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1. Introduction 

Often in physics one encounters  a constitutive assumpt ion  asserting tha t  the 
value of a variable h at t ime t is given by  a functional  b of the history up to t 
of ano ther  variable f :  

h( t )=D(f t ) .  (1.1) 

Here  f t  is a funct ion on [0, ~ )  with the proper ty  that  f t (s)  equals the value of f 
at  t ime t -  s:  

f t ( s ) = f ( t - s ) ,  0__<s<oo. (1.2) 

The  funct ional  I) characterizes the material, or class of materials,  under  consider- 
ation. I t  is frequently possible to prove  theorems in a branch of physics wi thout  
completely  specifying the fo rm of I), but  usually one must  know something in 
advance  abou t  the smoothness  of I). Fo r  this reason several norms  have been 
proposed  for  sets of histories f t .  1 

A n o r m  l[" I[ assigned to spaces of histories f t  is subject to three e lementary 
physical  requirements :  2 

(1) The  history ft+~ of f up to t ime t + a ,  a > 0 ,  in a process for  which f has 
the history f t  up to t ime t and is held constant  in the interval [t, t +  a] is called 
the "s tat ic  cont inuat ion of f t  by a m o u n t  a" .  I t  is required tha t  if the norm o f f  t 
is finite, then the norm of each static continuation o f f  t also must be finite. More- 
over, if the distance [If~-f*2 I[ between two histories is zero, then there must be 
zero distance between their static continuations by any given amount. 

(2) If f t  is the history of f up to t ime t, then the history of f up to the earlier 
t ime t - a ,  a>O, is called the "a-sec t ion  of f t , , .  I t  is required that  i f f  t has finite 
norm, then the norm of each a-section of f t  must be finite. 

(3) In  physical  theories "equi l ibr ium states" must  have finite n o r m ;  tha t  is, 
if f t  (s)-- a, a constant, then we require I[f'll <oo .  

1 E.g. COLEMAN &NOEL [1960, 1], [1961, 1], [1964, 2]; COLEMAN [1964, 1]; WANG [1965, 3]; 
PERZYNA [1967, 2]. 

2 For a discussion of the physical significance of the requirements (1)-- (3), see COLEMAN & 
MIZEL [1966, 1, pp. 87--89]. 
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In a recent study 3 of s of the form 

I[f'Lf = S I f ' lPdp,  l < p < o o ,  (1.3) 
[0, oo) 

with p a positive, regular, Borel measure on [0, oo), we found the restrictions 
placed on p by the requirements enumerated above. Here we show that many 
of the results obtained in our study of .~ep-spaces are valid also for general Banach 
function spaces. 

A theory of materials with memory which rests upon Banach function spaces, 
rather than upon .LP~-spaces, has not only the advantage of greater generality 
but also the advantage of eliminating the arbitrary numbers p and de-emphasizing 
the "influence functions" k, 4 which are not experimentally determinable and 
appear in a physical theory as analytical encumbrances rather than as aids to 
understanding. We believe that these advantages are illustrated in our recent 
paper 5 on the thermodynamics of materials with memory. 

We have attempted to keep the present paper sufficiently self-contained that 
it can be read independently of earlier articles on materials with memory. When 
a proof already given in our article on .gap-spaces 6 applies without modifica- 
tion to more general Banach function spaces, we state the generalized theorem 
but do not repeat the proof. Many of the results assembled here will be applied 
in an essay, now in preparation, on asymptotic stability of solutions of functional- 
differential equations. 

2. Properties of General Influence Measures 

Let # be an influence measure; that is, a non-trivial, 2:-finite, positive, regular 
Borel measure on [0, 00), and let Sa be the set of all p-measurable functions q~ 
mapping [0, 00) into [0, 00). Let v be a function on ~ such that for all 4, (or ~b~) 
in ~a: 

(i) 0<v(~b)<~ ,  and v(~b)=0 if and only if ~b---~ 0; 7 

(ii) v(~bl+~b2)<v(~b,)+v(q~2), and v(aqb)=a v(qb) for all numbers a > 0 ;  

(iii) if ~bl =~b 2, then v(~bl)<v(~b2); 
(iv) there is at least one function ~b in S~ with 0 < v (~) < oo ; 

(v) if r ~i ,  4'2, ... are in 6 a and if qS, T~b pointwise p-a.e., then v(qS,)Tv(~ ). 
Such a function v is called a non-trivial function norm, relative to p, with the 

sequential Fatou property, s 
Let V be a non-trivialg, separable, real Banach space with norm I" I, and let 
be the set of p-measurable functions 4, mapping [0, 00) into V. 10 We define 

3 [1966, 1]. 
4 Cf.  COLEMAN & NOLL [1960, 1]. 
s [1967, 1]. Our present Theorem 3.1 motivates the formula (3.10)used in that essay to 

define the norm I[" [I on histories. 
6 [1966, 1]. 
7 A superposed o indicates that the given relation holds pointwise a-a.e., i .e.  for all s in 

[0, (x3) except for a set X wi th / t (X)=0 .  
a This is the terminology used by LUXBMBURG & ZAANEN [1966, 2]. 
9 I.e. with at least one non-zero element. 

lo In many applications the space V has finite dimension. In fact we believe that the results 
to follow have interest even in the case in which V is the set of real numbers. 

2* 
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a function H" II on ~ by writing, for each 4, in ~ ,  

II~ll = v ( l ~ l ) ,  (2.1) 

and we denote by ~e" the set of all functions ~b in ~ with I1~11 < oo. 
If @ is a function on [0, oo) and a a positive number, then the static contin- 

uation of ~k by amount a is the function @(') on [0, oo) defined by a 1 

ip(.)(s) = ~ @(0), O < s < a ,  (2.2) 
( q , ( s - a ) ,  a < s < o o ;  

the a-section of ~ is the function ~k(,) on [0, oo) given by 

@(o) (s) = ~k (s + a),  0 __< s < oo. (2.3) 

We now lay down an assumption about v. 

Postulate 1. I f  a given function ~ is in ~, then all the static continuations 4, (~), 
a>O, of ~ are also in ~. Furthermore, if ~ and @ in ~ are such that ][~-~kl[ =0, 
then [[~(')-@(~)[I =O for  all a~O. 

Theorem 2.1. Postulate 1 requires that the influence measure p have an atom 
at s =0 and be absolutely continuous on (0, oo) with respect to Lebesgue measure 2. 

Proof. Let e be a vector in V with [e[ =1. To show that s = 0  is a p-atom, 
we suppose that p({0})=0 and let Zo denote the characteristic function of {0). 
Then, Xo __o 0; that is, e Zo (s) = 0 p-almost everywhere, and, by (2.1) and property 
(i) of v, lie Zot[ =0. But, by Postulate 1, this yields [[(e Zo)(')[l =0 for all a~_0, 
and since (2.2) implies that (e Zo) (') =e  Xto,,l, we have lie Xt0,~ll[ =0 for all a > 0 .  
Thus, by (2.1), 

v(Xto,,l)=0 for each a > 0 .  (2.4) 

Property (i) of v and (2.4) imply that p{[0,a]} =0 for all a > 0 ,  which contradicts 
the non-triviality of p. Hence p({0})~=0; i.e., s = 0  is a p-atom. 

To complete the proof, we must show that the restriction of p to (0, oo) is 
absolutely continuous relative to Lebesgue measure 2 on (0, oo), i.e. that, for 
subsets X of (0, oo), 2 (X)=0  implies p(X)=0.  To do this by contradiction, we 
let Xc(0 ,  oo) be a purported 2-null Borel set with non-zero p-measure: 

Xc(O,  oo), 2(X)=O, p(X)>O. (2.5) 
Since we then have 

0 < p (X) = lim p (X c~ [ a -  1, a]),  
~-~oo 

we may suppose, without loss of generality, that X is contained in [a- l ,  a] for 
some a > 1. We now let Xx-, be the characteristic function of the set X - a  defined 
as follows: 

X-a={s-als~X}={sls+a~x}. 
According to Postulate 1, none of the sets X - a ,  0_-<a<a -1, is a p-null set; 
for if one were, then we would have, by (2.1) and (i), 

Ilezx-~ll =V(Zx-~)=0, 
11 Cf. COLEMAN & NOLL (1962) [1964, 2, Eq.(3.8)]. 
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which implies that 
0 = ]1 (e)Cx- ,)(*)H = U e Zx II = v (Xx) 

and hence that X itself is a/~-null set. Thus, (2.5) yields 

# ( X - a ) > 0  for all a in [0 ,g - l ) .  (2.6) 

However, (2.6), when combined with our assertion that 2(X)=0,  contradicts a 
theorem of WEINER, YOUNG, and SAKS 12 which asserts: If/~ is a positive, regular, 
Z-finite measure defined on Bore1 subsets of (0, oo) and if I ( X ) = 0 ,  then the set 
of a values for which /~(X-a)  > 0 must have zero Lebesgue measure. Thus, (2.5) 
is impossible, and on (0, oo)/~ is absolutely continuous relative to 2; q.e.d. 

Let us now add to Postulate 1 the following assumption. 

Postulate 2. I f  ~ is in ~, then so also are all its a-sections, ~(~), a > O. 

Remark 2.1. If Zx is the characteristic function of a #-measurable, bounded 
subset X of [0, oo), then 

V(Zx) < oo. (2.7) 

Proof. Since X is a bounded subset of [0, ~ ) ,  we may pick a positive number/ /  
such that X is contained in [0,//). It clearly follows from properties ( i)-( iv)  of 
v that there exists a function ~ in S e such that 0<v(~k)< oo and $(~)>  1 for some 
cr > 0. Hence, by (2.1), for any vector e in V with I e I = 1 we have II e ~ II < oo; that 
is, e~k is in "//" and, by Postulates 1 and 2, (e~b)(~) and ((e~b)(~)) (p) are also 
in "/s However, since ~O(~)>l it follows from (2.1)-(2.3) that 

I(e~b)(~)(0)l>l, and [(e~b)(~)(P)(s)l_->l for all s~[0,/ /) .  
Thus, 

[(e~)(~)(a)(s)l>Xx(S) for all se[0,  oo), 
and 

v(l(e ~k)(~)(a)[) < oo, 

which, by property (i) of v, implies (2.7); q.e.d. 

Theorem 2.2. Postulates 1 and 2, together, imply that either It((O, oo)) =0 or ~ is 
absolutely continuous on (0, oo) with respect to p. 

Proof. We must show that if 
,((o, oo))>o, (2.8) 

then, for subsets X of (0,oo), / I (X)=0 implies 2(X)=0.  To do this by contra- 
diction we assume (2.8) and let a set X be such that 

X=(0 ,  oo), p ( X ) = 0 ,  2 (X)>0 .  (2.9) 
Since 

0 < / ( X ) =  lim 2(X c~ [tr-1, a]) 
( ;  - '~ cO 

without loss of generality we can assume that X is contained in an interval of 
the form [=-1, ~] for some ~ > 0 ;  furthermore, by Theorem2.1, we can assume 
that Xis  a G6 set. 13 Let e be a unit vector in V, and l e t abe  >0. Since p (X) = 0, 

12 Vid. SAKS [1937, 1, Theorem 11.1, p. 91]. 
13 Vid. e.g. [1937, 1, p. 41]. 
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we have, by property (i) of v and (2.1), 

0 = v (Zx) = lie Zx [J, 
and, by Postulate 1 and (2.2), 

0 =  lie Z(xO)ll = I l e z x + o l l  = v ( Z x + o ) ,  

with X +  a the set defined by 

S + , r =  {s + , r l s e  X } =  { s l s - , r  ~ x }  . 
Therefore, 

p(X+a)=O for all a__>0. (2.10) 

It follows from FUBINI'S theorem that 

co oo 

i f ( a )  d2(a) > ~ g(a) dp(a) ,  
0 ~t 

where 
f ( a ) =  ~ d/t,  g(tr)= ~ d2.  

X+er X + o  

Therefore, since (2.10) asserts that f ( a ) = 0 ,  and the translation-invariance of 
Lebesgue measure implies that g ( , ) = 2 ( X ) ,  we have 

oo oo 

0 = ~ f(o') d2(a) > ~ )~(X) d # (o') = 2(X) p([-~, oo)). (2.11) 
0 

In (2.9) we assumed 2 (X)> 0; hence (2.11) yields 

/~ ([c~, oo))=0,  (2.12) 
and consequently (2.8) implies 

#((0, ~)) > O. (2.13) 

Let ~o , , )  be the set of all functions ~b in 6 ~ which vanish outside of (O,cO. We 
note that (i) - (v) imply that ~o , , )  contains at least one function ~ with v (~b) = oo ; 
i.e. with 

Ileal] =oo .  (2.14) 

Since ~(0)=0 ,  (2.2) and (2.12) yield 

(e~)(~)~ 0, i.e. [l (e @)(=)ll =0 ,  

and (e~)(') is in ~. But then, by Postulate 2, (eq3)(')~,) is also in ~,  and since 
(2.2) and (2.3) yield (e~)( ')( ,)=e~, we have Ileal[ < oo which contradicts (2.14). 
Thus (2.12) and (2.13), when taken together, yield a contradiction, and we may 
conclude that if (2.8) is assumed, (2.9) is impossible, q.e.d. 

Let us now adopt the usual terminology in which the words measurable, 
locally summable, and almost everywhere (a.e.), without further modifiers, all 
refer to Lebesgue measure. 
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It follows from Theorem 2.1 that there exists a locally summable function k 
on (0, oo) such that for every interval (a,b) in (0, oo) 

b 

#((a, b))=~ k(s) ds. (2.15) 
a 

This function k, the Lebesgue-Radon-Nikod2~m derivative of/2, is the analogue 
in our present more general theory of the influence function occurring in COLE- 
MAN & NOLL'S theory [1960, 1], [1961, 1], [1964, 2] 14 of fading memory. Theo- 
rem 2.2 tells us that k is essentially positive; i.e. 

k(s)>0 a.e. in (0, oo). (2.16) 

Furthermore, it is now clear that (2.7) can be strengthened to the following 
assertion: If X is a bounded measurable subset of [0, oo), then V(Xx)< oo and 

V(~x)>0 if either 0 e X ,  or 2 (X)>0  and /~((0, oo))>0. (2.17) 

In particular, for Xo, the characteristic function of {0}, we have 

0<V(Xo)< oo. (2.18) 

3. Translations in Space of Past Histories 

In applications a 5 of the present theory, the functions 4 in ~e" are called histories; 
their independent variable is usually denoted by s and is called the elapsed time. 
The value 4(0) of a history ~ at s = 0  is thepresent value of 4, and thepast values 
4(s) are those for which 0 < s <  oo. In terms more suggestive than precise, Theo- 
rems 2.1 and 2.2 tell us that 11411 =v(I  4' I) places greater emphasis on the present 
value of 4 than on any individual past value but does not "ignore" any interval 
of past time. 

The function space 58 obtained by calling two functions 41, 42 in 3r r the 
same whenever 114~-~211 =0  is easily shown to be a Banach space. Here we 
examine the structure of 58, employing, of course, the Postulates 1 and 2 and 
their consequences given in Theorems 2.1 and 2.2. 

If 4 is a function in ~,  the restriction of 4 to (0, oo) is called the past history 
of 4 and is denoted by ~b,. We employ the symbol ~,  for the set of all functions 4, 
obtained by restricting members of ~e" to (0, oo). The function II �9 II, on  ~ defined by 

II4,11,-- 114 z(o, oo)11 = v ( l ~  Z(o, ~>1) (3.1) 

is clearly a semi-norm. The space of past histories is the function space 58, ob- 
tained by calling the same those past histories ~,,  ~k, for which 114,-~,,11,--0; 
58, like V and 58, is a Banach space. 

Theorem 3.1. The Banach space 58 is algebraically and topologically the direct 
sum of V and 58r; that is 

58 = V@ 58,, (3.2) 

14 See: also COt,~t~N & MIZEL [1966, 1]. 
15 Cf. COLEMAN & MIZEL [1967, 1]. 
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and the norm II" 11 on ~8 is equivalent to the norm II" I1' defined by 

114'1(= I4'(0) 1+ 114',11,. (3.3) 

Here I.I is our original norm on V, 11"II is the norm on ~8 defined by (2.1), 
and I1" II, is the norm on ~ ,  defined by (3.1). The equivalence of [1" I1' to II" I1 
shows that the present value 4'(0) of a history 4' in ~ has approximately the same 
importance to 4' as its entire past history 4',. 

Proof of Theorem 3.1. Since ~8 is formed from functions 4' mapping [0, ~ )  
into V, and ~ ,  is formed from the restrictions of the functions 4' to (0, oo), (3.2) 
is trivial as an algebraic statement. To show, however, that I]" II is equivalent 
to 11" [1', we must produce two positive numbers cl and c2 such that 

114,11 _-< c1114'11 ', (3.4) 
and 

114'11'_-< c2114'11. (3.5) 

Now, for each function 4' in q/" we have 

4' = 4' (0) Zo + 4' Z~o, oo), (3.6) 

and, by (2.1), property (iii) of v, and (3.1), 

114'11=v(14' l)<v(14'(0)zol)+v(14'Zto.  oo) l )=14 ' (0) lv(zo)+ 114',11. 

Therefore (3.4) holds with 
cl = max (V(Zo), 1}. (3.7) 

Equation (3.6) also yields 

v(14'l)~v(14'(O)xol)=14'(O)Iv(zo), v(14'l)>=v(14'X<o, oo)l)=l14'l[,. 
Thus 

2114'11 _-__14'(o)1V(Xo)+ 114',11,, 
and (3.5) holds with 

c21 = �89 min (v(x0), 1}. (3.8) 

The assertion (2.18) insures that c I and c 2, given by (3.7) and (3.8), are finite 
and positive; q.e.d. 

We now concentrate our attention on the Banach space ~ , .  
Let us define translation operators by the following formulae which hold for 

each function 4', in ~r 
0, 0 < s < t r ,  (3.9) 

T(#) 4'~= 4' , (s - tr ) ,  t r<s<oo ;  

T(,) 4',= 4',(s +tr), 0 < s < o o .  (3.10) 

Our Postulates 1 and 2 imply that for each a > 0, T (') and T(,) map ~, into ~e~,. 
Furthermore, T (') and T(,), when regarded as functions on ~ , ,  are well defined; 
in fact, we have the following theorem. 

Theorem 3.2. For each a > O, T (~) and T(,) are bounded linear operators mapping 
~r into itself. 
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As the proof  of this theorem is precisely the same as that which we employed 
for Lemma 1 of our 1966 essay, 16 we do not  repeat it here. 

Since 
T(~ +~2) = T(~) T(~2), 
T(=,+=2) = T(~,) T(~2), (3.11) 

the sets {T(~)}, {T(=~} of operators T (=) and T(=), a__>0, form Abelian semi-groups. 
We denote the norm of T (~) by N(o)  and the norm of T(=) by _N(~): 

_N(tr)= sup I] T(~)~'llr , (3.12) 
rl~.lr.>o II~rll, 

_N(o)= sup [IT(o)4,,II, (3.13) 
, §  II@~l[, 

I t  follows f rom (3.11) that N ( . )  and _JAr(.) are submultiplicative functions on [(3, oo): 

N(ol+a2)_-<N(ol) /Y(02) ,  _N(al+~2)=<N(al)_N(a2),  o'l,o'2e[O, oo ).  (3.14) 

In theories of materials with fading memory,  one assumes that  bounded 
functions of compact  support  are dense in ~,.x7 One also desires that LEBESGb~'S 
theorem on dominated convergence hold in ~r .  These familiar properties can be 
obtained by laying down the following postulate. 

Postulate 3. The space f8, is separable. 

Remark 3.1. I t  follows f rom known results in the theory of Banach function 
spaces that if ~B, is separable then every element of ~ ,  is of absolutely contin- 
uous norm./a  By a theorem of LUxE~mtrRa & ZAANEN, ~9 4~, in $ ,  is of absolutely 
continuous norm if, and only if, for every sequence 0~ in ~ ,  such that  [ 0," [ o____ 14, ] 
for all n and ~b~ ~ o  pointwise a.e., we have I[O,~-~,~ Thus, Postulate 3 
does give f~, the dominated convergence property familiar in .LPv-spaces. 

Remark 3.2. In a Banach function space the closure of the set of bounded 
functions of bounded support contains all functions of absolutely continuous 
norm in the space. 2~ Therefore, Postulate 3 implies that  bounded functions of 
bounded support  are dense in ~ r ,  and this, in turn, 2~ implies that  continuous 
functions of compact support are dense in f8,. 

If Postulates 1 - 3  are assumed, Remark  3.2 and a proof  we have given else- 
where 22 may be invoked to establish the following two theorems. 

16 [1966, I, pp. 95, 96]. (The proof of the boundedness of the operators T (~) and T(~) is a 
straightforward application of the closed graph theorem.) 

17 Vid. e.g. [1967, 1]. 
18 Vid. LtrXEMBUgC [1965, 2, Theorem 46.2, p. 241] and LORENTZ & WER~IM [1953, 1, 

Proof of Theorem 1, pp. 570, 571]. 
19 [1963, 1, Theorem 2.2, p. 157]. 
2o LtrXEMnURG & ZAANEN [1956, 1, Theorem 4, p. l17], [1963, 1, Theorem2.4, p.157]. 
21 Cf. DLrSFORD & SCHWARTZ [1958, 1, Exercise 17, p. 170]. 
22 [1967, 1, Appendix 1]. Since we have not yet assumed that ~ ,  contains non-trivial con- 

stant functions, that proof must be slightly modified: The bounded uniformly continuous 
functions used in the proof, and particularly the constant function to occurring in (I-9), should 
here be taken to have compact support. 
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Theorem 3.3. The functions N ( . )  and N( . )  are lower semi-continuous and are 
bounded on each closed interval of [0, oo). 

Theorem 3.4. The semi-groups {T (')} and {T(,)} are strongly continuous in the 
sense that for  each 4), in ?B, and each a > 0 

lim [IT(~ lira IIT(o4,,- T(o) 4'r[Ir=0. (3.15) 

Let us now turn to equation (1.1) of the Introduction. If f is a function on 
( - o o ,  a) and if t<a,  the history o f f  up to t is the function f t  on [0,oo) defined 
by (1.2). We say that a V-valued function f over ( -  ~ ,  oo) is admissible if f t  is 
in ~" for each t, i.e. if 

Ilft[I < oo for all t e ( -  oo, oo). (3.16) 

By Postulate 2, for (3.16) to hold it suffices that Ilftll be finite for all large t. 

Let f) in (1.1) be a continuous function mapping ~B into some metric space ~r 
It follows from Theorem 3.1 that b can be regarded equally well as a function 
of ordered pairs (q~ (0), ~r) with ~ (0) in V and 4,, in ~ , ,  i.e. 

~(~) = ~ (~ (0), ~,),  

and hence (1.1) can be written 

(t) = b ( f  ') = b i f '  (0), = (y (0 ,  f ; )  (3.17) 
where f ( t )  =f t (0 )  is the present value of f t ,  and fi,  called the past history z3 cor- 
responding to f t ,  is the restriction of f t  to (0, oo). Moreover, the continuity of b 
over ~B implies that f)(f(t), f i )  is jointly continuous in its two variables f ( t ) e V  
and f i e  ~8,. 

Now, (1.1) can be viewed as a functional transformation f ~ h  mapping ad- 
missible functions f on ( -  ~ ,  oo) into functions h on ( -  oo, oo) with values in 
Jg;  that is, if we are given f (z )  for all �9 in ( - o o ,  ~ )  we can use (1.1) to calcu- 
late h(t)  for each t in ( - o o ,  ~) .  It is clear from (3.17), the assumed continuity 
of I), and Theorem 3.4 that this functional transformation f ~ h preserves regu- 
larity in the following sense. 

Remark 3.3. 24 Let b be a continuous functional mapping ~B into a metric 
space, and suppose that f is an admissible function on ( -  oo, oo). If f is a regu- 
lated function, i.e. a function for which the limits 

lim f (z)  and lim f ( z )  
t ~ t  + ~ t -  

exist for each t in ( - o o ,  oo), then h, given by (1.1), is also a regulated function. 
Furthermore, h can suffer discontinuities only at those times t~ at which f is 
discontinuous; at all other times h must be continuous. 

By Remark 3.2, our assumption that 5B~ is separable implies that functions 
that are zero for large s form an everywhere dense subset of ~B. Postulate 3 there- 
fore gives a type of "fading memory" to any functional I) that is continuous 
over ~B: the response I) ( f t )  to an arbitrary history f t  in ~v" must be approximately 

23 Cf. COLEMAN [1964, 1, p. 251]. 
24 Cf.  [1966, 1, R e m a r k  5.1]. 
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the same as the response I)(~f') to a history ~ft in ~ with 

~f,(s)={fi(s),  O<s<_'C,s>~, 

provided, of course, that z is chosen sufficiently large. In the following two 
sections we consider a stronger concept of fading memory, called the "relaxation 
property". 

4. Condit ions  Equivalent  to  the Re laxat ion  Property 

The space ~ ,  is said to have the relaxation property 25 if 

lim II T(~)4',llr=0, for each ~b,e~,.  (4.1) 
r oo 

Postulates 1 -  3 yield 

Theorem 4.1. If  ~,  has the relaxation property, then N (.) is bounded on [0, oo). 

Proof. By Theorem 3.4, for each fixed element 4,  of ~3 the non-negative number 
II T (')4',11 depends continuously on a for a > 0. Hence, (4.1) implies 

sup II T(')4', II =K(~b,)< ~ .  
a > 0  

However, since this argument holds for each 4, in ~;,, for the norms (3.21) of the 
linear operators T (') we have, by the uniform boundedness principle, 26 

sup/V(cr) = M < oo ; (4.2) 
q.e.d. ,_>_o 

Let us now assume 

Postulate  4. The space YS, contains non-trivial constant functions. That is, for 
each vector a in V, the function a*, defined by 

a*( s ) -a ,  0 < s < o o ,  (4.3) 
is in ~ .  

By (3.1) and property (ii) of v, 

II a,* [I, = v(I a X(o, oo)I) = l al  v(Zco, | 
Thus Postulate 4 is equivalent to assuming 

v(Z(o, o~)) < oo. (4.4) 

Using Postulates 1 - 4 ,  we may easily prove the converse to Theorem 4.1 : 

Theorem 4.2. If  N (.) is bounded on [0, oo), then ~,  has the relaxation property. 

Proof. Here (4.2) holds by hypothesis, and to each e > 0  and each function ~b,, 
there corresponds, by Remark 3.2, a bounded function ~, in ~,  such that 

e (4.5) 
II ~ , -~ ,11 ,<  2M , 

z5 cf. [1966, 1, w 6]. 
z6 Vid. e.g. HmLE & PHmLn'S [1957, 1, Theorem 2.5.5, p. 26]. 
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with M the number in (4.2). Clearly, (3.12), (4.2), and (4.5) yield 

Ii T~)(4',- ~k,) II,_-< N(a)  II 4 , , -  ~,  [I, < 2 (4.6) 

for all a > 0. It follows from (3.9) that T (') ~, approaches the zero function point- 
wise as a ~ o% and, by Postulate 4 and the boundedness of ~,, the functions 
T (~) 4,, are dominated in ~ in the sense that there is a constant function a* in 
satisfying 

la*(s) l>lT(~ s ~ ( 0 , ~ ) ,  

for all a > 0. Thus, since ~3, has the dominated convergence property, there exists 
a number fl such that for a > fl 

IIT<') ~b, I1,< 2 .  (4.7) 

Of course the triangle inequality implies 

[I r<*)4,~llr< II T('~ IIr+ I[ T<*)(4,,-~,)II,, 
and therefore (4.6) and (4.7) yield 

8 
II T(~ < T + T = ~  

for all a>fl; q.e.d. 

It is clear from Theorem 3. I that Postulate 4 may be formulated as follows: 
For each vector a in V, the set ~ contains the function a* defined by 

a*(s)=a,  0 < s < o o .  (4.8) 

If 4, is in ~, we denote by ~b* the constant function in ~ obeying 

~+(s)=4,(0),  O<=s< ~,  

and we call ~t the equilibrium history corresponding to ~. It is easily shown 27 that, 
under the assumption of Postulate 4, the relaxation property is equivalent to the 
assertion that for each ~ in ~, 

lim II 4,(~)- 4/II = 0. (4.9) 
r oo 

That is, ~3, has the relaxation property if and only if the static continuations of a 
given history approach, in ~, the corresponding equilibrium history as the amount of 
continuation is increased without limit. 

5. Some Direct Consequences of the Relaxation Property 

We here consider some easily proved propositions showing that if ~3 r has the 
relaxation property then, for large t, the asymptotic behavior of f f  in ~ follows, 

27 Cf. [1966, I, Remark 6.1]. In that article it is shown by counter example that Postulates 
1 -  4 alone do not imply the relaxation property. Of course, for the counter example given, 

lim ~7(a)= o0. 
t r - -r  o o 
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in a natural way, the asymptotic behavior o f f ( t )  in V. 2s Our first theorem pre- 
supposes our assumption of Postulates 1, 2, and 4, but does not require Postulate 3." 

Theorem 5.1. I f  ~Br has the relaxation property,  i f  f and g are admissible funct ions  
on ( -  oo, oo), and if  

lim I f ( t ) - g ( t ) l = 0 ,  (5.1) 
lt-~ o0 

then 
lim I l f t - g  t II =0 .  (5.2) 
t--~ oO 

Proof. It follows from (1.2) that (5.1) may be written 

I f ( 0 ) - g t ( 0 ) [ ~ 0  as t ~ o o .  

Therefore, by Theorem 3.1, to establish (5.6) it suffices to show that 

IIf/-gt ,  l l ,~0  as t ~ o o ,  (5.3) 

wherefJ and g~ are the restrictions o f f  t and gt to (0,oo). Let e>0  be given. By 
(5.1) and (4.4) there exists a t~ such that 

I f ( t ) -  g(t) l < 3 v(Z<o, ~) ) '  

that is, for each t > t, 
Ii 

I f ' ( s )  - g'(s) I < 3  v (X(o, ~)) ' 
By (3.9), 

for all t_>_ t~; 

for O < s < _ t - t  8 . 

f / ~ ,T(t--t~) 4.t8 j_~Ct ~, 
.t J r  T J r  A (O, t - - t e ) ,  

g t T ( t - t , ) ~ t ~ •  
r - -  . t  6~r T ~ r  L ( O ,  t -  t ~ ) ,  

(5.4) 

and the triangle inequality yields 

11 f : -  g', II,_-< II (f: - s  X~o,,-,.) I1, + II T(t-t~)f/~ [[~ + il T"-  'o) g': It r. (5.5) 

By (3.1), (5.4), and properties (if) and (iii) of v, 

II ( f : -  gD X~o,,- , . ) II ,=v(If ' -gq X~o, ,-,,)) 
(5.6) 

___v( ~ ) 8v(Z,o,t-,.,) < !  
- 3v(X~o,| X~o,~-,,) = 3v(X~o,~o)) = 3 " 

Sincere" and gt /both  belong to ~, and since we are assuming (4.1), once t~ and e 
are fixed there exists a t '  sufficiently large that 

II f; II,<-g- and IlT~ l i t < y ,  fora l l  t > t ' .  (5.7) 

l l f~-  g, ll < 8, Substituting (5.6) and (5.7) into (5.5), we find that for t > t '  we have t t 
which means that (5.3) holds; q.e.d. 

z8 Our present Theorems 5.1--5.3 generalize Theorems 7--9 of [1966, 1]. 
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Theorem 5.1 has the following immediate corollary: 

Theorem 5 .2 .  29 If f~r has the relaxation property, if f is an admissible function on 
( -  oo, oo), and if for some vector a in V 

lim I f ( t ) - a t = O ,  
t-oO0 

then 

lim IIf '-a*l[ = 0 ,  
t--~ oo 

and thus for  any continuous function b on f~ 

l imb ( f ' )  = b (a*). 
t--* o9 

Here a* is the constant function (4.8) with value a. 

Another corollary to Theorem 5.1 is 

Theorem 5.3. Let I) be a constitutive functional; i.e., a function mapping ~8 into 
a metric space J/[ with metric p, and suppose that ~ ,  has the relaxation property. 
For two admissible functions f and g on ( -  oo, oo) obeying 

lim I f ( t ) -  g(t) l = 0, (5.8) 
t-~ cz3 

we have 
l imp (b(ft),  I) (g')) = 0 ,  (5.9) 
t"* oO 

provided either ( ~) I) is continuous, and, for  some number c, the set 

~c- -{g ' l  te[c ,  oo)} 

is compact in fB, or (~) t) is uniformly continuous on each bounded subset of f3, and, 
for  some c, the set ~c has finite diameter in lB. 

Proot.  If (a) or (~) holds, I) is uniformly continuous over ~v c in the following 
strong sense: To each e > 0 there corresponds a t5 > 0 such that 

p (I) (ft),  t) (g3) < e, 

whenever gt is in ~r a n d f  t in ~8 obeys 

I l f ' - g '  [I <•. (5.10) 

But, by Theorem 5.2, there clearly exists a t '  greater than c and such that (5.10) 
holds for all t > t ' ;  q.e.d. 

If we assume Postulates 1 - 4 ,  then we have the following examples of applica- 
tions of Theorem 5.3: 30 

Cases meeting the hypothesis (a). For any number c, Sa c is compact in ~ if 
(1) g is continuous and periodic on ( - o %  oo), 31 or if (2) the dimension of V is 
finite and the V-valued function g is bounded, measurable, and periodic on 
( -  oo, oo). Hence, in these cases, the relaxation property, (5.8), and an assumption 

29 Cf. Theorem 7 of [1966, 1]. 
30 Cf. [1966, 1, p.l18]. 
31 This case is discussed in detail in Theorem 8 and Remark 8.2 of [1966, 1]. 
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of admiss ib i l i ty  for  f toge ther  suffice for  (5.9), p rov ided  b is a continuous func- 
t ion  on ~ .  

A case meeting the hypothesis (d) .  Clearly,  since we here assume Pos tu la te  4, 
&ac has  finite d iamete r  in ~ whenever  g is measurab le  and  b o u n d e d  on  ( -  oo, oo). 
Hence,  boundedness  and  measurab i l i ty  for  g, the re laxa t ion  p roper ty ,  (5.8), and  
an  assumpt ion  of admiss ib i l i ty  for  f together  yield (5.9), p rov ided  b is uniformly 
continuous on bounded subsets of lB. 

We should like to thank Dr. MARSHALL J. LEITMAN for suggesting that some of our earlier 
theorems about the structure of influence measures [1966, 1] should remain valid in more general 
Banach function spaces. 
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