’, its conclusion can be made even stronger. Cantor’s argu- 
ment shows not only that P(o) is uncountable, but that it is not sub- 
countable, and that is w-productive. 

A subcountable set is one which is the range of some function 
whose domain is a subset of w. An w-productive set is one in which, 
should any of its subsets be the range of a partial or total function 
defined on the natural numbers, one can find an element that lies out- 
side that range. The notions countable, subcountable and non-w- 
productive coincide classically. Intuitionistically, however, they come 
apart. Countable implies subcountable; subcountable implies non-w- 
productive. To each converse, however, there is a constructive counter- 
example. It is w-productivity which yields the strongest intuitionistic 
reading of the conclusion of Cantor’s proof; and the method of proof 
directly justifies that reading. Detailed analyses of the constructive 
content of Cantor’s proof with reference to the notions ‘countable’, 
‘subcountable’ and ‘w-productive’ have appeared in Grayson (1978) 
and Greenleaf (1981). 

Note that in proving Cantor’s theorem, the constructivist does not 
have to appeal to the power set axiom. Depending therefore on one’s 
view of separation - is it a ‘logical’ axiom governing sets, or a 
‘mathematical’ one? - one might regard Cantor’s result as embedded 
in the very concept of set. One might even go so far as to question 
whether Wright is entitled to say (pp. 123 - 124) 

Let somebody have as rich an informal set-theoretic education as you like - which, 
however, is to stop short of a demonstration of Cantor’s theorem, or any comparable 
result, since these findings are, after all, supposed to be available by way of discovery 
to someone who has mastered the intuitive concept of set. 

But to pursue this point here would be to digress, since what we have 
to say below is independent of any decision one might reach concern- 
ing the precise status of separation. 
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The logic of sets is formulated in Tennant (1978).’ It consists of 
rules for the introduction and elimination of the set term-forming 
operator in contexts of identity. The introduction rule codes exten- 
tionality; the elimation rules code the conversion schema. The logic is 
a free logic, so that, for example, the reasoning behind Russell’s para- 
dox furnishes a proof that the Russell set does not exist. The logic is 
proved sound and complete with respect to the obvious semantics. 
Properly mathematical assumptions may then be made about the exist- 
ence of sets: in particular, the null set and the set of natural numbers. 
But this, on our account, is to go strictly beyond what is involved in 
the correct analysis of the notion of set, as enshrined in the logical 
rules alone. 

The null set axiom and the infinity axiom both make outright 
claims about existence. In so doing they are the clearest possible cases 
of what we take to be strictly mathematical claims about sets. But 
there is a penumbral family of axioms falling between the outright 
existence claims and the introduction and elimination rules mentioned 
earlier. These are the axioms of conditional existence: power set, pairs, 
unions, replacement, and choice. They all say that if such-and-such 
sets exist, then so too does one of a certain kind where the latter kind 
gives the axiom its special character. Now the interesting thing about 
separation is that it too makes a conditional existence claim, yet 
makes it so generally that it is difficult to regard it as doing anything 
more than merely contributing to the explication of the notion of set 
itself. Separation is an axiom schema, with instances obtained by 
choosing a particular formula F(x). An instance will say ‘for all sets 
y’ there exists a set whose members are exactly those members x of y 
such that F(x)‘. If we take separation as part of the logic of sets, then 
we have also as a purely ‘logical’ result that the null set exists if any 
set does: simply apply separation with ‘lx = x’ for F(x). But there 
will be no similarly quick way to the set of natural numbers. The 
existence of that set remains, on this analysis, a strictly mathematical 
postulate. 

Having more or less clearly separated the ontological from the con- 
ceptual aspects of ‘set’, one can then go on to exercise further choice 
as to the logic appropriate for developing the consequences of what- 
ever existential theoretical commitments one might care to make. For 
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the so-called logic of sets concerns itself thus far only with the curly 
brackets and epsilon, and identity. Nothing has yet been laid down 
for the logical connectives and quantifiers. A range of positions thus 
becomes available, each founded upon but properly extending the 
common core of analytical agreement over the conceptual aspect of 
‘set’: 

(i) postulate the existence of the null set 
and 

work with intuitionistic logic in the object language 
(ii) postulate the existence of the null set 

and 
work with classical logic in the object language 

(iii) postulate the existence of the set of natural numbers 
and 

work with intuitionistic logic in the object language 
(iv) postulate the existence of the set of natural numbers 

and 
work with classical logic in the object language. 

(iv) is the position of classical ZF. (ii) gives the classical theory of the 
hereditarily finite sets. (i) represents an extreme Ockhamite construc- 
tivism. (iii) is a natural and inviting alternative, for the intuitionist, to 
classical ZF. What we want to investigate is whether, had Wright but 
made such a clear and explicit choice as (iii), and had he been 
prepared to concede that (iii) was all that was available informally in 
the metalanguuge as well, he might have seen the Skolemite problem 
in a different light, and offered a different constructive resolution of 
the paradox. 

V 

Skolem gave two proofs of his theorem. The first was in the paper of 
1920. There he used the axiom of choice to construct a countable sub- 
model of any given model of a first order theory. The method was as 
follows: first one replaces each sentence of the theory, without loss of 
generality, by its Skolem normal form. This would be a sentence 
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beginning with universal quantifiers, followed by existentials, all 
appended to a matrix of a certain form. Next one chooses an element 
from the domain of the given model, and uses it multiply to instan- 
tiate the universals of the first chosen sentence. One then chooses 
(using the axiom of choice) at most finitely many existential satisfiers 
of the following existential quantifiers, and puts these alongside the 
original chosen element. Then one extends one’s attention to the 
second sentence of the theory as well. (The sentences of the theory 
are assumed given in some countable enumeration.) One tries every 
possible way, using the finitely many elements so far in the picture, of 
instantiating the universal quantifier strings of both the first and the 
second sentence. For each way at most finitely many new existential 
satisfiers for the following existential quantifiers have to be chosen 
(again using the axiom of choice). One proceeds in this way, progress- 
ively taking into account more and more sentences of the theory, and 
recruiting new satisfiers for the existentials in each sentence with res- 
pect to each of the increasingly numerous ways of instantiating their 
universal prefixes. The countable model being extracted is in an 
obvious sense the product of this process in the limit. It arises, one 
might say, by interated existential closure, via the axiom of choice, 
from the Skolemised surrogates of the original sentences of the 
theory. 

There is another proof using choice, which Skolem could have 
used, given that Zermelo had established in 1904 that choice is 
equivalent to the well-ordering principle. This proof applies choice 
globally at the outset, by taking the domain to be well-ordered. Iter- 
ated existential closure then simply trawls the ordering for its count- 
able catch. 

In his second proof of the theorem, in his paper of 1922, Skolem 
drops the appeal to the axiom of choice and thereby proves a slightly 
different result. No longer is it a submodel of a given model that is 
being constructed; rather, it is a model erected on the natural numbers. 
The assumption that Skolem normal forms are available is, as before, an 
absolutely crucial feature of his method of proof for the classically 
understood object language. 

But there is the possibility also of using prenex normal forms, as is 
done in the classical case by Quine (1959) and Grandy (1977). We 
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note this as an alternative to Skolem’s method, and return to it 
below. 

Now what is remarkable, in the light of Benacerraf’s discussion, is 
that it is only in the 1922 paper that Skolem formulates the set theo- 
retic paradox that now bears his name. He saw it as quite sufficient 
simply to produce some countable model of the theory, rather than a 
countable submodel of some given intended model. And his 
philosophical conclusion about higher infinities cited at the beginning 
of this paper came but one paragraph after a much more general con- 
clusion that he drew concerning the relativity of the (classical) notion 
of set itself: 

Die axiomatische Begriindung der Mengenlehre fiihrt zu einer RelativitIt der Mengen- 
beg@, und diese ist mit jeder konsequenten Axiomatik untrennbar verkniipft. (Our 
emphasis; in the original the whole sentence is italicised.) 

One might even speculate that Skolem himself would have been aware 
of the significance, if any, of the difference between a countable model 
extracted from an intended model of set theory and a countable 
model erected directly upon the natural numbers, insofar as philo- 
sophical conclusions about conceptual relativity were in the offing. 
For he, after all, was the author of both kinds of theorem. The first 
used choice to rummage within a given model and pare it down. The 
second eschewed choice by starting with a (set theoretically) phoney 
line-up. 

It might be maintained in response to this, and on Benacerrafs 
behalf, that Skolem could well have been blind to the difference, since 
he had not bothered to reflect further on the possibility of apportion- 
ing blame between our interpretation of the universal quantifier and 
grasp of the notion of the uncountable. But what precisely is the extra 
significance accorded by Benacerraf to the version of the countable 
model theorem which has one extract it from an intended model? 

Benacerraf sees the extraction as somehow preserving the interpret- 
ation (assumed correctly given in the intended model) of the membership 
relation. This is because, according to him, the countable model of set 
theory extracted from the intended model will, like its parent model, 
be transitive. Transitivity, an important global feature of the member- 
ship relation, must not be lost if the constructed model is to have any 
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claim at all to be a model of set theory. But what is transitivity, 
exactly? Benacerraf defines it as follows: 

A model is transitive if and only if each element of each set in the model belongs to the 
domain of the model. (p. 101) 

Let b be a set in the model. That is, let b be a member of the domain 
of the model. What is it for Q to be an element of b? There are two 
answers to this question. First, the internal one: a is an element of b 
just in case a is, like b, in the domain of the model, and the ordered 
pair (a, b) is in the extension of ‘.s’ within the model. That is, a is, 
according to the model, an element of b. Secondly, the external answer: 
both a and b might have genuine properties, or genuine internal struc- 
ture, not registered within the model. They are recruited as members 
of the domain of the model and assigned, within the model, various 
skeletal relations to each other (perhaps) and to other members of the 
domain. The assignment can ignore their genuine properties and 
internal structure. The web of relations within the model can fail to 
unpack the metaphysical richness which they intrinsically bring with 
them ‘from outside’ the model, so to speak. It is a little like treating a 
Royal procession as a model for a strict linear discrete ordering with 
first and last elements. The kinship relations and the character traits 
go unheeded. So too with sets - according to Benacerraf. We may 
put the genuine power set of o into the domain of a countable model 
of set theory, but this model will be a transitive model only if every 
one of that set’s members - that is, every set of natural numbers - 
is also in the model. The external reading has it that what is really the 
case with membership must be properly reported within the model 
itself - otherwise the model won’t be transitive. 

There are problems with both the internal reading and the external 
reading of transitivity. First, on the internal reading every model will 
be transitive; so the requirement of transitivity is trivial. For what the 
model says bears epsilon to b will obviously have to be in the domain 
of the model! Secondly, on the external reading no countable model 
of ZF that contains the genuine power set of the naturals can possibly 
be transitive! For, if the model contains P(o) then, in order to be 
transitive, it would also, as just observed, have to contain every mem- 
ber of P(w). But there are uncountably many such members - so 
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some of them would have to be missing from the domain of the 
model in order for it to be countable, as supposed. 

Thus, for the model to be transitive, the genuine P(w) itself would 
have to be missing. One might put the familiar response as follows: 
the set term ‘P(o)’ is not rigid - it does not denote the same set as 
one passes from one transitive model of set theory to another. And 
the failure of sameness is a radical one, involving (from an external 
perspective) not just substitution of an isomorph, but also collapse 
of cardinality at times. Any countable transitive submodel of the 
intended model therefore cannot contain the genuine P(o) as its 
own denotation of the set term ‘P(o)‘. With this symptom of Skol- 
emite non-standardness, it is difficult to see how in a countable model 
the further requirement of transitivity could yield assurance that 
the model be any better behaved on epsilon than any other model 
would be. The intension of ‘s’, in allowing an extension to be 
determined for ‘8’ in any countable domain for ZF, is irretrievably 
parableptic. 

There is a further, and in our view clinching, reason not to be 
persuaded of the alleged philosophical relevance of Benacerraf’s dis- 
tinction, accepted by Wright, between ‘set models’ delivered by SMT 
and the ‘numerical models’ delivered by Skolem’s 1922 proof of the 
countable models existence theorem. Benacerraf’s version SMT of the 
Lijwenheim - Skolem theorem is no more telling in posing Skolem’s 
paradox than would be any version merely guaranteeing the existence 
of a countable model of set theory. For his own philosophical 
purposes in his paper, Benacerraf could just as well have stated his 
version of the theory as follows (a version which follows from Mos- 
towski’s contraction lemma): 

Any standard model for ZF has a countable submodel s-isomorphic to the minimal 
model; where the latter is the sole model which is a countable standard transitive model 
of ZF + V = L and also a submodel of every standard transitive model of ZF. 

A standard model is one in which ‘E’ is interpreted as set-membership. 
The minimal model helps, as it were, to uniformize the Skolemite’s 
ministrations.’ Here is the best behaved countable fragment of the 
real epsilon relation that one can get. But the real power set of the 
naturals must, by our foregoing considerations, not be caught up in 
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this fragment. Something else in the fragment is playing the role of 
that power set. P(w) is therefore quite unlike the Benacerrafian 3 
(cf. Benacerraf, 1965). For while Benacerraf was able to conclude that 
the number 3 was no particular set on any set-theoretic construal of 
numbers, but rather a structural locus - the role played by whatever 
‘is’ 3 in any standard recursive progression - he is robbed of a sim- 
ilar thought concerning P(o). He cannot say that P(o) is the role 
played by whatever ‘is’ P(o) (that is, whatever is denoted by ‘P(w)‘) 
in any standard transitive model of set theory. For the most crucial 
feature of P(w) is that it has (by Cantor’s reasoning) uncountably 
many members. Yet here, in the countable model called the minimal 
model (which is both standard and transitive), whatever it is that 
stands as the denotation of ‘P(o)’ does not have uncountably many 
members! - neither within itself, ‘genuinely’ (for the model is both 
standard and transitive) nor by model-relative alliance via ‘E’ (for the 
model is countable). By contrast, the Benacerrafian 3 always has three 
predecessors (0, 1 and 2) in any progression. 

VI 

Thus far we have made the classicist’s predicament more pointed. And 
we take the challenge to be not so much how to get out of that pre- 
dicament, but rather how to avoid getting into it in the first place. We 
have not yet investigated the consequences of position (iii) above: the 
one that postulates the existence of the null set and the set of natural 
numbers, but restricts one to intuitionistic logic (both in the object 
language and, let us also assume, in the metalanguage). Restriction to 
intuitionistic metalogic is important. We shall now see how all the 
familiar proofs of the countable models theorem are intuitionistically 
objectionable. These include Skolem’s proof discussed above; the 
proof using prenex normal forms, which we mentioned in passing, 
and the proof by Henkin’s method. Once we have seen how all these 
methods of proof fail, we shall advance perfectly general reasons for 
their doing so: we shall show that a general form of the countable 
models theorem is independent of a strong version of intuitionistic 
Zermelo Fraenkel set theory (IZF). 

First, the use of the axiom of choice in Skolem’s proof of his the- 
orem is intuitionistically unacceptable. Choice is constructively correct 
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for certain sets, such as the natural numbers, but not for arbitrary 
sets. Yet it is in the more general setting that Skolem needs choice. It 
is simply mistaken to think that on an intuitionistic construal of 
operators in the object language, the truth of a sentence of the form 

‘Jx, . . . V-+Y, . . . EY,,As,, . . . , xm Y,, . . . , Y,,,) 
requires that there be a uniform effective method for choosing, for 
each a,, . . . , u,,, appropriate members b,, . . . , b, of the domain so 
that Z’(a,, . . . , cl”, b,, . . . b,). A sentence of that form could be 
intuitionistically provable for reals without there being any uniform 
effective method as described; although over the naturals it is always 
possible to uniformize the respective methods for each instantiation of 
the universal prefix (cf. Diaconescu, 1975). (Thus Dummett is in error 
when he claims (1977, p. 64) “As always, a form of the axiom of 
choice holds good. . . .” (our emphasis).) 

Intuitionistically incorrect also is the over-swift assumption that 
each sentence of the theory to be Skolemized can be replaced by an 
intuitionistically equivalent sentence of an appropriate syntactic form 
in order for the construction of the model to go through, even with 
liberal use of choice (which, however, as we have noted, the intuition- 
ist cannot permit in the general case). So if we are in the business of 
looking for an intuitionistic analogue of the well known proof, due to 
Skolem, of the existence of countable submodels, we have to enquire 
more closely about the first step in his proof for the projected intui- 
tionistic version of his result. 

What results are there concerning Skolem normal forms for sen- 
tences of first order languages? The answer is that, for the would-be 
constructivist Skolemite, they are distressingly meagre. First, there 
appears to be little prospect of furnishing a countable model using 
choice in the light of the limited extent to which sentences could be 
replaced by intuitionistically equivalent Skolem normal forms, as 
revealed in a proof-theoretical study by Mint (1972). Smorynski 
(1978) has since established the same negative result by simpler 
model-theoretic methods: Skolemization cannot in general be obtained 
within the bounds set by constructive logic. (It is worth remarking 
here that the axiom schema of separation in IZF will have arbitrarily 
complex instances. Thus it would be futile to look for “Skolemisability 
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within limits” on logical complexity of one’s set of axioms.) Skolem 
himself started, it is now clear, from an unregenerately classical van- 
tage point. At this point one could ask (as Michael Resnik did in 
correspondence) whether the intuitionist might not be able to mimic 
the prenex method of proof, even if not the Skolem method. But here 
too (with the most obvious mimicking) he would be frustrated. The 
cut elimination theorem for intuitionistic logic (cf. Dummett, 1977, 
p. 150) has as a corollary that theoremhood of prenex forms is decid- 
able. But then this would contradict the undecidability of theorem- 
hood in the full language (which holds even in the monadic case for 
intuitionistic logic), if the prenex normal form theorem held for intui- 
tionistic logic. For, given a sentence A, one could find an equivalent 
prenex form A’ simply by enumerating proofs; and then apply to A’ 
the decision method for theoremhood provided by the cut-elimination 
theorem. This would yield a decision as to the theoremhood of A. 

To re-inforce this point, note what can happen on the intuitionistic 
front if one tries to apply the standard prenex normal form algorithm 
from the classical camp. Consistent theories can then be converted 
into inconsistent ones. For example, lVx(FX v ~Fx) is intuitionis- 
tically consistent. But the standard algorithm for prenexing converts 
this to Exl (Fx v 1 Fx), which is intuitionistically inconsistent. 

Another way of proving the classical Lowenheim - Skolem theorem 
is by Henkin’s method. Could this way possibly be adapted so as to 
meet constructivist requirements? On this approach, one starts with a 
consistent set of sentences and expands it to a maximal consistent set 
with witnesses. Then one defines a canonical model autonomously on 
the language of the expanded set and shows that its theory is precisely 
the expanded set of sentences. And since the model, by construction, 
is countable, we have the desired result. This method, however, is 
non-constructive at the point where one expands the original set of 
sentences. One does so by contemplating both sentences and formulae 
in one free variable drawn from two assumed denumerable lists. One 
adds a sentence when it is consistent to do so, and one adds a fresh 
instance of a formula should it be consistent to assume its existential 
quantification. This requires an infinite sequence of choices, each 
made after deciding a question of consistency. But we know by 
Church’s theorem that there is no general recursive method for 
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making such decisions; hence the Henkin method is not available. 
Therefore, the intuitionist, as long as his mathematics is consistent 
with Church’s Thesis, cannot use Henkin’s method to establish a 
general countable model theorem and so to produce a Skolem para- 
dox. (This criticism applies just as forcefully to the classical proof of 
the completeness of intuitionistic logic with respect to Kripke models, 
as given in Tennant (1978).) 

But what about intuitionistic proofs of the completeness of intuition- 
istic logic? There are two of these in the literature, by Veldman (1976) 
and de Swart (1976). Veldman’s proof uses a single ‘universal’ model, 
whereas de Swart’s uses a certain class (more precisely: fun) of (count- 
able) models. The models under discussion here are neither the fam- 
iliar structures of classical model theory nor standard topological 
models but generalized Beth and Kripke structures. By ‘generalized’, 
we mean that allowance is made for the possibility that both a sentence 
and its negation might be forced at some node in the underlying frame. 

It suffices to consider de Swart’s method more closely in order to 
see that, even here, there is no constructive countable models theorem 
in the offing. Let the fan be E. We define ‘the set X of sentences B- 
implies the sentence P’ in the obvious way: for every structure M in 
B, if every member of X is valid (i.e. intuitionistically true) in M, 
then so is P. De Swart’s completeness proof provides a constructive 
method for producing an intuitionistic proof of P from some finite 
subset of X, on the assumption that X B-implies P. Unlike Henkin, he 
does not provide a method (let alone a constructive one) for produc- 
ing, for any consistent set Y of sentences (that is, a set Y which can- 
not be proved inconsistent using intuitionistic logic), a countable 
structure in B making every member of Y true. Nor is this a construc- 
tion in their completeness proofs. 

A result of Giidel, as reported by Kreisel (in Kreisel, 1962) shows 
that there can be no direct analogue of Henkin’s method in the intui- 
tionistic case. Let T(A, M) be the sentence in set theoretic notation 
that expresses “A is true in the model M”; let Con(A) and Prov(A) be 
as usual (with reference to intuitionistic logic). Let CM (for “consis- 
tency implies model existence”) be the claim 

for all A, if Con(A) then, for some A4, T(A, M) 
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and let VP (for “validity implies provability”) be the claim 

for all A, if for all h4, T(A, M), then Prov(A). 

Each of CM and VP constructively implies (in IZF) arithmetic Markov’s 
principle. But at least infinitely many instances of Markov’s principle 
are independent of IZF. Therefore neither CM nor VP is provable 
in IZF. 

There is a fairly extensive literature on the completeness problem 
for intuitionistic predicate logic, a representative sample of which 
would include Kreisel (1962), Leivant (1972) and van Dalen (1973). 
Surveys of results on completeness appear in Dummett (1977) and 
Troelstra (1977). Relatively little of this material bears directly on the 
constructivity of the general Liiwenheim - Skolem theorem. Those 
results that do apply, e.g., theorems of the form 

if A is not a theorem, then there is a subcountable 
model for not-A 

hold at most for restricted classes of formulae such as the class of 
negative formulae. It would not be possible, therefore, to apply these 
results, without further ado, to the axioms of set theory and of arith- 
metic. (See the final section for more detailed argument on this last 
point.) 

Note that the results of GGdel and Kreisel, as well as those to be 
obtained below, do not require the creation of any arcane version of 
“intuitionistic model theory”. The model theory that we shall do in 
(informal) IZF and its extensions involves simple duplications of the 
existing definitions from classical model theory for such notions as 
“sentence A holds in model M”. All that differs in our treatment is 
the underlying (meta)logic, which of course is intuitionistic. In par- 
ticular, we can help ourselves to the normal Tarskian clauses in the 
definition of model relative satisfaction. 

VII 

We have found no evidence so far that the intuitionist can visit upon 
himself, on the mere assumption that his set theory is consistent, that 
Skolemite embarrassment that now may be the peculiar and dubious 
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privilege of the classicist. Indeed, this is no mere appearance. We can 
advance rather general considerations in support of the claim that no 
countable models theorem of any of the usual straightforward forms 
is intuitionistically provable. These general negative results con- 
solidate and extend all the frustrations so far of attempts to devise 
constructive analogues of the countable downward Liiwenheim - 
Skolem theorem. Let us now explain how the results are obtained. 
Note first that one obviously cannot refute the downward claim in 
IZF, since it holds in a classical, consistent extension of IZF. So what 
we have so show is that we cannot prove the downward claim in IZF. 

A corollary to a general theorem in McCarty (1984) is the well 
known more specific fact that; 
a set of natural numbers is recursively enumerable in the classical sense if and only if 
that set is countable in the Kleene realizability model V(K1) for IZF+ 

IZF + is intuitionistic Zermelo - Fraenkel set theory and other strong 
principles. These include Church’s Thesis; Markov’s Principle; 
Brouwer’s theorem; various forms of choice (strong natural forms of 
which are relativised dependent choice and the Blass- Aczel presen- 
tation axiom) and a panoply of other axioms including the uniform 
reflection principle. 

Moreover, is it a simple (constructively provable) recursion-theoretic 
fact that: 

immune sets exist. 

These are sets that have no infinite recursively enumerable subsets (cf. 
Rogers, 1967, p. 106). Putting these two results together, it is easy to 
see that the countable downward Lowenheim-Skolem claim is in- 
dependent of IZF plus the other principles that hold in V(K1). One 
version of this claim which we shall now show cannot be proved in 
IZF+ is the following: 

(Cl) for every set X of sentences, for every model M of X, 
there is a countable submodel of it4 satisfying X. 

In what follows the turnstile represents intuitionistic deducibility. 

THEOREM 1. ZZF+ Y C, . 
Proof. To see why C, cannot be proved in IZF + , take any immune 

set Z (such sets exist). Consider I*, its analogue in V(K1). In V(Kl), Z* 
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is a subset of o and has no infinite countable subset. (This is because 
countability, as noted above, is the realizability analogue of recursive 
enumerability.) It follows that there is no countable submodel of 
(I*, =) for the theory of identity over I*. For this theory contains the 
sentences E, (n any integer) saying “There are not not at least n 
individuals”. If there were a countable submodel of the theory, it 
would accordingly have to be infinite, contradicting what we know 
about I*. n 

Note that this proof actually establishes a stronger independence 
result than the one already stated. For it shows the independence of 
the following weaker claim: 

(G) For every recursively enumerable (r.e.) theory X, for 
every model A4 of X, there is a countable submodel of 
ii4 satisfying X. 

THEOREM 2.ZZF+ Y C,. 
Proof. See above. I 

This observation deals with the possible complaint from the Skolemite 
that he is concerned to visit the paradox on set theory, which is 
axiomatisable. 

The reader should be reminded that the realizability methods used 
in the proofs do not adversely affect the generality of the indepen- 
dence claims just made. Granted, the proofs themselves rely upon 
phenomena which are at present of very restricted mathematical appli- 
cation: immune sets and their theories of identity. The statements 
shown to be independent of IZF do not partake of any correlative 
restriction; on the contrary, they remain perfectly general versions of 
the downward Lowenheim - Skolem Theorem. Assertions such as C, 
are not to be understood as restricted to those models whose domains 
are immune sets or to theories which are theories of immune sets. The 
statements shown to be independent do not refer to or suffer restric- 
tion from immune sets in any way. (It might be well to compare this 
situation with the more familiar one of Cohen forcing. The Continuum 
Hypothesis neither refers to nor suffers restriction from forcing 
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conditions and generic sets, even though these constructs enter into 
the proof of its independence.) 

We should also point out that an examination of the details of 
the proof of Theorem 1 will license two further strengthenings of 
Theorem 2. Consider the statement: 

G.5 ) For every r.e. theory X, for every model M of X, it is 
not not the case that there is a countable submodel of 
it4 satisfying X. 

THEOREM 2.5. (C,,,) is not provable in IZF+ 
Proof. this is immediate from the proof of Theorem 1. n 

Next, recall that a sentence is negative whenever it is equivalent, 
within a constructive theory, to a sentence devoid of disjunctions and 
existential quantifications and in which every atomic sentence appears 
doubly negated. Our proof of Theorem 1 also shows that we can take 
X to be a set of negative sentences such as “There are not not at least 
n individuals” for arbitrary n. 

What C,, and our remark on negative sentences show is that no 
superficial ‘negativization’ or application of a Giidel- Gentzen nega- 
tive translation suffices to bring back the strong Liiwenheim - Skolem 
Theorem in its standard form. 

Our proofs of Theorems 1 and 2 do not, in themselves, require that 
the existence of immune sets be provable constructively - for example, 
within IZF or IZF plus MP. We can suppose that the metatheory in 
which we define V(K1) and work with it is classical ZF. So in the 
metatheory we can avail ourselves of all the benefits of classical 
mathematics, including the ready assurance that immune sets exist. 
On the other hand, we can prove, even constructively, that immune 
sets exist - Post’s original argument (Rogers, p. 106) is readily con- 
structivized. And we can define the realizability structure and prove 
the fundamental results about it in a constructive metamathematics. 

So the prospects of an intuitionistic analogue of the full countable 
downward Lowenheim-Skolem theorem are bleak indeed. In fact, it 
can already be seen that it would even be a slight understatement of 
our result to point out that the assumption of a strong counterexample 
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(using immune sets) to the countable downward claim is consistent with 
all of Bishop’s constructive mathematics. This understatement is true 
because all the latter can be done in IZF plus relativised dependent 
choice. 

So far the Skolemite appears to be intuitionistically empty-handed 
as far as countable submodels are concerned. But might he clutch at a 
surviving straw: the existence of countable models iiberhaupt, be they 
submodels or not of the original model? Once again, the answer is no. 
For the following claim is independent of IZF + : 

for every set X of sentences, for every model M of X, 
there is some countable model M’ (not necessarily a 
submodel of M) satisfying X. 

Bear in mind that on a constructive interpretation, if we have X and 
it4 then the countable model M’ whose existence is guaranteed by the 
claim depends parametrically on X and M, and so too does the 
counting function (with domain o) that makes it countable. Once 
again we concentrate only on the need to show that the claim (C,) 
does not follow from IZF + . 

THEOREM 3. IZF+ Y C,. 

Proof. Here first is a summary of the argument: 

Consider once more the realizability model V(K1). Let [i] be the i-th partial recursive 
function under the standard enumeration. Were (C,) to be provable, and (by the 
soundness of the realizability semantics) true in V(KI), the predicate “[i] is a total 
recursive function” would be recursively enumerable. But the predicate in question is 
known not to be recursively enumerable (cf. Rogers, 1967, p. 264). Hence (C,) is not 
provable. 

Let us now expand this summary of the result with more argumen- 
tative detail. 

Assume for reductio that (C,) is true in V(K1). For each natural 
number i, consider the set 

i =df (0) u { 1 : [i] is total} 

Let A4 be the model with i as its domain, and identity as its only 
relation. We consider only the language of identity. Let X be the 
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theory in this language for M. It follows from the assumed truth of 
(C,) in V(K1) that X has a countable model M’, with enumerating 
function f;. (Here we are following our recent advice, by bearing in 
mind that this counting function depends parametrically on i.) This is 
because the recursion-theoretic properties of i help at least in part to 
determine the original model A4 of the claim (C,) above, which is the 
focus of our reductio. 

Since the domain of M is a subset of the integers, M satisfies the 
claim that identity is decidable: 

VxVy(x = y v 1x = y) 

Thus this sentence is in X. Hence, by assumption, it holds in M’ as 
well. Now (c.f. Minio, 1974) countable sets with decidable equality 
are isomorphic (with respect to =) to subsets of o. Thus the domain 
of M’ can without loss of generality be taken to be a subset of o. 
Now, since L maps w  into o, we may assume that J is total recursive, 
with index ei depending effectively on i. (That is,f; is [ei].) This is 
because V(K1) satisfies Church’s Thesis: that every number-theoretic 
function is total recursive. 

Now the statement that says that the recursive function [i] is total 
has the form 

VnEmP(i, m, n) 

where the three-place predicate P is primitive recursive. 
We shall now prove the equivalence 

VnEmP(i, n, m) if and only if EnEm Ifi(n) = A(m) 

which contradicts well-known results of ordinary recursion theory. For 
the right hand side is a recursively enumerable predicate of i. But the 
left hand side, expressing the claim “[i] is total”, is not recursively 
enumerable (cf. Rogers, p. 264). This will complete the reductio of the 
assumption that (C,) is true in V(K1). Hence (C,) cannot be proved in 
IZF+. 

We establish the equivalence above by arguing first in the direction 
from left to right: 
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VnEmP(i, n, m) (that is, [i] is total) 
bv definition of i 

i = (0, 1} 
by Tarski clauses 

M b ExEy-~x = y 
by choice of M’ 

M’ t ExEylx = y 
by Tarski clauses 

Ex in M’ Ey in M’ ix = y 
since f is onto 

EmEnIf;m = An 

and then from right to left: 

the proof schema 
(1) 

t = 1 & [i] is total 

[i] is total 
i.e. VnEmP (i, n, m) 

EmP (i, a, m) -~ErnP(i, a, m) 

t in i (1) A 

t = 0 v (t = 1 & [i] is total) t = 0 t=O 
t=O (1) 

establishes the inference 
t in i lEmP(i, a, m) 

t=O 
for arbitrary r. 

This is now applied twice over in the following proof, along with 
Markov’s principle (for primitive recursive F) in its inferential form 

(1) 
7 EmFm 

Em>m (‘) 
2 and the axiom scheme At in M’ . 
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(2) (2) 

f&in lEmP(i, a, m) f@ M' lEmP(i, a, m) 

AC = 0 Jd = 0 (1) 
AC =xd lJc =hd 

EmEn Tf;rn = j$ A 
(1) 

A 
(2) Markov 

EmP(i, a, m) 
VnEmP(i, n, m) 

i.e. [i] is total 

This completes our proof of the equivalence, and also the proof of 
Theorem 3. Again, the reader is cautioned not to confuse the method 
by which we prove the theorems with the statements whose indepen- 
dence the theorems establish. We have shown that a general count- 
able Lowenheim-Skolem theorem is not constructively provable by 
giving a formalization of the theorem its realizability interpretation. 
On the interpretation, the statement of the general Liiwenheim- 
Skolem theorem comes to imply that a certain uniform effective 
method exists. By marshalling other considerations, one shows that 
the required method cannot exist and, hence, that the Lowenheim- 
Skolem theorem is not constructively provable. It is essential to note 
that neither the statement of the Liiwenheim - Skolem theorem, nor 
its formalization nor its standard constructive interpretation asserts, 
or even implies, that there is such an effective method. It is not the 
case that our proof shows no more than that an “effectivization’ of 
the Lowenheim - Skolem theorem is independent of IZF + . Rather, it 
shows just what it purports to show - that the general theorem itself 
is not constructively provable. 

There now arises the following possible objection: 

“You have proved the independence of (C,) only from IZF+. But IZF+ does not 
contain the Fan Theorem or Bar Induction. So how do you know that there is not 
proof, using these stronger principles, of a form of the downward Liiwenheim - Skolem 
theorem?” 

The answer to this objection is as follows. One can show (as we shall 
below) that the strong downward countable Lowenheim - Skolem 
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theorem is constructively inconsistent with Markov’s Principle for 
arbitrary natural number functions. In the terminology of Brouwerian 
intuitionism, the conjunction of the two claims has a “weak counter- 
example”. That is, module IZF (or even second-order Heyting arith- 
metic), they imply the law of excluded middle for arbitrary sentences. 
For the formal statement of the result, let us introduce some 
abbreviations: 

(C,) is the claim: for every model M there is a countable model M 
elementarily equivalent to M. 

MPF is Markov’s Principle for arbitrary natural number functions: 

if lVxVy(fx = fy) then ExEylfx = fy. 

THEOREM 4. Let A be an arbitrary formula. 
Then IZF, MPF, Cd k A v 1 A. 

COROLLARY 1. Since V(K1) satisfies MPF but not all formulae of 
the form A V-Y A, it follows that C, is independent 
of IZF+ . 

COROLLARY 2. Since there is a sheaf model (cf Fourman and 
Hyland 1979) for the fan theorem, bar induction 
and Markov’s Principle that does not satisfy all for- 
mulae of the form A v 7 A, it follows that C, is 
independent of IZF plus the fan theorem plus bar 
induction. 

Proof. Since 11 (A v 1 A) is an intuitionistic theorem, it suffices to 
show, for any sentence B, that IZF, MPF, C4, -rlB t B. So let 
B =df(O} u {l:B).Inotherwords,xisinBifandonlyif(x = 0 v 
(x = 1 & B)). We shall identify B with the model whose domain is B 
and whose only relation is the identity relation. 

Assume B holds, Then B by definition contains 0 and 1. Thus were 
we to assume C: B b VxVy(x = y), a contradiction would ensue by 
virtue of the Tarskian clause for the universal quantifier, and the 
standard interpretation of 1. 
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By the intuitionistic proof schema 

cap -V) 
c B 

A (1) 
-IB -ITB 

A (2) 
1C 

We have a proof of -I C from the assumption 11 B. We shall now 
continue with a proof of B from -I C. This will establish overall that 
B follows from 1-1 B. 

So assume lC, that is, l(B \ VxVy(x = y)). By the Tarskian 
clause for negation, 

B b lVxVy(x = y). 

Now, by C,, let N be a countable model elementarily equivalent to B 
with respect to the language of identity. Let f be the function from o 
to (the domain of) N that enumerates it. Since B is a subset of w, 
identity is decidable on B; that is, B b VxVy(x = y  v  lx = y). By 
elementary equivalence, 

N t lVxVy(x = y). 

By elementary equivalence, we also have that identity is decidable 
on N. By Minio (1974) as before, we can assume without loss of 
generality that N is a subset of w  and, hence, that f is a number- 
theoretic function. Since 

we have 

N 1 lVxVy(x = y), 

1 VmVrz(fm = $9) 

By MPF we obtain 

EmEn 1j.m = fi 

Thus N k ExEy -IX = y. Hence by elementary equivalence, 
B I= ExEy lx = y. It follows by the Tarskian clauses for the 
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universal quantifier and negation that 

ExinBEyinBlx = y 

Now note that by the definition of B, the following schematic infer- 
ence is valid: 

t in B 

t=Ov(t=l&B) 

We proceed intuitionistically as follows: 

(1) (2) -- 
a=0 6 = 0 (3) 

(3) a=b -a = b (1) 

(3) a in B A a=I&B (2) 
b in B a=Ov(a=I&B) B B b=l&B 

b=Ov(b=I&B) B 
(1) B 

ExinBEyinBlx = y  B 
(2) 

B 
(3) 

This completes our proof of B from 11 B, and also the proof of 
Theorem 4. 

Insofar as countable models are concerned, then, our four theorems 
appear to block the most obvious routes to the result, in any of its 
usual straightforward forms, that the Skolemite needs.6 

VIII 

But what about subcountable models - whether or not they are sub- 
models of the original model? So far we have shown the independence 
of the downward claim involving the cosntructively strong notion of 
countability, thereby apparently weakening the independence result. It 
remains to be seen whether independence survives upon substitution 
of ‘subcountable’ for ‘countable’. But whether it does or not, we 
may have already drawn the Skolemite’s sting. For it is consistent 
with IZF+ to assume that extremely capacious sets are subcountable. 
For example, in V(K1) every metric space - including the reals - is 
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subcountable! The intuition of the capaciousness of the reals holds 
firm, backed by Cantor’s argument. Indeed, it would be one of the 
standards against which one would judge the appropriateness or 
adequacy of any attempted explication, in mathematical terms, of the 
notion of cardinality. 

It is clear from McCarty (1984) and Grayson (1978) that subcount- 
ability cannot serve as a fully satisfactory constructive measure of the 
size of a set. For subcountability is incapable of sustaining distinc- 
tions of cardinality which the constructivist wishes to make. Insofar 
as there is a constructive theory of cardinality, it uses the notion of 
countability. This is the notion based on total counting functions, 
which is already so familiar to the classicist. 

Finally, what about negative translations? On the basis of these 
translations, it may appear, at first sight, as though the paradox could 
be re-instated. The line of thought would run as follows: As is well 
known, there are negative translations (Friedman, 1973; Powell, 1975; 
Beeson, 1985; Leivant, 1985) of classical set theory into intuitionistic 
‘correlates’. Cannot now the ‘negative’ version of LST induce Skolemite 
stress? Our reasons for disagreeing are as follows. The general pattern 
is this: a translation f is defined so that the following holds: 

If ZF kc4 then IZF t,f$. 

But the translationf has to be defined with some care, in order to 
overcome certain difficulties presented by set theory, Friedman, in his 
choice off, went beyond the usual double-negation treatment of 
atomic formulae, disjunctions and existential quantification by also 
replacing any atomic formulae a E b with an extremely complicated 
formula in a and b. And Powell, in his choice off, went beyond the 
Gddel- Gentzen dualization of v and 3 in terms of 1, & and V by 
further restricting all quantifiers to range over stable sets (sets in 
which not not being a member implies being a member). 

Now, in the light of these remarks, we have to consider the puta- 
tive objection based on the observation that (for some such choice 
off) 

If ZF kc LST then IZF k, f (LST). 
Is this an adequate objection to our pessimism over the prospects for 

a constructively acceptable analogue of the downward Liiwenheim - 



SKOLEM’S PARADOX AND CONSTRUCTIVISM 197 

Skolem theorem? We think not. For the statementf(LST) is not a 
statement of constructive model theory. The tampering with E or with 
the range of the quantifiers give the lie to the objector’s reading of 
f(LST) as a version of LST in any serious sense. But quite apart from 
those features off, the logical rewriting via the negative part of the 
translation totally obstructs such a construal. For evenf(LST) would 
not deal with theories (sets of sentences closed under derivability) but 
with collections X of sentences such that, if it is not not the case that 
B is derivable from X, then B is not not a member of X. In the same 
way, the “double negative translation” of the predicate “is a model” 
is not “is a model”. 

One would want to say very much the same thing about the nega- 
tive form of the classical mean value theorem (MVT), which is also 
not constructively provable. The negative translation of the MVT 
does not afford a counterexample to the claim that the MVT is inde- 
pendent of constructive set theory because the negative form of the 
theorem is, quite simply, not a statement of real analysis. It deals 
neither with real-valued functions nor with real values. 

Secondly, the negative translation of the Lowenheim - Skolem the- 
orem is not likely to give rise to worries of the Skolemite sort because 
it does not assert the existence of countable non-standard models. All 
it would assert (even if it did concern theories, models and the like) is 
that there not not exists a countable model (or rather: a countabl$ 
model$ a claim which is much weaker than the claim that gives rise 
to the Skolem paradox. When a constructivist claims that there not 
nut exists a certain structure, he is claiming that one can rule out on 
mathematical grounds the assumption that no such structure exists. 
But this is less than what is needed to get the paradox off the ground: 
that countable’ nonstandard models fail to be prohibited is not tan- 
tamount to countable nonstandard models receiving, as they do in 
classical mathematics, a general licence. 

There remains one further possible worry about whether we have 
been successful in blocking the application of a downward Liiwenheim - 
Skolem theorem to set theory. The worry takes this form: might we 
not have left open the possibility that one could (constructively) 
derive speczjic completeness or countable models theorems for formal 
set theories or more ‘ordinary’ theories such as arithmetic? We believe 
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the following results go some way toward warding off such worries. 
We will limit ourselves to statements of results; complete proofs will 
appear in McCarty (forthcoming). On the basis of the first two the- 
orems below, one sees that there is no hope of arriving at a countable 
downward Liiwenheim - Skolem Theorem by way of a model exist- 
ence theorem for simple extensions of arithmetic and set theory. 

THEOREM 5. Zf ZZF is consistent, then one cannot prove, in ZZF + 
A, the statement 

Zf T is consistent, then there not not exists a model of T 
where T ranges over extensions (even finite or r.e.) of 
Heyting (intuitionistic) arithmetic. 

A can be Church’s Thesis, Markov’s Principle or the Uniform ReJec- 
tion Principle. 

THEOREM 6. Let S be any formal set theory (e.g., a suitable sub- 
theory of ZZF) which contains arithmetic separation and which is at 
least as strong as Heyting arithmetic. Then, if ZZF is consistent, one 
cannoi prove in ZZF + A the statement 

for all sentences B, ifs -?- B is consistent then it is not 
not the case that there is a model of S -I- B. 

A should be such that ZZF + A proves that A is true under realizability 
and such that ZF + A does not prove that ZF is inconsistent. 

Consequently, one cannot provide various weakened forms of 
model existence theorems for theories representing a reasonable 
amount of constructive mathematics. 

Next, one can prove outright, using Church’s Thesis in IZF, that 
strong set theories have absolutely no models which are either very 
small in cardinality or have “well structured sets” as their carriers. 

THEOREM 7. In ZZF plus Church’s Thesis, there is a proof that, 
if a set theory T has arithmetic separation and is at least as strong as 
Heyting arithmetic, then T has no models of the same cardinality as 
some subset of the natural numbers. In fact, T will have no models 
which support stable equality. 
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The equality relation on a set will be stable when it is invariant with 
respect to double negation. Theorem 7 implies that set theory will 
have no true interpretations of the same cardinality as a metric space; 
this will include the reals, Baire space and Cantor space. 

Finally it is consistent with IZF to assume that there are theories in 
the language of first-order arithmetic for which none of the standard 
problems of “ontological relativity” can arise. It will follow from 
Church’s Thesis plus Markov’s Principle that Heyting arithmetic 
determines its models up to isomorphism. 

THEOREM 8. In IZF, Church’s Thesis plus Markov’s Principle proves 
that Heyting arithmetic is categorical. 

Obviously, these results, even taken together with those given earlier, 
do not absolutely rule out the possibility that a version of the Skolem 
Paradox might be applicable to some strong constructive theory. 
Nothing that one could do in the way of independence results would 
show definitively that all statements which could conceivably be 
thought ‘versions’ of the Lowenheim - Skolem Theorem are indepen- 
dent of all theories which could conceivably be thought ‘constructive’. 
Besides, it would be foolish to attempt to draw a formal circle around 
just those mathematical claims which might pose metaphysical prob- 
lems. But this is not to say that nothing has been accomplished; the 
theorems of the paper do suffice to show that, if ‘Skolemism’ can 
arise for some extension of constructive set theory, then it must be a 
relatively ‘local’ phenomenon. As we have seen, the countable models 
theorem is not, at least in constructive mathematics, an ineliminable 
feature of the study of any countable consistent first-order theory. If 
the theorem is constructively available, it will only be so in virtue of 
the fine details of the theory under consideration and of the assump- 
tions in the attendant metamathematics. 

What we have shown is that even very weak forms of the 
Liiwenheim - Skolem theorem are independent of the strongest 
intuitionistic set theories commonly considered. It follows that 
none of the theorems of Bishop-style constructivism, none of the 
work of the members of the Markov - Sanin ‘School’ and none of 
the axioms of standard Brouwerian constructivism will prove the 
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Lijwenheim - Skolem theorem in anything approaching its ordinary 
genera1 form. Consequently, the possibility of a Skolem-style paradox 
is definitely not the concommitant of any attempt to formalize a 
sufficiently large part of constructive mathematics. Or, if some refined 
form of the paradox were to be resurrected, it could only be on the 
basis of axioms (such as those of the creative subject) which lie out- 
side the ‘core’ area of constructive mathematics or by employing 
metamathematical methods which are truly novel. If there is some 
way of infecting constructive mathematics with ‘Skolemism’, we have 
yet to see what it is and from whence it could come. 
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NOTES 

’ For a proof-theoretic analysis of this vicious circularity, see Tennant (1982). 
’ We have not raised here the question of characterising the uncountable directly by 
means of the quantifier ‘There exist at least uncountably many x such that . . ‘. As 
Timothy Smiley has observed, Keisler’s completeness proof for a (classical) logic based 
on a simple set of axioms and rules for this quantifier gives an intriguingly quick answer 
to the question whether there is any way at all of characterizing the uncountable. 
(Vaught had earlier established that the logical truths in this language were recursively 
enumerable; the interest of Keisler’s result is that he shows four simple schemata using 
the new quantifier to be sufficient for its axiomatisation.) This victory is made to look 
somewhat Pyrrhic, however, by the impossibility of recursively axiomiatising the logic 
of ‘there exist at least infinitely many x such that . ‘. (This impossibility follows from 
Vaught’s test: see Bell and Slomson, 1971, p. 266). Thus, direct expression by means of 
quantifiers has a freakish pattern of success and failure. The interest in how set theory 
fares in characterizing both the infinite and the uncountable derives, we believe, from 
the thought that both these notions either reduce to, or can somehow be conveyed by, 
the use of some more basic notion, such as that of set. And there, says the Skolemite, 
lies the rub. 
3 The interested reader should compare this with Quine’s ‘virtual set theory’. 
4 Mostowski (1949). 
5 We are indebted to Kit Fine for this point. 
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6 Those familiar with constructive mathematics will see that our proof of theorem 4 
actually supports a much stronger (and more interesting) conclusion. We have shown 
that C,, even restricted to models of the pure theory of identity having at most 
two elements, implies Kripke’s Scheme. The latter is commonly taken to axiomatise 
Brouwer’s theory of the creative subject. 
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