Pharmacokinetics of Bleomycin in Man

III. Bleomycin ⁵⁷Co Vs Bleomycin

D. S. Alberts¹, Hsiao-Sheng G. Chen¹, J. M. Woolfenden², T. E. Moon¹, Sai Y. Chang¹, J. N. Hall², K. J. Himmelstein³, J. Gross¹, and S. E. Salmon¹

¹ Section of Hematology and Oncology, Department of Internal Medicine and The Cancer Center,

College of Medicine, University of Arizona,

Tucson, Arizona 85724, USA

² Division of Nuclear Medicine, Department of Radiology, College of Medicine, University of Arizona,

Tucson, Arizona 85724, USA

³ Department of Chemical Engineering, University of Kansas,

Lawrence, Kansas, USA

Summary. Of all the bleomycin-containing radiopharmaceuticals, bleomycin ⁵⁷Co has proven the most useful whole-body tumor-imaging agent. We have studied its in vitro physicochemical properties and in vivo disposition in animals and man to optimize its use as a scanning agent. High-pressure liquid chromatographic analysis of the standard bleomycin ⁵⁷Co preparation (1 unit bleomycin plus 1 mCi chloride ⁵⁷Co showed it to contain 1% free chloride ⁵⁷Co. Dialysis experiments showed that bleomycin 57Co does not dissociate as it diffuses through a dialysis membrane. In nine patients, bleomycin ⁵⁷Co had a $t_{\gamma_2}^{\beta}$ of 3.4 h, a $t_{\gamma_2}^{\gamma}$ of 45.8 h, a V_d of 12.1 liters/m² and a 24-h urinary excretion of 82.1% of the administered dose. In comparison, bleomycin, assayed by radioimmunoassay, had a terminal phase plasma $t_{1/2}$ of only 4.0 h, a similar V_d (17.3 liters/m²), and a 24-h urinary excretion of only 44.8%. Bleomycin ⁵⁷Co tumorto-plasma concentration ratios ranged from 14.1–23.8 at 1 day to 5.4 at 2 days after administration. Our finding that tumor imaging with bleomycin 57Co is best achieved at 24 h is well explained by its almost complete urinary elimination in the first few hours after administration and the peak tumor-to-plasma ratio achieved at 24 h. One disadvantage of bleomycin ⁵⁷Co as a scanning agent is its very extended plasma $t_{\frac{1}{2}}$ In rabbits chloride ⁵⁷Co has the same prolonged plasma terminal elimination phase $(t_{4_{2}}^{\gamma})$ as our standard bleomycin ⁵⁷Co preparation, which contains chloride ⁵⁷Co as a 1% impurity. Removal of this impurity prior to scanning or use of cold cobalt chloride to help eliminate it from the plasma might result in a shortened bleomycin ⁵⁷Co plasma t4/2.

Introduction

Bleomycin ⁵⁷Co is a useful whole-body tumor imaging agent in the evaluation of cancer [4, 6, 9-12]. It is one

of a group of scanning agents formed by chelating the antitumor antibiotic bleomycin with a radionuclide label [5, 9]. Several investigators [3, 5, 18] have shown that bleomycin ⁵⁷Co has the highest tumor-to-nontumor tissue distribution ratios of all radiolabeled bleomycins. Furthermore, bleomycin ⁵⁷Co chelate may concentrate in tumor to a higher degree than free bleomycin [5]. Although there are published disposition data for bleomycin ⁵⁷Co in animals and man there has been no direct comparison between bleomycin and its ⁵⁷Co chelate in patients. We have studied the disposition of both bleomycin and bleomycin ⁵⁷Co in nine cancer patients in an attempt at a fuller understanding of the tumor-imaging properties of bleomycin ⁵⁷Co. Control studies were conducted in vitro and in animals to determine the stability of the chelate and the pharmacokinetics of bleomycin ⁵⁷Co so that effects of dissociation and/or metabolism could be determined.

C ancer

C hemotherapy and P harmacology © Springer-Verlag 1979

Materials and Methods

Bleomycin 57Co in Preparation and Tumor Imaging

Bleomycin ⁵⁷Co was prepared by diluting ⁵⁷Co in 0.5 N HCl to 0.1 N with normal saline, reconstituting bleomycin (Blenoxane, Bristol Laboratories, Syracuse, N.Y.) with normal saline, and combining ⁵⁷Co and bleomycin to achieve an activity of 1 mCi ⁵⁷Co per unit of bleomycin. The pH of the complex was adjusted to 6.0 with sodium acetate, and the volume was adjusted with normal saline to yield an activity of 1 mCi per milliliter. The final solution was filtered through a 0.22- μ m sterile Millipore filter. Tests were performed to monitor sterility, apyrogenicity, and radiochemical and radionuclide purity.

Imaging studies were performed with the aid of a gamma camera with whole-body imaging table (Searle Radiographics Pho/Gamma IV) at 6 and 24 h after injection in all patients, and again at 48 h in 5 patients. Whole-body images and spot views of the anatomic areas of concern were obtained in all patients.

HPLC Analysis of Bleomycin 57Co

The purity of bleomycin ⁵⁷Co was analyzed by high-pressure liquid chromatography (HPLC). Freshly prepared bleomycin ⁵⁷Co was di-

Reprint requests should be addressed to: D. S. Alberts

rectly injected onto a reverse phase column (4 mm \times 25 cm μ C18, Bondapak, Waters Assoc., Milford, Mass.) and the inorganic ⁵⁷Co separated from the bleomycin ⁵⁷Co. The column was equilibrated with 10% acetonitrile in 0.01 N ammonium acetate (pH 4.5). Upon injection of the sample the solvent was programmed to 35% acetonitrile in 0.01 N ammonium acetate (pH 4.5). The flow rate was maintained at 2 ml per min and each 1-ml fraction was separately assayed for ⁵⁷Co content.

Dialysis of Bleomycin ⁵⁷Co

Back dialysis experiments were done to determine whether the ⁵⁷Co label remained in a chelated form as bleomycin ⁵⁷Co diffused through a dialysis membrane. Thirty 1-ml dialysis bags containing human plasma were placed into a 500-ml beaker containing 200 μ Ci bleomycin ⁵⁷Co plus 27 U bleomycin in phosphate-buffered saline (PBS) at 37° C. Twenty four hours later the dialysis bags were removed and placed in 500 ml fresh PBS. At 0, 0.5, 1, 2, 3, 5, 6, 8, 16 and 24 h, three dialysis bags were removed and their contents assayed for ⁵⁷Co by gamma counting and for bleomycin by radioimmunoassay (RIA).

Blood, Urine, and Tumor Sampling

Blood samples (10 ml) were obtained from patients through a heparin lock and collected in tubes containing 100 IU heparin. Blood samples were taken just prior to the start of bleomycin therapy and at 5, 10, 15, 30, 45, 60 min and 2, 3, 4, 6, 8, and 24 h after drug administration. Fractional urine collections were taken for the first 8 h after drug injection and then at varying intervals for at least 24 h. Urine samples were stored in sterile containers at 4° C. Tumor biopsies were obtained for diagnostic purposes in four head and neck cancer patients between 24 h and 6 days after radionuclide administration. The tissue samples were weighed and then assayed for ⁵⁷Co activity in a well scintillation counter.

Assay Procedure

Blood samples were centrifuged at 4° C (2,000 rpm for 10 min). The resulting plasma was frozen at -20° C. The bleomycin concentrations in plasma and urine were determined by means of the antiserum and radioimmunoassay (RIA) technique developed by Broughton and Strong [2]. Bleomycin was labeled for RIA with ¹²⁵Iodine; ⁵⁷Co and ¹²⁵I were counted simultaneously in a Hewlett Packard well

scintillation counter with appropriate energy discrimination and correction for cross-talk between channels.

Plasma Disposition of Bleomycin ⁵⁷Co and Chloride ⁵⁷Co in Rabbits

Female New Zealand white rabbits (Blue Ribbon Rabbit Tree, Tucson, AZ) weighing 4 kg and maintained on normal laboratory rabbit chow were given 0.2 ml bleomycin ⁵⁷Co (200 μ Ci ⁵⁷Co) as IV bolus injections. Blood samples were collected from a heparinized, indwelling jugular catheter at 5, 15, 30, 60 min and 2, 4, 8, 12, 24, and 48 h after drug administration. The rabbits were kept in metabolic cages for collection of 24-h urine samples.

Patients and Treatment

Patient characteristics for the nine study patients are summarized in Table 1. Informed consent was obtained from each patient prior to study. All patients had advanced cancer and received bleomycin for therapeutic purposes. All patients but one (EL) received bleomycin and bleomycin ⁵⁷Co simultaneously by IV bolus injection. The bleomycin dose varied between 13.7 and 19.9 (mean 15.4) U/m² body surface area. All patients received 1 mCi bleomycin ⁵⁷Co.

None of the patients received other anticancer drugs within 3 weeks of the bleomycin pharmacokinetic studies. An attempt was made to stop all drugs at least 3 days prior to the bleomycin disposition studies; however, it was necessary to continue analgesic medication in four of the nine patients (Table 1).

Since bleomycin is eliminated mainly through the kidney, we studied patients with normal renal function. Serum creatinine concentrations were normal (0.7-1.3 mg%) for all nine patients.

Data Analysis

Bleomycin ⁵⁷Co concentration versus time data obtained from each patient and the composite data for all patients were fitted to a multiexponential equation, using NONLIN [7]. Preliminary parameter estimates were obtained from a recently published method CSTRIP [15]. Except for one patient (MR), the equation used was

$$\ln C = \ln \left(A_1 e^{-\alpha t} + A_2 e^{-\beta t} + A_3 e^{-\gamma t} \right), \tag{1}$$

where C is the bleomycin ⁵⁷Co plasma concentration at time t after drug administration, A_{1-3} are coefficients, and α , β , and γ are first-order elimination rate constants. For patient MR a bi-exponential

Table 1. Characteristics of patients

Patient	Tumor type	Sex A	Age	Weight	Height	BSA (m²)	Serum creatinine (mg-%)	Bleomycin IV dose		Other
			(year)	(Kg)	(em)			(U)	(U/m²)	orugo taken
SH	Head and neck	М	55	50.0	158	1.51	1.0	30	19.9	None
EG	Cervix	F	59	72.0	170	1.83	1.0	25	13.7	None
EM	Head and neck	F	64	54.3	170	1.67	0.9	25	15.0	None
HH	Cervix	F	61	58.6	159	1.60	1.2	24	15.0	Demerol
MM	Head and neck	F	61	92.8	158	1.86	0.9	30	16.1	Demerol
MA	Head and neck	М	56	99.4	171	2.05	1.0	30	14.6	Percodan
SR	Cervix	F	42	52.6	162	1.57	0.9	23	14.6	None
MR	Head and neck	М	84	60.0	163	1.65	1.1	24	14.5	None
EL	Ovary	F	63	63.1	157	1.62	1.0		—	None

equation was adequate to describe the concentration decay curves.

The plasma half-lives, t_{α}^{i} , were determined from the corresponding rate constants ($r = \alpha, \beta, \gamma$),

$$t_{y_2} = \frac{0.693}{r}$$
 (2)

The pharmacokinetic parameters associated with bleomycin ⁵⁷Co were calculated from only the α and β phases of the curve, since comparison between bleomycin ⁵⁷Co and cold bleomycin decay curves suggested (Fig. 6 and Discussion section) that the γ -phase of the bleomycin ⁵⁷Co curve was actually due to the existence of free ⁵⁷Co. The area under the curve (CXT) for bleomycin ⁵⁷Co was obtained from

$$CXT = \frac{A_1}{a} + \frac{A_2}{\beta}.$$
 (3)

The total body clearance Q_B and the apparent volume of distribution for bleomycin ⁵⁷Co were then evaluated from

$$Q_{\rm B} = \frac{\text{total administered dose (TAD)}}{\text{CXT}}.$$

and

$$V_{d} = \frac{\text{TAD}}{\text{CXT} \cdot \beta}.$$
(5)

The renal clearance of bleomycin 57 Co, Q₁, was determined by dividing the 24-h cumulative urinary excretions of the drug by the 24-h CXT. The 24-h CXT was calculated from the following equation:

$$CXT_0^{24} = CXT - \frac{C_{24}}{\beta}$$
(6)

where C_{24} is the concentration of the drug at 24 h after injection.

The bleomycin ⁵⁷Co pharmacokinetics in rabbits were analyzed by the same methods described above. Equation 1 was used to fit data for all the rabbits (composite) and for each individual rabbit.

The disposition of chloride ⁵⁷Co in rabbits was also studied. Chloride ⁵⁷Co plasma decay curves were biphasic. The important pharmacokinetic parameters were calculated by the methods described above. Nonradioactive bleomycin disposition data analysis methods have been reported previously [1].

Results

HPLC Analysis of Purity of Bleomycin ⁵⁷Co

Chromatography of the fresh bleomycin ⁵⁷Co preparation showed that approximately 1% of it was free, inorganic cobalt (Fig. 1).

Dialysis Experiments

The rate of diffusion of bleomycin ⁵⁷Co from plasma through a dialysis membrane at 37° C was the same whether measured by radioimmunoassay or gamma counting (Fig. 2).

Fig. 1. HPLC fractionation of freshly prepared bleomycin 57 Co. The radiopharmaceutical was directly injected onto a reverse-phase μ C18 Bondapak column. Inorganic cobalt (1% of the total cpm) appeared in fractions 4–6, whereas the bleomycin 57 Co chelate appeared in fractions 14–30

Fig. 2. Back dialysis of bleomycin ⁵⁷Co from human plasma. Dialysis bags containing human-plasma were placed into a dialyzate containing 200 μ Ci bleomycin ⁵⁷Co and 27 μ bleomycin. After 24 h the bags were placed into fresh PBS and plasma bleomycin ⁵⁷Co was assayed by RIA and ⁵⁷Co cpm at the indicated time intervals

Disposition of Bleomycin ⁵⁷Co and Chloride ⁵⁷CO in Rabbits

Pharmacokinetic parameters and urinary excretion data for bleomycin ⁵⁷Co and chloride ⁵⁷Co after IV administration in rabbits are summarized in Tables 2 and 3,

Rabbit	$t^{\beta}_{\gamma_2}$ (h)	t [¥] / ₂ (h)	V _d ^a (1/m ²)	Q _B ^b (ml/min/m ²)	72-h urinary excretion (% administered dose)
1	0.94	331.5	4.6	56.7	70.0
2	1.00	133.6	4.8	55.9	37.3
3	0.77	96.4	4.8	71.9	83.0
4	1.27	c	6.1	55.1	92.4
5	0.94	65.9	4.3	52.8	50.0
Mean ^d Composite ^e	$\begin{array}{c} 0.98 \pm 0.18 \\ 0.95 \pm 0.13 \end{array}$	$\begin{array}{rrrr} 156.8 \ \pm \ 119.7 \\ 86.9 \ \pm \ \ 37.5 \end{array}$	$\begin{array}{r} 4.9\ \pm\ 0.68\\ 4.8\ \pm\ 1.7\end{array}$	58.4 ± 7.6 58.7 ± 18.4	66.5 ± 22.8

Table 2. Pharmacokinetic parameters of bleomycin ⁵⁷Co in rabbits

^a V_d, volume of distribution

^b Q_B, whole-body clearance

^c Half-life could not be determined

^d Mean: Pharmacokinetic parameters \pm SD calculated from mean of individual rabbit parameters

 $^{\rm e}$ Composite: Pharmacokinetic parameters \pm SD calculated from nonlinear regression fit of all plasma decay data

Table 3. Pharmacokinetic parameters of chloride ⁵⁷Co in rabbits

Rabbit	$egin{array}{c} t^{m{eta}}_{m{1}\!\!\!\!/_2}\ ({f h}) \end{array}$	V _d ^a (l/m ²)	Q _B ^b (ml/min/m ²)	24-h urinary excretion (%)
1	23.6	2.92	1.43	64.0 (16 h)
2	40.8	3.31	0.94	60.0
3	346.2	2.18	0.07	35.0
Mean ^c	136.9 ± 181.5	$2.80~\pm~0.57$	0.81 ± 0.69	53.0 ± 15.7
Composited	77.4 ± 97.8	$3.02~\pm~5.41$	$0.45~\pm~0.57$	

^a V_d, volume of distribution

^b Q_B, whole-body clearance rate

 $^{\rm c}$ Mean: Pharmacokinetic parameters \pm SD calculated from mean of individual rabbit parameters

^d Composite: Pharmacokinetic parameters \pm SD calculated from nonlinear regression fit of all plasma decay data

of all plasma decay data

respectively. The plots of the composite bleomycin ⁵⁷Co and chloride ⁵⁷Co plasma versus time data and their respective fitted curves are shown in Fig. 3. The relatively flat terminal slopes of these curves are similar, suggesting that free ⁵⁷Co accounts for the tail-end of both curves.

Disposition of Bleomycin and Bleomycin ⁵⁷Co in Humans

Pharmacokinetic parameters and urinary excretion data for bleomycin and bleomycin ⁵⁷Co after IV administration are summarized in Tables 4 and 5, respectively. The arithmetic means of the individual patient parameters and the composite results of the nonlinear regression fit of all plasma decay data appear at the bottom in Tables 4 and 5. In contrast to bleomycin's biexponential plasma decay, bleomycin ⁵⁷Co shows a triexponential decay. The terminal phase plasma half-life of 45.8 h for bleomycin ⁵⁷Co is significantly (P < 0.05) greater than that measured by radioimmunoassay for bleomycin, suggesting persistence of free ⁵⁷Co in the plasma. The 24-h urinary excretion for bleomycin ⁵⁷Co of 82% was almost twice that determined for bleomycin (i.e., 44.8%). Although the renal clearance rate (Qr) of 33.7 \pm 10 ml/min/m² for bleomycin ⁵⁷Co was greater than the 23.0 \pm 1.9 ml/min/m² for bleomycin, the two drugs had similar whole-body clearance rates.

Representative plots of the bleomycin and bleomycin 57 Co plasma decay data for two patients (EG and SH; Tables 1, 4, and 5) are shown in Figs. 4 and 5, respectively. The plots of the composite bleomycin and bleomycin 57 Co plasma concentration versus time data

1000

100

10

1.0

9.1

10

20

Concentration (10⁻⁵ TAD/ml)

40

Time after Injection (h)

30

50

60

70

Fig. 3. Comparison of chloride ⁵⁷Co and bleomycin 57Co plasma decay kinetics in rabbits. The medan and 1 standard deviation plots of the composite data are represented by solid and dashed lines, respectively

Patient (dose)	$t_{\frac{1}{2}}^{\beta}$ (h)	V_{d}^{a} (1/m ²)	Q _B ^b (ml/min/m ²)	24-h urinary excretion (% dose)	Q ^c (ml/min/m ²)
SH (30 U)	4.5	20.5	52.6	29.1	15.5
EG (25 U)	3.2	14.4	52.0	27.4	14.1
EM (25 U)	3.0	13.0	49.5	49.2	24.3
HH (24 U)	4.3	18.2	48.6	45.5	22.8
MM (30 U)	3.8	23.3	71.4	d	d
MA (30 U)	4.4	15.9	41.7	46.2	19.6
SR (23 U)	4.6	19.7	49.5	61.5	31.3
MR (24 U)	4.4	15.2	39.9	54.8	22.2
Mean ^e	4.0 ± 0.6	17.5 ± 3.5	50.6 ± 9.6	44.8 + 12.6	21.4 + 5.8
Compositef	$4.0~\pm~0.1$	17.3 ± 1.5	50.5 ± 4.1	_	23.0 ± 1.9

Table 4. Pharmacokinetic parameters of intravenous bleomycin in man

^a V_d , volume of distribution ^b Q_B , whole-body clearance rate ^c Q_r , renal clearance rate

^d Incomplete urine collections

^e Mean: Pharmacokinetic parameters ± SD calculated from mean of individual patient parameters

^f Composite: Pharmacokinetic parameters ± SD calculated from nonlinear regression fit of all plasma decay data

Patient	t ^β (h)	t ^p (h)	V _d ^a (l/m ²)	Q _B ^b (ml/min/m ²)	24-h urinary excretion (% TAD)	Qr ^c (ml/min/m ²)
SH	3.3	74.1	9.8	34.6	105.4	36.6
EG	3.6	657.1	15.5	49.5	66.8	33.3
EM	2.9	283.9	15.3	60.7	80.3	48.9
HH	3.7	15.9	8.8	27.7	72.8	20.3
MM	3.3	260.3	9.0	31.2	79.5	25.0
MA	4.3	128.7	11.0	29.5	93.4	.28.1
SR	1.8	21.1	8.0	51.2	69.1	25.4
MR	5.5		20.3	43.0	73.3	32.8
EL	1.8	9.0	7.7	48.7	98.0	47.7
Mean ^d Composite ^e	3.4 ± 1.1 3.4 ± 0.6	$\begin{array}{rrrr} 181.3 \ \pm \ 220.4 \\ 45.8 \ \pm \ \ 37.4 \end{array}$	11.7 ± 4.3 12.1 ± 3.6	$\begin{array}{r} 41.9 \ \pm \ 11.1 \\ 40.8 \ \pm \ 9.9 \end{array}$	82.1 ± 13.7	$\begin{array}{rrr} 34.2 \ \pm & 9.5 \\ 33.7 \ \pm & 10.0 \end{array}$

Table 5. Pharmacokinetic parameters of intravenous bleomycin ⁵⁷Co in man

^a V_d, volume of distribution

^b Q_B, whole-body clearance rate

° Q, renal clearance rate

^d Mean: Pharmacokinetic parameters ± SD calculated from mean of individual patient parameters

 $^{\rm e}$ Composite: Pharmacokinetic parameters \pm SD calculated from nonlinear regression fit of all plasma decay data

Fig. 4. Comparison of bleomycin and bleomycin ⁵⁷Co plasma decay curves for patient SH (Tables 1, 4 and 5). Bleomycin was measured by radioimmunoassay and bleomycin ⁵⁷Co by ⁵⁷Co radioactivity

Fig. 5. Comparison of bleomycin (—•—) and bleomycin ⁵⁷Co (—••—) plasma decay curves for patient EG (Tables 1, 4, and 5). Bleomycin was measured by radioimmunoassay and bleomycin ⁵⁷Co by ⁵⁷Co radioactivity

and their respective fitted curves are shown in Fig. 6. The terminal plasma decay phase is relatively steep for bleomycin and flat for bleomycin ⁵⁷Co.

Tumor : Plasma Bleomycin ⁵¹Co Ratios in Cancer Patients

Table 6 shows the bleomycin ⁵⁷Co tumor : plasma ratios for four patients with squamous-cell cancers of the head and neck. These ratios were highest at 24 h after radiopharmaceutical administration and fell to lower, but sustained levels between 2 and 6 days after.

Fig. 6. Comparison of bleomycin and bleomycin ⁵⁷Co plasma decay curves for nine cancer patients. The median and 1 standard deviation plots of the composite data are represented by middle and associated outer curves, respectively

Table 6. Bleomycin ⁵⁷Co tumor: plasma ratios in patients with head and neck cancer

Patient	Tumor location	Days after drug administration	Ratio
SH	Nasal	1	23.8
MM	Floor of mouth	1	14.1
MA	Floor of mouth	2	5.4
ES ^a	Larynx	6	5.9
ES	Cervical lymph node	6	6.5

^a No bleomycin ⁵⁷Co plasma or urine distribution data obtained

Tumor-Imaging Studies with Bleomycin ⁵⁷Co

The clearest tumor imaging with bleomycin ⁵⁷Co was seen in scans obtained 24 h after administration as against scans at 6 or 48 h [19]. Kidney, bladder, and generalized background activity was markedly higher at 6 than at 24 h after injection. Bleomycin ⁵⁷Co tumor rentention was greater at 24 h than at 48 h.

Discussion

Useful pharmacokinetic properties of a radiopharmaceutical tumor-scanning agent include high tumor-tonormal tissue uptake ratios, rapid plasma clearance, and almost complete urinary excretion. Our human disposition data on bleomycin ⁵⁷Co show relatively high tumorto-plasma ratios, rapid plasma disappearance, and over 80% clearance from urine in the first 24 h. Although the terminal phase half-life (i.e., t'_{λ_2}) was extremely long, the amount of ⁵⁷Co radiaoactivity present during this phase was very small (i.e., less than 2% of TAD).

Except for the terminal elimination phase of bleomycin ⁵⁷Co from human plasma, the plasma decay kinetics were not statistically different from those of bleomycin measured by radioimmunoassay (Tables 4 and 5). Our HPLC analysis of the freshly prepared bleomycin ⁵⁷Co, indicating that about 1% of it was unbound chloride ⁵⁷Co, provides confirmatory evidence for the hypothesis proposed by Robert et al. [13, 14] that free ⁵⁷Co could account for the very flat plasma ν phase of bleomycin ⁵⁷Co. The chloride ⁵⁷Co disposition data in rabbits show that this radionuclide has an extremely long β elimination phase from plasma. The slopes of the terminal elimination phases from plasma for bleomycin 57Co and chloride ⁵⁷Co in the rabbit are not statistically different. We therefore conclude that the terminal persistence of ⁵⁷Co radioactivity in human plasma is mainly due to unbound chloride ⁵⁷Co present in the originally injected material.

The almost two-fold greater urinary elimination of bleomycin ⁵⁷Co than bleomycin by radioimmunoassay requires further explanation. Three possible mechanisms could obtain. First, there may be some metabolism of the bleomycin component of the radiopharmaceutical. The greater renal clearance rate but similar whole body clearance rate of bleomycin ⁵⁷Co compared to bleomycin suggests the possibility of bleomycin metabolism. Bleomycin-inactivating enzymes are present in various tissues [8, 17] and the radioimmunoassay mainly measures intact, native bleomycin [16]. Metabolism could account for decreased cold bleomycin activity but unchanged bleomycin ⁵⁷Co activity in the urine. However, it would be surprising if this bleomycin-inactivating enzyme activity could result in such large amounts of altered bleomycin after rapid IV injection and renal elimination. Second, although their initial clearance pathways appear similar, it is possible that bleomycin ⁵⁷Co binds less tightly than cold bleomycin to tissues, and is therefore eliminated into the urine more rapidly. Finally, ⁵⁷Co may dissociate from the bleomycin and be excreted into the urine. This last possibility is unlikely, in that investigators have shown in animals that almost all of the urinary ⁵⁷Co radioactivity represents intact bleomycin ⁵⁷Co [6, 12]. Furthermore, we have shown that bleomycin ⁵⁷Co does not dissociate as it diffuses through a dialysis membrane.

Our bleomycin ⁵⁷Co pharmacokinetic data help to explain its tumor-imaging characteristics. The rapid and almost complete urinary elimination accounts for the high bleomycin ⁵⁷Co activity seen in kidneys and bladder 6 h after injection and the decreased normal background activity observed in whole-body scans at 24 h. The higher bleomycin ⁵⁷Co tumor-to-plasma ratios at 24 h than at 2 and 6 days correlated well with the fact that the best tumor-imaging quality was found at 24 h.

Although bleomycin ⁵⁷Co has ideal tumor-imaging characteristics (i.e., rapid plasma clearance and almost complete urinary elimination), it has a few disadvantages. Besides having an extremely long half-life it has an extended γ phase plasma half-life. If this terminal elimination phase is due to chloride ⁵⁷Co bound to plasma proteins, then it might be beneficial to administer nonradioactive cobalt chloride before or along with the radionuclide. The excess cobalt chloride might therefore decrease chloride ⁵⁷Co protein binding and plasma halflife. In addition, careful removal of chloride ⁵⁷Co as an impurity of the initially injected bleomycin ⁵⁷Co might eliminate its markedly prolonged terminal γ plasma phase.

References

- Alberts, D. S., Chen, H.-S. G., Liu, R., et al.: Bleomycin pharmacokinetics in man. I. Intravenous administration. Cancer Chemother. Pharmacol. 1, 177–181 (1978)
- Broughton, A., Strong, J. E.: Radioimmunoassay of bleomycin. Cancer Res. 36, 1430–1434 (1977)

- Grove, R. B., Eckelman, W. C., Reba, R. C.: Distribution of labeled bleomycin in normal and tumor-bearing mice. J. Nucl. Med. 14, 917-919 (1973)
- Kahn, P. C., Milunsky, C., Dewanjee, M. K., et al.: The place of ⁵⁷Co-belomycin scanning in the evaluation of tumors. Am. J. Roentgenol. 129, 267–273 (1977)
- Kono, A., Matsushima, Y., Kojima, M., Maeda, T.: Cobalt chelate of bleomycin. I. Physicochemical properties and distribution in tumor bearing mice. Chem. Pharm. Bull. 25 (7), 1725–1731 (1977)
- Maeda, T., Kohno, A., Kojima, M.: Tumor scanning with bleomycin ⁵⁷Co. Radioisotopes 21, 436–438 (1972)
- Metzler, C. M.: NONLIN: A computer program for parameter estimation in nonlinear situations. Kalamazoo, Michigan: Upjohn Co. 1969
- Müller, W. E. G., Zahn, R. K.: Determination of the bleomycininactivating enzyme in biopsies. Gann 67, 425-430 (1976)
- Nouel, J. P.: Radioactive metal-bleomycin complex for the diagnosis of cancer. In: Fundamental and clinical studies of bleomycin. Carter, S. K., Ichikawa, T., Mathé, G., and Umezawa, H. (eds.), p. 301–316. University Park Press 1976
- Nouel, J. P., Renault, H., Robert, J., et al.: La bléomycine marquée au Co-57. Intérêt dans le diagnostic des tumeurs malignes et de leur extension. Nouv. Presse Med. 1, 95–98 (1972)
- Poulose, K. P., Watkins, A. E., Reba, R. C., et al.: Cobaltlabeled bleomycin – a new radiopharmaceutical for tumor localization. A comparative clinical evaluation with gallium citrate. J. Nucl. Med. 16, 839–841 (1975)
- Rasker, J. J., Van de Poll, M. A. P. C., Beekhuis, H., et al.: Some experience with ⁵⁷Co-labeled bleomycin as a tumor-seeking agent. J. Nucl. Med. 16, 1058–1069 (1975)
- Robert, J., Renault, H., Rapin, J., Rudler, M., Nouel, J. P.: Métabolisme de la bléomycine marquée au cobalt-57 chez la souris. I. Distribution et cinétique. Therapie 28, 933 (1973a)
- Robert, J., Renault, H., Rapin, J., Rudler, M., Nouel, J. P.: Métabolisme de la bléomycine marquée par un cation divalent. II. Etude des métabolites urinaires chez le rat et comparaison de l'élimination tissulaire du cation seul on chélaté par la bléomycin. Therapie 28, 941 (1973b)
- Sedman, A. J., Wagner, J. G.: CSTRIP: A Fortran IV computer program for obtaining initial polyexponential parameter estimates. J. Pharm. Sci. 65, 1006–1010 (1976)
- Strong, J. E., Broughton, A., Crooke, S. T.: Specificity of antisera produced against bleomycin. Cancer Treat. Rep. 61, (8), 1509–1512 (1977)
- 17. Umezawa, H.: Recent studies on bleomycin. Lloydia 10 (1), 67-81 (1977)
- Van de Poll, M. A. P. C., Versluis, A., Rasker, J. J., Jurjens, H., Woldring, M. G.: Labelling of bleomycin with cobalt-57, indium-111, technetium-99m, mercury-197, lead-203, and copper-67. Nucl. Med. 15 (2), 86-90 (1976)
- Woolfenden, J. M., Alberts, D. S., Hall, J. N., et al.: Cobalt-57 bleomycin for imaging head and neck tumors. Cancer (in press, May 1979)

Received July 24, 1978/Accepted March 12, 1979