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Part I. Catalog of Controllable States 

1.1. Introduction 

In the theory of finite deformations of elastic solids, there are certain problems 
which can be solved exactly, by the inverse method. The deformation is prescribed 
at the outset, and it is verified that the deformation can be supported without body 
force, in every homogeneous, isotropic, incompressible, elastic material. In the 
present paper we describe a similar set of exact solutions in the theory of elastic 
dielectrics. The deformation and either the electric field or the dielectric displace- 
ment field are prescribed initially, and it is shown that the resulting state can be 
supported without mechanical body force or distributed charge in every homo- 
geneous, isotropic, incompressible, elastic dielectric. We call such states control- 
lable states of these materials. 

The modern development of finite elasticity theory was stimulated by RIVLIN'S 
observation that problems of the kind just described could be solved exactly 
without any detailed knowledge of the form of the strain-energy function for the 
material. These deformations could then be used in the experimental determination 
of the strain-energy function. There is a moderately large number of such de- 
formations, including pure homogeneous deformations (RIvt.IN [1]*), simultan- 
eous extension, inflation, azimuthal and axial dislocation, torsion, and eversion 
of tubes (RIVLIN [2], [3], EgICI(SEN & RIVLIN [4]), inflation and eversion of 
spherical shells (GREEN & SHIELD [5], EgICKSEN [6]), and some deformations 
involving flexure (RIVLIN [2], ADKINS, GREEN 8~ SHIELD [7], ERICKSEN [6]). The 
only additions to this list since ERICKSEN'S [6] thorough search are the cylindrical 
shearing solutions found by KLINGBEIL • SHIELD [8] and the generalizations of 
these solutions obtained by superposing extension and flexure on them [9], 
which we found in the course of the present work. 

No comparably large body of exact solutions exists in the theory of elastic 
dielectrics. TOUPIN [10], in his original work on the subject, considered some cases 
of homogeneous deformation and polarization. ERINGEN [12] has discussed the 
extension of a tube, combined with a radial field. VERMA [13] has considered the 
expansion of a spherical shell in a radial field. PIPKtN& RIVLIN [14] have dis- 
cussed the problem of electrical conduction in a stretched and twisted tube in an 
axial electric field, which is formally equivalent to a problem of polarization. 
So far as we know, no other exact solutions are recorded in the literature. 

In the present part of this paper, Part I, we list a number of controllable states of 
initially homogeneous, isotropic, incompressible elastic dielectrics. In Part II we 
show that every controllable state with a prescribed non-zero electric field is 
among those listed in Part I. In Part III we show that Part I also contains every 
controllable state with a prescribed non-zero dielectric displacement field. 

Because our aim is complete coverage rather than detailed examination of 
each solution, we usually carry the solution only so far as is necessary to verify 
that the state considered can be supported by surface tractions alone. Further- 
more, although we place each state in the context of a body of definite shape and 

* Numbers in square brackets indicate references at the end of the paper. 
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find an external field compatible with the boundary data implied by the interior 
state, we do not show that these are the only body shapes which might be used. 

In Sections 2 and 3 we outline the basic theory, which we believe to be equi- 
valent to TOUPIN'S [10], [11] theory of elastic dielectrics. The theory differs 
formally from TouPIN'S theory in that we do not decompose the stress, the electric 
field, or the dielectric displacement into sums of various parts. Such decomposi- 
tions are irrelevant to our present purpose, and also not of any empirical signifi- 
cance, so far as we can see, except in linearized theories. A second difference is 
that we do not use the expressions for response coefficients in terms of derivatives 
of the stored-energy density. 

The latter omission is mainly for notational convenience, although it also has 
the side effect of making the solutions directly applicable to formally equivalent 
problems in the theories of electrical conduction and heat conduction in deformed 
isotropic materials [15], where no representation in terms of stored-energy is to 
be expected. The relevant analogies are outlined in Section 4. 

The controllable states are described in Sections 6 to 14. Homogenous de- 
formation in the presence of a uniform electric or dielectric displacement field is 
considered in Section 6. Symmetrical expansion of a spherical shell, with or 
without eversion, and with a prescribed radial dielectric displacement field, is 
considered in Section 7. We list these known solutions for the sake of completeness. 
The solution given by ERINGEN [12] is a special case of the five-parameter family 
of deformations of a tube, combined with a prescribed radial dielectric displace- 
ment field, which we describe in Section 8. The combination of this family of 
deformations with helical electric fields is described in Section 9. 

The deformation of a cuboid into a rectangular block by flexure, extension, 
and shear, combined with a uniform dielectric displacement field along one of the 
principal directions of strain, is described in Section 10. The combination of these 
deformations with uniform electric fields in one of the principal planes is de- 
scribed in Section 11. The somewhat similar deformations which carry a rectangular 
block into a segment of the wall of a cylindrical tube, combined with a radial 
dielectric displacement field or helical electric field, are described in Sections 12 
and 13, respectively. 

The deformation of a cuboid by extension, flexure, and azimuthal shear, 
combined with a uniform axial electric or dielectric displacement field, is described 
in Section 14. This completes the enumeration of controllable states. 

1.2. Statics 

In the present section we summarize those basic assumptions and equations 
of continuum electrostatics and mechanics which are independent of the composi- 
tion of the material media which may be involved. 

We assume that there exists a macroscopic electric field Ei, with the dimensions 
of force per unit charge, which is conservative: 

Ei dxi = 0 .  (2.1) 
C 

Here C is an arbitrary closed curve, and dx, is the vector element of arc along it. 
We next assume that there exists a macroscopic field of flux, or dielectric dis- 

12" 
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placement, Dt, with the dimensions of charge per unit area, which has charge at 
its sources: 

Oi ni d S = Q .  (2.2) 
S 

Here S is an arbitrary closed surface with a real element d S  and unit outward 
normal n~, and Q is the total charge enclosed by S. 

We also assume that the resultant force F~ and moment G~ exerted on the 
material contained in an arbitrary volume 1I, not including gravitational or 
inertial forces and moments, can be expressed entirely in terms of a stress vector t~ 
acting over the surface S of the volume 1I, in the forms 

F~ = ~ ti d S,  G~-- ~ e~ j k X~ t k d S. (2.3) 
$ S 

Here x~ are Cartesian coordinates, and G~ is the moment about the origin. The 
stress vector t~ is intended to account for all electro-mechanical effects except the 
gravitational and inertial body forces which we have excluded, and which will 
be set equal to zero in the work to follow. We specifically exclude surface couples 
and body couples from the theory, except insofar as such quantities might be 
made to appear by suitable manipulation and reinterpretation of the basic equa- 
tions. We also specifically exclude body forces, other than those forces of gravita- 
tional or inertial origin which one might wish to include in the theory. We note 
that electrostatic body forces can be made to appear by suitable manipulation 
and reinterpretation of the basic equations, if one has any desire to do so, which 
we do not. 

The differential form of (2.1) is 

Ei. . i=Ej,  i, or E ~ = - V i ,  (2.4) 

where E is the electric potential. It also follows from (2.1) that the tangential 
component of E~ is continuous across a surface of discontinuity of E~: 

ei j k ( E f  - E-~) nk=O.  (2.5) 

Here n~ is a unit vector normal to the surface, and Ei + is evaluated on the side 
toward which n~ points, E7 being evaluated on the other side. Excluding charged 
double layers, the condition (2.5) can be satisfied by requiring the potential V to 
be continuous across surfaces of discontinuity of its derivatives. 

If the total charge Q in (2.2) is distributed with the density q per unit volume, 
then the differential form of (2.2) is 

Di, i = q . (2.6) 

The normal component of D~ is discontinuous across a surface with charge to 
per unit area: 

(D~ + - D~-) n, = to. (2.7) 

The conventions on superscripts plus and minus are as in (2.5). In the applications 
which we shall consider, we set q = 0  in dielectrics and o9 =0  on the surfaces of 
dielectrics. The flux D~ is then solenoidal. 
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From the assumptions (2.3), with the macroscopic equations of translational 
and rotational equilibrium or motion, it follows exactly as in continuum mechanics 
(see, for example, LOVE [16]) that the stress vector ti depends linearly on the unit 
normal n i to the surface S, 

t i = crij n j ,  (2.8) 

that the stress matrix is symmetric, 

~ij = ~j  i ,  (2.9) 

and that the differential form of the equations of translational equilibrium or 
motion in the presence of gravitational or interial body forces P f i  per unit volume 
is 

~J, i + P f~ = 0. (2.10) 

We take p f~  to be zero in the applications which we consider. It also follows that 
certain components of stress are discontinuous across a surface on which a force 
T~ per unit area is imposed, the traction Tt being given by 

T~ + ( t~ -tT~) n j = 0 ,  (2.11) 

where our conventions on the superscripts plus and minus are as in (2.5) and (2.7). 
In the absence of electrical effects, at the surface of a body one ordinarily takes 
the stress cr -+- in the surrounding medium to be zero. In the present theory there t J  

will in general be a non-zero stress everywhere. 

1.3. Constitutive Equations 

The validity of the assumptions (2.1) to (2.3) for free space is a fundamental 
physical postulate. In free space, the flux Di is directly proportional to the electric 
field strength, 

D i = e E t ,  (3.1) 

the dielectric constant e for free space being a basic physical constant. The stress 
trij in free space is the Maxwell stress M~j defined by 

M i j  = e E i E j  - -  (e/2) E k E k 6ij . (3.2) 

If it is assumed that (3. l) and (3.2) (i.e. trij = M~j) are also valid in the idealized 
medium called a continuous charge distribution, then, with the relations given 
in Section 2, it is easy to show that the force F~ and moment Gi in (2.3) for such 
a medium can be expressed entirely as the force and moment due to a body force 
q E i  per unit volume. 

In the applications which follow, we shall suppose that the dielectric bodies 
which we consider are surrounded by a charge-free medium described by con- 
stitutive equations of the forms (3.1) and (3.2). 

Aside from free space and the continuous charge distribution, the most 
familiar idealized material considered in electrostatics is the dumbbell-model 
polarizable medium. There is an old and continuing controversy which has its 
roots in the ascription of physical reality to this model. If one regards it as exact 
for all dielectrics, then one may well argue for the validity of one or another set 
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of definitions of its properties. Because we have no wish to take part in this debate, 
we will not attempt to define this model. 

We consider materials which are described by constitutive equations, replacing 
(3.1) and (3.2), which express D~ and tr~j in terms of E i and quantities describing 
the state of deformation of the medium. The deformation of a material body can 
be described by specifying the position x~(XA), in the deformed state, of the 
generic particle which was located at XA in the undeformed state, all coordinates 
being measured with respect to a single fixed rectangular Cartesian frame x. 
The deformation gradients x i, A (=  a xi/t3 XA) provide measures of the deformation. 
We suppose that the values of D~ and a~j at a given point are determined by the 
values of E~ and xi, A at the same point: 

D,=f,(xp,,, (3.3) 

Thus, we assume that only one state of flux and stress is compatible with given 
values of the deformation gradients and electric field. This assumption can be 
modified to allow dependence on such scalar quantities as temperature without 
affecting the results described in the remainder of this section. 

We assume that if a deformed body is rotated rigidly, together with the field E~ 
in it, into a new orientation with respect to the coordinate frame x, then the stress 
and flux will undergo the same rotation, so as to remain fixed with respect to 
the body. From this assumption it follows that the constitutive equations (3.3) 
must be expressible in the forms [17] 

Di=xi, AFA(xp, pXp, Q,Xp, pEp), trij=xi, axj, aFAs(Xp, pXp, Q,xp, eEp). (3.4) 

If the medium is holohedral isotropic in its undeformed, field-free state, then 
the relations (3.4) can be further restricted to the forms [17], [18], 

Di=(Ao 6ij+ AI gij+ A2 gik gkj) E1 (3.5) 
and 

trij = r 5~j + S~j, (3.6) 
where 

Sij=~)l gij-Jc02 gik gkj-l-El(t~3 r gjk-br gin gnk) Ek-b 
(3.7) 

-I- Ej(~3 6ik q-~4 gik-]-~5 gin gnk) Ek" 

Here g~ is the Finger strain, defined by 

gij = xi, ,~ x j, ~. (3.8) 

The coefficients A in (3.5) and r in (3.6) and (3.7) are functions of the following 
orthogonal invariants: 

I i=gi i ,  12--gug U , I3=EiEi, I4=EiguEj ,  Is=EigUgjkEk, (3.9) 
and 

16 = det go. (3.10) 

Relations of the general types (3.5) to (3.7) were obtained by TOUPIN [10] by 
making use of a stored-energy function. MARRIS & VILLANUEVA [19] have obtained 
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a canonical form of the type (3.6), (3.7), without using a stored-energy function, 
in a formally equivalent theory involving the dependence of stress on temperature 
gradient rather than on E~. 

We shall consider only incompressible materials. The invariant (3.10) is then 
unity in all deformations, and is accordingly not a variable. The scalar coefficients 
in (3.5) to (3.7) are then functions of the invariants (3.9) only. In conservative 
systems, a pressure p arises as a reaction to the constraint of no volume change. 
Our assumption that the stress is completely determined by xp,A and E n is then 
not permissible, and in place of (3.6) we obtain a relation of the form 

r = - p ~ j  + Sij,  (3.11) 

where p is arbitrary, and the extra stress Sij is of the form (3.7). We assume that 
an arbitrary pressure is also present in incompressible materials which are not 
conservative. 

In some of the problems which we shall consider, it is convenient to take D i 
rather than E i as independent variables. By interchanging Ei with D i in the preced- 
ing results, in place of (3.5) we obtain a relation of the form 

E~ = (Qo t$i~ + ~21 gij + ~2 gik gkj) D j ,  (3.12) 

and in place of (3.7) we arrive at 

Sij = ~P1 gij+ ~2 gik gkj+ Di(~3 6jk + ~4 gjk-]- ~5 gin gnk) Dk + 
(3.13) 

+ D j ( ~ 3  ~ik + ~4 gik + ~s gin gnk) Dk" 

In incompressible materials, the coefficients fl and ~ arc functions of the following 
orthogonal invariants: 

Jl=gii, J2=gijgu, Ja=DiDi, J4=DigijDj, Js=DigijgjkDk. (3.14) 

1.4. Formally Equivalent Physical Theories 

The solutions which we exhibit in the remainder of this paper can be used in 
physical contexts other than that of the theory of elastic dielectrics. For example, 
the theories of steady-state heat conduction and electrical conduction in deformable 
media [15] are formally equivalent to the theory outlined in Sections 2 and 3. 
In place of a dielectric displacement vector satisfying the equation Di. i=0,  in 
these theories one has a heat flux qi or an electrical current density J~ satisfying 
the same equation. The electric potential V and the field strength E~ are replaced 
by the temperature and its negative gradient, respectively, in the theory of heat 
conduction. In the case of electrical conduction, V and Ei retain their present 
meanings. 

Constitutive equations of the form (3.5) have been explicitly formulated in 
connection with such theories [15], and, at least in the case of electrical conduction, 
it is an empirical fact that conductivity can be strongly affected by deformation. 
Dependence of stress on temperature gradient, in the form (3.6), (3.7), has been 
suggested by MARRIS & VILLANUEVA [19]. However, GURTIN [20] has shown that 
such dependence is not compatible with the Clausius-Duhem inequality. 
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1.5. Summary of the Basic Equations 

We summarize here the equations and boundary conditions to be satisfied by 
the solutions in Sections 6 to 14. The deformation must be isochoric, i.e. det g~j = 1. 
In the assumed absence of distributed charge, the flux D i is solenoidal: 

D~,i=0. (5.1) 

The electric field strength is conservative: 

Ei, j = E j, i, i.e. Ei= - V, ~. (5.2) 

In the assumed absence of mechanical body force, the divergence of the stress 
tensor is zero. With (3.11), for an incompressible dielectric this condition can be 
written as 

P, i = Sij, j .  (5.3) 

The constitutive equations for an incompressible dielectric are (3.5) and (3.7), 
or (3.12) and (3.13), with (3.11). The constitutive equations for the medium 
surrounding the dielectric are (3.1) and a~.i=M~, where M~j is defined in (3.2). 
We note that the equilibrium equations M~j, j=0 are satisfied identically in this 
medium if (5.1), (5.2), and (3.1) are satisfied. Accordingly, we need not verify 
the condition M~y,j =0 separately. 

At the charge-free surface of a dielectric with outward normal n~, the conti- 
nuity conditions (2.5) and (2.7) are 

e~jk(E~~ nk=O, (O[ ~  h i=0 ,  (5.4) 

where E~ I~ and DI ~ are evaluated in the outside medium, and E i and D i are 
evaluated in the dielectric. When a potential V is known to exist, the condition 
(5.4a) need not be considered separately. With a~j=-p6~j+S~y the stress in the 
dielectric and Mo,  the stress in the surrounding medium, the traction T~ which 
must be applied to the surface is 

T~ = - p n~ + Slj n~-  Mij  nj .  (5.5) 

1.6. Homogeneous Deformation in a Uniform Field 

The simplest controllable states are those in which the strain components and 
field components are constants. As a general example of such a state, we consider 
the homogeneous deformation of an infinite slab, bounded by the surfaces X 3 = _+ h 
in the undeformed state. The slab is subjected to extensions in the coordinate 
directions, with extension ratios 21, 22, and 23 , respectively, and is then sheared 
by the amounts K 1 and x 2 in the xl and x2 directions. In the total deformation, 
the particle initially at X A moves to the point x~ given by 

X[ =21 X 1-4-/s 1 23 X3, x2=22 X2+x2 2a X3, xa=2a X3. (6.1) 

If the material is incompressible, then 21 22 23 = 1. 
We suppose that a uniform field E~ exists in the slab. By using (6.1) in (3.8), 

we verify that the strain components are constants. The invariants (3.9) are then 
also constants, and it follows from (3.5) and (3.7), respectively, that D t and St1 
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are constants. Then (5.1) and (5.2) are satisfied, and (5.3) is satisfied by a constant 
pressure p. 

Alternatively, we can let a uniform flux D~ be prescribed initially. The constancy 
of E~ and St~ then follows from (3.12) and (3.13), respectively, and again all 
conditions are satisfied if the pressure p is constant. 

Knowing both Di and Ei in the dielectric, from (5.4) we obtain E~ t~ (ct = 1, 2) 
and D g~ at the surfaces x3 = _ 23 h of the deformed slab. With (3.1), the remaining 
components of E~ (~ and D~ ~ are then determined. Uniform external fields with 
these values satisfy (5.1) and (5.2). 

With S~j known from the constitutive equation, M o determined from E~ (~ 
by (3.2), and p an arbitrary constant, from (5.5) we find the tractions T~ which 
must be exerted on the surfaces in order to maintain the state specified. The normal 
component T 3 of this traction can be nullified by suitable choice ofp. The tangen- 
tial components T~ (0t=l, 2) on the upper surface x 3 =2ah, found by following 
the procedure outlined, are of the forms 

Tl=al  xl + ( b l - D a ) E l ,  T2=a2x2+(b2-Da)E 2, (6.2) 

where the constants a~ and b, (0t = 1, 2) are given in terms of the coefficients 
in (3.7). We will not write out the expressions for these constants, which are 
lengthy but easily obtained. Because of the continuity conditions (5.4), the com- 
ponents El, /?2, and D 3 in (6.2) take equal values in the slab and in the surrounding 
medium. 

We note that if no tractions are applied to the faces of the slab, so that 
T1 =7"2 =0 in (6.2), then the unsheared state xx =x2 =0 cannot be maintained if 
the external field is oblique to the slab, unless b l - D  3 and b 2 - D  3 should for- 
tuitiously vanish. In other words, the Maxwell stress due to an oblique external 
field tends to shear the slab, and will do so unless tangential tractions are applied 
to prevent such shearing. In the case of a normal field, E~ and E2 are zero, and 
if no tractions are applied the shears x 1 and x 2 will in general be zero. The hypo- 
thesis that the effective shear moduli a I and a 2 for this case cannot be zero might 
be imposed as restrictions on the form of the constitutive equation. 

1.7. Expansion and Eversion of a Spherical Shell in a Radial Field 

The expansion or contraction of a spherical shell, in the absence of applied 
fields, has been discussed by GREEN & SHIELD [5], and the generalization to cases 
in which the shell is first turned inside out has been pointed out by ERICKSEN [6]. 
The superposition of a radial field on the first of these deformations has been 
discussed by VERMA [13]. 

The shell initially has internal radius Ra and external radius Rb. The particle 
initially at the point R, O, �9 in a system of spherical coordinates moves to the 
point r, ~, q) given by [6] 

r ( R )  3 3 3 = _ ( R  -Ra+_r~), ~ = _ _ e ,  q~=~, (7.1) 

where the plus sign is used in the case of simple expansion or contraction, and the 
minus sign if the shell is first everted. The constant ra is the interior radius of the 
deformed shell in the first case, and the exterior radius in the second. It is easy 
to verify that the mapping (7.1) is volume-preserving. The physical components 
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of strain in the spherical system are 

g, =(r ' )  2 , gaa= g~ ,=( r /R)  2 , g , a = g a ~ = g ~ , = 0 ,  (7.2) 

where r' =dr~dR. 
We suppose that the physical components of the dielectric displacement field 

are given both within the dielectric and in the space surrounding it by 

D,= Q/47r r 2, D a = D ~ , = 0 .  (7.3) 

The normal component of flux is then trivially continuous across the surfaces r = ra 
and r =r b =r(Rb), and (5.1) is satisfied. 

The invariants J ,  ( # = l  . . . .  ,5) defined in (3.14) are, with (7.2) and (7.3), 
functions of r (or R) only. From (3.12) we then find that the physical components 
of the electric field within the dielectric are also functions of r only, given by 

Er=[~o+Ql(r ')2+Q2(r')  4] D/., E a = E ~ = 0 .  (7.4) 

The field in the surrounding medium is, from (7.3) and (3.1), 

E~O)=D/./e, ~:(o) ~-(o)_ n (7.5) .,-,,9 ~.t.~q) --v. 

The tangential component of the electric field is trivially continuous across 
the surfaces of the deformed body. The requirement that the electric field be 
conservative is satisfied, because the field (7.4) and (7.5) is consistent with an 
electric potential V(r). If the field is produced by a spherical condenser, the poten- 
tial difference between the plates is found by integrating E/. from one plate to the 
other. In (7.3), the constant Q represents the total charge on the inner plate. 

With the aid of (3.13) we find that the physical components of the extra stress 
are functions of r only, given by 

S/./. = ~1 (r') 2 + ~2 (r')* + 2 [Tta + kv4 (r') 2 + ~us (/)4] 0 2, 
(7.6) 

Saa=S~,~=Tt(r /R)2+~2(r/R)  4, Sra=Sa~=S~r=O. 

The equilibrium equations (5.3) then imply that p is a function of r only, given by 

/. 

p(r)=S/./.(r)+2 S(1/p)[S/./.(p)--Sao(p)]dp+p(r~)--S/./.(rb). (7.7) 
/ .b 

The tractions which must be applied to the surfaces r=ra and r=r b to support 
the deformation (7. l) in the field (7.3) are obtained by using the preceding results 
in (5.5). No tangential traction is required. The normal component on one of 
the surfaces, say r=r b, can be nullified by appropriate choice of the arbitrary 
constant p(rb) in (7.7): 

p(rb) = S/./. (rb) - -  M/. r (rb). (7.8) 

The normal traction on the surface r =r~ is then not zero, in general, but is given by 

/ ' b  

___ T,(r = ra) = - 2  S (l/p) [S/./.(p)-Saa(p)] dp+M/.,(r~)-Mr/.(rb), (7.9) 
ra  
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where the plus sign or the minus sign is used according to whether the shell is not, 
or is, everted. The Maxwell stress component/1//,, is found by using (7.5) in (3.2) 
to be 

M,,=DZ,/2~. (7.10) 

We note, with (7.3) and (7.5), that the Maxwell stress exerts a larger tension on 
the inner surface than on the outer surface. If no traction is applied to either 
surface, so that T, =0 in (7.9), then (7.9) is an implicit equation for the parameter ra 
in (7.1), which is involved in the expressions for S,, and S~a. The choice r, =Ra 
corresponding to no deformation can satisfy (7.9) only fortuitously if Tr=0, 
and we can expect that the field will cause the sphere to contract. 

1.8. Cylindrically Symmetrical Deformations of a Tube in a Radial Field of Flux 

The extension, inflation, torsion, azimuthal and axial dislocation, and eversion 
of tubes in the absence of electrostatic effects have been discussed by RaVLIN [2], [3], 
and ERICKSEN & RIVLIN [4]. Some of these solutions have also been discussed by 
ADKINS, GREEN, & SHIELD [7]. We now consider the superposition of a radial 
dielectric displacement field on these deformations. The special case of extension 
has been discussed by ERINGEN [12]. 

We consider a tube which initially has interior radius R a and exterior radius R b. 
The particle initially at R, O, Z in a system of cylindrical polar coordinates moves 
to the point r, ,9, z given by [4] 

r=(AR2+B) ~, O=Cr)+DZ, z=EO+FZ, 

where the constants A, B . . . . .  F satisfy the incompressibility condition 

(8.1) 

If the deformed tube is to form a complete tube again, supplementary material 
must be added if C<  1, and material must be deleted if C>  1. Even if C =  1, the 
tube must be severed in order to perform the deformation if E # 0 .  

The physical components of strain are then 

g,,=(AR/r) 2, gaa=(Cr/R)2+(Dr) 2, gzz=(E/R)2+F 2, 

g , a = g r z = 0 ,  ga~=(CEr/R2)+FDr. (8.3) 

We suppose that a radial field of flux is imposed by placing the tube between 
the plates of a coaxial cylindrical condenser. The flux, satisfying (5.1) and the 
continuity condition (5.4b), is given both within the dielectric and in the space 
surrounding it by 

D,=Q/2rrr, Da=Dz=0 , (8.4) 

where Q represents the charge per unit length on the interior plate. 

From (8.3) and (8.4), with r(R) given by (8.1), it follows that the invariants J ,  
defined in (3.14) are functions of r (or R) only, and thus that the coefficients in 
the constitutive equations (3.12) and (3.13) are also functions of r only. 

A (CF- DE) = 1. (8.2) 
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The electric field in the dielectric is found with the aid of (3.12) to be 

E,=(f2o +[2 ~ grr-[-Q2 gr2r)D,, E a = E z = 0 .  (8.5) 

The field in the surrounding medium is 

E(O) = Dr/e izr _ ~(o) _ n (8.6) 

The field (8.5) and (8.6) is consistent with a potential V(r) and is thus conservative. 

The physical components of the extra stress, found by using (8.3) and (8.4) 
in (3.13), are 

S , , =  ~1 gr ,+  ~2 2 gr r + 2(~/,3 + tp, grr+ ~s g z ) 0  2, 

2 2 Saa= 7tl gaa+ 2gaa Sz-=!tYl (8.7) , , g z z+~2gzz ,  

Sra=Srz =0,  Sa==[tPt+ ~2(gaa+g~=)] gaz, 

and each component is a function of r only. The equilibrium equations (5.3) then 
imply that p is a function of r only, given by 

f 

p(r) = S,r(r)+ S (lip) [S, , ( P ) -  Sa a(P)] dp + p(rb) - S,,(rb), (8.8) 
rb 

where rb =r(Rb). The Maxwell stress in the surrounding medium is found by using 
(8.6) in (3.2): 

M r , =  - M a a  = -M~==D2/2e,  Mra=Ma~=Mz,=O.  (8.9) 

The tractions which must be applied to the surfaces r =r~ =r(R,)  and r =rb = 
r(Rb) to support the deformation (8.1) in the field (8.4) can now be calculated by 
using (5.5). No tangential components are required. The normal component on 
one surface, say r=rb, can be nullified by proper choice of the arbitrary constant 
p(rb) in (8.8). This yields a relation of the form (7.8). Then, if the surface r=r ,  
is the interior radius of the deformed tube (i.e. if A > 0  in (8.1)), the normal 
traction which must be applied to it is 

r b  

T,(r= r , )=  - S (l/p) [Srr(p)-Saa(P)] dp+M,r ( r~  (8.10) 
ra 

We note from (8.7) that if the tube is of finite length, normal and azimuthal 
tractions must be applied to its ends in order to maintain the given state. 

1.9. Cylindrically Symmetrical  Deformations of a Tube Sector 
in a Helical  Electric Field 

The deformations described in Section 8 can also be supported without body 
force or distributed charge in the presence of a helical electric field, given both 
within the dielectric and in the medium surrounding it by 

Er =0,  Ea= H/r,  E= =constant .  (9.1) 

If H~=0, this field is conservative only if it is restricted to some sector 0 < 9 <  
9o<2~,  say. If E~=0, the field might be produced by condenser plates on the 
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planes 9 =0 and ,9 =0o, the potential difference between them being H~9 o. The 
case H = 0 ,  Ez4:0, in which the field is a uniform axial field, can be produced in 
the complete tube 0 < 9 < 2 n .  The combined case H ~ 0 ,  Ez4:0, is not likely to be 
easy to produce experimentally, but we include it for the sake of completeness. 

The strain components are given by (8.3). With (9.1), it follows that the in- 
variants I~ defined in (3.9) are functions of r only. The physical components of 
flux in the dielectric are found with the aid of (3.5) to be 

Dr=0,  

Ds=[Ao+Algaa+A2(g2a+g2~)]Eu+gsz[Al+Au(gaa+gz , )]E, ,  (9.2) 

D~=[Ao + A 1 A 2 2 E g~,+ 2(g~z+ga~)] ~+gaz[Al+A2(gaa+g,z)]Ea,  

where the coefficients A depend only on r, since they are functions of the invariants 
I~. The field (9.2) is thus solenoidal. The flux in the medium surrounding the tube is 

D~~ O, ni~ e Ea, Di ~ = e Ez, (9.3) 

and again this field is solenoidal. The normal component D r is trivially continuous 
across the cylindrical surfaces of the tube. 

The physical components of the extra stress are found by using (8.3) and (9.1) 
in (3.7). We obtain 

S , , =  41 grr + 42 g~r, Sr a=Srz = 0 ,  

4 2 2 S a a = 4 1 g a a +  2(gaa+ga~)+ 

+2Ea{Eo[43 + 2 2 4 ,  ga o + 45 (go a + ga ~)] + Ez gaz [44 + 45 (go a + g~ ~)]}, 

Szz=41 gzz+42(g~z + 2 + g~ ~) (9.4) 

+ 2 E z {E= [4  3 + 4,, g~  + crp s (g2 z + g2z)'] + ga gaz [4,, + 4 s (go a + gz ~)] }, 

Sa~ = ga z 1-41 + 42 (go o + g~ z) + 44 (Ea 2 + E~) + 45 (go a + gz ~) (E~ + E~)] + 

+ EaE=1-24a +4.,(gaa+ gz , )+4s(g2a+ 2 g~,+ g2,.)]. 

Each component depends only on r. The equilibrium equations (5.3) are 
satisfied if p is a function of r only, of the form (8.8), where St, and Sos are now 
given by (9.4). 

The Maxwell stress in the surrounding medium, found by using (9.1) in (3.2), is 

M r , =  -(el2)  (E2 + E2)= M a s -  e EJ= M~ z -  e E2 , 
(9.5) 

M r a = M r ~ = 0 ,  Ma~=eEaE~. 

The remainder of the analysis is as in Section 8. No tangential tractions need be 
applied to the cylindrical boundaries of the dielectric, and the normal component 
on the surface r=G can be made to vanish by proper choice of P(G) in (8.8). 
The normal traction which must then be applied to the surface r= G is given by 
(8.10), where now St, and Saa are given by (9.4) and Mrr by (9.5). 

The extension of a rod in an axial field is the special case in which B = D  = E = 0  
and C=1  in (8.1), and H = 0  in (9.1). In this case G=0 ,  and there is no interior 
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surface. The deformation and field can be maintained with no traction on the 
surface r = r  b. 

The special case of extension, inflation, and torsion of a tube in an axial field 
is the special case in which C = I  and E = 0  in (8.1), and H = 0  in (9.1). For this 
case, the formally equivalent problem of electrical conduction, in which D~ is 
replaced by the current density Jr, has been considered in more detail in an earlier 
paper [14]. The stress was not considered. 

I.lO. Deformations of a Cuboid in a Uniform Field of Hux 

ERICKSEN [6] has discussed certain deformations of a tube wall section, initially 
bounded by the surfaces R=Ra, R=Rb, O =  __-Oo, and Z =  _+Zo in cylindrical 
polar coordinates. In these deformations, the particle initially at the point R, O, Z 
moves to the location x, y, z in a Cartesian system, given by 

x=AR 2, y=BO,  z=(Z/2AB)+C6). (10.1) 

From (10.1) we obtain 

gxx=4A2R 2, gxr=gxz=0 ,  gry=(B/R) 2, 
(10.2) 

gyz=BC/R 2, gzz=(C/R)2 +(1/2AB) 2. 

The mapping (10.1) is isochoric, as required. We note that the strain components 
are functions of R E, and thus, with (10.1), functions of x. 

We now consider the superposition of a uniform field of flux in the x direction 
on the deformation (10.1): 

Dx=constant,  Dr=Dz=0 .  (10.3) 

The flux, given by (10.3) both in the dielectric and in the medium surrounding it, 
is solenoidal. 

From (10.2) and (10.3) it follows that the invariants J~, defined in (3.14), are 
functions of x only. The electric field in the dielectric, found by using (10.2) and 
(10.3) in (3.12), is 

E~=[t2o+f21(4Ax)+t22(16A2x2)]Ox, E,=E~=O.  (10.4) 

The electric field in the surrounding space is 

E(x ~ = Dx/e, E~o) _ i~3o) _ fl (10.5) 

If we neglect fringe effects at the edges initially bounded by the surfaces O = + Oo 
and Z =  +__Zo, the field is given by (10.4) for AR2a<x<AR 2 (assuming A > 0  and 
Ra < Rb) and by (10.5) outside this interval, and is thus compatible with a potential 
V(x). If the field is supplied by a parallel-plate condenser, the potential difference 
between the plates is found by integrating E~ from one plate to the other, and Dx 
is the charge per unit area on one plate. 

The components of the extra stress Sij, found by using (10.2) and (10.3) in 
(3.13), are functions of x only, and Sxr=Sxz =0. The equilibrium equations (5.3) 
are then satisfied if p is a function of x only, given by 

- p ( x )  + s ~  x ( x )  = - p (xa)  + s ~  x (xo)  = ~ ~ ( x ) ,  ( 1 0 . 6 )  
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where x,=AR 2. Thus trxx is constant. By using (10.5) in (3.2) we find that the 
Maxwell stress in the surrounding medium is constant, and that M x y = M ~ = 0 .  
The tractions which must be applied to the surfaces x=x.  and x=xb=AR ~ are 
found with the aid of (5.5). No tangential traction is required. The normal com- 
ponents on the two faces are + (trx~-Mx~). If the traction on one face is made to 
vanish by appropriate choice of p(x.) in (10.6), then, because ax~ and Mx~ are 
constants, the traction also vanishes on the other face. The deformation (10.1) 
and field (10.3) can thus be supported by tractions on the edges initially bounded 
by the planes O = _+ O o and Z = __ Z o . Because we do not have accurate expressions 
for the fields near the edges, we will not calculate these tractions. 

I . l l .  Deformations of a Cuboid in a Uniform Electric Field 

The deformation (10.1) can also be combined with a uniform electric field, 
given both within the dielectric and in the space surrounding it by 

Ex=O, Ey=constant ,  Ez =constant .  (11.1) 

In this case the flux in the dielectric is found, by using (11.1) and (10.2) in (3.5), 
to be 

Dx=0,  

Dy=[Ao + A t gy,+ A2(g2~,+ g2z)]Ey+ gyz[A l + A2(g,, + gz~)] Ez, (11.2) 

D =[Ao+A 1 2 2 [At+A2(gyy+g,~)]Ey" gzz+A2(gy,+g~z)] Ez+gyz 

In the surrounding medium, the flux is 

O~~ Oyt~ O~~ (11.3) 

The coefficients A in (11.2) are functions of the invariants I~, defined in (3.9), 
which, according to (10.2) and (11.1), are functions of x only. Consequently, the 
field (11.2) and (11.3) is solenoidal if the deformed body is bounded by planes 
x=constant .  We again neglect edge effects on the remaining surfaces. 

The extra stress components S~j in the dielectric are found by using (10.2) 
and (11.1) in (3.7), and, as in Section 10, they are functions of x only, with Sxy= 
Sxz =0. The equilibrium equations are again satisfied by a pressure p(x) of the 
form (10.6), where Sxx now has a different form, but again with the result that 
tr~ is constant. Again as in Section 10, it is found that the Maxwell stress in the 
surrounding medium is constant, and that the components M~y and Mx~ are zero. 
Consequently, we again find as in Section 10 that no traction need be applied 
to the plane surfaces x=x,  and x =xb. 

1.12. Flexural Deformations of a Block in a Radial Field of Flux 

The flexure and extension of a block has been discussed by RIVLIN [2], and 
the generalization to include a shear, or axial dislocation, has been discussed by 
ERtCr~SEN [6]. In this family of deformations, the particle initially at the point 
X, Y, Z in a Cartesian system is brought to the position r, ,9, z in cylindrical polar 
coordinates, given by 

r = A X  ~, ~=B Y, z=(2Z/A2 B)+C Y. (12.1) 
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We suppose that the block is initially bounded by two plane surfaces X=constant  
and two plane surfaces Y=constant, and we suppose that the block is infinitely 
long in the Z direction, or equivalently, we will neglect fringe effects at the ends 
facing the Z direction. If two of the surfaces initially bounding the block are the 
planes Y=+__n/B, then the deformation (12.1) carries these surfaces into the 
coincident planes 9 = _ n, where the surfaces may be bonded together to form a 
tube. The initially plane surfaces X=constant  become the interior and exterior 
cylindrical boundaries of the tube. 

The physical components of strain in the cylindrical system r, 9, z are found 
from (12.1) to be given by 

g,r=A4[4r 2, gra=g,z=O, 
(12.2) 

gaa=B2 r 2 , gaz=BCr, gzz=C2q-(2/A2B) 2 . 

It is easy to verify that the deformation is isochoric. We note that each strain 
component is a function of r only. 

We superpose on the deformation (12.1) the radial field of flux given both in 
the dielectric and in the surrounding medium by (8.4). The electric field in the 
dielectric is then of the form (8.5), where g,, is now given by (12.2). Similarly, 
the remaining considerations in Section 8 are valid for the present problem, if 
the strain components used in Section 8 are replaced by the components (12.2). 

1.13. Flexural Deformations of a Block in a Helical Electric Field 

We now consider the superposition of a helical electric field of the form (9.1) 
on the deformation (12.1). The discussion in Section 9 is applicable to the present 
problem, the strain components in the formulae of Section 9 now being given by 
(12.2). We need not consider this case in any further detail. 

1.14. Azimuthal Shear of a Cuboid in a Uniform Axial Field 

The azimuthal shearing deformation of a cuboid has been considered, under 
another guise, by KLISGBEIL & SHmLD [8], and we have generalized this deforma- 
tion by combining it with extension and flexure [9]. The particle initially located 
at the point R, O, Z in a cylindrical polar system is carried to the point r, 9, z 
given by 

r=AR, 9=BlogR+CO, 

The physical components of strain are constants: 

g , , = A  2 , gr a=A2B,  

gaa=A2(B2 +C2), gas=0 ,  

z=Z/A 2 C. (14.1) 

(14.2) 
gz ~ = 1] A4 C2" 

The incompressibility condition is satisfied. The deformation (14.1) maps a body 
initially bounded by the surfaces 

R=Ra, R=Rb, O = C -  l (q -9o-B  log R), z =  + Z  o , (14.3) 

into a body bounded by the surfaces 

r=ra=ARo, r=rb=AR~, 9=+90, z=-I-Zo=-I-Zo/A2C. (14.4) 
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We combine the deformation (14.1) with a uniform axial electric field, given 
both within the dielectric and in the medium surrounding it by 

Er = Ea = 0, Ez = constant. (14.5) 

This field can be imposed, with no fringe effects, by letting condenser plates 
occupy the planes z = +_Zo. The potential difference between the plates is then 
2z o Ez. 

By using (14.2) and (14.5) in the definition (3.9) of the invariants I~,, we find 
that these invariants are constants. The flux in the dielectric, found by using 
(14.2) and (14.5) in (3.5), is a uniform axial field: 

Dr=Da=0 ,  D~=(Ao+A 1 g~z+Az g2z)E ~. (14.6) 

In the medium surrounding the dielectric, the flux is 

D~~176 - a - , D~~ �9 (14.7) 

The flux given by (14.6) and (14.7) is solenoidal. 

The physical components of the extra stress in the dielectric are found by 
using (14.2) and (14.5) in (3.7), and they are constants: 

Srr=41A2-I-42A4(1--I-B2), Saa=41A2K2-b42A4(K4"q-B2), 

S~ z = 4~(A 4 C 2)- 1 + 42 (A 4 C 2)- 2 + 2E 2 [43 + 44 (A 4 C 2)- ~ + 45 (A 4 C 2)- 2], (14.8) 

Sra=AZB[41q-42A2(l+K2)], S,~=Sa,=O (K2=B2+C2). 

The equilibrium equations (5.3) then take the forms 

Op/Or=(S,,-Saa)/r, dp/a~=2S, a, dp/dz=O, (14.9) 
giving 

p=(Sr,-Saa) logr + 2~Sra+ Po, (14.10) 

where Po is an arbitrary constant. 

The components of the Maxwell stress in the surrounding medium are 

Mzz= -Mr,= -Maa=eE2/2, M,a=Maz=Mz,=O. (14.11) 

The tractions which must be applied to the surfaces (14.4) to support the deforma- 
tion (14.1) in the field (14.5) can now be found with the aid of (5.5). Because the 
pressure p in (14.10) depends on both r an 0, in general, the normal tractions on 
the surfaces r =ro and r = r  b depend on ~, and the normal tractions on the surfaces 
0 =  _+0o depend on r. Tangential tractions of magnitude Sra must be applied to 
these surfaces. No tangential tractions in the z direction are required. The tractions 
on the ends z =  _Zo are purely normal tractions, whose magnitudes depend on 
both r and 0 in general. In the special case considered by KIaNOBEIL & SHIELD [8], 
K 2 = I  and thus, with (14.8), S r r - S a a = 0 .  In this case p is a function of 0 only, 
and the tractions become somewhat simpler. 

Arch. Rational Mech. Anal., Vol. 21 13 
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Part II. States with Specified Electric Field 

H.1. Introduction 

In Part I we have described a number of controllable states of homogeneous, 
isotropic, incompressible, elastic dielectrics. We have asserted that every control- 
lable state with deformation and non-zero field strength prescribed, or with 
deformation and non-zero dielectric displacement field prescribed, is among those 
listed in Part I. We now verify the first part of this assertion, by determining 
every controllable state which involves a prescribed non-zero electric field. 

The analysis is similar to that which ERICKSEN [6] used for the determination 
of controllable states in finite elasticity theory, and we make direct use of ERICK- 
SErf'S results in that part of the problem which pertains only to the deformations. 
It should be remarked that although ERICKSEN'S analysis of possible deformations 
is incomplete, we are able to determine every controllable deformation which is 
consistent with a prescribed non-zero electric field, because the controllability 
conditions are more restrictive in the latter case. As an accidental by-product of 
the analysis, we have found a family of controllable states of elastic materials 
(with zero electric field), which is not among those which EPdCKSEN obtained. 
In Section 3 we follow ERICKSEN'S methods in setting up the conditions to be 
satisfied by controllable states. 

The restrictions imposed on the electric field by the controllability conditions 
are deduced immediately, in Section 4, by using a result due to HAMEL [21]. These 
restrictions imply in particular that the field must have cylindrical symmetry, 
with no radial component. Certain obviously controllable states, involving radial 
fields in cylindrical or spherical coordinates, are excluded from the present analysis 
because it is the dielectric displacement field which is prescribed in such solutions. 

Those controllability conditions which involve only the deformation are 
equivalent to the conditions which ERICKSEN [6] used. In Section 5 we list some 
of his results. 

Some general consequences of those controllability conditions which involve 
both deformation and field are deduced in Sections 6 and 7. The remainder of the 
analysis is divided into two parts. In the first part, in Sections 8 to 12, we consider 
cases in which the strain and field invariants (defined in Section 2) are not all 
constant in space. The remainder of Part II, Sections 13 to 18, deals with states 
in which all invariants are constant in space. 

The analysis of cases in which not all invariants are constant is relatively short 
in spite of the fact that these cases include almost all of the controllable states, 
because we can rely heavily on ERICKSEN'S analysis of controllable deformations 
in these cases. The longer analysis of cases for which all invariants are constant 
yields, aside from homogeneous deformations with uniform fields, only one family 
of solutions (Section 18). This is the combined extension, dislocation, and 
cylindrical shearing deformation with axial field which we have described earlier 
(Section I. 14). 

The body of the analysis is outlined in a little more detail at the end of Section 5, 
after the pertinent background material has been recited. 
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H.2. Notation 

We use the notation gi~ for the/j-component of the matrix gs. The matrices 
h (m = II hl~l[I are defined by 

(N) N N hiy = E i ( g j  k Ek) -1- (gi k Ek) E j .  (2.1) 

In this notation, the constitutive equations (I.3.5)* and (I.3.7) are respectively 

Di = (Ao 6ij "]- A1 gij -[- A2 g~) Ej (2.2) 
and 

S i j = ~ l  g i j+~  2 g2j+ (0) (1) ~3 hij W ~4 hii + r h~ 2). (2.3) 

The coefficients A and �9 are functions of the invariants (I.3.9), which are now 
written as 

Iu=gfi  (#=1,2) ,  I3+~,=Elg~jE j ( / t=0,1,2) .  (2.4) 

H.3. Controllable States 

Certain problems in the theory of incompressible elastic dielectrics can be 
solved by an inverse method, in which an isochoric deformation x~(Xa) and an 
electric potential V(xi) are specified at the outset. The dielectric displacement D i 
and the extra stress S u are then determined from the constitutive equations (2.2) 
and (2.3), respectively (together with the subsidiary definitions in Section 1.3). If 
the specified deformation xi(X,4 ) and potential V(xi) do indeed provide a solution, 
the flux D i derived from (2.2) will satisfy (I.5.1), and the extra stress S u will be 
such that there exists a solution p of (1.5.3). The integrability condition for (I.5.3) is 

Su, j k = Sky, j i" (3.1) 

It can happen that xi(XA) and V(xi) are of such forms that (1.5.1) and (3.1) 
are satisfied identically, regardless of the forms of the functions A and �9 in (2.2) 
and (2.3). In such a case, the state defined by xi(Xa) and V(xi) is controllable. 

Conditions satisfied by the strain gu and field E i in controllable states can be 
derived by following the procedure which ERICKSEN [6] used to determine control- 
lable states of purely elastic materials. We first observe, from (2.3), that 

5 

Sij,  j k '~ t~  1 gij, jk-'~- ~, (a~, /8  I~,) [gij, jI~,kq-(g,jIu, j),k]-t- 
p = l  

5 5 (3.2) 

+ X 
Z = I  /*=1 

where the dots indicate analogous terms arising from the terms with coefficients 
@2 to @5 in (2.3). From (3.2) we see that (3.1) is satisfied identically, without 
regard to the forms of the coefficients @, provided that each of the following 
tensors is symmetric with respect to interchange of i and k: 

N gU, jk,  (3.3) 
N N 

gij, j I~, k dl- (gij  Its, j), k,  (3.4) 

gi N (I;t, j Iu, k + Iu, j I~, k), (3.5) 

�9 Equations and Sections in Part I are identified by prefixing 'T'  to the appropriate number. 
13" 
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(N) 
hlj, jk ,  

(N) (N) hij, j lz ,  k+(hij Im/),k,  

iN) hij ( I~, . i l . .k+I. , j I~,k) .  

Here, and in the remainder of the paper, N=0 ,  1, 2, and I, # = 1 . . . . .  5. 

(3.6) 

(3.7) 

(3.8) 

Con- 
versely, each of the tensors (3.3) to (3.8) must be symmetric if (3.1) is to be satisfied 
identically for every choice of the functions �9 in (2.3). 

By using (2.2) in (I.5.1), we obtain 

N~ = hn(gl~Ej),l 'F (CgAN/CgI,)I,,ig~E j = 0 .  (3.9) 
0 # = 1  

In order for this equation to be satisfied identically, whatever forms the functions A 
may take, it is necessary and sufficient that the following conditions be satisfied: 

(g~Ej),,=I~,.,  g~Ej=O.  (3.10) 

The strain gij and field Ei for a controllable state must be such that the tensors 
(3.3) to (3.8) are symmetric, and such that the conditions (3.10) are satisfied. In 
addition, E~ must satisfy the irrotationality condition (I.5.2), and g~j must be 
symmetric and positive definite, with unit determinant. Finally, in order to ensure 
that go can be expressed in terms of deformation gradients x~,a in the form (I.3.8), 
it is necessary and sufficient for gu to satisfy the following compatibility conditions 
[221: 

4 -I -I -1 -I Rijkl=2(g~l, kj+gjk,~l--g~k, lj--gjl, ik)+gra.(AjkmAitn--AjzraAik.)=O. (3.11) 

Here the matrix g~ ,  is the inverse of the matrix gij, and 

-* + -I -* (3.12) Atjk=Aj~k=g~k,j gjk, l--g~l,k" 

H.4. Permissible Fields 

The electric fields E~ which can be involved in controllable states can be 
determined immediately from the conditions that the curl and divergence of the 
field must vanish and that the magnitude of the field strength must be constant 
along each line of force. These are the conditions (I.5.2), (3.10a) (with N=0),  
and (3.10b) (with N = 0  and/~ =3), respectively: 

Et. j -  E j, t = Ei. ~ = Ei(Ej E j), l = 0. (4.1) 

HAM~L [21] (see also PRLvt [23]) has shown that every field E~ satisfying (4.1) 
can be expressed in cylindrical polar coordinates r, 3, z, in the form 

E = F(p 3 + q z), (4.2) 

where p and q are constants. The physical components of E are 

E, = O, E s = p/r ,  Ez = q. (4.3) 

We note that if E~ El is constant, then p =0 and the field is uniform. 
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11.5. Permissible Strains 

Certain of the tensors (3.3) to (3.5) are independent of the electric field strength. 
ERICKSEN [6] has deduced the restrictions imposed upon controllable strains g~j 
by symmetry of a set of tensors equivalent to these. We summarize here some of 
his results. 

First, each of the gradients I1, ~ and/2,  ~ is either zero or an eigenvector of gu" 
If both are non-zero, they have a common eigenvalue gt ,  say: 

g, (5.1) 

In Section 6 we show that (5.1) holds for/~ =3, 4, 5 as well. Next, there exists a 
non-constant function B such that /1  and/2  are both functions of B: 

I~,=I~,(B). (5.2) 

In Section 7 we show that (5.2) is also true for/~ =3, 4, 5. 

Let gt, g2, and g3 be the eigenvalues of go.  The incompressibility condition 
is expressed in terms of these eigenvalues as gl g2 g3 = 1. With this condition, 
(5.2) implies that each eigenvalue is a function of B. Let at, b~, and et be a cor- 
responding orthonormal system of eigenvectors. Then the spectral representation 
of ~ is 

g~ = gr~ (B) a s aj + gr~ (B) bt bj + g~ (B) ct cj, (5.3) 
where 

a i a t = b i b t = e i c t = l ,  atbt=btc~=ctal=O. (5.4) 

If either If  (B) or If  (B) is not zero, where primes denote differentiation with 
respect to B, it follows from (5.1) that 

gij B j = gl(B) B, t, (5.5) 

and we can take a t to be in the direction of B, ~: 

at = B, i/(B, j B, j) ~. (5.6) 

Furthermore, if I~(B) or I f (B)  is not zero, the controllability conditions imply 
that 

gN _ C~(B) B,t.  (5.7) lj,  j 

In Section 8 we show that (5.7) must be satisfied if any invariant/z (p = 1 . . . . .  5) 
is not constant. 

Let us establish the convention that if gt is a degenerate eigenvalue, then 
gs =gl .  If g2 =g l  as well, then incompressibility requires that gl =g2 =gs = 1, and 
thus g~j =6 u. In this case there is no deformation. More generally, with the con- 
vention just mentioned, it follows from the relations (5.3) to (5.7) that 

(ataj), j=Fo(B)B,i if g14=gs, (5.8) 

i.e. if gt is non-degenerate, and that 

(bibj),j=Fb(B)B,~ if g24=g3, (5.9) 

i.e. if g2 is non-degenerate. 
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We have mentioned that (5.5) and (5.7) will be shown to be valid if any in- 
variant is not constant. In such cases, (5.8) is valid if gl is non-degenerate. 
ERICKSEN [6] has determined all of the controllable deformations which satisfy 
(5.8), and we will use the results which he obtained for this case in Section 9. 

In cases for which gl is degenerate but g2 is not (i.e. gt =g3 ~g2), (5.9) must 
be satisfied if any invariant is not constant. In these cases we will use the control- 
lability conditions which involve both E~ and g~j to show that either (5.8) is satisfied 
in spite of the fact that g~ =g3, or the field b~ is normal to the equipotential surfaces 
for the electric field. In the former case, which we consider in Section 11, the analysis 
is similar to that for g~ non-degenerate, and we obtain no new solutions. In the 
latter case we can rely on ERICKSEN'S results for the case in which gl is degenerate. 
His analysis of this case was restricted to circumstances in which the field b~ is 
normal to some family of surfaces. In the present problem, with a non-zero 
electric field, the latter condition is a positive requirement rather than a restrictive 
assumption. We use ERICKSEN'S results for this case in Section 10. 

Homogeneous deformations are of no interest in ERICKSEN'S analysis, but in 
the present problem homogeneous deformations with non-constant electric fields 
are of interest. To ensure that no such states have been overlooked in Sections 9 
to 11, where we rely on ERICKSEN'S results, in Section 12 we consider such states 
separately. 

If all of the invariants I v (# = 1 . . . . .  5) are constant, neither (5.8) nor (5.9) is 
necessarily valid, and we cannot use ERICKSEN'S results. The results for this case, 
which are obtained in Sections 13 to 18, involve deformations which are not 
among those ERICKSEN found. 

11.6. Preliminary Analysis. I 

In the present section we show that in order for each of the tensors (3.5) to 
be symmetric, it is necessary and sufficient for those gradients Iv, t which are not 
zero to be eigenvectors of gij with a common eigenvalue gl (say): 

g~I~,j=glIn, i (#=1  .. . . .  5). (6.1) 

The method of proof, which is given in ERIC~EN'S [6] paper, is based on the fact 
that if u~ vj =uj v~ and the vector v~ is not zero, then u~ =~. vi. 

With the lemma just mentioned, symmetry of the tensors (3.5) with # =2  and 
N = I  implies that the vector g~j I , , j  is a multiple of In, ~ if the latter is not zero, 
and the result follows trivially if In, ~ is the null vector: 

g~J In, i=A~l , ,  ~. (6.2) 

Here the boldface subscript indicates suspension of the summation convention. 

Next, symmetry of the tensors (3.5) with N =  1 and # * 2  requires, with (6.2), 
that 

(Ax--An)(Ia.~In, k--Ia, kln. i)=O. (6.3) 

It follows that either Ax.=A~, or Ia, i is a multiple of Iv, ~, or one of these gradients 
is zero. In the latter case the corresponding coefficient A n in (6.2) is arbitrary, 
and we can set A n =A~ without loss of generality. If both gradients are non-zero, 
they are parallel eigenvectors of g~i according to (6.2), and the corresponding 
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eigenvalues are thus equal. Hence, we obtain Aa =Au in every case. Denoting the 
common value by gt,  we obtain (6.1) as desired. Conversely, (6.1) implies that 
the tensors (3.5) are symmetric, for every choice of N. 

II.7. Preliminary Analysis. 1I 

We now show that there is a non-constant function B such that each invariant I v 
is a function of B, i.e. I~ =I~(B). It is equivalent to show that those gradients Iv, i 
which are not zero are parallel. 

If all of the invariants lu are constants, then each is a constant function of 
any arbitrarily chosen function B. If only one invariant is not constant, then we 
can let B be that invariant, and the result I~ =I~(B) (p = 1 . . . . .  5) again follows. 
A third trivial case is that in which gl is a non-degenerate eigenvalue of gij, in 
which case it follows from (6.1) that those gradients I~.~ which are not zero are 
parallel. 

We can accordingly restrict our attention to cases in which gl is a degenerate 
eigenvahie, and at least two of the invariants are not constant. If gt is triply 
degenerate, then incompressibility requires that gt =g2 =g3 = 1, and thus g~j =~Sij. 
In this case it follows from (2.4) that 11 and 12 are constants, while 13, 14, and 15 
are equal, and so we can obtain the desired result by taking B =13, say. 

If gl is doubly degenerate, we take gl =g3 4 : g 2 ,  a s  stated in Section 5. From 
(3.10b) with N = 0  we obtain 

Eil~,i=O. (7.1) 

Now, the non-zero gradients I,, i must lie in the plane of principal directions with 
principal value gl, according to (6.1). They must also lie in the plane perpendicular 
to El, according to (7.1) (and assuming El 4:0). Hence, the non-zero gradients lie 
along the intersection of these two planes, and are thus parallel unless the two 
planes coincide. 

Consequently, the only case left to consider is that in which the two planes 
mentioned above are coincident. In that case, E i is an eigenvector of gij correspond- 
ing to the non-degenerate eigenvalue g2, and gii can be expressed in the form 

gii = gl cSij + (g'l z _ gl) 131 E~ Ej. (7.2) 

Here we have set g2 = 1/g 2, which follows from incompressibility if g~ =g3. With 
(7.2), the invariants (2.4) are 

l : = 2 g l + g ~  -2, I2=2g2+g~  -4, I3=EiEi ,  

I4 - - - -  El EJg 2 , 15 = Et Ei/g~. (7.3) 

From (7.3) we see that if gl is constant, the desired result is obtained by taking 
B = E i E  i, say. Suppose that g~ is not constant, so that I~,i4:0. Then ERICKSEN'S 
results (5.2) and (5.7) hold, with B=g~, say. By using (7.2) in (5.7), with B=g~, 
we obtain 

g l . i + [ ( g 1 2 - g l ) I a i ] , j E l E j + ( g - 1 2 - g t ) I ; l ( E l E j ) , j = C s ( g l ) g l , t .  (7.4) 

By taking into account the facts that Et/3, i and El g~, i are zero according to (7.1) 
and (5.2), and that 2(Ei Ej), j=Ia,i ,  according to (4.1) and (7.3), from (7.4) we 
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obtain 
(g-~ 2 _ gi) I31 I3, ~= 2 [CN (gl)-- 1] gt, i. (7.5) 

Thus/3, t is a multiple of gl, ~, as desired. The case gl = 1, for which also g2 =g3 = 1, 
has already been covered. This completes the proof that all of the invariants can 
be represented as functions of a single non-constant function B. The representa- 
tion of the invariants/1 and I 2 as functions of B, together with the incompres- 
sibifity condition ga g2 g3 -- 1, implies that 

g, = g~(B) (i = 1, 2, 3). (7.6) 

1].8. States with Invariants not all C o n s t a n t  

From this point onward, through Section 12, we use the assumption that at 
least one invariant Ill is not constant. Cases in which all invariants are constant 
are considered in Sections 13 to 18. 

We have shown that (5.1) and (5.2) are valid for p = l  . . . . .  5. Furthermore, 
(5.1) implies that all of the tensors (3.5) are symmetric. From these results, it also 
follows that the tensors (3.4) are of the forms 

N t N t i g~j, j l l lB, k+(gl)  IllB, iB, k+g~lll, lk. (8.1) 

Here primes denote differentiation with respect to B. Assuming that I ~ : 0  for 
some p, the tensors (8.1) are all symmetric if and only if g~,j is a multiple of B i, 
say C~t B, t. 

Symmetry of the tensors (3.3) requires that g~j, ~ j be the gradient of a scalar, 
and thus that Ctr B l be the gradient of a scalar. Hence, C N is a function of B, 
and we have 

g~, j = CN (B) B,l .  (8.2) 

With this result, the tensors (3.3) and (3.4) are all symmetric. 

If I ~ e 0  for some/~, it follows from (3.10b) with N = 0  (or from (7.1)) that 

E~ B. ~ = 0. (8.3) 

Conversely, it follows from (8.3), (6.1), and (7.6) that all of the conditions (3.10b) 
are satisfied. 

We next consider the tensors (3.8). By using (6.1), (8.3), and the definition (2.1) 
of h~s s.), we obtain 

(N) N N , hi~ Ill, ~ = (gt Ei + gi k Ek) I~, Ej B, j = 0. (8.4) 

Hence, all of the tensors (3.8) are zero, and thus trivially symmetric. 
With (8.4), symmetry of the tensors (3.7) requires that 

i ,  ~,(s) u r ,  ~,(N) ~ (8 .5 )  
IX r~ij ,  j a J ,  k ~ a l l  I~kj ,  J .L,, i " 

With I~:k0 for some p, (8.5) is satisfied if and only if hl~lj is a multiple of B,~. 
Then, by using the symmetry of the tensors (3.6), we obtain 

h~. ) = DN(B) B ~. (8.6) 

Conversely, from (8.6) and our previous results it follows that all of the tensors 
(3.6) and (3.7) are symmetric. 
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Let us represent Et in terms of the eigenvectors of g~ (see Section 5). Because 
a~ is in the direction of B, ~ (see (5.6)), it follows from (8.3) that E~ has no com- 
ponent in the direction of a~: 

E l = E b b i + E c c i . (8 .7 )  

With (5.3), the invariants/3, 14, and/5  then take the forms 

/l 2 /~ 2 
I3  + z ( B )  = g2 ( B )  E b + g3 ( B )  E c . (8 .8 )  

We note that if g2 =g3, the eigenvectors b~ and cz are undefined to the extent of 
an arbitrary common rotation about the direction of ai. We can fix the directions 
of bg and cz by adopting the convention that c~ is perpendicular to Ez, i.e. Ec =0, 
if g2 =g3. With this convention covering the degenerate case, it follows from (8.8) 
that Eb and Ec are functions of B: 

Eb=Eb(B), Ec=Ec(B). (8.9) 

We have not yet considered (3.10a) in any detail. By using the representations 
(5.3) and (8.7) in (3.10a), we obtain 

0 = (g~ E j), ,=  [g2N (B) Eb(B ) b, + g3N (B) Ec(B) cJ,, 
(8.10) 

= g~ Eb bt,~+ g~ E~ci, t. 

In obtaining the final member of (8.10), we have used the orthogonality relations 
b I B, i=ci B, ~=0. 

II.9. Cases with Ot Non-Degenerate 
ERICKSEN [6] has shown that if the eigenvalue gx is non-degenerate, then the 

surfaces B=constant  must be concentric spheres, parallel planes, or coaxial right 
circular cylinders, and he has determined the corresponding permissible deforma- 
tions in each of these cases. We now seek to couple permissible fields to these 
deformations, to form controllable states. 

From Section 4 we note that the invariant 13 =El E~ must be constant over 
each cylinder of a coaxial family if the field is not constant, and constant every- 
where if the field is uniform. Because I3 is a function of B, it follows that the 
surfaces B=constant  cannot be parallel planes or concentric spheres unless the 
field is uniform. Furthermore, from the requirement (8.3) that the field must be 
perpendicular to B, ~ everywhere, we see that a uniform field is possible only if 
the B-surfaces are coaxial cylinders with the field in the axial direction, or if the 
B-surfaces are parallel planes. 

These remarks imply that there are no solutions for which the B-surfaces are 
concentric spheres. 

If the B-surfaces are parallel planes, the electric field must be a uniform field 
orthogonal to B, ~. Conversely, if the deformation is any one of those which 
ERICKS~'~ obtained in this case, and E~ is any uniform field orthogonal to B t, 
the resulting state is controllable (Section I. 11). 

If the B-surfaces are coaxial cylinders, the surfaces r =constant for the permis- 
sible field in Section 4 must be identified with the surfaces B(r)=constant  in 
ERICKSEN'S solutions. Conversely, every such combination of deformation and 
field produces a controllable state (Sections 1.9 and 1.13). 



194 M. SI~GH & A. C. PIPKIN: 

H.10. Cases with 01 Degenerate. I 

Now let g~ be a repeated eigenvalue. If g, is triply degenerate, incompres- 
sibility implies that there is no deformation. In this case, for which g~j =6 o, all 
of the tensors (3.3) to (3.8) are symmetric, and (I.5.2) and (3.10) are satisfied, 
for every field E i of the admissible form (4.3). This case of no deformation with 
the corresponding field (4.3) is a special case of the controllable states considered 
in Section 1.9. 

In the remainder of this section and in Section 11 we consider cases in which 
gl is doubly degenerate. In Section 5 we have adopted the convention that ga =g ,  
in this case, and incompressibility then yields g2=l/g 2. Now, with g2:l=g3, it 
follows from (8.10) that 

Eb bi,~=Ec ci, i=O. (10.1) 

From (5.9), with (5.4) and (5.6), we obtain 

bt,~=0, bjbi, j=Fb(B)B,~. (10.2) 

The condition (I0.1b) requires that either E c or c~,i be zero. The case Ec=l=0 
will be considered in Section 1 I. In the remainder of the present section we consider 
the case E, =0. In this instance it follows from (8.7) that the electric field is of 
the form 

Ei = Eb bi. (10.3) 

Now, E~ must be the gradient of a potential, - V ~ ,  and thus the field b~ is 
normal to the equipotential surfaces. ERICKSEN [6] has shown that in cases for 
which (10.2) is valid and for which the field b~ is normal to some family of surfaces, 
the deformation is either homogeneous or a certain inhomogeneous deformation 
with constant strain invariants. (He accidentally overlooked the latter case, 
although he obtained the relevant strain g~j.) 

It is convenient to leave the case of homogeneous deformations aside until 
Section 12. In the case involving an inhomogeneous deformation with constant 
strain invariants, the field b~ obtained from ERICKSEN'S results yields, with (10.3), 
a field E~ which is the special case Ez=0  of the permissible fields (4.3). This 
combination of deformation and field yields a controllable state which has been 
considered in Section 1.9. 

II.11. Cases with gl Degenerate. II 

We now consider the case gl=ga+g2, EchO. In this case (10.1b) implies 
that ci, ~ =0. 

ERICKSEN'S [6] analysis of the deformations possible when gl is non-degenerate 
is based on the relation (5.8), which states that (ai aj),j is the gradient of some 
function of B. We will show that a relation of this form is satisfied in the present 
case even though gl is degenerate. With this result, the discussion in Section 9 
is applicable, and we obtain no new solution. 

To show that (5.8) is satisfied, we first consider the identity 

(as a j+ bi bj + C i C j ) , j=~ i j ,  j = 0 .  (l 1.I) 



Controllable States of Elastic Dielectrics 195 

From (10.2) we know that (b i bj),j is the gradient of a function of B. We will 
show that (ci cj),j is also the gradient of a function of B. The desired result (5.8) 
then follows from (11.1). 

To prove that (c~ cj),j is of the required form, we use (8.6). In (8.6) we use the 
definition (2.1) of h~ ) and the requirement (3.10 a). We also use the representations 
of go and E i in terms of the eigenvectors, (5.3) and (8.7) respectively, and we recall 
that bi B, i=ci B, i=0.  After some manipulation, we obtain 

gN(B)Eb(B)(bjEi,  j+Ejb i ,  j )+gN(B)Ec(B)(cjEi ,  j+Ejc i ,  j )=DN(B)B, i .  (11.2) 

From this system of equations, with g2 :l:g3, it follows that the coefficients of 
g2 N and ga N must be gradients of functions of B. The same is then true of the dif- 
ference of these coefficients. Hence, with the representation (8.7) for E i, we 
obtain a relation of the form 

EZ~ (B) cj ci, j -  E 2 (B) bj bi, y = H (B) B,i.  (11.3) 

By using (10.2), ci, i=0,  and E c 4:0, we obtain from (11.3) the desired result, that 
(ci c j), j is the gradient of a function of B. 

II.12. Homogeneous Deformations 

If the strain components gij and field components E i are constants, all con- 
ditions are satisfied (Section 1.6). We now consider cases in which the strain is 
constant but the electric field is non-uniform. We show that the only homogeneous 
deformations which can be combined with the permissible fields (4.3) are simple 
extensions in the axial direction (Section 1.9). 

If the field (4.3) is not uniform, then I3(B ) is constant over the coordinate 
surfaces r=constant ,  whence B=B(r ) .  From (5.6) it then follows that the eigen- 
vector a i is in the radial direction. Because gij is constant, it can have a non- 
constant eigenvector ai with eigenvalue gl only if gl is degenerate. By convention, 
we let g~ =g3. The eigenvector c i then lies in the azimuthal direction, and b i lies 
in the axial direction. The resulting strain (5.3), with g2 = l/g 2 and gl constant, is 
the strain tensor for simple extension in the axial direction. The resulting state is 
controllable (Section 1.9). 

H.13. States with all Invariants Constant 

In the remainder of Part I[ we consider cases in which all of the invariants I~ 
(# = 1 . . . . .  5) are constant. In this case, the tensors (3.4), (3.5), (3.7), and (3.8) are 
trivially symmetric, and (3.10b) is satisfied trivially. The tensors (3.3) are sym- 
metric if and only if there exist potentials XN such that 

N (13.1) g i j ,  j = XN,  i" 

The tensors (3.6) are symmetric if and only if there exist potentials ~b N such that 

h ( N )  - - d ,  (13.2) i j ,  j - -  W N ,  i " 

With (13.1), the requirement (3.10a) takes the form 

g~ E j, i + ZN, j Ej = 0. (13.3) 
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Because 13 is now constant, the only permissible non-zero fields (4.3) are the 
uniform fields El =E6a i, say, where E is a non-zero constant. 

We use the spectral representation (5.3) of g~j, in which gl, g2, and g3 are 
now constant by virtue of the incompressibility condition gl g2 g3 = 1 and the 
constancy of 11 and I 2. It is also convenient to represent the constant field E~ in 
the form 

E~ = E t5 3 ~= E~ ai + E b b~ + E c ci. (13.4) 

We note that in (5.3) and (13.4), the eigenvectors ai, b~, and c~ are not necessarily 
constant. The constant invariants I3, 14, and I5 are 

Ea + g2 i a+~=g  ~ 2 ~,E2+g~E 2. (13.5) 

If the eigenvalues are all equal, we obtain a solution involving a uniform field 
and no deformation. For the remainder of the analysis, we assume that the eigen- 
values are not all equal, and we let gl be the non-degenerate eigenvalue if two 
eigenvalues are equal. In that case, the eigenvectors bi and c~ are arbitrary to the 
extent of a common rotation about the direction of a~, and we fix c~ by the con- 
vention that E~ c~ =0, i.e. Ec =c3 =0. 

With the latter convention covering the degenerate case g2 =g3, it follows from 
(13.5) that because the eigenvalues and invariants are constants, then Eo, E~, 
and E, are also constants. Because E, =Ea3 where E is constant and not zero, it 
follows that a 3 is constant. Similarly, b 3 and ca are constant. From (5.3) it follows 
that g3N3 is constant. From the orthonormality conditions (5.4) it follows that 
each of the following two-dimensional inner products is constant: 

a~a~, b~b,, c~c~, a~b,, b~c~, c~a~. (13.6) 

Here, and in the sequel, Greek subscripts ~, fl, etc. have the range 1, 2, and we 
use the summation convention over this range. 

With a constant field E i = E 6  3 ~, (13.3) yields XN,3 =0. Then (13.1), with g3N3 
constant, gives 

N 0 N + N g3a, a= , g~p,/j g~3,3=ZN, a (XI ,X2) .  (13.7) 

By using the definition (2.1) of h! .N) and the constancy of E~, from (13.2) we derive 

I~N, N N N -- Ei (g j  k, j Ek) q- (gi ~, j Ek) Ej  = E2 gl3, 3,  (13.8) 

where the final member was obtained by using (13.4) and (13.73). With g~33 
constant, (13.8) implies that fiN, 3 =0, and yields 

E2 N g~ 3, 3 = ~bN, ~(xl, X2)- (13.9) 

We can integrate (13.9) to obtain 

N E - 2  g~ 3 =x3 ~bN,,(xl, X2)+FN~(Xt, X2). (13.10) 

From the constancy of gl, g2, g3, a3, b3, ca, and the quantities (13.6), it follows 
that gN 3 g~3 is constant. Hence, the coefficient of x3 in (13.10) must vanish. Thus, 
ffN,~=0. By using the spectral representation of g~j in (13.9), we then obtain 

gtNa3 a,, 3+ g2 N ba b,, 3 q- gNc3 C~. 3 = 0 .  (13.11) 
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By using the spectral representation of g~j in (13.7), and noticing that g~3,3 =0 
according to (13.9), with CN,~ =0, we obtain 

g~aa a~,,~,+ g~2 ba b~,,,,+ g~ c3 c~,,,,=O (13.12) 
and 

g~(a,,ap).p+g~(b~,bp),p+g~(c~,cp),p=ZN.,(xl,x2). (13.13) 

From (13.11), with the convention c a =0 if g2 =g3, we get 

a s a~, 3 =ba b~, a =c3 c~, a = 0 .  (13.14) 

Similarly, from (13.12) we obtain 

a3 a~,~=b3 b~,~=c3 c~,~=0. (13.15) 

From (13.13), with gx conventionally non-degenerate, it follows that (a~ ap),p 
must be a two-dimensional gradient: 

(a~ aa) ' a = X, ~(xl, x2). (13.16) 

In the remainder of Part II we use (13.14) to (13.16), together with the spectral 
representation of g~j and the compatibility conditions (3.11), to determine all 
controllable deformations with constant invariants which are consistent with a 
uniform field. As suggested by (13.14) and (13.15), the analysis will be organized 
according to the number of values a3, b3, and c a which are zero. 

11.14. The Case aa ba e3#0 

In the present section we show that only pure homogeneous deformations are 
possible if as, b3, and ca are all different from zero. In this case, it follows from 
the orthonormality conditions (5.4) that the two-dimensional inner products (13.6) 
are all different from zero. 

From (13.14) we find that a, ,  b,, and c~ are independent of x3. The problem 
of determining these vectors is therefore strictly two-dimensional. It follows from 
(13.15) that the (two-dimensional) divergence of each of these fields is zero. 

With (13.15) and (13.16), the equations governing a~ are the equations for 
steady plane motion of a perfect incompressible fluid of unit density, with velocity 
a, and pressure -X. The speed is constant since a, a~ is constant. NEs~tcvI & 
PRIM [24] show, for a rather more general case of plane rotational perfect gas 
flows, that the streamlines for such a motion must either be parallel straight lines 
or concentric circles. In fact it is easy to prove as follows. 

With a,,~=0, (13.16) becomes 

a~,, lj ap = x, ~,(xl , x2). (14.1) 

Since a~ a, = constant, it follows from (14.1) that the curves X=constant are 
trajectories of a~. In view of a~,~=0 and a~ a~=constant, these trajectories are 
parallel curves. This in turn gives the magnitude of two-dimensional gradient 
I lZxl as constant along the curve so that the curvature is constant according to 
(14.1). Hence the trajectories of a~ are either parallel straight lines or concentric 
circles. 
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Consider first the case of parallel straight lines. In this case a a is constant, and 
from the constancy of the inner products (13.6) it follows that ba and ca are con- 
stant. Then, g~ is also constant. 

Now consider the case of concentric circles. From the constancy of the inner 
products (13.6) it follows that the trajectories of the field ba must make a constant 
angle with the circular a a trajectories. Therefore the radial and azimuthal compo- 
nents of the field ba are constants. The radial component is not zero because the 
orthogonality conditions would imply Ca =0  in that case, contrary to hypothesis. 
Hence, the divergence b~.a cannot vanish, as it must for a solution to exist, and 
therefore we obtain no solution in this case. 

H.15. The Case c3=0, aa b3=l=0 

We now consider the case when one of the values a3, b a, or c 3 is zero. Since 
gl is non-degenerate according to our convention, it does not matter which of 
a3, b3 ,  o r  r is regarded as zero when g2 is also non-degenerate. However, if g2 
is degenerate, then ca =0 conventionally. Therefore we shall take c3 =0  to cover 
both the possibilities of degenerate and non-degenerate g2. We show that only 
pure homogeneous deformations are possible. 

With a3 =t=0, the equations governing a a are the same as in Section 14, and the 
trajectories of the field aa are consequently parallel straight lines or concentric 
circles. From the constancy of the inner products (13.6), with the fact that a a is 
independent of )r it follows that b~ and ca are also independent of x a. 

As in Section 14, we obtain pure homogeneous deformations in the case of 
parallel straight lines. In the case of concentric circles, we can introduce a system 
of cylindrical polar coordinates r, 9, z in which aa and b~ are azimuthal vectors 
and c~ lies in the radial direction. In terms of the unit vectors r~,  r0~ ,  and z,~, 
the vectors as, b~, and ci can be represented in the forms 

a~=rO,~cosy+z, isinT, bi= - rO ,  is inT+z,  icosT, ci=r,i ,  (15.1) 

where 7 is a constant for which sin T cos 7 4: 0. By using (15.1) in (5.3), we obtain 

g~j = ga r, ~ r, j + (gx cos2 7 + g2 sin2 7) r2 0, i ~ j + 

+ (gl sin2 7 + g2 cOs2 7) Z i Z j "1- (15.2) 

+ (g l  - g 2 )  sin7 cos 7(r 0,~ z,i+z,~ r~, j ) ,  

and g~ 1 is obtained from (15.2) by substituting g~- 1, g ;  x, g31 for gl, g2, and g3, 
respectively. 

From the compatibility condition (3.11) we obtain in particular Ri3  i3----0. 
With g~j, 3 =0 and g3a, ~=0, this condition assumes the form 

- - I  - I  - I  - I  
ga t~ (g3 a, v - g3 r, a) (ga p, r-- g3 r, ~) = 0. (15.3) 

Because g,~ is positive definite according to (15.2), (15.3) yields 

- 1  --1 g3a, a -gaa ,  a = 0 ,  (15.4) 
or, with (15.2), 

(g~- 1 _ g21) sin 7 cos 7 [(r 9, a), a -  (r 9, a), a] = 0, (15.5) 
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which is satisfied only if gx =g2 or sin 7 cos ~ =0, both contrary to hypothesis. 
Hence, we obtain no solutions in this case. 

II.16. The Case b3~l.  Basic Equations 

We now suppose, finally, that two of the three values a3, b3, and c 3 are zero. 
In this case, the third of these values is unity, and the corresponding vector is a 
unit vector in the x3-direction. The conditions (13.14) and (13.15) are satisfied 
trivially. 

Let us abandon the convention that gl is necessarily non-degenerate. Then, 
without loss of generality, we can let bi be the constant vector in the x a direction. 
By using the relations 

bi=r and c i c j = ~ i j - a i a . i - b i b  J (16.1) 

in the spectral representation (5.3), we obtain 

N N N a +"  N N. gJj=(gt-g3) a~ j Lg2--g3) ~3i ~3j+gNt~ij �9 (16.2) 

If gl =g3,  the deformation is a simple extension in the x 3 direction, which has been 
considered in Section 12. 

If gl :~g3, by using (16.2) in (13.13) we find that (a~ ap),a must be the gradient 
of a scalar function of x~ and x2 only, even if gt =g2 : 

(a~ ap),~ =Z,~(xt ,  x2). (16.3) 

In order to obtain further conditions on a~, we must use the compatibility 
conditions (3.11). From these conditions, we will first show that a~ is independent 
of x 3. We will then show that the following equation must be satisfied: 

(a~ aa) ' ~ a = 0. (16.4) 

In Section 17 we obtain a~ from (16.3) and (16.4), and in Section 18 we determine 
the deformation implied by (16.2) with the known field a~. 

We first consider the compatibility condition Ri3 i3 =0. Because gt, g2, and 
g3 are constants, and a 3 =0, it follows from (16.2) that g~-I and g~ 1 are constants. 
The condition R i 3 ~ a =0  accordingly becomes 

- - 1  - - 1  g~a g~,  a gra. 3 = 0 .  (16.5) 

Because g~p is positive definite according to (16.2), it follows from (16.5) that 
g~-~3 =0.  Hence, with (16.2), and recalling that a,a~= 1 while gl 4=ga, we find 
that a~, a =0 :  

a~ = a~(xl, x2). (16.6) 

With a strain tensor of the form (16.2), where a a = 0  and at, a=0 ,  the com- 
ponents Rijkl in (3.11) vanish identically if i, j ,  k, or ! is equal to 3. The com- 
ponents R~aT# all vanish if R1212 is zero, by virtue of the general antisymmetry 
conditions satisfied by Rok 1. Necessary and sufficient for R1212 to vanish is that 
R,p~p =0,  which, with (3.11) and (3.12), means 

4g~l~=g~8(A~Aap~-A~a~A~p~) ,  (16.7) 
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where 
A~v=Ap~ =g~-, ' + - t  - ,  gpr,~-g~p,v" (16.8) 

In writing (16.7) we have used the results that the invariant g~ ~ is constant and 
that the components g~j and g~ ~ are functions only of x, and x2. 

When (16.2) is inserted in (16.7) and note is taken of a 3 =0, a~ a~=l ,  and the 
constancy of the eigenvalues gl, g2, and g3, we find, after lengthy manipulation, 
that the right hand side of (16.7) vanishes identically, thus reducing the condition 
(16.7) to the form (16.4). 

11.17. The Case b3=1. Solution of Basic Equations 

We now determine the fields a, which satisfy (16.3), (16.4), (16.6), and the 
condition a~ a~ -- 1. We use the following complex variables: 

Z=Xl+ix2, -Z~Xt--iX2, 
(17.1) 

a=al +ia2, a=al-- ia 2. 

We note that because the behavior of a~ for complex values of x,  and x 2 is at 
our disposal, we can demand that all conditions be satisfied for arbitrary, inde- 
pendent values of z and ~,. Because a, and a 2 must be real for real values of x, 
and x 2, the formal conjugate of each equation which we obtain must also be 
satisfied. 

From (16.3) and (16.4) it follows that the potential Z must be harmonic: 

2 X = #(z)+ ~(~). (17.2) 

Here ~ is the function whose value at ~, is the complex conjugate of ~(z). Then, 
from (16.3) we obtain 

a a2/az + a(a 5 ) / a ] =  ~ ' (~) .  (17.3) 

The condition a, a~ = 1 yields a 5 =  1. Hence, from (17.3) we obtain 

a 2 = z ~'(~) + G(~). (17.4) 
Then (aa-)2 = 1 implies that 

[z ~'(~) + G(~)] [~ #'(z) + G(z)] = 1. (17.5) 

The functions #'(z) and G(z) must be of such forms that (17.5) is satisfied 
identically, for arbitrary independent values of z and ~. 

We assume that coordinates have been chosen in such a way that ~'(z) is 
not singular at z = 0  and G(z) is not singular at z--1. By setting z = ~ = 0  in (17.5), 
we find that G(0) G(0)---1, whence 

G(0)=e t ' ,  = real. (17.6) 
Let F(z) be defined by 

F (z) = 4i' (z) + G (z). (17.7) 

Then F is also non-singular at z=0.  In terms of F, (17.5) is 

[z f f ( ~ ) - ( z -  1) G(~)] [~ F ( z ) -  (~-- 1) G(z)] = 1. (17.8) 
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By setting z = 3 = l  in (17.8), we obtain F ( 1 ) f f ( 1 ) = l ,  whence 

F ( 1 ) = e  ip, fl real. (17.9) 

By setting 3 = 0  in (17.8), we obtain 

G(z) = [z if(O) - ( z  - 1) e - ~ ]  - ' .  (17.10) 

By setting 3 =  1 in (17.8), we obtain 

F(z) = [z e -~ p -  ( z -  1) G(1)]-  1. (17.11) 

Further restrictions on the forms of F and G are now to be obtained by using 
(17.10) and (17.11) in (17.8), and demanding that the resulting equation be satisfied 
identically in z and 3. These restrictions can be derived by examining the relations 
which arise from equating coefficients of like powers of z and 3, once the equation 
has been cleared of fractions. However, to avoid this tedious process, we use a 
different method. 

We now show that F(z) is a constant multiple of G(z). The first factor in 
(17.8), regarded as a function of z, either is a constant or has a simple zero. It is 
a constant only if F(z-)=G(z-), in which case our assertion is correct. If it has a 
simple zero, then it also has a simple pole at infinity. To satisfy the equation in 
this case, the second factor, regarded as a function of z, must have a simple pole 
and no other singularity, and it must have a simple zero at infinity. If it has a zero 
at infinity, then with (17.10) and (17.11) we see that either F(z) and G(z) are both 
constant, satisfying our assertion, or each has a simple zero at infinity. In the 
latter case, it follows from (17.10) and (17.11) that each also has a simple pole. 
Recalling that the second factor in (17.8) can have only one simple pole in the 
case under consideration, it follows that the poles of F and G coincide, and the 
assertion is proved. 

Now, if F(z) is a constant multiple C + I ,  say, of G(z), then with (17.10), 
we can obtain an expression of the form 

z f f ( ~ ) -  ( z -  1) G(3) = e -~ ~ C z + 1 (17.12) 
D ~ + I  ' 

and it is evident that (17.8) is satisfied if and only if D = C .  Then, by using (17.7) 
and (17.12) in (17.4), we obtain 

a2=e_i~ Cz+l__ (17.13) 
C z + l  

II.18. The Case b3--1. Deformations 

If C = 0  in (17.13), then a is constant, and it follows from (17.1) that a I and a 2 
are constant. The strain gu obtained by using this result in (16.2) is then also 
constant. Cases of homogeneous deformation have been considered in Section 12. 

If C4:0 in (17.13), we can shift the origin to the point z =  - 1/C with no loss 
of generality. If we denote the new variables by z' and 3', (17.13) then takes the 
form 

a 2 =e-i*'(C/C)(z'/z').  (18.1) 
Arch. Rational Mech. Anal., Vol. 21 14 
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Because the magnitude of f iG is unity, we can write 

e-i 'C/C=e 2~, 7 real. (18.2) 

Then (18.1) yields a=eirz'/r, where the ambiguity in sign has been absorbed in 
the definition of 7, and r 2 =z '  F.  By writing z' =re ~a, we obtain 

a=e ~(a+~). (18.3) 

Thus, the real vector field a,,  which is related to a by (17.1), makes a constant 
angle y with the radii 0 =constant. The physical components of the field in cylin- 
drical polar coordinates are 

a , = c o s y ,  aa=s in~ ,  a z=0 .  (18.4) 

By using (18.4) in (16.2), we find that the physical components of strain are 

grr=glcos2y+g3sin2y, gaa= g~ sin2 ~+ g3 cos2 y, 
(18.5) 

gzz=g2, gra=(gx-g3)sinTcosT, g a z = g , z = 0 ,  

where gl g2 g3 = 1. 

A deformation of this type is produced if the particle initially at the point 
R, O, Z moves to the point r, 0, z given by 

r=AR, O=BlogR+CO, z--Z/A2C, (18.6) 
where 

AZ=glcosZy+g3sin27, B=A-Z(gx-g3)sin~cosy, C2=I/A4 gz . (18.7) 

This deformation combines with a uniform field in the axial direction to form a 
controllable state (Section I. 14). 

This completes the investigation of controllable states involving a prescribed 
non-zero electric field. 

Part HI. States with Specified Dielectric Displacement Field 

HI.1. Introduction 

We have asserted that every controllable state with either a prescribed electric 
field or a prescribed dielectric displacement field is among those described in 
Part I. The first part of this assertion was verified in Part II, where we determined 
every controllable state involving a prescribed non-zero electric field. We now 
show that every controllable state with a prescribed non-zero dielectric displace- 
ment field is also included in Part I. 

The analysis follows an outline similar to that of Part II. In Section 3, the 
conditions governing controllable states are derived. From the controllability 
conditions which involve only the dielectric displacement field, in Section 4 we 
show that the field must be either uniform, or a radial field in cylindrical or spherical 
coordinates. 

Cases in which at least one invariant is not constant are examined in Sections 5 
and 6. The analysis of deformations possible in these eases is reduced to a problem 
which ERICKSEN [6] has solved, and the corresponding controllable states are 
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then easily determined. Because states involving homogeneous deformation might 
be overlooked when relying on EmCKSEN'S analysis, in Section 7 we consider 
such states separately. 

Cases with all invariants constant are considered in Section 8. The problem 
is reduced to a problem which we have solved in Part II. In this case, and 
throughout Part III, we rely heavily on results obtained in Part II to abbreviate 
the analysis. 

III.2. Notation 
We use the notation 

(N) N N f i j = Dt(g j k Dk) + D j(gi k Dk) . (2.1) 

The constitutive equations (L3.12) and (I.3.13) are respectively 

Ei • (~'~o 6ij "~ ~~1 gij + 02 g2j) D j (2.2) 
and 

Si j= ~gl gij+ ~2 g2+  ~3 fi~~ ~4 fi~l)+ ~5 f~2), (2.3) 

where the coefficients f2 and ~ are functions of the invariants Jr defined in (I.3.14), 

J , = g f ,  ( / . t=l ,2) ,  J~+a=D, gf jDj  (/.t=O, 1,2). (2.4) 

m.3 .  Controllable States 

If an isochoric deformation xi(XA) and a solenoidal field Di(xj) are specified, 
then the corresponding extra stress Sij and electric field strength E i are given by 
the constitutive equations (2.2) and (2.3), respectively. If Siy and El satisfy (II.3.1) 
and (I.5.2), respectively, then the state specified by xi(XA) and Di(xj)  can be sup- 
ported without body force or distributed charge in a material of the type con- 
sidered. 

It is possible for the strain gij and flux D i to be of such forms that (II.3.1) 
and (I.5.2) are satisfied identically, whatever may be the forms of the coefficients 

and fl in the constitutive equations. By following a procedure similar to that 
used in the corresponding problem in Part II, we find that in order for this to be 
true, it is necessary and sufficient that each of the following tensors be symmetric: 

gin (Ju, i Jz, k + J~, j J~,, k), (3.1) 

giN, j Jj,,k + (g~ Sl,, j),k, (3.2) 

N gtj. j ~, (3.3) 

f /m (ju, J Ja, k +Ja,  j Jr, k), (3.4) 

fi~N,} Ju, k + (fi~ N) Jr, j),k, (3.5) 

~,~}k, (3.6) 

(g~ D j), k, (3.7) 

(g~ D j) Jr, k. (3.8) 

Here N = 0 ,  1, 2 and 2, p = l  . . . . .  5. 
14" 
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Let us suppose that a symmetric, positive definite tensor field g~j satisfying 
the compatibility conditions (II.3.11) and the incompressibility condition is given, 
as well as a non-zero vector field Di satisfying (I.5.1). If the tensors (3.1) to (3.8) 
calculated from g~j and D~ are all symmetric, then g~j and Di are the strain and 
dielectric displacement for a controllable state. 

HI.4 .  Permissible Fields 

The dielectric displacement fields which can be involved in controllable states 
with D~ specified can be determined immediately, from the conditions that the 
divergence and curl of such a field must be zero, and that the gradient of D~D~ 
must be parallel to D~. The first of these conditions are respectively (I.5.1) and 
the symmetry requirement on the tensor (3.7) for N = 0 :  

Di.i=D~.j-Dj,,=O. (4.1) 

Symmetry of the tensor (3.8) with N = 0  and p--3 yields, with the definition (2.4) 
of J3, 

Di(Dj D j), k = Dk(Dj D j), ~. (4.2) 

This relation is satisfied if and only if (Dj D j)., is a multiple of Di. Thus, with 
(4.1), 

D~ D~, j =FD~. (4.3) 

According to (4.1), D i is the gradient of a harmonic potential: 

Di = 0,  ~" (4.4) 

From (4.3) it follows that the trajectories of the field D~, the orthogonal 
trajectories to the surfaces ~b=constant, are straight lines. Consequently, the 
surfaces 0 =constant form a parallel family, and the magnitude of the gradient 0, 
is constant over each such surface. It then follows from the fact that ~ is harmonic, 
by an analysis of the type used by EmCKSEN ([6], Sec. 3) in a similar problem, that 
the surfaces 0 =constant must be parallel planes, coaxial right circular cylinders, 
or concentric spheres. 

In the case of parallel planes, the field D l being normal to the planes, it follows 
from Di, ~=0 that the field is uniform. In the case of coaxial right circular cylinders, 
it follows from (4.4) and (4.1a) that the physical components of the field in an 
appropriate system of cylindrical polar coordinates must be of the form 

Dr=C/r, Da=Dz=0 ,  (4.5) 

where C is a constant. Similarly, in the case of concentric spheres, the physical 
components in an appropriate system of spherical coordinates r, 9, q) are 

D, = C/r 2, D a = D~ = 0, (4..6) 

where again C is a constant. 
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111.5. Invariants not all Constant. General Analysis 

The spectral representation of gij  will be used in the analysis. Let ai, bi, and c~ 
be an orthonormal system of eigenvectors of g~j, with corresponding eigenvalues 
gl, g2, and ga. Then 

N N N N 
gij = gl ai a j +  g2 bi b j +  g3 ci cj ,  (5.1) 

where 
a i a i = b i b ~ = c l c i = l ,  a i b i = b i c i = c i a i = O .  (5.2) 

The field Di can be represented in the form 

D~= D,, ai + D b bi + D c c i . (5.3) 

The invariants Jr (/~ = 1 . . . . .  5) can then be written as 

- -  ~u # /t J u -  gl q- g2 W g3 (//= 1, 2), 
(5.4) j a + u = g ~ D 2 + g  ~ 2 It 2 Db + ga D ~ (#=0 ,1 ,2 ) .  

The incompressibility condition is 
gl g2 g3 = 1. (5.5) 

In the remainder of the present section, and in Section 6, we suppose that at 
least one of the invariants J ,  is not constant. We also assume that the field D~ 
is not identically zero. 

We now consider the implications of symmetry of the tensors (3.1) to (3.8). 
Because a closely similar system of equations has been analyzed in Part II, we will 
for the most part omit detailed proofs of our statements. 

Symmetry of (3.8) for N = 0  implies that J~. ~ is a multiple of Di, and thus, 
with (4.4), a multiple of ~, i. Consequently, Jr must be a function of ~: 

J ,  = J~(r ( / t= l  . . . .  ,5) .  (5.6) 

With (5.4) and (5.5), it then follows that the eigenvalues of gi~ are also functions 
of if: 

g l=gl (@),  g2=g2(~k), ga=ga(~k). (5.7) 

From (5.6), with the assumption that J~(~)#0  for some #, it follows that the 
tensors (3.1) are all symmetric if and only if ~, ~ is an eigenvector of g~s" With no 
loss of generality, we take the eigenvector a~ to be in the direction of ~, ~: 

a~ = ~k. i/(~. i ~b, j)~r. (5.8) 
Then 

gij ~k, S = gl (~) ~b.i. (5.9) 

From (5.6) and (5.9), with J~,(~)#O for some #, it follows that the tensors 
(3.2) and (3.3) are all symmetric if and only if there exist functions CN(~) such 
that 

g,~, j = CN (~b ) ~k, ,. (5.10) 

From the results so far derived, it follows that all of the remaining tensors 
(3.4) to (3.8) are symmetric. Symmetry of (3.7) is shown by using (5.9) and (4.4). 
Symmetry of (3.8) follows from (4.4), (5.6), and (5.9). To verify the symmetry of 
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the tensors (3.4) to (3.6), we first use (4.4) and (5.9) in the definition (2.1) off t~ N), 
to obtain 

s Jig = 2 g~ (~b) ~k, i ~/, j .  (5.11) 

Symmetry of (3.4) now follows from (5.6) and (5.11). To prove symmetry of (3.5), 
we also make use of the fact that 0, t  ~',i (=Ja(~) )  is a function of 0, and that 
~/, t i =0 according to (4.1) and (4.4). Then 

f / ( N ) _ _  N , N t j j - [ 2 ( g t )  J 3 + g l  J3] ~b,i, (5.12) 

where primes are used to denote differentiation with respect to ~. Now symmetry 
of (3.5) follows from (5.6), (5.11), and (5.12), while symmetry of (3.6) follows 
from (5.6), (5.7), and (5.12). 

We note that from (5.8), with ~, t ~', t =J3 (~b) and ~, t t =0, there follows 

(a t aj),.i = - (J'3/2 J3) q/, t. (5.13) 

Furthermore, by using the spectral representation (5.1) in (5.10), and taking (5.13) 
into account, it can be shown that 

(b tb j ) , j=G(O)~ / , t  if g2~eg3. (5.14) 

Here G is a certain function whose only relevant property is that it depends only 
o n  I//. 

III.6. Solutions with Invariants not all Constant 

In ERICKSEN'S [6] analysis of deformations possible in every homogeneous, 
isotropic, incompressible, elastic material, he obtained equations of the forms 
(5.13) and (5.14), with (5.13) holding only if gl is a non-degenerate eigenvalue, 
and not a generally valid relation as in the present case. The remaining conditions 
on the deformation in the present problem are the same as those which ERICKSEN 
used. 

ERICKSEN found all of the deformations which are possible if an equation of 
the form (5.13) is valid. Consequently, the deformations which are possible in 
the present problem, in the case under consideration (invariants not all constant), 
are those which EmCKSL~ obtained under the assumption that gl is non-degenerate. 
He found that the surfaces ~/=constant must be parallel planes, coaxial right 
circular cylinders, or concentric spheres. (He uses the symbol B rather than ~.) 
We have obtained the same result in Section 4, by obtaining equations for 
which are of the forms which ERICKSEN used. Our analysis has shown that the 
surfaces ~/=constant must necessarily be identified with ERICKSEN'S surfaces 
B=constant.  Furthermore, all conditions in the present problem are satisfied if 
we make such an identification. 

It follows that if the surfaces ~/=constant are parallel planes, then only the 
deformations which ERICKSEN found for this case are admissible, and the field Dt 
must be a uniform field normal to these planes. These controllable states have been 
considered in Section 1.10. 

In the case of coaxial cylinders, the radial field (4.5) must be associated with 
the deformations found by ERICKSEN for this case. These controllable states have 
been considered in Sections 1.8 and 1.12. 
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Finally, the deformations found by ERICKSEN for the case of concentric spheres, 
combined with the radial field (4.6), yield controllable states which have been 
considered in Section 1.7. 

I11.7. Homogeneous Deformations 
Because homogeneous deformations are easy to overlook when relying on 

ERICKSEN'S [6] analysis, we now give separate consideration to cases with g~j 
constant. If the components D~ are also constant, then all controllability conditions 
are satisfied. The case of homogeneous deformations with uniform fields has been 
considered in Section 1.6. 

If the surfaces ~ =constant  are coaxial right circular cylinders, the field D~ is 
the radial field (4.5). The constant matrix g~j then has all radial vectors as eigen- 
vectors, with a common eigenvalue gt,  according to (5.9). It  follows that the 
axial direction is a third principal direction. The strain g~j thus corresponds to 
simple extension in the axial direction. Simple extension with a radial field is a 
special case of the controllable states considered in Section 1.8. 

If the surfaces ~ =constant  are concentric spheres, then every radial vector 
(4.6) is an eigenvector of the constant matrix g~j, according to (5.9). Hence, 
gi j=gl  ,5~j, and it follows from the incompressibility condition (5.5) that g~ = 1. 
This case of no deformation with a spherically symmetric radial field is a special 
case of the controllable states considered in Section 1.7. 

III.8.AII Invariants Constant 
We now consider cases in which all of the invariants J~ (# = 1 . . . . .  5) are con- 

stants, and the field Di is not identically zero. From Section 4 we find that if 
3"3 =DiD~ is constant, the corresponding field D i must be uniform. We let the x3 
axis lie along the direction of this field, so that D~ =D33 ~, where D is a non-zero 
constant. 

The general relations (5.1) to (5.5) remain valid if all invariants are constants. 
The eigenvalues gl,  g2, and g3 are now constants, but the eigenvectors as, b~, 
and c~ need not be constant. If the three eigenvalues are equal, there is no deforma- 
tion. The case of a uniform field with no deformation has been covered in Section 7. 

For the remainder of the analysis, we suppose that at least one eigenvalue is 
non-degenerate, and with no loss of generality we let g~ be that eigenvalue. If 
g2-----g3, the eigenvectors b~ and c~ are undetermined to the extent of a common 
rotation about  the direction of a~, and we can impose the conventional restriction 
that Di c i =0,  i.e. c 3 =0.  

With these conventions, and recalling that eigenvalues and invariants are now 
constants, f rom (5.4) we find that the field components D,, Db, and D c in the 
representation (5.3) are also constants. With Do =D~ a t =Da3,  etc., it follows that 
an, b 3, and c 3 are constants. Then, f rom the orthogonality conditions (5.2) we 
find that each of the following two-dimensional inner products is also constant: 

a~ a~, b~ b~, c~ c~, a~ b~, b~ c~, c~ a~. (8.1) 

Here, and in the remainder of the paper, Greek subscripts ~,/~, etc. have the range 
1, 2, and we use the summation convention over this range. With the preceding 
results, it follows from (5.1) that g3n3 is constant. 
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Constancy of the invariants J~ implies that all of the tensors (3.1) to (3.8) are 
zero, and thus trivially symmetric, except (3.3), (3.6), and (3.7). With D~ =D63 ~, 
symmetry of the tensors (3.7) implies that there are scalar potentials On such that 

g~3=Ou., .  (8.2) 

Because g~33 is constant, from (8.2) with i = 3  we obtain 

O~ = g~3 x3 + r x2), (8.3) 
and thus 

g3 N, = tpn, , ( x l ,  x2). (8.4) 

Before considering the tensors (3.6), we use D,=D63,  in the definition (2.i) 
of f,~nl to obtain 

f/(n) =n2(t~3 i gj 3 +t~3 J n  g/N3)" (8.5) 

Then, with g~3 constant and g ~  independent of x3, we obtain 

f/(N) n2  6 ~v (8.6) j,j=.t.,, 3i g3a,~" 

The tensors (3.6) are symmetric if and only if ~.t.N) is the gradient of a scalar. J ' .J,J 

This gradient is in the x 3 direction, according to (8.6), and it follows that rr g 3  ~,a  

in (8.6) must be a function of x3 only. Hence, with (8.4), 

~o~. ~ ~ ~ ( x l ,  x 2 )  = 0 .  ( 8 . 7 )  

By using the spectral representation (5.1) in (8.4), we obtain a system of linear 
equations (N=0 ,  1, 2) for a 3 a~, b 3 b~, and c a c,. Recalling our conventions for 
cases with degenerate eigenvalues, we find that the solution of these equations is 
of the form 

a3 a,=q~a.,(xt , x2), b3 b,=gb,~(xx , x2), C3 C~t=~Oc, ot(Xl , X2), (8.8) 

where q~a, ~0 b, and (Pc are linear combinations of the potentials q~n in (8.4). From 
(8.7) we then obtain 

q~o,,~p = ~Ob.~ ~ = q~c,,,p = 0. (8.9) 

NOW, recalling that a a and a, a, are constants, from (8.8) and (8.9) we find 

0 = ( a  ] a,  a,).pp=2~0o,,p q~,.,p. (8.10) 

Hence, ~oo,,p is zero, and ~0,., is thus constant. From (8.8) it then follows that 
a 3 a a is constant. We similarly find that each of the following quantities is con- 
stant: 

a s a , ,  b 3 b, ,  C 3 C,. (8.11) 

We can now draw the conclusion that if some eigenvector is oblique to the x 3 
direction, then a~, b~, and c~ are all constant. To show this, suppose for example 
that a3~e0 and a, a,:~0. With a3:#0, it follows from the constancy of a 3 and 
a 3 a~ that a, is constant. With a, constant and not the zero vector, constancy of 
the two-dimensional inner products (8.1) implies that b, and c, are also constants. 
Hence a~, b~, and c~ are all constant. In this case the strain gu is constant, and 
we have a case of homogeneous deformation with uniform field, covered in 
Section 7. 
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I t  remains  to consider cases in which no eigenvector is oblique to the field 
Dt=D,~3 t, In  such cases, one eigenvector must  be parallel  to the x3 direction, 
and  the other  two must  be perpendicular  to it. If  we abandon  the convent ion that  
gl  is necessarily non-degenerate,  we can let b~ be the eigenvector in the x3 direction 
with no loss of generality. In  the spectral  representat ion (5.1) we use 

bt=63t and c t c J = 6 t j - a  t a j -b~bJ ,  (8.12) 
to obta in  

N N N gtj = (gt  -- g3 ) at aj + (g~2-- g~) 63 t 63j "-[- g~ 6ij, (8.13) 

where g l ,  g2, and g3 are constants,  with gl  g2 g3 --1, and a 3 = 0 .  

If  g t  = g 3 ,  the deformat ion  corresponding to (8.13) is a simple extension in 
the x3 direction, which has already been considered. We now suppose that  g l  ~ g 3 .  

Symmet ry  of the tensors (3.3), which requires that  s gtj, j be the gradient  of a scalar, 
has not  yet been used. With  g~  given by  (8.13), where g~4:g3, this condit ion 
implies that  there is a potent ial  X such that  

(at a j), j=X,  t. (8.14) 

Because a 3 =0 ,  then X, 3 =0 ,  and we obtain 

(a ,  a#).# =X, ~(Xl, x2).  (8.15) 

The p rob lem which remains is to find all of the fields a ,  which satisfy (8.15) 
and  the requirement  a ,  a ,  = 1, for  which the resulting strain tensor  (8.13) satisfies 
the compat ib i l i ty  conditions. We have solved this p rob lem in Sections II.16 to 
II .  18, and have obtained the cor responding  deformat ions .  The control lable states 
obta ined by  combining  these deformat ions  with a constant  field D t in the x 3 
direction have been considered in Section I. 14. 

This concludes the p roof  that  all control lable states with specified deformat ion  
and non-zero  dielectric displacement field have been included a m o n g  the solutions 
described in Par t  I. 
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