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1. Introduction 

The system of equations governing isothermal flow of an inviscid and com- 
pressible fluid in Lagrangian coordinates is given by 

vt - -  Ux ~- O 

u, + p(V)x = 0,  (1.1) 

where u, v, and p are the velocity, the specific volume, and the pressure of the fluid, 
respectively. For the isothermal flow of an ideal gas, p(v)  = R T / v ,  where R is 
a universal constant, and T is the constant absolute temperature. In this case, 
the system (1.1) is hyperbolic. On the other hand, the equation of state of a 
van der Waals fluid is 

R T  a 
p ( v ) -  v -  b v 2 '  (1.2) 

where a and b are the characteristic constants of the fluid. Thus when the tem- 
perature is sufficiently low, p ' (v)  is positive, and thus the system (I.1) is elliptic 
on a certain interval (c~, fl), while p ' (v)  is negative on (b, ~) (liquid phase) as well 
as on (/~, oo) (vapor phase) on which (1.1) is hyperbolic. 

The Riemann problem for (I.1) is a special initial-value problem in which 
the initial data are of the form 

(Uo, Vo) x < O 
(u(x, 0), v(x, 0)) = (ul, vl) x > O. (1.3) 

Since both the system (1.1) and the data (1.3) are invariant under the transfor- 
mation (x, t)--~ (3,x, 3,t), 3' > 0, the solution of (1.I), (1.3) is a function of x / t ,  
i .e. ,  it is a fan of waves that emanate from the origin and propagate with indi- 
vidual speeds. For hyperbolic problems the structure of solutions of  the Riemann 
problem has been investigated thoroughly (see LEmov~cn [1], and LIu [2]). In 
particular, it is known that the problem specified by (1.1), and (1.3) generally 



248 H. HATTORI 

admits several solutions. Admissibility criteria, such as the LAX entropy condi- 
tion [3], the viscosity criterion [4], the entropy rate admissibility criterion [5], 
[6], and the extended entropy condition [2], have been employed in order to single 
out a physically admissible solution. 

Failure of  uniqueness in the problem set by (1.1), and (1.3) arises also when 
the system is not hyperbolic, for instance for the van der Waals fluid (1.2), and 
so admissibility cri ter ia  have to be postulated there, too. I refer to the work 
of  JAMES [7], St-IEARER [8], and SLEMROD [9] for a discussion of the solution of 
the Riemann problem in that case. In [9] admissibility is decided by means of  
the "capillarity argument." Here I employ the entropy rate admissibility criterion 
proposed by DAFERMOS [5], [6]. Since the system (1.1) describes isothermal 
motions, I refer to this criterion as the energy rate admissibility criterion. The 
main interest this paper offers is its proof  that that criterion can be applied to 
a nonhyperbolic system. 

This paper has five sections. In Section 2 I formulate the problem; in Sec- 
tion 3 I discuss the fundamental properties of  the energy rate along the shock 
curve and the phase boundary curve. In Section 4 I treat the possible solutions 
which join two constant states lying in different phases by backward waves, phase 
boundaries, and forward waves. Also, I compare the energy rate for different 
solutions. Finally, in Section 5 I discuss a special Riemann problem and show 
that the well known Maxwell construction is admissible according to the energy 
rate criterion. 

2. Preliminaries 

Consider a van der Waals fluid in which the equation of state is given by (1.2). 
I f  the temperature is sufficiently low, a typical isotherm is presented in Figure 1. 
The p-v curve is not monotone; thus the system (1.1) is not hyperbolic. Since we 
do not need to restrict attention to the specific equation (1.2), we will assume in 
what follows that p(v) is any function which satisfies the following conditions: 

(CI) p'(v) ~ 0 for 0 < b ~ v < o~, fl < v, 

(c2) p'(~,) = p' ( f l )  = o ,  

(C3) p'(v) > 0 for ~ < v < fl, 

(C4) p(v) > 0 for b < v < co,  

(C5) p"(v) > 0 for b ~ v ~ v, ,  v* < v < oo, 

(~ ,< v, </3, /3  < v* < ~ ) ,  

(C6) p"(v) < 0 for v, < v < v*. 

The intervals (b, o0 and (/3, ~ )  will be called the o~-phase (liquid phase) and the 
/3-phase (vapor phase), respectively. The horizontal line for which the areas A 
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and B are equal is called the Maxwell line. We denote the pressure at the Maxwell 
line by Pro. The values of  v in the 0c-phase and the fl-phase at which the pressure 
is equal to Pm are denoted by obm and tim, respectively. The fluid may behave in 
totally different ways at pressures just below and just above Pro. Various prop-  
erties change discontinuously in the transition. This fact motivates the following 
definitions; the homogeneous solution v(x) = constant is 

(S1) s t a b l e  i f  b < v < o6 m o r  fin, < U. 

($2) neutrally stable if  v = ~., or v = tim- 

($3) metastable if  or m < v =< ~ o r  fl ~ /) < /~m" 

($4) unstable if  ~ < v < ft. 

The state ($3) may be observed, yet a small perturbation will change the phase 
drastically. 

Pm 

I I 

b O~r~ ~ v,  ,6' v*,~, 

Fig. 1. A typical isotherm of a van der Waals fluid. 

We discuss the Riemann problem (1.1), (1.3) with p(v) satisfying (C1)-(C6). 
The solution of  the Riemann problem consists of  constant states joined by rare- 
faction waves or jump discontinuites. I explain them very briefly. 

A rarefaction wave is a wedge in the x-t plane in which one of  the Riemann 
invariants 

v 

u qz f 1/p'(w) dw 

is constant. It  is clear that  rarefaction waves are defined only in the hyperbolic 
region. When two constant states (u_, v_) and (u+, v+) are adjacent to a forward 
(backward) rarefaction wave on the left and right, then 

V+ - -  

u+ - u_ = ~+~ f I / -p ' ( . ' )  aw. (2.1) 
v _  
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Using the fact that the characteristic curves expand in the rarefaction wave re- 
gion, we have the following relation between v_ and v+, if  p "  4= 0. 

forward rarefaction wave: 

backward rarefaction wave : 

v_ > v+ if p "  > O, 

v_ < v+ if p "  < O, 

v_ < v+ if p "  > O, 

v_ > v+ if p "  < O. 

(2.2) 

v_ < v+ if p" > O, 
forward shock: 

v_ > v+ if p "  < O, 

v_ > v+ if  p" > O, 
backward shock: 

v_<v+ if  p "  < O. 

relation between v_ and v+. 

(2.6) 

In (2.1) or (2.5) it is easily seen that the set of  (u+, v+) ((u_, v_)) which can 
be connected to (u_, v_) ((u+, v+)) on the right (left), by a rarefaction wave, a 
shock, or a phase boundary forms a one-parameter family of  states. 

We define a forward wave curve to be the set of  (u, v) which is connected to 
a given (uG, vo), on the right, by a forward shock, a forward rarefaction wave, 
or a combination of  them. We define a backward wave curve in the same manner. 

A jump discontinuity satisfies the Rankine-Hugoniot  condition, which takes 
the form 

o'[u+ --  u_] = [p(v+) --p(v_)],  o'[v+ --  v_] ----- --[u+ --  u_], (2.3) 

where ~ is the speed of  propagation of the jump discontinuity, and (u_, v_) and 
u+, v+) are the states on the left and the right of  the jump discontinuity. Solving 
(2.3) for (r, we obtain 

( r =  4- 1 / p+ --  p -  . (2.4) 

/ 

r V+ - -  V_ 

Substituting (2.4) into (2.3b), we obtain the following relation between (u_, v_) 
and (u+, v+): 

1 

-~/ P+ --  P-----~- (v+ --  v_). (2.5) 
U +  - -  U _  ~ ~ V+ - -  V_ 

We observe that there are two families of  jump discontinuities, the forward one 
when ~r > 0, and the backward one when tr < 0. In particular, if both v_ 
and v+ lie in the same phase, jump discontinuities will be called shocks, while 
if  v_ and v+ lie in different phases, jump discontinuities will be called phase 
boundaries. 

As in the case of  rarefaction waves there is a physical restriction on the rela- 
tion between v_ and v+ for shocks. This restriction is obtained by applying an 
appropriate admissibility criterion such as the energy (entropy) rate criterion, 
which will be discussed later in this section. I f  p "  4= 0, we have the following 
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In both cases the set of  (u, v) on the wave curve through (ua, %) belongs to the 
same phase. We should notice that as p" changes sign in the fl-phase, if % is in 
the fl-phase and p"(v6) =~ 0, there will be a set of  (u, v) on the forward (back- 
ward) wave curve through (uG, %) connected by a combination of  a forward 
(backward) shock and a forward (backward) rarefaction wave (see GREENBERG 
[10] for the details). The forward and backward wave curves pass through (ua, va) 
and the case in which p "  > 0 is depicted in Figure 2. 

B . S . ~  ;'S" 

v 

Fig. 2. The backward and forward wave curves (iv" > 0) through (ua, va). Here B.S. 
and F.R., etc., stand for a backward shock and a forward rarefaction wave, etc. 

In the same manner we define the phase boundary curve as the set of  (u, v) 
connected to (u~, v~), on the right, by a backward or a forward phase boundary. 
Unlike the backward (or forward) wave curve, the phase boundary curve for a 
given (uc, %) does not pass through (u~, %). The phase boundary curve for the 
ease where va is close to ~m is drawn in Figure 3. 

o (uG,v ~) 

~ 8,?.8. 

,VH1 

F.P.B. 
v 

Fig. 3. The backward and forward phase boundary curves associated with (ua, va). 
Here B.P.B. (F.P.B.) stands for a backward (forward) phase boundary, and v H satisfies 

p(vH) = p(v~). 
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We shall see that the Riemann Problem generally admits several weak (piece- 
wise smooth selfsimilar) solutions. As an attempt to pick out the physically 
meaningful solution in the class of solutions discussed in Section 4, we assume 
that the admissible solution satisfies the energy rate admissbility criterion. This 
criterion is called the entropy rate admissibility criterion by DAFERMOS [5], [6]~ 
and is based on the following argument. 

The density of mechanical energy for the fluid is given by 

v 

E(u, v) = �89 u 2 + f (--p(w)) dw. 

As a consequence of the second law of thermodynamics, mechanical energy is 
dissipated during isothermal or isentropic flow of the fluid. In particular, in the 
Riemann problem the rate of decay of the total mechanical energy is given by 

D+E(u, v) = 2~ aQ:) A(v_, v+), (2.7) 
jump 

discontinuities 

where a(z) is the speed of the jump discontinuity and 

v+ 

A(v_, v+) = �89 + pCv+)] (v+ - v_) + f p(w) dw. 
v _  

Different solutions generally dissipate energy at different rates. According to 
the energy rate admissibility criterion a solution is admissible if it minimizes (2.7). 
Note that in the following sections we shall apply this admissibility criterion to 
a small class of  solution, not to all possible solutions. 

3. Fundamental Properties of Energy Rate 

We discuss here the fundamental properties of the energy rate for backward 
shocks, forward shocks, and phase boundaries. 

Lemma 3.1. Assume that p'(v) < O, p"(v) > 0 or (p"(v) < O) for v in an inter- 
val (a, b). Let (u_, v_) be a given point with v_ E (a, b), and let (u+, v+) be a point 
on the forward shock curve through (u_, v_). Then the energy rate is a monotonically 
decreasing (increasing) function of  v+ along the forward shock curve between v_ 
and v+. For the backward shock curve through (u_, v_) the energy rate is a mono- 
tonically increasing (decreasing)function of  v+. 

Proof. Along the forward shock curve through (u_, v_), the energy rate is given 
by 

E = --tr �89 + p_) (v+ -- v_) -- f p(w) dw , (3.1) 
v _  

where 

~ - -  ~ P + - - P -  
V +  - -  V _  
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Differentiation of  E with respect to v+ yields 

dE 1 ( 
dv+ 4cr (~2 _ 2~) 3p+ - - p _  

where 2+ = ~--p'+. If  p "  > O, 

v+ 

f p(w) dw 
2 2 >  2 > > v -  

(<) cr, p+ (<) p_, p+ (<) v+ --  v_ ' 

v+ / 
2 vf p(w) dw 

7+ / '  (3.2) 

for v_ (>) v+. 

We see that dE/dv+ in (3.2) has negative sign and E is a decreasing function on 
~v+. On the other hand, if p "  < 0, 

v+ 

f p(w) dw 
2~_ > ~2 _ < - " <~-  for v_c <)v+. 

( < ) t ,  , ~ + ( > ) / ~ _ , / . , + ( > )  V. t . -  V_ ' 

In this case dE/dr+ in (3.2) has negative sign, so that (3.1) is an increasing func- 
t ion  of  v+. 

Since the energy rate along the forward shock curve through (u_, v_) is ob- 
tained by reversing the sign of  the right-hand side in (3.1), the corresponding 
result can be easily obtained. Q.E.D. 

Remark 3.1. I f  we apply Lemma 3.1 to shocks with the physical requirement 
-that the energy be dissipated across shocks, we verify the relation (2.6) between 
v_ and v+. 

Next, consider the energy rate for phase boundaries. Suppose (u_, v_) is a 
given point with v_ in the o~-phase. When it exists, we let v a be the point in the 
~8-phase at which p(Va)= p(v_). Similarly, we denote by vb the point in the 
fl-phase at which 

O- 

�89 -- v_) (Pb + P-) -- f p(w) dw = 0, (3.3) 
vb 

provided, of  course, such a point exists. The left-hand side of(3.3) corresponds 
-to the signed area between the chord joining (v_, p(v_)) to (vb, p(vb)) and the 
graph of  p(v) between v_ and vb. 

Lemma 3.2. Let v_ ~ o~m. Then, the energy rate is an increasing (decreasing) 
.function of  v+ along the forward (backward) phase boundary curve associated with 
(u_, v_). On the other hand, if  v_ < c~ m, then the energy rate has only one local 
minimum (maximum) in the interval (va, Vb) along the forward (backward) phase 
boundary curve associated with (u_, v_). 

rProof. Set 
v+ 

Q = (v+ - v_) (3p+ - p_) - 2 f p(w) dw. 
V- 
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Then, if v_ ~ 0~m, Q is negative for v+ =~ ra. Hence, the energy rate is an in- 
creasing function of  v+ along the forward phase boundary curve associated with 
(u_, v_). I f  v_ < am, E in (3.1) is zero when v§ = r,,, Vb, and is negative, be- 
tween r~ and v b. Since dQ/dv+ is negative, and Q is positive at v+ = v a and is 
negative at v+ = vb, Q changes sign from positive to negative once between va 
and r b. Hence dE/dr + in (3.2) changes sign from negative to positive in the interval 
(Va, Vb) along the forward phase boundary curve associated with (u_, v_). The 
corresponding result for backward phase boundaries can be obtained in the 
same manner. Q.E.D. 

Lemmas 3.1 and 3.2 show that shocks and phase boundaries exhibit different 
behavior. 

4. Possible Solutions to the Riemann Problem 
and Comparison of their Energy Rate 

As a preliminary step in obtaining the admissible solution to the Riemann 
problem (1.1), (1.3), which will be discussed in the next section, we study here 
all possible solutions to the Riemann problem, i.e., all connections of  the states 
(Uo, vo) and (ul, vl) in (1.3) by means of  shock waves, rarefaction waves, and 
phase boundaries. Here we will only consider solutions to the Riemann problem 
with the form depicted in Figure 4, that is, with Vo close to o~ m and vx close to 
tim" The case where Vo is close to tim and vl is close to o~ m can be treated in a sim- 
ilar manner. In Figure 4 the forward (backward) wave could be either a forward 
(backward) shock or a rarefaction wave, and the phase boundary could be either 
forward or backward. As p "  changes sign in the fl-phase, the forward wave may 
be a combination of  shocks and rarefaction waves. We denote by (uL, vz) the 
intermediate constant state on the left of  the phase boundary and by (UR, VR) 
the intermediate constant state on the right of  the phase boundary. Then vL is 
in the o~-phase and VR is in the fl-phase. 

Bockward wove 
~Conston~ 

Constant ~ 

Phase boundary 

Forward wave 

~ Constent 

Fig. 4. A typical solution configuration of the Riemann problem. 



Riemann Problem for van der Waals Fluids 255 

We note that there might be solutions of  other types, for instance having more 
than one phase boundary (an odd number) between the forward and backward 
waves and that if Vo and v~ are far from 0~m and tim, the connection may be as in 
Figure 5, with a phase boundary connecting the ~-phase and the fl-phase, as shown 
in Figure 6. However, I do not treat these cases in this paper. 

t I Forward wove 

Phase boundary Cnslontl Consi~//~ 

Fig. 5. Another solution configuration of the Riemann problem. 

Fig. 6. The connection between c~-phase and fl-phase corresponding to the solution in 
Figure 5. 

As the backward and forward waves may be either shocks or rarefaction waves 
and there are backward and forward phase boundaries, there are 8 possible com- 
binations of  connections, namely, 

(1) B.R.- -F .P.B.- -F .R. ,  

(2) B.R.--F.P.B.--F.S. ,  

(3) B.S.--F.P.B.--F.R. ,  

(4) B.S.--F.P.B.--F.S. ,  

(5) B.R. - -B.R.B. - -F .R. ,  

(6) B.R.--B.P.B.--F.S. ,  

(7) B.S.- -B.P.B.--F.R. ,  

(8) B.S.--B.P.B.--F.S.  
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Here, for example, B.S., F.P.B., and F.R. stand for "backward shock", "forward 
phase boundary", and "forward rarefaction wave", respectively. Therefore, (1) 
means that (uo, vo) is joined to (uL, vL) by a backward rarefaction wave, then 
(uL, vL) is joined to (UR, VR) by a forward phase boundary, and (UR, VR) is joined 
to (us, vx) by a forward rarefaction wave. We derive the differential equations 
which are satisfied by (1)-(8). To avoid complications, we treat these cases only, 
although p"  changes sign in the fl-phase. 

Case (1) (and (5)). In this case Uo is joined to uL by a backward rarefaction wave, 
hence, 

uL = Uo + fL2(w)dw, (4.1) 
v l  

where 2(w) = ] / - - - - -~ .  Then, uL is joined to UR by the forward (backward 
for (5)) phase boundary, namely, 

/ PR --PL (VR -- VL). (4.2) 
(~-) VR - -  vL 

UR uL 

Also UR is joined to u~ by the forward rarefaction wave; therefore 

v l  

ul = uR - f a(w) dw.  (4.3) 
v R 

From (4.1)-(4.3) we deduce 

VL vt 

Uo + f ,t(w) dw (+) % ( v .  - -  vD - f ,l(w) dw = us,  (4.4/ 
Vo V R 

l /  PR - -  P L  here % = VR -- vL If  we differentiate (4.4) with respect to vL, regarding 

V~ as a function of vL, we obtain the differential equation 

dvn (2L (+) %)2 

dvL (2 R (+) %)2 , 

w h e r e  = a n d  = 

(4.5) 

Case (2) (and (6)). As above we have the following relations for uL and VR: 

/ 
~ 

where a F =  ] /  P R  ~ p ~ 

vR - -  v l  

i L 
UL = Uo + 2(w) dw, 

VO 

UR = UL (+) %(VR - -  VD, 

US = UR - -  ~F(V, - -  VR), 

- - .  From (4.6)-(4.8) we see 

v L 

u o + f .~(w 1 dw(+)  %(v  R - -  vL) - -  ~F(v, - -  VR) 
Vo 

(4.6) 

(4.7) 

(4.8) 

= us. (4.9) 
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Differentiating (4.9) with respect to VL, we obtain 

dvR ~rF(1L (+) %)2 
(4.10) 

Case (3) (and (7)). As relations for VL, VR we have 

UL = Uo + a~(v~ - -  Vo), 

uR = uL (2) %(vR - VL), 

I) L 

ul = u . - -  f 2(w) dw, 
VR 

where an = ] /  Pz --  Po . From (4.11)-(4.13) we obtain 

/ 

[ VL - -  Vo 

+ 2 dVL es(2g (_) %) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Case (4) (and (8)). In a similar manner we derive the differential equation 

dvL -- <rB(~rF (+) %) (a~ (+) eva,) " (4.15) 

We examine the sign of (4.5), (4.10), (4.14), and (4.15). We have the following 
relations among (rs, (rF, %, iL, and Ig. 

~ B  < ; t z ,  (rF < hR. 

Hence we easily see that dvR/dv L is positive in all cases. In particular, if % = 0, 
namely, PL = PR, then 

dv R i zL P'L 
- - - -  - -  , . ( 4 . 1 6 )  
dVL 22 pg 

Next we consider how the energy rate varies as a function of  VL. The energy 
rate for the backward shock is given by  

Es = an �89 (VL - -  Vo) (PL + PO) - -  f p(w) dw . (4.17) 
VO 

If  we differentiate (4.17) with respect to VL, we obtain ( L ) 
2 f p(w) dw 

dEB _ 1 (ezz _ 22) 3pL --  Po Oo . (4.18) 
dvz 4aB VL - -  Vo 

The energy rate for the forward (backward) phase boundary is given by 

Ep=(+_)% � 8 9  VL) (pR- t -pL) - -  f p(w)dw . (4.19) 
vL 
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Differentiating (4.19) with respect to VL, regarding vR as a function of  vL, we get 

1 dvR , dEp +) ~ .  2 v 

dv~ = ( -  4~.[-d-L-~ t ~ ; - ~ )  3 p . - p ~  v . - v L  / 

- (.~ - ,~) (3p~ - pR 
2 ~f  p(w) dw 

(4.20) 

For  the forward shock the energy rate is given by 

Ev = - - a t { � 8 9  (vl - -  vR) (PR + P , )  - -  

Differentiation of  (4�9 yields 
/ 

dEE 1 dv R ( 
d~vL-- 4a t  dVL (azF -- ;t~) \ 3 P g - -  

Set 

i~ p(w) dw} . 
v R 

(4.21) 

�9 (4.22) 
P~ vg  - -  v l  / 

v R v R 

2 f p(w)dw 2 f p ( w ) d w  
v L VL 

A = 3 p R - - p L  , B = 3 p L - - p R  , 
vg - -  VL Vg - -  VL 

v L v R 

2 f p(w) dw 2 f p(w) dw 
C = 3pL - -  Po ~o , D = 3pR --  Pl  ~' 

V L - -  V o V R - -  V 1 

The signs of  A and B will play important roles in the next section, so we discuss 
it in the following 

Lemma 4.1. I f  pR and pL lie above the Maxwe l l  line and are equal (PR = PL ~ Pm), 
then A and B are positive�9 On the other hand, i f  pR and pL lie below the M ax we l l  
line and are equal (PR : PL < Pm), then A and B are negative. I f  PR : PL = ,On, 
then A = B : O, and dA/dvL and dB/dv L have negative sign. 

Proof. The first two statements are easy to verify, so we prove only the third 
statement. If  PR = PL = Pm, then 

dv~ ~ 
dvL ~ '  

f R  p(w) dw - -  = �89 (vg vL) (PR -k PL) = (VR - -  VL) Pro" 
v L 
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Since A = B = 0 at the Maxwell line (p~ = PL = Pro), 
as 

A ---- --222(0%) (vL --  0%) -k 0((vL -- o%)), 

B = --222(O;m) (v L - -  O~m) -~- O((v L - -  0r 

provided VL is d o s e  to o%. 

A and B are expressed 

Q.E.D. 

We can obtain an analogous result for C and D. It is easy to see from (2.6) 
that C and D are positive if p "  > 0 and negative if p "  < 0. As VL and VR 
approach Vo and vl, respectively, C and D approach zero. Furthermore, since 
VL and vR satisfy the system of  differential equations (4.5), (4.10), (4.14), or (4.15), 
we deduce 

dC dD 
222 

d v L - -  dv L 
at VL = VO. 

5. Special Riemann Problem 

In this section we discuss a rather special Riemann problem. Specifically, 
we treat the case where Uo = u~ and Po = Pt. We have the following result 
concerning the sign of  dE/dvL (E denotes the total energy rate). 

Theorem 5.1. Suppose that Uo = ut, Po = P~, and vR obeys one o f  the differential 
equations (4.5), (4.10), (4.14), or (4.15), as appropriate. Then, as vz approaches Vo, 
dE/dVL approaches a negative number i f  Po < Pro, a positive number i f  Po > Pro, 
and zero i f  Po = Pro. 

Proof. From (4.18) and (4.22) we easily see that dEn/dr L and dEr/dvz approach zero 
as vL approaches Vo. Therefore, it remains to examine the sign of  dEp/dvL as vL 
approaches Vo. Combining the differential equations (4.5), (4.10), (4.14), and (4.15) 
with (4.20), and taking the limit of  (4.20) as vL approaches v0, we obtain 

from (4.5): lim d E p _  
VL--~vo dv L 

2o (;hA § 2oB), 
22~ 

from (4.10): lim dEp 
VL'-)'Vo dv z 

2o 
4).t {2o(A + B) q- 2t~A}, 

from (4.14): lim dEp 
VL"+Vo dv L 

~0 
42~ {2t(A + B) -k 22oB}, 

and from (4.15): lim dEp = _ _ _  
VL~VO dv L 

~o (~o + z~) (A + B). 
4).1 
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Recal l ing  L e m m a  4.1, we conclude  that  the l imit  o f  dE/dvL as v L approaches  Vo 
is negative if  Po < P,,, posit ive if  Po ~ Pro, and zero if  Po =- Pro.  Q.E.D.  

As a consequence  o f  Theorem 5.1 we deduce  the fol lowing 

Corollary 5.1. I f  Uo : u~ and Po : Pt < Pm or Po -= P~ ~ Pro, the connection 
between (Uo, Vo) and (ul, vl) by the stationary phase boundary ((Uo, Vo) : (uL, vz), 
(ul, vl) = (UR, Vg)) is not admissible according to the energy rate admissibility 
criterion. 

The case where Po ~ Pl  : Pm is more  delicate,  yet we can show the fol lowing 

Theorem 5.2. Suppose Uo = Ul and Po = P~ = Pro. Then the connection between 
(Uo, Vo) and (u~, v~) by the stationary phase boundary is admissible in the sense 
that it minimizes the energy rate for  v z close to Vo. 

Proof .  I f  we d raw  the backward  wave curve th rough  (Uo, Vo) and the forward  
wave curve th rough  (u~, v~) in the u-v plane,  there are three possibil i t ies,  depic ted  
in F igures  7, 8, 9, depend ing  on the value o f  v* (the v coord ina te  o f  the inflection 

R R 

(uo, v ~ v T )  
SI J \ R  

I 
I 
I 
v5 

Fig. 7. The backward and forward wave curves (p"  > 0 in the neighborhood of vl). 

R/ /? 

,VO) U 1 Vll 

v 

Fig. 8. The backward and forward wave curves (p"  = 0 at v~). 
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point in the fl-phase). Since the proof is similar in all three cases, we shall only 
consider the case of Figure 7 and will show that dE/dvL is positive if v L > Vo 
and negative if VL < VO, for v L close to Vo. 

(uo, v , vl1 

I 
I 
I 

gS 

Fig. 9. The backward and forward wave curves (p" < 0 in the neighborhood of vl). 

Using the fact that dvR/dV L is positive, we find that the connection between 
(Uo, Vo) and (ul, vl) is of type (1) if VL ~ VO, and of type (8) if VL < Vo and VL 
is close to Vo. If  vl ~ Vo, the forward wave is a combination of a shock and a 
rarefaction wave (see GREENBERG [10] for the details). 

In case (1), dvR/dVL is given by (4.5) and dE/dvL is 

dE 1 (dv R 2 B}. 
dvL - 4 ~ ; / ~  (a~ - ~ )  a - (a~ ~) (5,1) 

/ 

Combining (4.5) with (5.1), we find 

dE __ ~L + ap {(~L -~ ~R) C A "Jr- B) --  (v R -- l)L) (~L ~R .Af_ 4 )  (~P}" (5.2) 
dvt. 2 R - - %  

Since, for yr. > Vo, 

f 

A + B = 4[�89 § PL) 

dE/dvL in (5.2) is positive for VL > Vo. 
In case (8), dvR/dv L 

dE 
dvL 

vf p(w) dw 

. . . . .  < 0 ,  
VR--VL J 

is given by (4.15) and dE/dvL is 

lab 1 dvR : 
((~ _ ~2) C 4~F ~VL (a~ 2 2) D 

1 idVR : B} 
+ ~ . [ ~ ( a ~  - ~ )  a + ( 4  - ~I.) (5.4) 
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I t  is no longer easy to find a relation like (5.2). We expand (5.4) in series of  powers 
of  (v L -- Vo) and examine the terms of  lowest order. Then 

dEs 

dv~ 

1 
g *l *) z *7 C 

2 2 --  aB2~(a ~ -- ,~,~r D q- O(aj,(C -}- D))} 

(5.5) 

1 
B) 4 ~ ( ~  + ~.) (21 + ~ . )  ~. t - - ~ * Z * ~ . ,  

- r162 + .~) A + ~.z:(z~ + ~ )  B) + O(~)} 

: + (, + + (5.6) 

where Es and Ep denote the energy rate of  shocks and phase boundary, respec- 
tively. F rom (5.5) and (5.6) we find that the terms of  lowest order in (5.5) and (5.6) 
are different, and that the terms of  lowest order in (5.6) are negative for v L < Vo. 
This fact indicates that dEp/dvL dominates dE/dvL in a neighborhood of Vo and 
dE/dvL is negative if vz is close to Vo and v L < Vo. Combining the above 
statements, we infer that the energy rate attains a local minimum at v L = Vo. 

Q.E.D. 

Remark  5.1. Notice that the terms of  lowest order in the expressions for dEp/dVL 
and dEs/dVL are different. This indicates another essential difference between 
shocks and phase boundaries. 

Remark  5.2. Theorems 5.1 and 5.2 seem to indicate the following behavior. I f  
Uo ---- u~ and Po = P~ ~ Pm, VL will be greater than Vo because dE/dvL is negative 
at VL = Vo. From Figures 7, 8, and 9 we see UL ~ UR. Using the Rankine-Hu- 
goniot conditions for the phase boundary namely, 

~r[u~ - uL] = [pR - P L ] ,  ,r[vR - -  VL] = --[UR - -  UL], 

we conclude that a is positive. Hence the phase boundary will move forward. On 
the other hand if Uo ---- u~ and Po ----P~ < Po, the phase boundary will move 
backward, by the same argument. 

Remark  5.3. As a matter  o f  fact, if  Uo----ui, Po = P ~  >Pro, p" (v l )  > O 
(Figure 7), and vo is close to O~,n, we can justify Remark  5.2. In this case 

dvR (~L - - % ) ~  
Z = E,,, dVL - -  ( ~  - -  ,r,,)" 
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Substituting dvR/dVL from the above expression into Equation (5.1), we obtain 
(5.2). As we increase vL, (A + B) in (5.2) will change sign from positive to ne- 
gative. Let us denote by ~L the first point at which A + B = 0, provided a 
solution exists for the above dvR/dVL on the interval [Vo, VL]- This VL should be 
less than am because when VL : %,, A + B is negative (observe that PR < PL). 
Hence dE/dvL changes sign from negative to positive in (Vo, VL)- In this 
case the state VL is stable in the sense that every point Xo > 0 will undergo a 
phase transition to the liquid state VL in a finite time (the state vn may be stable 
or metastable). 
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