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1. Introduction
The exterior stationary problem for the Navier-Stokes equations
ow
() T +rvdw—w-Vw—Vp I

V-w=0
consists in finding a time independent solution pair w (%), #(x) of (1) in a domain
& exterior to a closed surface 2, such that w(x) —>w,, a prescribed constant
vector, as x— oo, and w(x) assumes prescribed data w* on X.
The equations (1) correspond to the motion of an incompressible viscous
fluid. The quantities which appear have the following physical significance:

flow velocity vector;

time;

kinematic viscosity;

pressure;

external force, assumed prescribed;
position in space.

'y e o 8

If w* =0, w, 40, the problem amounts to the determination, in a coordinate
frame attached to X, of the flow velocities in a steady motion of X through
the fluid with velocity —w,, under the assumption that the fluid adheres at
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the surface (the no-slip condition). This problem is the principal motivation
for the present paper. One of the results (§4) will be a proof (constructive)
that if the data are sufficiently small, there exists exactly one solution whose
behavior corresponds to physical experience. This solution exhibits a “‘wake
region” of fluid behind 2 which tends to follow 2’ along the direction —w,,
and the work required to move that mass of fluid results in a “‘drag force” on
2 in the opposite direction. More precisely, the velocity is shown to tend to
its limit at infinity to the order |x| within the wake, and at the more rapid
rate, |#|72, in any direction other than that of w,. The wake is asymptotically
paraboloidal. The hypothesis $w*- d6=0 (the zero outflux condition), which
z

has appeared in earlier literature, is not required in this paper.

Other physical problems are also accessible to the method. For example,
one may consider a rotating sphere in a fluid at rest or in uniform motion at
infinity (the baseball problem), or a situation in which 2’ has porous walls
through which fluid is being forced at prescribed rates. The results of this paper
apply to these and to many other cases of interest; the existence of physically
reasonable solutions is, however, demonstrated only in the case in which the
data on X are close to the prescribed vector w,.

The extent to which the requirement of small data reflects the actual be-
havior of the solutions of (1) is not clear. Both physical experience and a recent
result of VELTE [1] strongly suggest that uniqueness will fail if the data are
large. On the other hand, it has long been known (¢f. LERAY [2], FINN [3, 4])
that smooth solutions exist for very general data, in a class for which the energy
dissipation is finite. No regularity properties at infinity of these solutions have
been demonstrated, however, beyond continuity, and no information is avail-
able on uniqueness. It is not even known whether there are multiple solutions
in this class which vanish on 2’ and at infinity.

It appears that solutions in three dimensions, x=(x,, %,, %3), are more easily
studied than in two or higher dimensions, and the three-dimensional case is
the only one considered in this paper. Some partial results for two-dimensional
flows have been obtained recently by D. SMiTH and will appear elsewhere.

It will be assumed that the applied force is time independent, so that f=Ff(x).
Since the solutions to be constructed also have this property, (1) may be written
in the form

vAw—w-Vw—Vp=—f(x),
2

V-w=0.
Solutions are sought as perturbations of the particular solution w(x)=
wy=const. Writing w(x; A)=w,+Au(x; 1), (2) becomes, after relabeling of
f(x) and p(x), the system
vAu—wy-Vu—-Vp=—fx)+Au-Vu,
() Veu=0

for w(x; ). The requirement of small data is conveniently expressed by pre-
scribing fixed data for w(x; 4) and letting 4 be small. The solution of the stated
problem is then constructed as a perturbation series in powers of 4, using the
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solution U(x; w,) of the linearized system
vAu—wy-Vu—Vp=—f(x),

(@) Veu=0

which satisfies the same data, as initial term. It is shown that for given data
u* the series converges in an interval | 4| </, with 4 independent of w,. Con-
sequently, if @, is sufficiently small, there is necessarily a solution @ (x; 4)
which vanishes on 2.

It is necessary to prove the existence of the “parametrix’’ solution of (4)
and to obtain for it certain a priori estimates. This step is carried out in § 2.
The existence proof is effected by Galerkin’s method and follows closely the
approach used by Fujita [§] in his study of (2). The method is constructive.
Using the fundamental solution tensor E(x—y;w,)=(E;;) of (4), which has
been given explicitly by OsEEN [6], one then obtains a Green'’s tensor G (%, ¥; w,),
which has a fundamental singularity and whose components vanish on X and
at infinity.

The core of the existence proof for the nonlinear equations lies in the estimate
(5) |71 J1y1#1¥, G (5, y; wo)| dy < H < o0

uniformly for all x¢& and all |w,| in any finite interval. The demonstration
of this result presents technical difficulties, chiefly owing to the absence of spatial
homogeneity in the equation when w, #=0. It is proved in § 3 by exploiting the in-
variance of (4) under transformations which preserve the ‘““Reynolds number”,
and by adapting potentialtheoretic methods to the geometry imposed by the
equation.

The a prior: estimate (5) leads easily to the construction (§ 4) of solutions
of the nonlinear system (2) for small data, which are such that | w (x) —w,| < C|x|?
as x— oo, The proof that these solutions are unique in a sensible class, and
that they are the physically reasonable ones which are sought, is carried out
in §5. The idea of this section is taken from my earlier paper [7], and the
results are very similar. The material is here developed in a more systematic
way than in [7], resulting in an improved estimate which is essential in what
follows.

Since the construction of the strict solution of (2) requires many steps, it
is both natural and important to examine the sense in which these solutions
can be approximated by solutions of the linearized system (4). It turns out
that there are four possibilities, leading to different results according to whether
or not w,=0, and whether the flow is perturbed at infinity. It is also of interest
to examine the same problem for the solutions of LERAY mentioned above,
which presumably have weaker regularity properties at infinity. Except in one
case (the one on which the existence theorem of § 4 is based) the perturbation
appears to be singular, owing to the fact that & is an infinite region. If w,=0
and the perturbation is nonvanishing at infinity, this phenomenon finds its
expression in two dimensions as the Stokes paradox [8, 9, 10] and in three
dimensions as Whitehead’s paradox [6, p. 163]. In § 6 the perturbation and
its derivatives are estimated in all eight cases. It is seen that the estimates
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are weakened either by perturbing the flow at infinity or by choosing as base
flow the identically vanishing solution w,=0. Thus the attempt by StokEs [8]
to approximate a solution with nonvanishing limiting velocity by a solution
of the system

(©)

vAu—-Vp=0,
V-u=0

led to singular behavior at infinity, presumably induced by two causes. In
two dimensions, this behavior results in the nonexistence of solutions of (6)
with the given data. In the three-dimensional case considered here, the solution
exists, and the approximation to the strict solution of (2) is even uniform
throughout & (Theorems 6.5, 6.6), but the approximation is nevertheless weaker
than in any of the other cases considered (see Table).

In most of the cases studied in § 6, the estimates obtained are considerably
more precise than the ones stated in my preliminary announcement of results
[10]. However, in the one case w,==0, uy=0 of Theorem 6.5 the logarithmic
expression in the definition of 7y(x; A) does not appear in the corresponding
Theorem 3.4 of [10]. I regret that I have misplaced the notes on which the
statement of that theorem was based, and I am now unable to reproduce that
estimate.

It will be assumed throughout that the bounding surface X is of class ¢+
in appropriate non-singular parameters. It was originally my intention to de-
velop the material for the class of surfaces studied recently by Epwarps [11],
who proved the existence of flows in the class D (see below) for surfaces ad-
mitting isolated singular curves and conical points — including, in particular, sur-
faces such as a circular disk embedded in three dimensions. It is my opinion
that such a result is accessible to the methods of this paper; however, it would
require a considerable technical effort, and it seemed best in this initial contri-
bution to concentrate on those features of the underlying ideas which are quali-
tatively new.

In addition to the notation already introduced, the following symbols will
be used:

€*(&): vector functions whose derivatives up to A™ order are continuous
in &.
"+ (£): functions of class ¥*(€), whose 2™ order derivatives are H¢lder-
continuous with exponent a.
@kt (&£): functions of class €*+*(#) which have compact support in &.
@*+o(£): functions ¢ of class €***(€) which are solenoidal, i.e., such that
V-p=0 in &.
€5+ (#): functions of class ¥5**(&) which have compact support in &.
(¢, ) = [ (%)Y (x) dx over some given region.
(@) = (J | (1)|2ax)t.
(. g]=[Ve-Vdx.
lell = (/1Vep|2dx)*.
., 0} = [ (x) b (%) * Voo () dx.
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X
=N
$S

: Hilbert space obtained by completion of €3°(£) in the norm |
: Hilbert space obtained by completion of 3, (¢) in the norm |||

!

: class of solutions of (2) in &, having finite Dirichlet integral, see
Definition 5.2.

PR: class of solution of (2) in &, which are physically reasonable at
infinity, see Definition 5.1.

C: a quantity which is constant in some expression. Its value may,
however, change within a demonstration.

E: fundamental solution tensor associated with systems (4) or (6);
defined in § 2.3.

E?: truncated tensor, see § 2.3.
G: Green’s tensor for (4).
G,: Green’s tensor for (6).

Tw: stress tensor, (Tw),-]-——pé,,—i—(aw’ + ZZ;):)

ow; 6w,-)

3;\7 ax,‘ .

( )o: an equation in which the forcing term does not appear; thus (4),
means equation (4) with f=0.

defw: deformation tensor, (defw)..__(

In most of the material of this paper the parameter » is conveniently elim-
inated by a coordinate transformation, and I shall assume that this has been
done. However, in the uniqueness theorem (5.10), an explicit criterion is given
depending on the Reynold’s number — or equivalently for fixed 2 — on »
and w,, and that result is therefore formulated in terms of these parameters.

As indicated above, 2" may consist of a finite number of smooth disjoint
surfaces. However, in the interest of simplicity I shall carry out the demon-
strations under the supposition that X' is a single surface. The extension to
the more general case requires only formal changes.

2. The Linearized Equations

2.1, Preliminary lemmas
Lemma 2.1. Let w*c%>+* with vespect to nonsingular local parameters on X,
and suppose ¢w*-da=0. Then there is a solenoidal field §(x)c€? in & such
z
that €(x) vanishes outside a prescribed neighborhood of 2, and §(x)=w* on Z.
A proof of this result appears as Lemma 2.1 in [13].

Lemma 2.2. Let & be the entire space, and let ¢ (x) be a vector valued func-

tion such that @ (x)€€°(€). Suppose @ (x) has first derivatives almost everywhere
in &, which are square integrable over &. Then there is a vector ¢y such that

) f"" ok w4 1o

for any choice of the point x.
25*
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The proof is based on a lemma of PAYNE & WEINBERGER [12], which states
that if @ (x)c%* (&), and if &% is the exterior of a sphere X of radius R, then
there is a constant vector ¢p,, such that

(8) %93 (@ —po)?do = fIV¢12dy-
ZR 7]

In proving (7) we may clearly assume that [|Vep|2dy< oo, for otherwise
é

no proof would be needed. Also we may assume at first that ¢ (x)c%* ().
Consider the identity, for arbitrary w(x)c%? (&),

(9) fuzAlogrdy=f%:dy:—2f717"'V'“'V’dy+€ﬁuzalgsrda
Fr JRr Zr

Fr

where £ is the interior of a sphere 2% about the origin. From (9) follows im-

mediately
2
f—:;—dy__?f—dy—{—zfqu]zdy-}— (f)uzda

SR SR

The stated result for ¢ (x)€%*(£) is obtained by choosing ¢, from (8), setting
u=¢ —¢,, choosing the origin of coordinates at », and letting R—oo. The
more general assertion of the lemma then follows by a standard approximation
procedure.

Corollary 2.2a. Let @ (x)c%° (&) and have generalized first derivatives in the
exterior &g of the sphere Xy about the origin. Then there is a vector <y such that,
if esther x=0 or else |x| Z2R,

(10) f"" “’°' dystchp (»)|*dy

where we may choose K =3+21f2< 6.
Proof. In the case considered, the counterpart of (9) is

u2
[ o=
ér

u? 1 9 1 9
glfady—l—-[fqul dy + = #u do
Sr &r Zr

. s 0log 7.y
Ve, dy + 4)u Tda
Zr

for any A>0. The choice A=]2—1 yields the stated result.

Corollary 2.2b. Let & and ¢ (x) be as in Lemma 2.2, and suppose |jepg<< oo.
Then there is a vector <y such that @ —pycty (£).

Proof. Choose >0, and choose R so that ||z, <e Define ) (x) by the
conditions:

i) $(x) = (x) — o if |5 <R,
i) ()=2E"" (@(x) —@) if Rs|s|=2R,
i) Y@) =0 if |x| =2R.
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Evidently ¢ (x)c#,(£). We have

P—Po\\2
""‘l’ “«2?’3 =2 "(P "3?3 +38 ((70)) .
Hence by Corollary 2.2a,
[les = solkels, < 50,

I — (o — pollfs = 2[ bl + 2[epllz, < 102¢.

Since ¢ is arbitrary, the result follows.

so that

Corollary 2.2c. The conclusion of Lemma 2.2 holds with @,=0, for all
P (1) e #y(6).

The proof is immediate, since functions in (&) can be approximated in
norm by continuous functions. Similarly, one has

Corollary 2.2d. The conclusion of Corollary 2.2a holds with ¢y=0, for all
@ (%) € #,(6).

2.2, Generalized solutions, the Dirichlet bound
Let w* be prescribed data on X, subject to the restrictions of the preceding

section. It will not, however, be assumed that ¢$w*: do=0. We may suppose
z
the origin of coordinates to lie interior to X and set y(x):yoV(%) where y,
is a real constant so chosen that ¢(w*+y)-do=0 (note that V-y=0). We
z

may then apply Lemma 2.1 to obtain a solenoidal field §(x) such that §(x)=
w*++vy on X and {(«) vanishes outside a neighborhood of X.

In terms of v(x)=u(x) —L(x)+v(x), equations (4) take the form

dv—wy-Vo—Vp=—f—AC+w,-V(E—7),

(11) V-v=0

since Ay=0. A solution of (11) will be sought which satisfies homogeneous
boundary conditions on 2 and at infinity.

Definition 2.1. A field v (x) over & will be said to be a generalized solution
of (11), and the corresponding w(x)=v(x)+§(x) —y(¥) a generalized solution of
(4), whenever i) v(x)eH#; (&), and ii) the relation

(12) [0,¢] — {v,w,.} = (f.p) — [C, 0] - {L— v, w,, 0}
holds for all @ (x)€%5 ,(8).

Evidently, if u(x) is a generalized solution of (4) and if u(x) is smooth,
then wu(x) is a strict solution corresponding to a suitable pressure $(x), and

u(x) —w* on Z. By Lemma 2.2, % (x) —0at infinity in the sense that [ # dx<< oo,
é

It will be shown later that in fact u(x)=0 (i) at infinity, and still more precise
information will be obtained. ’
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Let {¢™ (x)} be a complete set of functions in J# ,(#). It may (and shall)
be assumed that each @™ ()€€ (&), that

(13) [e™(x), 0™ (x)] =07,

and that the {¢ ()} are complete in the uniform topology, that is, any ¢ (x)€
%5 .(€) can be uniformly approximated in & by a linear combination of the

{o" (%)}

Definition 2.2. A field v(x) over & will be said to be an approximating solu-
tion of (12) of order N, and the corvesponding field w(x) an approximating solution
of (4) of order N, whenever i) ©(x) can be expressed as a linear combination of the
functions @ (x), ..., %N (x), and ii) v(x) satisfies the gemeralized equation (12)
for each of the functions @® (%), ..., @™ (x).

Lemma 2.3. For each integer N=1, 2,3, ..., there exists a unique approximai-
tng solution v (x) of (12).

Proof. Writing
N
(14) o) =Y &e"(

and choosing ¢ =™ (x) in (12) leads, because of (13), to the linear system

=P

(15) (Ohet&)=h—Z,— L+

where
a;; — {q,(i)’ w,, (P(k)} ,
h=(f.<), Z,=[C o],
L={8 wo, @™}, ={y, w,, "}
Since ai=—af, we conclude easily that the determinant of the system (15) is

positive, hence for any given {(x), y(x) there is a unique solution (§,, ..., &y)=¢§
of (15).

Lemma 2.4. Suppose |x|f(x)eLy(&). Then there exists a constant K, mot
depending on N, such that for each approximating solution v(x) there holds |v|=
[v(2), o ()< K.

Proof. If »(x) is an approximating solution, we may choose ¢ (%) =v(x)
n (12), obtaining
ol < (1) (7)) + I8l Lol 4 [oo] 5] Tl + 2ol () o]

by Schwarz’ inequality, since {w,w,, v}=0. The result then follows from
Corollary 2.2c, since §(x) has compact support and |y|=|y,| 7% is square
integrable over &.

Corollary 2.4, Under the above hypothesis there is a constant K,, not depend-
ing on N, such that |u| <K, for all approximating solutions u(x).
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This result is now evident from the definition u(x)=wv (x)4¢(x) —y(x) and
from Minkowski’'s inequality.

Theorem 2.5. Suppose |x| f(x)eLy(&). Then there is a generalized solution
w(x) of (4), corresponding to arbitrary prescribed data w* on X. The solution

u(x) tends to zero at infinity in the sense that [ ':—: dx<C 0.

é
Since |v| <K for each N, the Rellich choice theorem [14] yields the exist-
ence of a subsequence of approximating solution of (412) which converges weakly
in 5 , (&) and strongly in L, on any compact subset of £+ 2. Diagonalization
yields a limit function in J# ,(&) which satisfies (12). Since an approximating
solution corresponding to the index N is an approximating solution for any
index M <N, one sees that for the limit function, (12) holds for any of the
{" (%)}, hence for any e (x) %5,
Remark. Note that it is not required that $w*- de=0.
P

2.3. Fundamental solutions, the local representation
A fundamental solution tensor E(x—y) for (4) has been determined ex-
plicitly in a particularly elegant form by OseeN [6]. His construction yields
the components E; (¥ —y) and associated “pressure vector” e={e;(x—y)} in
the form

20
Eii=6ijA@_' ’

ox; 0%
0
&=~ 5 (40—, 70),
(16) as B
0—— 1 f1-—-e adoc,
8no o
0
{ wq wy (x—9)
= , S=|x— —_ = J/
2 I _')’l | @l

Corresponding to any (smooth) vector field w(x) and scalar p(x) we may
define the stress tensor Tw by the relation
0

(Tw),j=—p6;+ (3—:};4* ZZZ)

If u(x) is a solution of (4) in a closed region ¢ with boundary X, there holds
the representation

(17) u(x)=ng-fdy+;ﬁ{u-TE-—E-Tu-+(E-u)w0-}dc

where do is understood as a directed surface element on X, and TE is formed
by interpreting the components {e;} as pressures. Similarly,

(18) j)(x)=gfe-fdy+£§{u-Te—e-Tu+(e-u)wo-}dc

where the “pressure” in the term Te is defined to be e*=w, -V <ﬁ)
r—=y
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We shall need also a truncated fundamental tensor (Fujita [5], p. 96). Let
7 {t) be a function of class €(¢), such that

{1, 0=it<1,

t:
7(¢) 0. 2<¢,

and define #”(t)=n(y). Let 0%(x—y)=%"0(x—y). The truncated tensor
E"={EY} is then defined by the relations (16) simply by inserting @7 in place
of @ in these relations. The utility of this tensor consists in the fact that it
leads to a representation for the solutions of (4), in which boundary integrals do
not appear. In fact, one has, for any solution #(x),

(19) u(x)=[E"-fdy+ [H"-udy

the integrations being extended over all space. Here the tensor H”(x—y),
defined by
— 0 — . 14 3
HE () ={ 0;; A4 —wy- V) 07 (x), Tf Z=0,
0, if x=0
is of class ¥ in all space and vanishes (as does E”(x)) if |x| =2y.

It will be necessary to have a representation of the form (19) for the gen-
eralized solutions constructed in the preceding section. This will be done first
with the somewhat simpler tensors Ej, H} arising in the case w,=0. The ensu-
ing discussion follows Fujita [5].

For any tensor A(x, y) and vector (), set

Ay=[A(xy) b0 dy, A=Ay, 2) Y(y)dy.
Then, if ¢ (x) is smooth, one has Egp = Ef, and
AEyp —Vegp =, V- Egp—o,
AE Y — Ve = — Hip, V-Ejp=o0.
Let V? denote the sphere |x| <2y, and let Y ()€€ (V?). Let ¢ (x)=E},

n=e§Pp. Then (1), (£), and A —Va=¢ —HiY. Inserting ¢(x) as a
test function in the generalized equation (12), which we may write in the form

(21) [u, ] — {u, w,,p} = (f,9),
leads to

(20)

(u, & — Hi) + {E3, wy, u} = (f, E§Y),

and an interchange of order of integration yields
(g, u — Hyu) + (Y, Ejwy - Vu) = (§, EFf).

Since ¢ is arbitrary in €3°(V?), there must hold
(22) w(x) = [ B} (f—w, V) dy + [ Hy - wdy

for almost every x whose distance from X' exceeds 2y, whenever u(x) is a gen-
eralized solution of (4).
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2.4. Local Regularity of Generalized Solutions

From (22) follows immediately the interior regularity of the generalized
solution u(x), the smoothness of the solution depending only on the smoothness

of f(x).

Theorem 2.6. Let f(x)c€" (&), r=0. Then any generalized solution u(x)¢c
Erig), and p(x)cGTITE). The system (4) is satisfied strictly through-
out &. If also f(x)—0 as x— oo, then so does u(x) together with its derivatives
of order up to v+ 2.

Proof. The order of singularity of E} at x=2y can be calculated from the
explicit formula, valid for [x—y| <y,

Ej(x—3) =Fo(s —y) = {3 — L2l iz |
Schwarz’ inequality and Corollary 2.2¢, applied to (22), yield immediately a
bound on |u(x)|, uniform at all points of distance exceeding 2y from X. Writing
(22) in the form

(23) u(x)=[E}-fay+ [u-wy VEjdy + [ Hy-udy,

and using the bound on |u(x)|, one finds that w(x)c%°*#(£) for any g<1.
Placing this result again into (23) permits successive improvement of the esti-
mate, until the (prescribed) smoothness of f(x) has been fully exploited. The
result is the assertion of Theorem 2.6 with regard to u(x). The corresponding
property of p(x) can then be obtained directly from the strict equation (4).
The fact that u(x)—0 at infinity is obtained by applying (19) for large |x|
and using Corollary 2.2d. The vanishing of the derivatives of u(x) at infinity
then follows by repeated use of (19), as above.

We have also the following general result:

Corollary 2.6. Let f(x)€€"t, and let H; denote a Holder constant for the
r'® derivatives of f(x), with exponent a. Suppose u(x) satisfies the generalized
equation

[u, ] —{u, wy, B}=(f, P)

in a sphere VY (& of radius vy, for all test functions ®(x) 5, (V?). Suppose u(x)
can be extended to a field in H,(VV)nHy(€), with |u| <M. Then there is a
constant C, depending only on w,, on y, and on g, such that at the center of V¥
there holds for all ¢ derivatives Dyu, 0=9=r+2,

(24) | D, u| _s_C(M+Hf+m‘%x|f(x)|).

The proof follows by adjoining Corollary 2.2¢ to the above discussion.

Theorem 2.7. Suppose X is of class €** and w* of class €7 on X, and
suppose f is bounded near X. Then Vu(x), p(%)c€°+* in a closed (outer) neigh-
borhood of X, and u(x) >w* on X.
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The proof can be obtained from the ObgQvisT estimates [15] for the Green's
tensor for (6) in an annular region bounded by X' and by a sphere X, contain-
ing 2. The reasoning follows the lines of classical potential theory, and I shall
omit details (cf. [2, 5, 16]).

2.5. Representation in the Large

Let u(x) be a generalized solution of (4) in &, in the sense of Definition 2.1,
and suppose f(x)€%°**(€). By Theorem 2.6, u(x) is a strict solution in &, and
we may apply the representation (17) to #(x) in the annular region &5 bounded
by X and by a sphere 2% of large radius R, obtaining

(25) u(x) fE fiy+ ¢ {u-TE-—E-Tu-+ (E-u)w,}do

Z+Zp

for xe&p.

Let us assume that f(x) has one of the following properties: either i) f(x) =
g (%) - Vg (), with g (x) ey (€ +Z), or ii) |%|%f (x)€L,(6), for some B> . Then
formal estimation of the volume integral in (25) shows that it can be extended
to an integral over all of & which converges absolutely and approaches zero
as x—> oo, The former property implies that for each fixed x the outer surface
integral tends to a finite limit as R— oo. Thus,
(26) F(x)= lim ${u-TE-—E-Tu-+ (E-u)w,}do

—)002

exists and is finite for each x.

In the integrand of (26), all terms involving u#(x) and its derivatives vanish
at infinity, by Theorem 2.6. The same theorem shows that V$->0, since (4)
equates I/ to a sum of terms which tend to zero. Hence p(x)=o0(r) as x— .
On the other hand, the defining relations (16) imply that the successive deriv-
atives of E(x) and of e(x) in arbitrary directions, if of sufficiently high order,
will tend to zero more rapidly than any prescribed negative power of 7. It is
not obvious that (26) can be differentiated under the sign, but it is possible to
interchange the limit operation with the formation of difference quotients, which
decay asymptotically with the same order as the corresponding derivatives.
Thus, letting 8"V F(x) denote the result of taking N successive differences in
arbitrary directions, there will hold

M F(x) = Jim J{u-TOME- —™ME - Tu+ (™E-u)w,}do
R—>o0 5,

=0

identically in x whenever N is sufficiently large. It follows that F(x) is a poly-
nomial in the components of x, F(x)=Py(x) where Py(x) has degree at most
N —1. Hence (25) implies

u(x) =uy(%) +uz(x)+ Py (x)

where u;(x) and uzy(x)—>0 as x—oco. But by Theorem 2.6, u(x)—0, hence
Py (x) =0, and we conclude F(x)=Py(x})=0 in x.
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The above reasoning can be repeated with little change when there is an
inhomogeneous term of the form f(x)=h(x) - Vh(x), for which it is only known
that V-h(x)=0, that the integral

(27) I(x) =th(y) h(y)-VE(x—y)dy

converges absolutely, and that J(x) -0 as x— oo. For then

(28) [JE-h-Vhdy=— [h-h-VEdy+ $ (E-h)hdo,
ér ér Z+2Zr

and the reasoning can be repeated with the additional term Rlim $(E-h)hdo

—)002R
added to F(x). In order that I(x)—0, it suffices to have |h(x)| =o0(r—3) as
x— oo, although weaker conditions would do.
A similar discussion can be given for the pressure p(x), starting with the
representation (18).

Summarizing, we have the following result:

Theorem 2.8.  Suppose f(x)=f,(x)+1a(¥)+(#), where f,(2), f,(x), (%)
C***(8), and suppose f,(x) =g (x) - Vg (x) with g (x)cH,)(€+X), while |x|Pfy(x)c
Ly(8) for some B> %, and fy(x)=h(x) - Vh(x), where h(x) is as above (e.g.,
V-h=0 and |h(x)| =o0(r—Y) at infinity). Let u(x) be a generalized solution of
(4) in & in the sense of Definition 2.1, and suppose that Vu(x), p(x) are con-
tinuous up to X. Then

u(x) =é’fE(x—y)-f(y) dy-l—gi{u- TE—E-Tu+ (E-u)wy}do,

8
) ﬁ(x)=;1’o+€fe(x—y) -i(y)dy+g{u- Te—e-Tu+(e-u)wy}do

tn &, where p, is an arbitrary constant.

An unpleasant but formal computation, starting with the definition (16),
yields the following estimates for the upper bounds of all components of E,
VE, when |x| =7 is large:1

1 1—e™—0s
o | E| <C7 rra
3 ~os —os ~0os
g? 1—e —0ose 1t 1—e
|VE|<C 7 oo i

for some constant C. Similar estimates hold for the higher derivatives of E(x).
Also,

(30) e(n=-7 (i)

4n 7

In terms of these estimates, the mean value theorem applied to (28) yields:

tIn [7, p. 392] and in [13, p. 204), the second term in the estimate of [VE| is
omitted, apparently due to an error in copying. This omission does not affect the
content of those papers.
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Corollary 2.8. Suppose f(x) has compact support in &+ 2. Then the behavior
of the generalized solution u(x), p(x) at infinity is controlied by that of the funda-
mental tensor E(x), e(x), in the sense

u(x)=a-E(x)+be(x) +o(x)
P(x) =2+ B-e(x)+ (%)
for constant vectors @, B and scalar b. Here |o(x)| may be chosen in the form of

the right side of (29), while | T(x)| <Cr=3. Both expressions (31) may be differen-
tiated any number of times, with corresponding improved rate of decay of o (x), T(x).

31)

A particular consequence of (31) is that the solution w(x) admits a par-
aboloidal “wake region” in the direction of w,, interior to which | (x)| <Cr2.
Exterior to this region, the decay of u(x) is progressively more rapid until,
exterior to any circular cone with axis in direction w,, one has |u(x)| <Cr2
This behavior will be discussed in further detail in § 5.

Note that (31) completely characterizes the qualitative asymptotic struc-
ture of any generalized solution; the method of construction of these solutions
yielded no information a priori beyond the fact that u(x)cs(&).

2.6. The Green’s Tensor

Theorem 2.6 has as particular consequence the existence in & of a tensor
A;;(x, ¥), whose row and column vectors satisfy as function of y the adjoint
system

Autw,-Vu—Vp=0,
(32) ’
V-u=0
and which has the properties i) if ye Z, then A;; (%, y) =—E;;(x, ¥), ii) A;; (x, ) >0
as y— oo, any fixed xe&. Thus, there exists a Green's tensor

G(%, y)=E(x, y)+A(x, ¥)

for the system (4), whose components vanish, as functions of y, on X and at
infinity.

The qualitative behavior of G{x, ¥} as y—> oo is known from Corollary 2.8.
Let G*(x, y) be the Green’s tensor for the adjoint system (32), so that its row
and column vectors satisfy the original system (4),. The representation formula
(17), together with Corollary 2.8, yields the symmetry property

(33) G;j(%, 3) =Gf(y, %).
From (33) we conclude:
i) the row and columm vectors of G(x, y) satisfy (4), as functions of x,
i) }EnzG (%, ¥)=0, uniformly for all yc& which exceed a fixed distance from X.

The following lemmas characterize quantitatively the asymptotic behavior
of G(x, y) at infinity, and its local behavior near X.

Lemma 2.9. Let [x]| =R be fixed. There exists an Ry and a constant C(R,)
such that, for all (fixed) R>R,, |A|<CR™. The estimate is uniform in w,,
in any finite interval of this parameter.
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It suffices to choose R, so that all points of 2 lie interior to a sphere of
radius R,.

Proof. Because of the estimates (29), there is a constant C for which
|E| <CR?, |VE|<CR?on X. It is evident from the definition that a similar
estimate holds for the derivatives of E(x, y) of arbitrary order on X. By
Lemma 2.1, there is a solenoidal field Z(x; y) in &, having compact support
in a prescribed neighborhood &; of 2, such that Z(x; y)=E(x, y) if ycX, and
such that |Z(x; y)| <CR?, |Z(x; y)] <CR™ throughout &. (One verifies
easily that ¢ E do=0, thus assuring the existence of Z(x; y).)

z

In terms of E=A4—Z, equation (32) becomes
48+wy-VE—Va=—AZ —w,-VZ

where a is the “pressure”” term associated with A(x, y). Multiply by X, integrate
over an annular region & of outer radius R, and let R— o, obtaining

=[P =~ [E, 2] 4 {Z, w,, E}
the outer surface integral vanishing in the limit by Corollary 2.8. Hence
- 1 e 1 w A -
2P <L jEp + Lz + Lol (@) + 2 ooy 2]
for any positive 2. The result now follows, after suitable choice of 4, by Min-

kowski’s inequality.

Lemma 2.10. Let X: |x| =R, be an arbitrary but fixed spherical surface sur-
rounding 2. Then at all points yc X there holds, if |x| =R>2R,, |A(x, y)| <CR™,
|V A(x, y)| <CR?, |Va(x, y)| <CRL The estimates are uniform on any finite
interval of the parameter w,.

The proof is obtained immediately from Lemma 2.9 and Corollary 2.6.

Lemma 2.11. Let X, be as above. Then for y outside 2, and |x| =R=2R,,
there holds, uniformly in any finite interval of the parameter wy,

|A(%, )| <CR|a-E(—y)+be(—y) +o(—3),

64 ja(x, »)| <CR2B-e(—y) +1(— )

after normalization of a(x,y) by a suitable additive constant. Here o(y), T(y),
a,b, B have the same meaning as in Corollary 2.8. These inequalities may be
differentiated formally with respect to y on both sides.

Proof. For fixed x exterior to X, we may apply Theorem 2.8 to obtain,
after normalizing o (x, ¥),

A(%,y)=§{A- TEx —E*-TA + (E*- A) wy} do,
Zo

a(x,y) =${a-Tex —e*- Ta+ (e*-u) wy}do
Zo

where E*, e* are the fundamental tensor and pressure for the adjoint system
(32), whenever y is exterior to X,. The stated result then follows by using the
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symmetry property E*(x— y)=E (y— x), placing the estimates of Lemma 2.10
— and the corresponding estimates for the higher derivatives of E — into the
integrand and repeating the reasoning that led to Corollary 2.8.

Lemma 2.12. Let 2, be as above. In any closed neighborhood A, of X which
does not contarn X, theve holds, uniformly for w, in any finite interval,

|[A(x, )| <CR?,  |VA(x, y)|<CR?,

|a(x, )] <CR?

whenever |x| =R>2R,.

Proof. In the annular region bounded by 2 and by %, A(x, ¥), a(x, y) can
be represented, as functions of y, by the Green’s tensor for the system (32).
The result then follows from Lemma 2.9, Lemma 2.10, and from the estimates
of ODQVvIST on the Green’s tensor for (32) in a finite region. The procedure is
identical to the method of proof of Theorem 2.7, and details can be found in
the reference cited there.

3. The Underlying Estimate

The existence theorem for physically reasonable solutions of (2) will be made
to depend on the following estimate for the Green’s tensor G'(x, y; w,) of (4),
in &:

Theorem 3.1. There is a constant H, uniform in any finite interval of w,,
such that

(35) %1 J1y 1721V, G (. y; wo) | dy < H
for all x¢é&.
Several auxiliary lemmas will be needed to prove this result.

Lemma 3.2. Let x be interior to a sphere Xy of vadius R, and suppose the
distance from x to Xy exceeds R[2. There exists a constant C, not depending on
R or on w,, such that

(36) ‘:ﬁ|VE(x—y;w0)|d0<C.

Proof. If wy=0, then |VE|<C|x—y|? from which the lemma follows
immediately. Otherwise, the dependence on this parameter can be eliminated
by observing that E(x; Aw,) =4 E(ix; w,). Thus, setting £=21x, n=A41y, one
has

$|VE(x—y); Awy)|do=¢ |VE(E —n; w,)| do.
Zr ZiR

It follows that if the lemma is established for a single value w,==0 and ar-
bitrary R, it holds also for all other values w, =4=0. But for given w,, an estimate
(36) is obtained for large R by an easy calculation, using the estimates (29).
For small R, (36) is a consequence of the local estimate |VE|<C|x—y|%, as
|x—y|—o.

Lemma 3.3. There is a constant H such that

|foIyl'2ll7yA(x,y; wy)|dy<} H

uniformly in any fimite interval of w,, for all sufficiently large |x|.
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This result follows from Lemmas 2.11, 2.12, and 3.2. As a consequence, the
proof of (35) in the case of large || is reduced to the study of the corresponding
expression, in which G is replaced by the fundamental tensor E(x — y; w,).

Lemma 3.4. Let |x| =R and suppose x lies exterior to a sphere X, about the
origin and of radius r<%}R. Let w, be arbitrary but fixed, with wy==0. There
s a constant C, depending on w, but not on R, such that for all R >1 there holds

(37) $|VE(x—y;wy)| do,<CrrR™L
Zr

Proof. The estimate (29) yields in particular |V E(x; wy)| <CR~¥if R>1,
and from this the result follows.

Lemma 3.5. Under the above assumptions, suppose R®=2r<R. There is a
constant C, depending on w, but not on R, such that for all R>1 there holds

(38) folVE(x—y;wo)lday<Cr?R—‘%,

Proof. Consider the contribution to the integral of that part of X, which
lies in a cylinder Z of radius 7! R%, whose axis contains x and has the direction
+ w,. Replacing |V E| by the estimate (29), and the quantity |x—y| in (38)
by its minimum, R —7, one sees that this contribution will be maximized when
Z subtends the maximum possible area on X,. This situation in turn will occur
when Z lies interior to a parallel cylinder Z, of radius 2+! R?, whose axis is
tangent to X,. The area . of that part of X, which lies interior to Z, is easily
estimated and has the order of magnitude 7° R*.

It does not suffice to multiply by 4 the maximum of |VE| on Z, in Z,,
as the resulting estimate would be too weak. It is necessary to split the integra-
tion into two parts, as follows:

i) a concentric subcylinder Z; in Z,, of radius #* R* (smaller than 27 R},
since 27> RY). The area subtended by Z; is of order #* Rf. In Zj, replace | VE|
by the uniform estimate of order R—¥, obtaining as a bound for the net contribu-
tion of the integral over this part of 2, an order of magnitude

r? R—g;

ii) the remainder of Z,. The integral here can be estimated by multiplying
the full area of X, in Z,, of order #* R?, by the maximum of the estimate (29)
for | VE| outside Z; on X,. We obtain an order

ng;!'f_gR_?=7§R—g.

Finally, we estimate the contribution from the part of X, exterior to Z,.
To do so, it suffices to multiply the area of the full sphere 2, by the maximum
of the estimate (29) for |V E| outside Z,. We find an order,

2.y~ *R-$=r"R-4,

Thus, all three estimates have the same order and yield the stated result.
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Lemma 3.6. Under the hypotheses of Theorem 3.1, there is a constant H, not
depending on w,, such that

(39) |2 [y 2|V B (x —y; wo)| dy < §H
the integration being extended over all space.

If wy,=0, the uniform estimate |V,E(x—y;0)] <C|x—y|? reduces the
lemma to a classical potentialtheoretic result. If w,==0, the relation E(x; 1 w,) =
AE(Ax; w,) shows that the left side of (39) is independent of w,, and it there-
fore suffices to prove the result for any particular w,=+0. To do so, write
|x] =R and split the region of integration into three parts, as follows:

I. The exterior of a sphere 2, about the origin. The desired estimate follows
from Lemma 3.2.

II. The annular region between Xy, and X,. In this region, R<2|y| <4R,
hence Lemma 3.2 can again be applied to obtain the correct estimate.

III. The interior of 2y,. If R <1, we have the uniform estimate |V E (x; w,)|
< C|x|® for small |x|, and the desired estimate is immediate. If R>1, we
split this integral again into two parts:

IIIa. The interior of a concentric sphere of radius 3 R:. The uniform esti-
mate |VE|<CR™! over this sphere leads to an evaluation of the form

R
CR-R % [dr=C
0
for the integral in question.
ITIb. The remaining part Q of the interior of Xy,. By Lemma 3.5, if
R}<2r<R, then $|VE(x—y;wy)| do<Cr*R~% Denote this integral by .5,.
Then Zr

iR
Ry GE(x—y;w)dy=R[r2Ldr<
Q 3 RY
iR
<CR}rtdr<C
yRY
which completes the proof of the lemma.

Lemma 3.7. Suppose X' lies interior to a sphere Xy , and let o4, be the annular
region between the two surfaces. Let y lie on the concentric surface Xyp . Then
on any finite interval of values w,, |G (x, y; w)| is bounded, uniformly in w,
and for all xcoty,. The same assertion holds for all derivatives of G(x,y; w,),
and all bounds tend to zevo wniformly as x—2.

This assertion follows from the definition of G(x, y; w,), from the sym-
metry property (33), from Lemma 2.9, and from Corollary 2.6.

Applying Corollary 2.8 to the function u(y)=G(x, y; w,) exterior to X,p ,
we find

Lemma 3.8. Under the hypotheses of the preceding lemma, if xc oty and if
y is exterior to Xyp , then

|V G (% y;w)| <A(|VE(—y)| +|Ve(— )| + lower order terms)

where A —>0 as x— 2.
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Finally, estimates on G (#, ¥; w,) will be needed in the case that both x, ye.,.
These estimates will be obtained by comparing G (x, y; w,) with the simpler
tensor G,(x, ¥) corresponding to the Stokes system (6), in the (finite) region
%, bounded by X' and by X,y .

Let W(x, y; w,) =G (x, ¥; w,y) — Gy(x, ¥).
As function of y for fixed xcsf,, W satisfies the system
VWt w,- VW+w,-VG,— VP =0,

(40) V-wW=o0

and W, VW are finite in 4,. On 2, W=0. On 2y, , W=G(x, y; w,). By
Lemma 2.1 there is a solenoidal field {(x; y) in &%,, such that {(x; y)=0 for
ye, and such that §(x; y)=W(x, y; w,) for ye X, . Further, using Lemma 3.7,
it is clear that § can be chosen so that ||, |V, §| are uniformly bounded when
xcly. Let Q=W —L. Then =0on X, X,z , and V-Q=0 in %,. Multiply
(40) by £ and integrate over #,. We find, for arbitrary fixed xc.,

f]l79|2dy=—f§-w0-VSZdy——f(l79- Ve dy — [ Gy-w,- VR dy
4, #, A #,
from which, for any >0,

@) [Irepay<3t [|r@idy+ Y [ G+ |VE+ Glud)dy.
B B, .

°

The estimates of OpQvist [15] imply in particular | Gy(x, ¥)| <C|x—y|7?,
uniformly for x, ye%,. Hence (41) implies:

Lemma 3.9. If G(x, y) is the Green’s tensor for (6) in B, and G(x, y; w,)
the Green’s tensor for (4) in &, then W= G — G satisfies |W| B,<C as function
of vy, uniformly for xesd, and for w, in any finite interval.

Let us represent the tensor field W in %, with the aid of the fundamental
tensor G, and the auxiliary field §(x, y). We find

W(x, y; w,) =§(x, ) +gf Go(y,2) ~wy VW(x,2)dz —

— [ Gy(3,2) Wy VGy(x,2)dz— [ Gy(y,2) - AG(x,2) dz.
%y %y

If y+x, we may differentiate under the sign with respect to y. Using the
Odgqvist estimate |V Gy(x, y)| <C|x— |2, we have following:

|V, Wiz, )| <C [ 2|V, W(x,2)|dz+C [r,ir;2dz+C.
#, B
Setting |y| =7,,, multiplying by 755 and integrating over %,, we obtain
Jro W dy<C 7 |V Wz, dz+C [ reyrssdy +C
SC[ridz+C [|VW|tdz+C|logr,,|
A @,

for a suitable constant C. We have proved:
Arch. Rational Mech. Anal., Vol. 19 26
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Lemma 3.10. Under the hypotheses of the preceding lemma there holds for
XES,

H
|| [Iy1217 G, y; w dy< 2
%o

for some constant H, uniformly on any finite set of values w,.
This lemma has completed the proof of Theorem 3.1, which now follows from
Lemmas 3.3 and 3.6 if |#| is large, and from Lemmas 3.8 and 3.10 if x is near Z.

4, The Nonlinear Problem; Existence

In terms of the variable u(x)=A4"(w —w,), the Navier-Stokes equations (2)
take the form

6) Au—wyVu—Vp=f(x)+Au-Vu,

V-u=0.

Let u* be prescribed data on 2, and suppose f(x) is locally smooth and
decays suitably at infinity.

It is proposed to solve (3) for a function w(x) satisfying |u(x)| <Cr? at
infinity, by an approximation procedure. To do so, we begin by representing
an arbitrary solution u(x) in & by the Green’s tensor G (x, y; w,) introduced
in the preceding section. For an annular region .24 bounded by X and by a
sphere 2 of (large) radius R, we find

ux)=¢u*TGde+ [G -fdy+AfG -u-Vudy+
P e e
+éu-TG—G-Tu+ (G-u)w,do.
ZR

We may also write, since G(x, y)=0 if yeZX,
fG-u-Vudy=—f[u-u-VGdy+¢ (G- -u)udo.
K/ £/ ZR

If we assume for the moment the results of § 5, then Corollary 2.8, applied to
G(x,y) for y > oo, shows that the outer surface integral vanishes in the limit,
and we obtain the representation, valid whenever |x|?f(x)€L,(&), > %,

(42) u(x)=¢u*-TGdo+ [G-fdy—Afu-u-VGady.
z é é

The first two terms on the right represent the solution U(x) of the inhomo-
geneous linear equation (4), such that U(x)=w* on X. Thus, any solution %{x)
of (3) with the specified decay at infinity admits the representation

(43) u(x) == U(x) — lgfu u-VGdy

where G=G(x, y; w,) in the Green’s tensor for (4) in &.

Let us suppose f(x) so chosen that |U(x)] <C7r? in &. In particular, this
will be the case if f(x) has compact support in & We seek to write u(x) as
an expansion

(44) w(e) = Ul) + Sy (1) 7
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in the parameter 4, such that |u;(x)| <Cr? for each j. Assuming (44), set

v; (x)=7u;(x), vy(x)=rU(x), obtaining

(45) v(r) =ru(x) = Sv;(x) ¥,
The representation (43) leads to the recursion relation
0, 41(%) =|x|€f [¥]72 [0 () * 04 (9) + 01 (y) " Oy (V) + - +

+vn(y) ""o(y)] . VG(x»y; wo) dy-
By Theorem 3.1 there holds
|1 ly|7# 1V G (x, y; o) dy < H

(46)

uniformly for x€&. Thus the series with constant coefficients
(47) V=§Kﬂ
will be a dominant series for (45), provided
[vo ()| £V,,  all xed,
V=WV + WY1+ + LR A,
The convergence of (47) then implies
V=TV,+AHV2

The solution of this equation has a branch which is analytic in 4 in a circle
about the origin, whose radius is determined by the vanishing of the discriminant.

Thus, the series (47), and hence also the series (44), converges whenever A< (4H V;)3,
and provides a solution of (3) in & for such A.

o
We may state further: the solution w(x)=u,(x)+ 2 w,(x) A is unique among
1

all solutions wu(x) satisfying the same boundary conditions and admitting cor-
responding expansions, such that |u;| =0(r™Y) at infinity. For then the recursion
relations, applied to the difference u(x) — u(x), lead successively to the identities
u; (%) —u;(x) =0 in &, for each j.

One consequence of the above result for the original Navier-Stokes equations
(2) is as follows. Suppose data w* are prescribed on 2. Set u*=w*—w,,
and let U(x) be the solution of the linearized system (4) with data u*. Suppose

u* and [ are sufficiently small that 4 H sup |%| |JU(x)| <1. Then the series (44)
converges for the value 1=1. We have proved:

Theorem 4.1. If the data w* are sufficiently close to w,, and the external
force f(x) sufficiently small, in the sense indicated above, then theve is a solution
w (x) of the Navier-Stokes equations (2) in &, such that w (x) =w* on X, w(x) —w,
at infinity and |w(x) —wy| <Crt in & The solution can be obtained explicitly
by a successive approximation procedure, requiring only the solution of linear in-
homogeneous equations, with vanishing boundary conditions.

The estimates leading to Theorem 4.1 are uniform on any finite interval of
values w,. Hence, we obtain the following special case of the above result:

26*
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Corollary 4.1. If w, and f(x) are sufficiently small, then there is a solution
w(x) of (2) in &, such that w(x)=0 on X, w(x) >w, at infinity, and |w (x) —w,|
<Crtin é&.

The solutions just constructed are unique in a broad class for small data,
and they are physically reasonable in the sense that they exhibit a paraboloidal
“wake region’’ in the direction of the flow at infinity. The demonstrations of
these facts require, however, some effort; they are a consequence of the material
in the following section.

5. Asymptotic Structure of the Solutions; Uniqueness

The material to follow is based on the representation

(48) u(x)=——&fu-u-l7Edy+);ﬁ[u-TE—E-Tu+(E-u)(u+w0)]do

with u(x) =1 (x) —w,, which, like (42), is valid for any of the solutions of (2},
in & to be considered. Under suitable assumptions, we shall estimate u(x) at
infinity.
8.1. The case wy==0
If w, =0, the solutions constructed in the preceding section have at infinity
a structure which is identical, up to terms of small order, with that of the
fundamental tensor E (x), e(x), in the sense

w(x)=w,+a- E(x)+be(x)+0o(x)

where @, b, 6(x) have the significance indicated in Corollary 2.8. To show this,
it suffices to show that the nonlinear operator

Nlu] =€f|"(y)|“| VE(x,9)| dy

has the order o(x) at infinity whenever u(x) is a solution of (3) satisfying
| ()| =0 (r?). The proof of this can be obtained as a consequence of the follow-
ing general result.

Theorem 5.1. Suppose w,=+=0. Let v denote distance along an axis in the
direction wg, and let p be distance orthogonal to the axis. Suppose u(x) satisfies
tn & the inequalities

|%] throughout &,
|| 72+4Po=F 4f o=|z|4,
u(x)| <
(49) , ()l |x|_a_%ﬁ if T<o0,
1 if x| =1,

where 3 <a<<3 and f=0. Then N[u] satisfies, for some constant C independent
of the particular choice of u(x),

Clx| ¢ throughout &,
Clx|=2+¥o=F if o=|q|},
(50) Nu< Cx|-2-4F if <0,

c if x| =1
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where & is any quaniity such that
min [+ 2, a+§] it B
min [oc—{—e, u+§] if B>
with e=o— %, f*=min[B, 1], and f is replaced by
. &
& 1f ﬂéz
min{2e+ B, 20+ *, 28,6 +2,3], +f ﬂ>i

Remark 1. The hypothesis (49) implies the existence of a paraboloidal ‘‘wake
region” in the direction w,, in which u(x)=0(|x|~*). Outside any cone whose

(51) x<

(52) p=

B8
axis coincides with that of the paraboloid, there holds u(x)=0 (|x|—°‘_ _)

Remark 2. The reason for excluding equality in (51) is the possible occurrence
of logarithmic terms. Such terms can occur in the estimate for N[u] in the
three cases f=1, 148 —2«=0, or 3 —2a—F*=0. In all other cases the in-
equality in (51) can be replaced by equality.

Theorem 5.1 will be proved by splitting the region of integration into a number
of subregions, in each of which one of the two factors occurring in the integrand
of the expression for Nu] is constant on each of a suitable family of surfaces of inte-
gration. The decomposition is indicated in Fig. 1 (overleaf), the various symmetries
in the figure being indicated in the end view. The origin of coordinates is de-
signated by 0, x is the point of evaluation, |x| =R, and x is (at first) assumed
at distance CR}*° from the paraboloidal axis through 0, where 0<¢<1. 0=0
corresponds to a paraboloidal “wake” surface, while =2 yields a cone con-
taining all such paraboloids at infinity. For purposes of definiteness the value
C=2 is chosen in Fig.1. The points 0 and x are each enclosed in cylinders
of radius 1 R¥*9, and both these cylinders are enclosed in a larger one of radius
5 Ri+o,

In the estimates that follow, multiplicative constants having no relevance
to order of magnitude are omitted; thus a term R*is to be understood as a term
bounded for large R by CR* for some constant C. The Roman numerals cor-
respond to the estimates for fu?|VE| dy over the regions indicated in Fig. 1.
The symbol A denotes the exponent of » which appears in each estimate.

I. In this region, |u|2<R“2°‘_ﬁ)@+") |VE| <R~2%+9, Hence
h= —B-3) +6 +3(z+o0)
- 2“+/3 zt+
II. Here |u|?< 7 2+ R-28(4+9) while ]VEI < R™%-39, Hence
11 <« R—26+3)(3+0) f‘r_2°‘+ﬁd‘!',

Rit+o
so that

lnémax{—oc—s—zﬂa—a,—oc——g——Zow—ﬂa}

unless 1-+4-f—2a=0, in which case a logarithmic term appears.
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III. A formal calculation yields the estimate for the surface integral of u?(y)
over a sphere V, of radius » =1 about the origin:

$utdg < r2-20—F",
b4

Jurdy < max {y*~2*—#" 1}
Ve

Hence

unless 3 — 20— =0, in which case a logarithmic factor enters.

| | w |
ES N
|. _____
I 4 / I .
IPR Y AANCANVZAN Q
Z /4 -
| 7 I’“( ,
xR YN )
L_____ s SN Z XV
! | 7 P>
AR R b
| I x>\ |
~N
~ |
a \\ }
e |
| >
| ~
X7 S
| ~
Fig. 1

The radius of the sphere III is r=Ri*°. In this sphere |V E| <R™3&+),
Thus if 3 —2¢— =0, then

App<max{—(2a+p) (3+0), —3(F+0)}.

a logarithmic factor appearing in the other case.

IV. One has
[|VE)ay <.
v,

Again r=R¥*°, while |u]2<<R~2@+F°) jn IV. Thus

)qv<—m—8"—2ﬂ(7——1—+%
<—a—e—2f0
since o< 3.
V. There holds uniformly |V E| < R~3#+9. Consider first the subregion Va
defined by setting g®<1. In Va one has |u|2<77%* Therefore
1;

R
Va< R™34+9 [ gy g2 [ odp.
Rito o
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Since a> 1,
e et Ava< — (2at-1) (+0).

In the remaining part Vb of V there holds |u|2< 77 2*+fp=2f, so that

R RY+o
Vb < R™3G+9) [ Jyg—2ath [ o=2h+1 4y
Ri"'" .
= R-3@+a) fRd‘r 7-2a+8 R™3P-DG+I - gy,
Th Rito T—(p_l), ﬂ> 1.
us,
—a—e—280—0,
—— g —2a0—fo,
z'Vb é max
—a—e—30,
—a— L — 200

unless =1 or 1+f—2a=0, in which cases logarithmic factors appear.

VL. In this region all quantities are of not larger magnitude than in V, hence
the above estimate dominates.

VII. The distance from O to x along the t-axis has the order R, and there
is no loss of generality in setting it equal to R. One then has v=R—s, where
s is distance from x along the z-axis in the direction —w0,. Let I, denote a
section of the cylinder containing x, at distance s= R4+ from x. One computes
from (29)

[|VE|do<s™t=(R—17)7L
L

In VII, |u|2< 7z 22+FR-2F(+o), Thus,

R
VII < R~2864+9) [ g—2a+B(R  q)~d4 7,
Rito
Set t=R{. Then

1
VIiI< R—2ﬁ(%+a)R—-2a+ﬁ+sft—2a+ﬁ(1 —)~tdt
R—b+o
< R-2a-2p0t} M+ R(—2a+8+1) (—%+0)]

or a logarithm replacing the bracketed expression if 14— 2ax=0. Therefore
lvngmax{—a—s—zﬂa, —oc—g —ﬂa—Zeo‘}

a logarithm appearing in the exceptional case 1+ —2a=0.

VIII. Here
|u|2 < R—2=+8 R-2P(+o),
[|VE|do<|s|8R*2,
I,
so that

VIII § R—2a—2ﬂaR1+2¢1R—2(g+a)
or
lvmé—a——;——i—- 28+ ¢ o.
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IX. In this region, |u|2<R(-2*—-A U+ [|PE|do<R™* Thus
I

IX < R(-2e—flli+o) R—4 Ri+a
so that
hxé—a—g—Zaa—ﬁa—{—a

B

=—oc—7—2£o'—ﬁo'.

X. There holds here [|VE| do<R™}, |ul|2<7=2*~% Hence
I

R
X <R[ 2Py

R.“—Fd
from which
lxg—a——»g—zaa——ﬂo‘—l—o‘
§—a—§—2sa—ﬂo‘

since a=%+=s.
XI. We have |uj?<t~2#, |V E| <™ so that

R o0
XI< fdro=2 [ p2dp
Rito Rito
from which

Ixi< max{—a—e—ﬁ—o,—a—g—Zoca—ﬁa}

unless 14§ —2e=0, in which case a logarithm appears.
XII. Here |u|2<g~?*", |VE| <p® hence

o0
X< Rx’;+uf9—2z-ﬂ g‘adg
Rito
and

B

lxn§—-¢—-—§ —2a0—fo.
XIIL In this region, |u|2< 72t p~2f |V E| <3, so that

R R
XIII < fdrt3e+8 [ o262
Rrito Rrito
and there follows

lx111§max{-—oc——e—2ﬂa—a, —Oﬂ—% —20(.0'—ﬂ0'}
with the proviso that a logarithmic factor enters if 1+8—2a=0.
XIV. Here |u|2<o™2*F, |VE| <3,

R <]
XIVE fdrfo 2P 2dg
Rito 7
so that

2x1v§—d—%—2ao‘—ﬂa=—- (2a+/3)(_;:_|_g)_
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XV. We integrate over concentric spherical surfaces S, of radius r>2R

centered at 0. On these surfaces, | VE | <778, while [u?do is less than the cor-
Se
responding integral over the entire sphere of that radius,

Jurtdo < $utdo < r*—2—F,
Sy Zy

a result obtained by an easy calculation, using the hypothesis (49). Thus,

XV < [r1i-2e=f gy,
R

and
Axv<— ZQ—ﬂ*.

XVL In this case |u|2<7r~%*# |V E|<7r3. There certainly holds

XVI< [r3y-2a=fp2dy
R
so that
AxviE—2a—f.

XVII. Again we integrate over concentric spherical surfaces about 0, noting
this time that $|VE|do< r
Z,

Since |u|2<7~2*~# in XVII, we obtain
AxynE—a—f—e.
This completes the estimates in the situation considered, for which p=C R}*°,
0=<o0=3. There are two cases not covered by this situation, namely the one in
which x lies exterior to a cone g=CR which opens in the direction w,, and the

one in which g<<RY In the former case, all the above estimates apply with
o=1§ (in fact, they simplify greatly). The latter case requires a special discussion.

T 7
: ¢
7 /7 /7
/ ///J// /// /// / /’,/// \\////, / 57
/ [ l///ll/,/ (/7// /// 0/"///’\ I//W 2/?
)z, Y A, ),
~— /? l' R =7 /(757
1
7
4Rz
Fig.2

The situation is illustrated in Fig. 2. We may assume that 0 lies on the
axis of a cylinder Z of a radius 2R* and that x is of distance < R} from this
axis. This cylinder is now enclosed in another concentric one of radius 3 R:.
One sees immediately that all estimates corresponding to regions outside Z
proceed as before, simply by setting 6=0. In Z, the estimate is now most easily
established, using the decomposition indicated in Fig. 2.

I,. Here |VE|<R7% and

$|u|2do < 222",

r
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Thus,

2
unless 3 — 2« — f*=0, in which event a logarithm appears.
IT,. We have |u|>*<R~2*, ¢ |VE| de<r~t We compute
b8

Alo=max{— %, —a—ﬁ}

A, <—20tit=—a—3%—e.

III,. There holds | E| <R~} and on a cylindrical section I},

o} RY
Ff|u|3d¢7=t‘2°‘ofgdg+ r“”“"‘”{g“"’gde

— Tl—Za + T—2a+ﬁ 1'-1_2“’ ﬂ> 1
7 2a+B R—(ﬂ—l), ‘8 <1.

Integrating with respect to 7, we find
R
I, <R~ [|u|?de
Rt

R~ p>1

<Rt _a_;i_
R ™22, f<1,

[9R°Y

so that
*
lma =—oa— ﬂT .
1V,. Here all quantities are smaller than in III,, so the estimate for that
region prevails.
V,. Throughout this region, |u|2*<R~%% On a section I}, [|VE|do<s*.
Integrating in s, we find L

Ay <—20+i=—a—e.

VI,. All quantities entering in the estimations are smaller than in the case
just considered, so the estimate for V, prevails.

The demonstration of Theorem 5.1 is now completed by collecting all the
above estimates and examining the finite number of possibilities that can occur.

A case of special interest is that in which % (%) decays asymptotically as the
fundamental tensor E (x —y). Then a =1, f=2. This is one of the exceptional
cases in which a logarithm appears (cf. Remark 2 following Theorem 5.1). All
estimates remain unchanged, however, except III and III,. We are led to the
result:

Corollary 5.1. Under the hypotheses of Theorem 5.1, if a=1, B=2, then
N[u] satisfies:
Clx|~Hog (|x| +1) throughout &,
Colog(|x]+1) i ez|zl
Clx|2log (|x] +1) i =z<o,
c if |x]=1
where the constant C does not depend on u(x).

(53) N[u] <
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We may apply the above results to the solutions of (2), in &. Let w(x) be
such a solution, such that w(x) >w, at infinity. Set u(x)=w —w,, and sup-
pose |u(x)| <C|x|™* with «>§. We may write

u(x) =z (x) +ug (%)

corresponding to the surface and volume integrals in the representation (48).
uz(x) satisfies (50) with a =1, f=2, so that N[uy] satisfies (53). On the other
hand, u(x) satisfies (50) with the given « and with f#=0. According to Theo-
rem 5.1, N[u] satisfies again (50) with any &<« and with some 8> 0 (in this
case we may choose &=a). Since |u(x)] = |uz(x)+ug(%)| < |uz(x)| +Nu], it
follows that the original solution w(x) satisfies this improved estimate, with
the proviso that ® <1. Inserting this result into N[u] now yields larger values
for o« and for f§ in the estimate (50). A finite number of iterations then leads
to the result:

Theorem 5.2. Let w(x) be smooth in &+ 2 and satisfy (2), in &. Suppose
[w (%) —wo| <C|x|~* as x—o0 for some a>%. Let u(zx)=w(x)—w,. Then

(54) u(x) =uz(x) + Nlu]

where uy(x) is the surface integral in (48) and N[u)], the volume integral in (48),
satisfies (50) with B=3 and any & such that &< 2. In particular, w(x) exhibits
a paraboloidal ‘‘wake region” at infinity. The behavior of w(x) along any path
tending to infinity is, up to terms of order N[u), identical to that of the fundamental
tensor E(x; w,) considered as function of x.

Let us consider the derivatives of the solution ww(x). The representation
(48) cannot be differentiated under the sign, but the following device is effec-
tive. Consider that part of the volume integral which is extended over a unit
ball V centered at x. We may write, since V-w=V-u=0,

(55) fu-u-VEdy=¢E -wyudo— [E-u-Vudy
|4 S |4

where S is the bounding surface.
At any point z having distance > 2y from X, we may represent % (x) with
the aid of the truncated tensor E¥(x —z; w,) (cf. § 2.3) obtaining

u@g)=[E-u-Vudy+ [H"-udy
ied vY
=—fu-u-VEdy+ [H’-udy.
vy vy
The latter relation leads to a Holder bound on % (z) for any exponent «<<1,
with constant proportional (for fixed o) to max |u(x)|. But we may also write
vY

(56) u(2) =—V{ [u(y) -u(y) —u(z) -u(z)] - VE dy +fyHV'udy-

Because of the Holder continuity of u(x), (56) can be differentiated under
the sign, leading to the estimate

| Pu(z)| < Cm‘i’x|u(y)[ ,
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C depending only on w, and on y. Thus, |Vu| satisfies at infinity the same
estimates which were shown in Theorem 3.2 to hold for |u(x)|. Placing this
result in (55) shows that the quantity V{[u(y)-u(y) - VE(x—y) dy} satisfies
an estimate (50) with x=2, E=4. 4

The remaining terms in the representation (48) can now be estimated by
differentiating under the sign and repeating the reasoning which led to The-
orem 5.2. The procedure is formally unchanged, and details are omitted. We
find

Theorem 5.3. Under the hypotheses of Theorem 5.2, we may write

Vu(x)=Vug(x)+ N'[u]

where |N'[u]| satisfies (50) with &=2, f=4.
Similarly, one may discuss the pressure term, starting from the representa-
tion (see (28))

(57) p(x)=p0+gfe(x—y)-u- Vudy—}-gi{u-Te—e-Tu-{-(e-u)wo}dc

and using the fact that the kernel e(x — y) can be expressed as a gradient. We
obtain

Theorem 5.4. Under the hypotheses of Theorem 5.2, theve holds, analogous
to (54),
p(5)=ps(x)+ P[u]

where P[u] satisfies (50) with =2, f=2.

8.2, The case wy=0

If w,=0, the nonlinear term in (48) does not appear in general to decay
at infinity more rapidly than the surface integral. Nevertheless, this term ad-
mits a qualitative estimate for all functions w(x) such that |w(x)| =0 ().
The estimate can be obtained by subdividing the region of integration into a
sphere of radius §|x| about the origin, the exterior of a concentric sphere of
radius 2|x|, and the remaining annular region. We find easily N[w]<C|x|™
If w(x) is a solution in &, then Ve and $(x) can be estimated as above. Thus:

Theorem 5.5. Suppose w,=0, and |w(x)| < || as x—oco. Then N[w]<
C|x|™, where C does not depend on the choice of w(x). If w(x) ¢s a solution of
(2) 1 &, then N'[w]<C|x|?log|x| as x— oo, and P[w]<C|x|™2

Theorem 5.5 exhibits the compactness property of the operator N[w], which
is the underlying reason that the existence theorem of the preceding section
could be obtained with vanishing data on 2’ and nonvanishing data at infinity.
The class of functions which decay as |x|? is mapped compactly into itself,
uniformly on an interval of w, which extends to w,=0. This is evidently not
the case for any family of functions which decay as |x|~% if « <1, whereas
the method requires such an estimate to hold for some a =<1.

In the material that follows, the following definitions will be adopted:

Definition 5.1. A solution w(x) of (2) in & will be said to be in the class PR
(physically reasonable) if it satisfies the hypotheses of Theorem 5.2 or of Theorem 5.5.
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The justification for the definition lies in the conclusions of those theorems.
Although those results were proved under the assumption f=0, they evidently
hold whenever the volume integrals containing f(x) are sufficiently well behaved
at infinity. This is the case, for example, whenever f(x) has compact support
in &4 2.

Definition 5.2. A solution w(x) of (2) in & will be said to be in the class D
if it has finite Divichlet integral over &, i.e., if

f|l7w|2dx< oo,
&

Solutions of class D were first constructed by LErAY [2], see also [5, 13,
16, 17, 4]. Such solutions are known to be continuous at infinity, but no further
asymptotic properties have been demonstrated (see, however, the discussion in
§6 of [13]). On the other hand, it follows from Theorems 5.3 and 5.5 that
every solution of class PR is also in the class D.

5.3. Consequences
Let & be the force exerted on X by the fluid,

F=—¢Twdo,
z

and define the deformation tensor by (def w),-,-:%(awi + 4 wi)' The follow-

8x,- ax,-
ing results are easy formal consequences of the above estimates. (For further
details, see [7].)

Theorem 5.6. Let w(x)c PR, f=0. Then the term N[u] in the representation
(48) yields no contribution to the force on X, that is, F is determined by the solution
of the linear system (4), defined by the surface integral in (48).

The hypothesis f=0 can, of course, be weakened.

Theorem 5.7. Let w(x)€ PR in &, f=0, and suppose w(x)—>w* = constant
on 2. Then

(58) F - (wy— w*) =2 [ (def w)2dx.
&

Corollary 5.7a. Under the “physical” boundary condition w*=0, there holds
F - wy>0, that is, there is a “drag” force in the direction Wy

Corollary 5.7b. If w(x)cPR in &, f=0 and w(x)=w, on X, then w(x)
1s the uniform flow w(x) =w, in &.

Theorem 5.8. Let w(x)c PR in &, f=0, and set

a=¢{Tw—ww—wyw}dc.
x

Then |w(x) —wo| =o(|x|2) at infinity if and only if a=0. In particular, if
the flux and momentum flux across X' of the (prescribed) data both vawish, then
[w—wy| =o(|x|) if and only if the net force exerted by the fluid on X is zero.

Corollary 5.8a (cf. BERKER [18]). Let w(x) satisfy (2), tn &, w—>w* = const.
on X, and suppose |w(x) —w,| =o(|x|) at infinity. Then w(x)=w, in &.

Theorem 5.9. Let w(x) be a solution of (2), throughout Euclidean three-space,
and suppose w(x)e PR. Then w(x) =w,.
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Finally we establish the uniqueness of solutions w(x)c PR, which are suf-
ficiently close to a uniform flow.

Theorem 5.10. Let w(x) be a solution of (2),, such that w(x)=w* on 2.
Suppose |w(x) —wy| < —; || throughout &. Let v(x) be a solution of (2) such
that ©(x)€ PR, and suppose v(x)=w* on 2. Then v(x)=w(x) throughout &.

Proof. Let ==w—wv, and let g(x) be the difference of pressures. Then

vAdn—n-Vn—Veg=n-Vw—w- V).

Multiply by 0 and integrate over the annular region &5 bounded between X
and a large sphere X,. We obtain

—vfanl%lx:fn--q-dex—fz-é|q|’wdc+
8k &R Zr

(59)
+ <ﬁln|”n do — {(ﬁ Vin|*do + gSqn do.
Zp Zr ZR

By Theorems 5.2 to 5.5 all boundary terms vanish in the limit. Further,
Jo-n-Vwdx=[n-n-Vw—w)dx
&r &R
=—f(w—wy)-n-Vndx+$n- (w—w)ndo.
I3 Zr

Again the surface integral tends to zero. But by hypothesis, |w —w,| < % |%]| 7,
hence if F'n=£0, there holds

gj(w—wo)-n-Vndx2< é;[r—ln-V'quz
< (%)zfr‘2|n|2dxf|l7'q|2dx
B R

by the Schwarz inequality. Since =0 on X, we may extend v to a continuous
field in all space by setting =0 in the complement of £+ 2. Applying Lemma
2.2, we find

[re|g2dx <4 [|Vq|2dx.

é &

Inserting this result into (59) leads to a contradiction unless /=0 in &. But
n=0 on X, hence n=0 in &, which was to be proved.

Remark. Note that the hypothesis f=0 could be weakened considerably.
It would suffice, for example, that (E, f)e, (VE,f)e, (e,fle=0(r"1) at infinity.

6. Perturbation to Zero Reynolds’ Number
Let w (x) be a solution of the exterior problem for (2) in &, such that w (x) =w*
on X and w(x)—>w, at infinity. If w* —1p, is small, can the corresponding
solution u(x) of the linear system (4) or (6) serve as an approximation to w(x)
in &, and if so, in what sense? The answer to this question appears to depend
heavily on the asymptotic structure of the given solution w(x), and also on the
way in which the approximation is constructed. The question is conveniently
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rephrased as a perturbation problem. A given solution w(x) of (2) in & will
be supposed embedded, for small 4, in a one-parameter family of solutions
w(x; A)=w,+Au(x; 1), where u(x; 1), appearing as a solution of (3), is to
achieve fixed boundary data u*, u, on 2’ and at infinity. Here w, is an arbitrary
constant vector, which may or may not be velocity at infinity. Let U{x) be a
solution of the corresponding linear equations (4), and satisfying the same con-
ditions on 2’ and at infinity. One seeks to estimate [w(x; 1) — U(x)] uniformly
in & for small A

The various possibilities available to us may be illustrated by the following
considerations. Suppose for simplicity w (x) =w (x; 1) and w () >wg at infinity.
Then it may be convenient to set wy=wg and prescribe w(x; 4) —0 at infinity
for each 1, that is, ua=0. It will be seen shortly that this case leads to a per-
turbation which is uniformly well behaved throughout &. On the other hand,
the equation satisfied by U(x) is still relatively complicated, because of the
factor w,. Alternatively, one may set wy=0, u,=w{, thus perturbing the data
at infinity, Then U(x) satisfies the simpler system (6), but the perturbation
turns out to be singular at infinity. It leads in the three-dimensional case con-
sidered here to Whitehead’s paradox [6, p. 163], and in two dimensions to the
more striking Stokes paradox, which arises from the fact that, in general, solu-
tions U(x) corresponding to the prescribed data u*, u, do not exist [8, 9, 10]2.

A further difficulty arises according to the asymptotic behavior assumed
of w(x) at infinity. If the solutions are assumed of the type constructed in § 4,
i.e., if w(x)ePR (§5.2), then for small 1 (or, alternatively, for given 4 and small
u*, u,) the solutions are unique (Theorem 5.10) and the perturbation completely
determined by the expansion (44). However, solutions exist which satisfy the
stated conditions on 2’ and at infinity and which are only known to be of class D.
The relation between these solutions and those of class PR is not clear; never-
theless, one may again examine the perturbations for the presumably broader
class D in both cases, obtaining uniform estimates in &.

There are thus four cases to consider, and we shall take them in turn. In
each of these cases it will be necessary to distinguish the subcase w,=0, as the
order of approximation appears generally to be weaker in this situation. Through-
out the ensuring discussion it will be supposed that f(x) =0, although this as-
sumption could be replaced by suitable hypotheses on f(x).

6.1. Perturbations Vanishing at Infinity

Case 1, wcPR. We consider a family of solutions w(x; 4) of (2), in &, cor-
responding to data w*=w,+Au* on X, with u* prescribed, and we suppose
|w(x; A) —wy| <AC(A) |x]|~* at infinity for some a>%, for each 1. C(2) is not
supposed uniform in A. If A is sufficiently small, a solution w(x; A) can be
obtained as an expansion in powers of 1 (§ 4), and for small A this is the only
solution in PR (Theorem 5.10). Thus, uniformly in &, there holds

x .
(60) w(x; ) —wy=A|U(x) + 2 w; (%) ¥
1
2 The former perturbation (x,=0) is similar to the “‘outer expansion’’ of KAPLUN,

or of PROUDMAN & PEARSON (see, e.g., [19, 20]). If 4,50, one obtains a perturbation
analogous to their “inner expansion’. See, however, Footnote 7 in [10].



396 RoBERT FINN:

where U(x) is the solution of the linear system (4), which assumes data u* on
2 and vanishes at infinity. This relation may be differentiated term by term
as many times as the smoothness of the data u* will permit. Note that in (60)
the functions U(x), u;(x) do not depend on A. This shows, in particular, that
C(4) can be chosen uniformly for all 4 sufficiently small.

As a particular consequence we obtain:

Theorem 6.1. Let w(x; 1) be a solution of (2), in PR for each A and set u(x; A) =

u*on X .
Afw(x; A) —w,]. Suppose u(x; 1)= .. . % and let U(x) be the solution
0 atinfinity

of (4)g i1 & with the same data. Then if wy == 0, there holds uniformly in & as A—0,

(61) |u(x; 2) — U(x)] < CAz(x)

where T (x) is bounded in & and satisfies (50) with B=2 and &=1. If wy,=0, then
(62) fu(x; 1) — U(x)| <CA|x|?

n &.

That is, any solution w(x) with data on X sufficiently close to w, can be
approximated in & by the solution of the linearized equations, to the indicated
order.

The proof of (61) may be obtained from (43), noting that VG(x, y; wy) =
VE-+VA. Thus, fu-u- VG dy splits into two terms, the first of which can

é

be estimated by Theorem 5.1. As to the second, we observe that A(x, y; w,)
is a solution in & of the adjoint of (4),, and, if w, <0, assumes boundary data
of the form B(x) t(x), where B(x) is bounded with all its tangential derivatives
on 2. The methods of §2.6 then yield estimates for A(x, y;w,) as function
of y, from which the resuit follows.

The derivatives admit a corresponding estimate when w, <=0, with f=3 and
any &< 3. For the pressure one obtains §=2 and any &<2. If w,=0, then
for the derivatives and pressure, |x] should be replaced by |x|-2log|x|, | x|,
respectively.

Case 2, Perturbation of Class D. A family of solutions u(x; 1) =11 [w(x; 1) —w,]
of (3), is considered, such that u(x; )=u* on X, u(x; A)—>0 at infinity, and
|u]s< C << oo, uniformly for 2 sufficiently small3. Again let U(x) be the solution
of the linearized system (4), with the same data. Then

(63) u(x; 1) — Ul#) =/1&fG(x,y; wo) " u(y; A)-Vu(y; A dy.

Now G(x,y; wo)=E(x—y; wy)+ A(x, v; w,). Because of (29), there holds in
particular |E(x—y; w,)| <C|x—y| ™ The estimates of §2.6 show that for
large x, |A(%, ¥; wo)| <C|x|2|y|. We may therefore write

(ng- u-Vu dy)zggflulz(lx-—yl—z—l— lv|-%) dygf| Vul2dy
=C

3 The existence of such solutions can be proved by a procedure due to LErRAY [2];
cf. the remarks in [13, p. 237].
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for some uniform constant C, by Schwarz’ inequality and Lemma 2.2. Thus,
setting #(x)=u(x; 1) — U(x),

(64) (x| =|u(x; }) —Ulx)|<C2

as A—0, for all x bounded from X. The representation (cf. §2.3)

(65) n(x)=ASE u-Vudy+ [H'-ndy

then yields a corresponding estimate for the derivatives of ¥ up to second order.
Thus, in particular, a bound of the form (64) holds for % (x) and its derivatives
on the surface of a sphere 2, containing X and bounding, with X, an annular
region 4.

Let E(x) be a solenoidal field in 4 such that §(x)=u* on X and §(x)=0
outside 2,. Let v(x; A)=u(x; 1) —§(x). Let 2, be a concentric sphere contain-
ing 2, let 24 be the region between X and X,. We may represent »(x; 4) in
<% by the Green’s tensor Gy(x, y) of (6):

v(x; 2) ={Go, wy, v} + A{Gy, u, u} +{Go, wy, B} + [Gy, E] — (G, f) +
+éu-TG,do.
zl

Because of (64), u(x; 4) is bounded on 2. By assumption, |u(x; 4)| < C, hence
|lv(x; A)]<C. Schwarz’ inequality and the Odgqvist estimates |Gy(x, y)| <
Clz—y|?2, |V Gy| <C|x—y|2 then show that |v(x; )] <C in 4; hence also
|[w(x; 2)| <C in 2.

Now let §(x; ) be a solenoidal field in %, equal to n on X, and vanishing

outside a neighborhood of 2, which does not meet X. Because of what has
been proved, §(x) can be constructed so that

lElw<Ca.
Set y=m—{. Since y=0 on X, X, we have in <,
l¥lF=—2{y, w, u} —[v. E] —{y. w,, &}

=A{w, u, v} — [y, §1 —{y. w,, §}

= gyP+CR+CIER
for a suitable C, since u(x; 1) is bounded in 4. Hence |y|,,<C4, and also
(66) Il <C 2.

Finally, we represent 7 in &, by the fundamental tensor G,, obtaining

N(x; 2) ={Gy, wy,n} + 1{G,, u, u} +g5n ‘TG,do.

Since on X, [0| <CA by (64), (66) implies that (64) holds up to X for a suit-
able C. Similarly, one may estimate the derivatives and the pressure terms.
We have proved

Theorem 6.2. Let w(x; ) be a family of solutions of (2)y, such that if u(x; 1) =
A [w(x; 2) —w,), then u(x; A)—0 at infinity and u(x; ))=u* on X. Suppose
further that |u(x; A)|<C, uniformly for small 2. Then there holds uniformly in

Arch. Rational Mech. Anal., Vol. 19 27a
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&, as -0,
(67) |w(x; ) —Ux)|<CA

for the solution U(x) of (4)y in & with corresponding data.

Note that in this case the method does not lead to improved estimates when
w, +0.
For the derivatives one obtains a stronger estimate:

Theorem 6.2a. Under the hypotheses of Theorem 6.2, there holds for x bounded
from X,

|Pu(s; &) — V U@)| < C[A2+ A, (%)]
where v,(x) satisfies (50) with B=3% and any &<} when wy=0; if wy=0, the
same inequality holds if T, (%) is replaced by |x|~2log |x|. Uniformly up to Z, one has
|Vu(x; 2)—V Ux)| < Ca.

Proof. From
n(x)=2{G,u,
we find
0 (%)=2{G,n, n}+1{G, 0, U}+A{G, U, n} +4{G, U, U}

=AM 4N+ +7)-
Let V be a unit ball centered at x, S its surface. Then for any derivative (),

N ={G" 0}y +{G. 0. sy,
|ni| <C 24+ 2|G |e—v [nls_v
<C1

for small 4, by Theorem 6.2, Schwarz’ inequality, (65), and the hypothesis |u| < C.
7 is estimated similarly. Next, integrating by parts,

M ={G", Unly +$(& - U)nde —{n. U, Gy,
s = 2|2+ A%+ A[U, G"]e_y
=Ca
for small 4. Finally, we may write
n.=—{U, U E}—{U, U, A}.

To the first term, we may apply the method of proof of Theorem 5.3 or Theorem
5.5. In the second, we observe that A4,(x, y; w,) is a solution in & of the adjoint
of (4)y, and, if w, =0, assumes boundary data of the form B(x) =,(x), where
7, (%) satisfies (50) with 8 =3, any & < 2, and B () is bounded with all its tangen-
tial derivatives on 2. The result then follows from the estimates of § 2.6. If w,=0,
one uses the estimate |4,| < C|x|~% on Z. This establishes the theorem when x
is bounded away from X. For x near X, the result is obtained by a procedure
analogous to the discussion of this case for Theorem 6.2.
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6.2. A Lemma on Green’s Tensor
We shall need information on the variation of the Green’s tensor, as function
of the parameter w,.

Lemma 6.3. Uniformly for ycZX, there holds as x—> oo, if wy=+0, Wy=
(1—A)w,,

(68) TG (x,y; wy) — TG(x,y; wy)| < CAz(x)
where T(x) satisfies (50) with a =1, f=2. Also,
(69) TV, G (%, y; w,) — TV, G(x, y; )| < C A7y(x)

where v,(x) saiisfies (50) with any a<<$ and f=3.
Proof. We have G(x, yv; wy)=E(x—y; w,)+A(x, y; w,). Using the rela-
tion E(x; twy)=tE(tx; w,) with t=1—2 leads to
(70) E(x;twy) —E(x; wy) =E(tx; wy) — E(x; wy)) —AE(t x; w,),
so that, applying the mean value theorem to the first two terms on the right,
(71) | E(x; tw,) — E(x; wy)| < C Av(x)
where 7(x) has the properties indicated above.
Differentiating (70) in x,
72) VE(x; twy) — VE(x; w,)
=VE@x,wy) —VE(x;wy) —A2—- A VE({x; w,).
Again using the mean value theorem,
(73) |[VE(%;t wy) — VE(x; wy)| < C A 7y(%)
where 7, satisfies (50) with a=§, §=3. The pressure term, e(x —y) does not
depend on w,. Hence, (68) is verified for the singular part of G (x, y; w,).
The regular part A(x, y; w,) satisfies the system

du+wy-Vu—Vp=o0,
V-u=o0

as function of ¥, and A=A*=E(x, y; w,) for y on 2. We may write A*=B*7(x),
where B* is bounded and has bounded derivatives on 2, uniformly as x— oo,

The field A=A(x, y; tw,) satisfies
dutwy-Vu—Vp=— iw, Vu,

(74)

75

75) V-u=o.

We may write, because of the linearity of (75),
A=A, + A,

where 4,=A* on X, A,=E(x, y; wy)—E(x, y;tw,) on X, and A4,, A, each
satisfy (75) in .
We may write 4 — A=n—A,, where n=A4 — A, 7 and A, will be estimated
in turn.
Arch. Rational Mech. Anal., Vol. 19 27b
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Using the estimates of Theorem 2.8 and its Corollary on the solutions of the
linear systems, we find

A,(x, y; )=By(x,y; ) 7(x)

where B, (x, y; A) satisfies (75) in y, is bounded together with its derivatives
up to X, and admits estimates of the form (31) in ¥ uniformly in x for all suf-
ficiently small A.

The field —w(x, y) satisfies
Ag—wy-Vn—Vp=2dw, VA,

(76) 7or—o

in &, and =0 for ycX. Hence
n(x, y)=—21{G (%, y; t w,), w,, A—}
=—A1(x){G(x, y; t w,y), w,, By}.

For large x, G(x, ¥;tw,) is in L,(€) whenever 2<p< 3, uniformly for |¢— 1]
sufficiently small. Also, |VB| is in L (&) whenever g>%. Choosing p and ¢

in these intervals, such that 1 + % =1, we obtain

[0 (%, 9)] < 42(x) |w,] (&f|G|P)'117 (a’” VB]q)%
<CAz(x)

uniformly for small A4 and large x.

Suppose ycZ,, a spherical surface containing 2. We represent 7 (x, y) by
the truncated tensor (cf. §2.3), obtaining

(78) 0 (%, 5) =— A{E (y, z; twy), wy, A}y + (H?, ).

From (78) we conclude

(77)

V(% )| <CAz(x)

for yc2X, and corresponding estimates for all higher derivatives of .

Hence we may construct, for each x and ¢, a solenoidal field {(y) in the
region &, between X and 2, vanishing outside a given neighborhood of X,
such that L= on Z,, and such that

16le, <CAz(x).
Set v=%—¢. We find, since =0 on X, X,

lo2=2{e, w,, 4.} — v, §] — {v, w,, &}
from which we conclude
o), < CA 7(x)

Il <C2 ().
Now represent v in &4 by the Odqvist tensor G,(x, y) for (6):

n(x,y)=— {Go:ww"I} - /I{Gorwo»fi;} '“)?"l *TGydo.

and hence
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The above estimates of n on Xy, of ||, and of 4;, and the Odqvist estimates
for Gy(x, y) in &, yield the results

(79) In(x 9] | Ta(x, )| < Caz(x)
up to 2.

It remains to estimate 4,. On ZX, IZZI < CAz(x) with a corresponding
estimate for its tangential derivatives of all orders. Hence we may write

Ay (%, y; =24 7(x)By(x, 5; A)
where B, (%, y; 1) has the same properties as were shown for B,(x, y; 1). Thus,
|TB,| is bounded up to X, and therefore
|TA,| <CAz(%)

up to 2. This completes the proof of the first part of the lemma. The remaining
estimate (69) is obtained by the same procedure, using the appropriate estimates
for the derivatives of the fundamental tensor when yeX and || is large.

Lemma 6.4. Suppose w,=0, |Wy| <A. Then there holds for ycZ, as x— oo,
|TG(x, y; 0)— T G(x, y; Wy)| <C to(%; A
where
To(%; A) =min (4 log 471, | x| log | x]).
Also,
|7V, G(x,5;0)—TV, G(x,y; W) <C 7(%, y)

where To=|/A |x]2.

Proof. Observe first that the change of E can not be estimated as above,
and it is necessary to obtain this estimate directly from the defining relations
(16). A formal calculation yields

| E(x; wy) — E(x; 0)] <Cmin (4, [x]7),
|VE(x; wo) — VE(x; 0)] <C 2|x| L
For the regular part A(x, y) we write as before A=A,+A,, with A;=A4 on %,
and set n=A—A4;. n(x, y) satisfies
An—Vp=—w, VA4,

V-n=0

as function of y, and n=0 on 2. We represent v over the region &5 between
2 and a sphere of large radius Xy, using the Green’s tensor G (¥, ¥) for (6) in &:

(82) (%, %) =—&fG(y, ) Wy VA, (2)dz -|-245 M TG—G-Ty)do.

(80)

(81)

Using (29) and the results of §2.5, we find 4,=B, (x, y) | %] where B (x, y)
satisfies (81) and remains bounded as x— o0, A—0. Consequently, on a surface
Z,, there holds

(83) $|VB,|do<C
Zr

uniformly for large %, as 1—0.
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Consider (82) for a point y on a fixed spherical surface X, containing X but
inside 2. One has
|G, 2l <Clri' 73"+l
hence using (83),

JG(y,z) W, VB(2) dz’ <CAlogR
&R
for y=2,.
On X, |n|<CR?Y, |G| <CRY, [TG|<CR2 and $|Tn| do<C, if yeZ,.
Hence Zr

9S(n-TG—G-Tn)dc|<CR'1

Py

for large R and ye2,. Thus
[0 (%, ¥)| <C[R2+A|x|tlogR].
The choice R=A1|x| yields the estimate
[0 (x, )| <CA|x|log A|x|

for large x and small A, and yeZy.

Now we may represent 7 (%, ) in &% by means of the Green’s tensor Gy(x, ¥)

for o,. The procedure is identical to the one used in proving the previous lemma.
We find

| T < CA|x|tlog A72|x|
for large x, small 4, and yel.

To estimate Zz, observe that on 2 we have |f12| < C min (l, |x|‘1) with
stronger estimates for its tangential derivatives, and A, satisfies

AA,—Vp=w, V A,,
V-4,=0
in &. The results of § 2.5 show that
| T A,| <C min (4, |x[2)
on 2.

Collecting the above estimates, one obtains easily the first assertion of the
lemma. The second assertion follows from the same procedure, using the estimate
for the variation of VE. In this case, the volume integral is convergent.

6.3. General Perturbation of Class PR

It will be assumed throughout that the direction of the velocity field is
unvaried at infinity, that is, u, and w, are parallel if w,4-0. If w,=0, no
restriction is made on .

Theorem 6.5. Let w(x; A) be a family of solutions of (2), of class PR, such
that if w(x; ) =A1[w(x; ) —w,], then u(x; ))=u* on X and u(x; 1) —>u, as
x—>oo. Let U(x) be the solution of the linearized system (4), with corresponding
data. Then if w,==0 there holds uniformly in &, as A—0,

|u(x; 4) — Ux)] <CAz(x)
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where t(x) satisfies (50) with a=1, f=2. If wy,=0, then
lu(x; 1) — Ux)| <C 1o(%; A)
where Ty(x; A)=min(Alog A7, |x|2log |x]|).

Proof. For small 1, solutions of the indicated class exist (§ 4), and they are
unique (Theorem 5.10). Therefore the solutions ¢ (x; 1) can be represented by
an expansion (44) based on the equations
(84) Au— (wo+ Avg)-Vu—Vp=2Au—u)-Vu,

Vew=0

for each A, from which one sees from the method of construction that the per-
turbations are uniformly in PR, i.e., |u—uy| <C|x|?, with C independent of
A if A is small.

We have
w(x; ) —uy=A{G, u—uy, u—u} +¢u*—uy) - TGdo
z

=—MHu—uy, u—uy, G} +§ (w*—uy) - TGdo
where G=G (x, y; wy+ Au,), while :

Ux) —uy=9¢ (u*—u,) - TGdo
with G=G (%, y; w,). Thus :
@9MﬂM—Um:-lm—%m—ﬂm@+?mL%WU§—TGM&

Suppose first w,==0. Since u —u,c PR, it satisfies (50) with & =1, §=2. There-
fore, as in the proof of Theorem 6.1, the volume integral on the right satisfies (50)
with any @=1, f=2. To the surface integral we apply Lemma 6.3. This yields the
asserted theorem if | x| is large. If x is near X one may proceed in a way analogous
to the corresponding estimate near X in the proof of Theorem 6.2, and there
should be no need to reiterate the details.

If w,=0, the method is the same, only Lemma 6.3 must be replaced by
Lemma 6.4.

Theorem 6.5a. Under the hypotheses of Theorem 6.5, if wy=-0, there holds
(86) |Vu(x; 2) = VU@x)| < CAr(x)
where T, (x) is as tn Lemma 6.3. If wy=0, then
(87) |Pu(x; ) — VU(x)| <CYi|z|™

Proof. The volume integral in (85) can be differentiated and estimated as
in the proof of Theorem 6.2a. To the surface integral we apply the second part
of Lemma 6.3 or 6.4.

6.4. General Perturbation of Class D
Theorem 6.6. Let w(x; A) be a family of solutions of (2),, such that if w(x; A)=
Aw(x; A) —w,), then w(x; A)—u, at infinity and u(x; A)=u* on X. Suppose
further that |w(x; 2)|<C, uniformly for smail A. Then if wy=+0, there holds
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uniformly in &, as A—0,
|w(x; ) —Ux)| <C 2

for the solution Ul(x) of (4), in & with corresponding data. If w,=0, one has
(88) [u(x; 2) — Ux)] < C(ry(x; ) + 2)
where 7,(x; A)=min (1log 472, | x| log|#|).

Proof. Suppose first w,==0. The functions u(x; 1) — U(x)=n(x; 1) admit
the representation

(% ) =—A{G, u—uy,u—uy} + 6 u*—u) (TG—TG)do

with G=G(x, y; wy+Aty), G=G (%, y; wy). Thus, applying the Schwarz in-
equality and Lemma 2.2 to the volume integral, and Lemma 6.3 to the surface
integral, we obtain |n| <C 21 uniformly over &, as 4->0.

If w,=0, the same reasoning, with Lemma 6.3 replaced by Lemma 6.4,
yields || <C[min(4log A1, | x| log |x]) + 4] the stated result.

For the derivatives one may obtain an improved result. Again suppose first
w,+0. We have, for a derivative 7',

(% A)=— l{é’,u—uo, u — U} +  (u* — uy) (TG — TG do.
P

The volume integral is amenable to the method of proof of Theorem 6.2a, yield-
ing again an estimate

{G', u—uy, u—up}| < C(A2+1 7y (%))

where 7,(#) is as in Theorem 6.2a. To the surface term we apply Lemma 6.3.
In case w,=0, we repeat the reasoning, using the second part of Theorem 6.2a
and Lemma 6.4.

These estimates hold if x is bounded from X. Estimates up to X follow
from the method used in the proof of Theorem 6.2. Thus we have

Theorem 6.6a. Under the hypotheses of Theorem 6.6, if wy <=0, there holds

(89) |Vu(x; ) —VU@Z)|<CA
uniformly in &, and
(90) |Fu(x; ) — V U(x)| < C(22 + A7, (x))

for x bounded from X, where v(x) satisfies (50) with o =1, f=2. If wy=0, (89)
and (90) are replaced by

91) |Vu(x; ) —V U(x)| <C2ilog A2
uniformly in & for small i, and
(92) [Vu(x; ) —VU(x)| < C(A2+ VA|*[™Y)

for x bounded from Z.
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The Table summarizes the results of this section. In this table the following
notation is used:
n(x; )=u(x; ) — U(x), where u(x; 1), U(x) are solutions of (3)y, (4)o,
respectively, with the same data.

To(%; A)=min (1log 17, |x| 2 log |%]).
7(x) =function satisfying (50), with « =1, f=2.
7, (%) =function satisfying (50), with §=3, any a<§.
7, (x) =Tfunction satisfying (50), with a=2, §=4.

Table. Perturbation estimates for small Reynolds’ numbey
The symbols v, 7; are defined at the end of §6.4.

gll:,s‘; I“;éﬁcti?}g Pel;li:x:iritt%on Uniform Estimate in & Estimate away from X
% )
n(x; 1)=§";'(x) A
uy=0 | [n(x; A)|<CAz(x) same
o Va(x; ] <Caz(%)
w
' o | I BI<Ciz)
% sam
° |7n(x; 1] <C Ay (%) €
PR
® .
n(x; A)=§ui(x) A
wy=0 | |n(x; 2)|<C ]| same
. Van(x; H)]<C a]x|2log|x|
w,=
' o | In BI<Cror: B
u sa;
° |Pa(x; 3| <CVi|x|~ me
- o | Intrial<CA 70 (x; )] <CLA+ATy (9]
=0 | Pa(x; A <C 2 s :
w0
0 In(x; Al<ca Va(x; 1)) <CLA24A
uy=+=0 [V‘I](x; l)[<C}. I n{x; ) (4244 7y ()]
D
o In(x; A|<Ca Pn(x; H<
7 | Palrs bl<Ca <C[a*+ || log | ]
wy=0
[n(x; ) <Clro(x; H+4)
v ;| < ClA24-VA x|
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