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1. I n t r o d u c t i o n  

The  ex te r ior  s t a t i o n a r y  p rob lem for the  Nav ie r -S tokes  equat ions  

~ w  
(1) at + , , A w - w .  V w -  V P = - I ,  

V ' w = 0  

consists  in f inding a t ime independen t  solut ion pa i r  w (x), p (x) of (t) in a domain  
ex te r ior  to  a closed surface X, such t h a t  w ( x ) - + ~ 0 ,  a prescr ibed  cons tan t  

vector ,  as x . - + o %  and  w ( x )  assumes prescr ibed  d a t a  ~ *  on 27. 
The  equat ions  (t) cor respond to the  mot ion  of an  incompress ib le  viscous 

fluid. The  quan t i t i e s  which appea r  have  the following phys ica l  s ignif icance:  

: flow ve loc i ty  vec tor ;  
t :  t ime ;  
v: k inemat ic  v iscos i ty ;  

p : pressure ;  
if: ex te rna l  force, a ssumed  prescr ibed ;  
x :  pos i t ion in space.  

I f  w*  ~ 0, w 0 ~: 0, the  p rob lem amoun t s  to  the  de te rmina t ion ,  in a coord ina te  
f rame a t t a c h e d  to  X, of the  flow veloci t ies  in a s t e a d y  mot ion  of 27 th rough  
the  f luid wi th  ve loc i ty  - - ~ 0 ,  under  the  a s sumpt ion  t h a t  the  f luid adheres  a t  
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the surface (the no-slip condition). This problem is the principal motivation 
for the present paper. One of the results (w 4) will be a proof (constructive) 
that  if the data are sufficiently small, there exists exactly one solution whose 
behavior corresponds to physical experience. This solution exhibits a "wake 
region" of fluid behind X which tends to follow X along the direction - -wo,  
and the work required to move that mass of fluid results in a "drag force" on 
27 in the opposite direction. More precisely, the velocity is shown to tend to 
its limit at infinity to the order [xl-t within the wake, and at the more rapid 
rate, Ix[ -~, in any direction other than that  of w 0. The wake is asymptotically 
paraboloidal. The hypothesis ~w*.  d e = 0  (the zero outflux condition), which 

z 
has appeared in earlier literature, is not required in this paper. 

Other physical problems are also accessible to the method. For example, 
one may consider a rotating sphere in a fluid at rest or in uniform motion at 
infinity (the baseball problem), or a situation in which X has porous walls 
through which fluid is being forced at prescribed rates. The results of this paper 
apply to these and to many other cases of interest; the existence of physically 
reasonable solutions is, however, demonstrated only in the case in which the 
data on X are close to the prescribed vector w o. 

The extent to which the requirement of small data reflects the actual be- 
havior of the solutions of (t) is not clear. Both physical experience and a recent 
result of VELTE [1]  strongly suggest that  uniqueness will fail if the data are 
large. On the other hand, it has long been known (c[. LERAY E2], FINN [3, 4]) 
that  smooth solutions exist for very general data, in a class for which the energy 
dissipation is finite. No regularity properties at infinity of these solutions have 
been demonstrated, however, beyond continuity, and no information is avail- 
able on uniqueness. I t  is not even known whether there are multiple solutions 
in this class which vanish on 27 and at infinity. 

I t  appears that  solutions in three dimensions, x = (x 1, x, ,  x~), are more easily 
studied than in two or higher dimensions, and the three-dimensional case is 
the only one considered in this paper. Some partial results for two-dimensional 
flows have been obtained recently by  D. SMITE and will appear elsewhere. 

I t  will be assumed that  the applied force is time independent, so that  f=/~(x). 
Since the solutions to be constructed also have this property, (1) may be written 
in the form 

~, A w - - w .  V w - -  Vp = - I ( x ) ,  
(2)  V -  w = o .  

Solutions are sought as perturbations of the particular solution w(x) 
Wo=Const. Writing w(x; 2)=Wo+~t u(x; ,~), (2) becomes, after relabeling of 
f(x) and p (x), the system 

v A u - -  w o �9 V u  - -  V p  = - -  l ( x )  + 3. u "  V u ,  

(~) V .  u = o 

for u(x; ~). The requirement of small data is conveniently expressed by pre- 
scribing fixed data for u(x; ~) and letting 2 be small. The solution of the stated 
problem is then constructed as a perturbation series in powers of 4, using the 
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solution U(x; wo) of the linearized system 

*, A u -  wo" V u -  Vp - - -  l (x ) ,  
(4) V .  u = 0 

which satisfies the same data, as initial term. I t  is shown that  for given data 
u* the series converges in an interval ]4] < A ,  with A independent of w o. Con- 
sequently, if w o is sufficiently small, there is necessarily a solution w(x;  ,~) 
which vanishes on Z. 

I t  is necessary to prove the existence of the "parametr ix"  solution of (4) 
and to obtain for it certain a priori estimates. This step is carried out in w 2. 
The existence proof is effected by  Galerkin's method and follows closely the 
approach used by  FOJITA [a] in his study of (2). The method is constructive. 
Using the fundamental solution tensor B ( x - - y ;  Wo)= (Eii) of (4), which has 
been given explicitly by OSEEN [6], one then obtains a Green's tensor G (x, y ;  wo), 
which has a fundamental singularity and whose components vanish on 2: and 
at infinity. 

The core of the existence proof for the nonlinear equations lies in the estimate 

(s) I~I f lyl-*l ~ ~(*, y; wo)l ay < H <  oo 
,r 

uniformly for all xE8  and all l ol in any finite interval. The demonstration 
of this result presents technical difficulties, chiefly owing to the absence of spatial 
homogeneity in the equation when w 0 4: 0. I t  is proved in w 3 by exploiting the in- 
variance of (4) under transformations which preserve the "Reynolds number",  
and by adapting potentialtheoretic methods to the geometry imposed by  the 
equation. 

The a priori estimate (5) leads easily to the construction (w 4) of solutions 
of the nonlinear system (2) for small data, which are such that  ] w (x)--wo] < Clx] -1 
as x--> o o .  The proof that  these solutions are unique in a sensible class, and 
that  they are the physically reasonable ones which are sought, is carried out 
in w 5. The idea of this section is taken from my earlier paper [7], and the 
results are very similar. The material is here developed in a more systematic 
way than in [7], resulting in an improved estimate which is essential in what 
follows. 

Since the construction of the strict solution of (2) requires many steps, it 
is both natural and important to examine the sense in which these solutions 
can be approximated by solutions of the linearized system (4). I t  turns out 
that  there are four possibilities, leading to different results according to whether 
or not w 0 = 0, and whether the flow is perturbed at infinity. I t  is also of interest 
to examine the same problem for the solutions of LERAY mentioned above, 
which presumably have weaker regularity properties at infinity. Except  in one 
case (the one on which the existence theorem of w 4 is based) the perturbation 
appears to be singular, owing to the fact that  8 is an infinite region. If wo = 0 
and the perturbation is nonvanishing at infinity, this phenomenon finds its 
expression in two dimensions as the Stokes paradox [8, 9, 10] and in three 
dimensions as Whitehead's paradox [6, p. t63]. In w 6 the perturbation and 
its derivatives are estimated in all eight cases. I t  is seen that  the estimates 
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are weakened either by  perturbing the flow at infinity or by  choosing as base 
flow the identically vanishing solution w 0 ~ 0. Thus the at tempt by  STOXES [8] 
to approximate a solution with nonvanishing limiting velocity by a solution 
of the system 

v A u  --  Vp  = O, 
(6) V .  u = o 

led to singular behavior at infinity, presumably induced by  two causes. In 
two dimensions, this behavior results in the nonexistence of solutions of (6) 
with the given data. In the three-dimensional case considered here, the solution 
exists, and the approximation to the strict solution of (2) is even uniform 
throughout $" (Theorems 6.5, 6.6), but  the approximation is nevertheless weaker 
than in any of the other cases considered (see Table). 

In most of the cases studied in w 6, the estimates obtained are considerably 
more precise than the ones stated in my preliminary announcement of results 
[10]. However, in the one case Wo 4:0, u 0 = 0  of Theorem 6.5 the logarithmic 
expression in the definition of ~0(x; 2) does not appear in the corresponding 
Theorem 3.4 of [10]. I regret that  I have misplaced the notes on which the 
statement of that  theorem was based, and I am now unable to reproduce that  
estimate. 

I t  will be assumed throughout that  the bounding surface 2: is of class ~r 
in appropriate non-singular parameters. I t  was originally my intention to de- 
velop the material for the class of surfaces studied recently by EDWARDS [11], 
who proved the existence of flows in the class D (see below) for surfaces ad- 
mitting isolated singular curves and conical points -- including, in particular, sur- 
faces such as a circular disk embedded in three dimensions. I t  is my opinion 
that  such a result is accessible to the methods of this paper; however, it would 
require a considerable technical effort, and it seemed best in this initial contri- 
bution to concentrate on those features of the underlying ideas which are quali- 
tatively new. 

In addition to the notation already introduced, the following symbols will 
be used: 

eCk (6~): vector functions whose derivatives up to k m order are continuous 
i n 6  ~. 

~k+~(6~): functions of class ~ (6~), whose k m order derivatives are H61der- 
continuous with exponent 0~. 

~o~+~(~): functions of class ~h+~(~) which have compact support in 6 ~. 

~+~(6~): functions ~0 of class c~+,(~) which are solenoidal, i.e., such that  
V . 9 = 0  in o a. 

/~+0t ~o,o (~ �9 functions of class ~+~(~)  which have compact support in ~*. 

(q~,kb) = f q ~ ( x ) t ~ ( x ) d x  over some given region. 

= ( f i f o  

I1 o II = ( f  I Vr dx) a. 
= f , r  v , o  
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~f0(8): Hilbert space obtained by  completion of ~~ (oa) in the norm ~9~. 

~o,o(6~): Hilbert space obtained by  completion of e~o,,(8) in the norm I[gH. 

D: class of solutions of (2) in 8, having finite Dirichlet integral, see 
Definition 5.2. 

PR: class of solution of (2) in o a, which are physically reasonable at 
infinity, see Definition 5.t. 

C: a quanti ty which is constant in some expression. Its value may, 
however, change within a demonstration. 

E :  fundamental solution tensor associated with systems (4) or (6); 
defined in w 2.3. 

Ev: truncated tensor, see w 2.3. 

G: Green's tensor for (4). 

Go: Green's tensor for (6). 
�9 ~5 + / a w ~  awjl T w :  stress tensor, ( T w ) i i = - -  p ii (~i i  + Oxi]" 

I ( O w i  . OWl\ def w:  deformation tensor, (def w)~i = ~- ~-~x/-t- ~ - ) .  

( )o: an equation in which the forcing term does not appear; thus (4)0 
means equation (4) w i t h / - -  0. 

In most of the material of this paper the parameter v is conveniently elim- 
inated by a coordinate transformation, and I shall assume that  this has been 
done. However, in the uniqueness theorem (5.10), an explicit criterion is given 
depending on the Reynold's number -- or equivalently for fixed 27 --  on v 
and w 0, and that  result is therefore formulated in terms of these parameters. 

As indicated above, 27 may consist of a finite number of smooth disjoint 
surfaces. However, in the interest of simplicity I shall carry out the demon- 
strations under the supposition that  Z" is a single surface. The extension to 
the more general case requires only formal changes. 

2. The Linearized Equations 

2.1. Preliminary lemmas 

Lemma 2.1. Let w*E~ 2+~ with respect to nonsingular local parameters on 27, 
and suppose # w * - d a = 0 .  Then there is a solenoidal field { (x)E~ ~ in 8 such 

2: 

that {(x) vanishes outside a prescribed neighborhood o/ Z, and { ( x ) = w *  on ~. 

A proof of this result appears as Lemma 2.t in [13]. 

Lemma 2.2. Let 8 be the entire space, and let q~ (x) be a vector valued/unc- 
tion such that q~ (x)E~ ~ (~). Suppose q~ (x) has first derivatives almost everywhere 
in ~, which are square integrable over ~. Then there is a vector q~o such that 

(7) f f lv C )l'dy 
8 r ~ y  - -  8 

/or any choice o/ the point x. 
25* 
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The proof is based on a lemma of PAYNE & VV'EINBERGER [12], which states 
that  if r (x)E~ (g), and if gR is the exterior of a sphere ~7 R of radius R, then 
there is a constant vector r such that  

1 f l v q ,  l~ay. (8) ~ (~ --~0)~d~ =< 
~'R 8R 

In proving (7) we may clearly assume that  (] Vq~]"dy<oo, for otherwise 
d 

no proof would be needed. Also we may assume at first that  ~o (x)~c6~ 
Consider the identity, for arbitrary u(x)cog l(g), 

~2 
(9) f u ' A l ~  o. 

J R  JR  J ~  2:~ 

where JR is the interior of a sphere 27 R about the origin. From (9) follows im- 
mediately 

f u 2 t u ~ 1 

J R  , ~  JR  ER 

The stated result for ~o (x)ccr a (g) is obtained by choosing ~0 from (8), setting 
u=~o--~o 0, choosing the origin of coordinates at x, and letting R-+oo. The 
more general assertion of the lemma then follows by a standard approximation 
procedure. 

Corollary 2.2a. Let q~ (x)Ecg ~ (dR) and have generalized first derivatives in the 
exterior 0~1~ o / the  sphere zU R about the origin. Then there is a vector ~o  such that, 
i / e i ther  x = 0  or else Ix[ >--2R, 

f I~(y)-~ol '  d- ~K f (to) y _  jlVq,(y)l'@ 
, 1  

8R gR 

where we may  choose K=3-I -2V2<6.  

Proof. In the case considered, the counterpart of (9) is 

fu, f ,  .~- dy = --  2 u .  V u "  Vrxy dy + u ~. o log rxy da 
gR rxy ~R rxy ~R On 

fu, , f  __<~ ..Tdy+T [V.['dy+~ 
~f B rxy ~R ~B 

for any 2 >  0. The choice ; t=1 /2- - t  yields the stated result. 

Corollary 2.2b. Let g and ~ (x) be as in Lemma 2.2, and suppose I1~1~< oo. 
Then there is a vector ~o  such that q~--~o~o~o(g ). 

Proof. Choose e >  0, and choose R so that  I[~11~, < e. Define ~ (x) by the 
conditions : 

i) ~ (x)=q~(x) - -qo  o if [x l<=R,  

ii) ~ ( x ) - -  2 R - - r  (q~(x)_qoo) if ~lxl~_2~, 
r 

iii) dd (x )=0  if [xl>zR. 
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Evidently t~ (x) ~ ~0 (6~) �9 We have 

Hence by Corollary 2.2a, 

Bq~IIL--< 50 B~oIIL --< 5o , ,  
so that  

IIq~ - (~o - ~oo) IlL _-< 2 II@IIL + 2 lifo IlL --< t 0 2 , .  

Since e is arbitrary, the result follows. 

Corollary 2.2e. The conclusion o[ Lemma2.2 holds with q)o=O, ]or all 
,p (x) ~ ~o (r 

The proof is immediate, since functions in ~o (~ can be approximated in 
norm by continuous functions. Similarly, one has 

Corollary 2.2d. The conclusion o] Corollary 2.2a holds with q)o=0, /or all 
q, (x) c ~o (~). 

2.2. Generalized solutions; the Dirichlet bound 

Let w* be prescribed data on Z, subject to the restrictions of the preceding 
section. I t  Hill not, however, be assumed that  #w*.  d ~ = 0 .  We may suppose 

2~ 

the origin of coordinates to lie interior to 2: and set y ( x ) = v o V ( ~  ) where Y0 
is a real constant so chosen that  # ( w * + y ) .  d a = 0  (note that  V-T=0).  We 

2 :  

may then apply Lemma 2.1 to obtain a solenoidal field {(x) such that  ~ (x)=  
w* + T on 2~ and ~ (x) vanishes outside a neighborhood of 27. 

In terms of v ( x ) = u ( x ) - - { ( x ) + y ( x ) ,  equations (4) take the form 

A v  - Wo" Vv  - Vp = - I -  AT +Wo" V (~ - y) ,  

(t t)  V . v = o  

since A y = 0 .  A solution of (It) will be sought which satisfies homogeneous 
boundary conditions on 2~ and at infinity. 

Definition 2.1. A field v (x) over o a will be said to be a generalized solution 
o/ (11), and the corresponding u (x) = v (x) + ~ (x) -- y (x) a generalized solution o/ 
(4), whenever i) v(x)6~o,,(~),  and ~1) the relation 

(t 2) Iv, ~o] - (v ,  w 0 ,  ~o) = (/, ~o) - [~, ~o] + (~ - ~ ,  w 0 ,  ~o) 

holds/or all q) (x) E~ , , (~ ) .  

Evidently, if u(x) is a generalized solution of (4) and if u(x) is smooth, 
then u(x)  is a strict solution corresponding to a suitable pressure p (x), and 

�9 . U 2  
u (x) ~ W *  on ~'. By Lemma 2.2, u (x) --~0 at infinity in the sense t h a t f  u~(,x) dx < oo. 

I t  will be shown later that  in fact u ( x ) = O ( ~  I at infinity, and still more precise 
information ~ be obtained. 
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Let {q~I")(x)} be a complete set of functions in #ffO, o(g). It  may (and shall) 
be assumed that each q~l,)(x)ccg~o(g), that 

03) [~o(") (x), ~o(')(x)] = O" m t  

and that  the {~(-I (x)} are complete in the uniform topology, that is, any r (x) 
cgo~ can be uniformly approximated in g by a linear combination of the 
{~l-~ (x)}. 

Definition 2.2. A field v (x) over g will be said to be an approximating solu- 
tion o] 02) o] order N, and the corresponding field u (x) an approximating solution 
o] (4) o] order N,  whenever i) v (x) can be expressed as a linear combination o] the 
]unctions q~a)(x) . . . . .  q~(N) (x), and ii) v (x) satisfies the generalized equation (t2) 
lor each o/the ]unctions qr . . . . .  q~lN) (X). 

Lemma 2.3. For each integer N =  t, 2, 3 . . . . .  there exists a unique approximat- 
ing solution v(x) o/ (t2). 

Proof. Writing 
N 

(14) v (x) = Z ~iq ~(0 (x) 
1 

and choosing q~=q~tkl (x) in (t2) leads, because of (t3), to the linear system 

05) 
where 

N 

1 

h =  (I, q,), z~= Fr ~o], 

Since 0r162 we conclude easily that the determinant of the system (i5) is 
positive, hence for any given ~ (x), V (x) there is a unique solution (~1 . . . . .  ~N) = ~  
of (t5). 

Lemma 2.4. Suppose [xIf(x)EL~(8). Then there exists a constant K,  not 
depending on N, such that ]or each approximating solution v (x) there holds M = 
Iv (x), v (x)]~ < K. 

Proof. If v (x) is an approximating solution, we may choose ~o ( x ) ~ v  (x) 
in (t2), obtaining 

II~ii, ~ <(rl))((~))+ II~;ll M + IwoI II~ll IM + Iwol ((~))IM 

by Schwarz' inequality, since {v, w o, v}=0.  The result then follows from 
Corollary2.2c, since ~(x) has compact support and [71=ly01 r -~ is square 
integrable over 8. 

Corollary 2.4. Under the above hypothesis there is a constant K 1, not depend- 
ing on N,  such that Ilull~_K1/or all approximating solutions u(x). 
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This result is now evident from the definition u (x )=v  (x)+~ (x ) - -y  (x) and 
from Minkowski's inequality. 

T h e o r e m  2.5. Suppose Ix] [(x)~L2(r Then there is a generalized solution 
u(x) o] (4), corresponding to arbitrary prescribed data w* on 27. The solution 

fu, u(x) tends to zero at infinity in the sense that ~ - d x < o o .  
8 

Since M < K for each N ,  the Rellich choice theorem [1/] yields the exist- 
ence of a subsequence of approximating solution of (t2) which converges weakly 
in o~o,.(6 ~) and strongly in L 2 on any compact subset of oa+27. Diagonalization 
yields a limit function in ~o,o(~) which satisfies (t2). Since an approximating 
solution corresponding to the index N is an approximating solution for any 
index M < N ,  one sees that  for the limit function, (t2) holds for any of the 
{q~li) (x)}, hence for any q~ (x) Ccg~,o. 

Remark. Note that  it is not required that  ~w*. d a = 0 .  
2:  

2.3. Fundamental solutions; the local representation 

A fundamental solution tensor E ( x - - y )  for (4) has been determined ex- 
plicitly in a particularly elegant form by OSEEN [6]. His construction yields 
the components Eii (x- -y  ) and associated "pressure vector" e={e j (x - -y )}  in 
the form 

~;=  a~iA~_ 0~r 
~xi Ox i ' 

a (A $ --  Wo" VO), ei = - -  Oxj 

(16) o $  

0 

~ =  Iwol s = l x _ y  I ,,,o'(,~-y) 
2 ' Iw01 

Corresponding to any (smooth) vector field w (x) and scalar p (x) we may 
define the stress tensor T w  by the relation 

, [ O w  i . O w i ~  
(Tw)i i=--P~' iq-~O~-i  -t- Oxi]" 

If u (x) is a solution of (4) in a closed region ff with boundary 27, there holds 
the representation 

(t7) u ( x ) = f E . l d y + ~ { u .  T E . - - E . T u . + ( E . u ) w o . } d a  

where da  is understood as a directed surface element on 27, and T E  is formed 
by interpreting the components {ei} as pressures. Similarly, 

(t8) p (x) = f e . l ay  + ~ {u. Te  -- e .  r u  + (e. u) w o.} da 

where the "pressure" in the term T e  is defined to be e*= 'w o. ~ - ~  . 
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We shall need also a truncated ]undamental tensor (FUJITA [5], p. 96). Let 
~/(t) be a function of class ~~176 such that 

i ,  o < t - < 1 ,  
~/(t)= 0, 2 ~ t ,  

and define ~(t)=~/(t~,-1). Let Or(x- -y )=~f fO(x- -y ) .  The tnmcated tensor 
E~={/:~'/} is then defined by  the relations (16) simply by inserting #r in place 
of �9 in these relations. The utility of this tensor consists in the fact that it 
leads to a representation for the solutions of (4), in which boundary integrals do 
not appear. In fact, one has, for any solution u (x), 

(19) u (x) = f E Y . f  dy + f H r. u dy 

the integrations being extended over all space. Here the tensor H r ( x - - y ) ,  
defined by 

H~(x) = {  - 8 0 " A ( d - w ~  V) dTr(x), if if xx40'=0 

is of class •oo in all space and vanishes (as does EV(x)) if Ixl 
It  will be necessary to have a representation of the form (t9) for the gen- 

eralized solutions constructed in the preceding section. This will be done first 
with the somewhat simpler tensors E~, Ho ~ arising in the case w o = 0. The ensu- 
ing discussion follows FOJITA [5]. 

For any tensor A(x, y) and vector d? (x), set 

A q  =-- f A ( x , y ) . • ( y )  dy, A * q  ---- f A(y,  x). t~(y) dy. 

Then, if hb (x) is smooth, one has EoO--= go*t~, and 

AEoq,  - Veo,p = q , ,  v .  = o,  (20) 
A E~ t~ --  V eg dd = d d -- n~ d? , V . Eg d~ = O . 

Let V r denote the sphere [x[ ___< 27, and let d? (x) C~~ Let q~ (x) = E~d?, 
~-----eoYt~. Then q~(x)~C~0,o(O~), and A q ~ - - V z ~ = d ? - - H ~ .  Inserting q~(x) as a 
test function in the generalized equation (12), which we may write in the form 

(21) [u, r - -  {u, Wo,Cp} = ([,r 

leads to 
(u, 0r - -  n ~ )  + {E~q,,  w o, u}  = (L E~q,) ,  

and an interchange of order of integration yields 

(q~, u - -  H ~ u )  + (q ,  E ~ w  o �9 Vu)  = (q~, E ~ I  ) . 

Since d? is arbitrary in cg~~ there must hold 

(22) u (x) = f E~" ([ - -  w o �9 Vu) dy + f H~" u dy 

for almost every x whose distance from Z' exceeds 2~,, whenever u (x) is a gen- 
eralized solution of (4). 
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2.4. Local Regularity o] Generalized Solutions 

From (22) follows immediately the interior regularity of the generalized 
solution u (x), the smoothness of the solution depending only on the smoothness 
of I(x). 

Theorem 2.6. Let [(X)ECg'+~(d~), r>=O. Then any generalized solution u(x)E 
cg'~+~+~(o~), and p(x)ECg'+l+~(oz). The system (4) is satisfied strictly through- 
out ~. I] also [(x)-->O as x-->oo, then so does u(x) together with its derivatives 
o/ order up to r +  2. 

Proof. The order of singularity of Eo r at x = y  can be calculated from the 
explicit formula, valid for I x - y l  <~7, 

Schwarz' inequality and Corollary 2.2c, applied to (22), yield immediately a 
bound on l u(x)l, uniform at all points of distance exceeding 2 7 from 27. Writing 
(22) in the form 

(23) u(x) = f Eff . I  dy + f u . w  o" Vlg~dy + f lt~o.udy, 

and using the bound on [u(x)[, one finds that u(x)Ecg~ ~) for any /3<1. 
Placing this result again into (23) permits successive improvement of the esti- 
mate, until the (prescribed) smoothness of I(x) has been fully exploited. The 
result is the assertion of Theorem 2.6 with regard to u(x). The corresponding 
property of p (x) can then be obtained directly from the strict equation (4). 
The fact that u(x)-->O at infinity is obtained by applying (19) for large ]x] 
and using Corollary 2.2d. The vanishing of the derivatives of u(x) at infinity 
then follows by repeated use of (19), as above. 

We have also the following general result: 

Corollary 2.6. Let [(x)ECg '+~, and let Hf denote a H~lder constant /or the 
rtb derivatives o] [(x), with exponent ~. Suppose u(x) satisfies the generalized 
equalion 

[,,, o ]  - {u, wo, o }  = (I, o )  

in a sphere VY ( @ o/radius 7, ]or all test ].unctions O(X)Eqg~,,(Vr). Suppose u(x) 
can be extended to a field in ~ ( W ) c ~ o ( g  ), with Ilull=<M. Then there is a 
constant C, depending only on Wo, on 7, and on q, such that at the center o/ W 
there holds/or all qth derivatives Dqu, O<=q<~r+ 2, 

(24) I Dq uI ~ C (M + H t + ~ x  [/(x) i) �9 

The proof follows by adjoining Corollary 2.2c to the above discussion. 

Theorem 2.7. Suppose ~ is o] class ~2+~ and w* o] class ~i+~ on Z, and 
suppose I is bounded near 27. Then Vu(x),  p(X)E(~ ~ in a dosed (outer) neigh- 
borhood o /X,  and u (x)-->w* on 27. 
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The proof can be obtained from the ODQVIST estimates [15] for the Green's 
tensor for (6) in an annular region bounded by  27 and by a sphere 27 o contain- 
ing 27. The reasoning follows the lines of classical potential theory, and I shall 
omit details (c]. [2, 5, 16]). 

2.5. Representation in the Large 

Let u(x) be a generalized solution of (4) in d ~, in the sense of Definition 2A, 
and suppose [(x)E~~ By Theorem 2.6, u(x) is a strict solution in 8, and 
we may apply the representation (17) to u(x) in the annular region 8 R bounded 
by 27 and by  a sphere 27 R of large radius R, obtaining 

(25) u ( x ) = f E . l d y +  ~ {u. T E . - - E .  T u . + ( E . u ) W o . } d a  
g~ 2 +  XR 

for X~r 
Let us assume that  [(x) has one of the following properties: either i) [(x)=-- 

g(x) .  Vg(x), with g(x)63~'o(~+27), or ii) [xI~[(x)EL2(~), for some f l >  �89 Then 
formal estimation of the volume integral in (25) shows that  it can be extended 
to an integral over all of d" which converges absolutely and approaches zero 
as x-+ co. The former property implies that  for each fixed x the outer surface 
integral tends to a finite limit as R-+  co. Thus, 

(26) F(x) -- lim ~ {u. TE.  -- E .  Tu .  + (E. u) w o.} dr162 
R--~oo XR 

exists and is finite for each x. 

In the integrand of (26), all terms involving u (z) and its derivatives vanish 
at infinity, by  Theorem 2.6. The same theorem shows that  Vp-+o, since (4) 
equates Vp to a sum of terms which tend to zero. Hence p(x)=o(r) as x-+co.  
On the other hand, the defining relations (t6) imply that  the successive deriv- 
atives of E (x) and of e(x) in arbitrary directions, if of sufficiently high order, 
will tend to zero more rapidly than any prescribed negative power of r. I t  is 
not obvious that  (26) can be differentiated under the sign, but  it is possible to 
interchange the limit operation with the formation of difference quotients, which 
decay asymptotically with the same order as the corresponding derivatives. 
Thus, letting 6(N)F(x) denote the result of taking N successive differences in 
arbitrary directions, there will hold 

6(N) F(X)  = lim f {u. T 6(N) E �9 - -  (~(N) E "  Tu  + ( 6(N) E �9 U)t400" } dr162 
R--~ oo xR  

= 0  

identically in x whenever N is sufficiently large. I t  follows that  F(x) is a poly- 
nomial in the components of x, F(x)~PN(X) where PN (x) has degree at most 
N - - t .  Hence (25) implies 

u (x) = u! (x) + u z (x) + PN (X) 

where ul(x ) and uz(x)-+O as x---~co. But by  Theorem2.6, u(x)--~O, hence 
P2v(x)---~O, and we conclude F(x)~--P2v(x)~--0 in x. 
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The above reasoning can be repeated with little change when there is an 
inhomogeneous term of the form [ ( x )=h(x )  �9 Vh(x), for which it is only known 
that  V.h(x)----O, that  the integral 

(27) I(x) = f h (y) . h (y) . V E (x -- y) dy 
t 

converges absolutely, and that  I(x)-+O as x-+ oo. For then 

(28) f E . h .  V h d y = - -  f h . h .  V E d y  + ~ ( g . h ) h d a ,  
~ ~R E+ER 

and the reasoning can be repeated with the additional term lim ~ (E.  h) h da 
R - ~  OO ~ R  

added to F(z). In order that  I(x)-~O, it suffices to have Ih(x)l = o ( r - t )  as 
x--> co, although weaker conditions would do. 

A similar discussion can be given for the pressure p (x), starting with the 
representation (t8). 

Summarizing, we have the following result: 

Theorem2 .8 .  Suppose l (x)=Ii(x)+I~(x)+13(x) ,  where Ix(x),I2(x),13(x)E 
C ~ (g), and suppose Ix (x) ~- g (x) .  Vg (x) with g (x) E~o (o~+ Z), while I% (*) c 
L~(g) ]or some f l> k,  and/3(x) = h ( x ) .  Vh(x), where h(x) is as above (e.g., 
V" h = 0 and I h (x)[ = o (r- t) at infinity). Let u (x) be a generalized solution o] 
(4) in g in the sense o/ Definition 2.t, and suppose that Vu(x) ,  p(x) are con- 
tinuous up to X. Then 

u (x) = f E ( x  -- y) .[(y) dy + # {u.  T E  -- E .  T u  + (E.  u) w0} d~, 
(28) e 

p ( x) = po + f e ( x -- y) . [ (y) d y + ~ {u . T e -- e . T u + ( e . U) Wo} da 
g .17 

in g, where Po is an arbitrary constant. 

An unpleasant but  formal computation, starting with the definition (t6), 
yields the following estimates for the upper bounds of all components of E, 
VE, when Ix I = r  is large: 1 

IEI < C  t t - - e -a* ,  
r tTS 

(29) 
[o, ' ' - ' -~ 

for some constant C. Similar estimates hold for the higher derivatives of E(x). 
Also ,  

I ol el l= 
47t 

In terms of these estimates, the mean value theorem applied to (28) yields: 

1 In [7, p. 392] and in [13, p. 204], the second term in the estimate of [VE[ is 
omitted, apparently due to an error in copying. This omission does not affect the 
content of those papers. 
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Corollary 2.8. Suppose [(x) has compact support in g + Z,. Then the behavior 
o~ the generalized solution u (x), p (x) at infinity is controlled by that o/ the/unda- 
mental tensor E (x), e(x), in the sense 

u(x) = a . E (x) -4- be(x) + a(x) 
(3t) 

p (x) = Po + g" e (x) + ~ (x) 

/or constant vectors a, g and scalar b. Here I~ (x)] may be chosen in the/orm o/ 
the right side o/ (29), while lz(x)] < Cr -s. Both expressions (3t) may be di//eren- 
glared any number o/times, with corresponding improved rate o~ decay o/ r (x), ~ (x). 

A particular consequence of (3i) is that  the solution u(x) admits a par- 
aboloidal "wake region" in the direction of w o, interior to which l u(x)[ < Cr -x. 
Exterior to this region, the decay of u(x) is progressively more rapid until, 
exterior to any circular cone with axis in direction Wo, one has [u(x)[ < C r  -~. 
This behavior will be discussed in further detail in w 5. 

Note that  (3t) completely characterizes the qualitative asymptotic struc- 
ture of any generalized solution; the method of construction of these solutions 
yielded no information a priori beyond the fact that  u(x)E~o(~).  

2.6. The Green's Tensor 

Theorem 2.6 has as particular consequence the existence in ~* of a tensor 
~. i (x ,y) ,  whose row and column vectors satisfy as function of y the adjoint 
system 

A u  + wo" V u - -  V p = o ,  
(32) V. u = 0 

and which has the properties i) if y E/7, then A/j ( x, y) = - -  s i ( x, y), ii ) Ai i ( x, y) -+ 0 
as y - +  oo, any fixed xEr Thus, there exists a Green's tensor 

G(x, y ) =  E (x, y ) + A ( x ,  y) 

for the system (4), whose components vanish, as functions of y, on 2: and at 
infinity. 

The qualitative behavior of G(x, y) as y - +  oo is known from Corollary 2.8. 
Let G*(x, y) be the Green's tensor for the adjoint system (32), so that  its row 
and column vectors satisfy the original system (4)0- The representation/ormula 
(t7), together with Corollary 2.8, yields the symmetry property 

(33) G~.(x, y) = G*(y, x). 
From (33) we conclude: 

i) the row and column vectors o/ G(x, y) satis/y (4)0 as/unctions o/ x; 

ii) l i m  G (x, y) = 0, uni/ormly /or all y E o a which exceed a fixed distance/rom X. 

The following lemmas characterize quantitatively the asymptotic behavior 
of G (x, y) at infinity, and its local behavior near 27. 

Lemma 2.9. Let Ix] = R  be /ixed. There exists an R o and a constant C(Ro) 
such that, /or all (/ixed) R > R  o, IIAII<CR-1. The estimate is uni/orm in w o, 
in any finite interval o/this parameter. 
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I t  suffices to choose R 0 so that  all points of 2: lie interior to a sphere of 
radius R o. 

Proof.  Because of the estimates (29), there is a constant C for which 
IE[ < C R  -1, I VEI < C R  -1 on 27. I t  is evident from the definition that  a similar 
estimate holds for the derivatives of E(x, y) of arbitrary order on 27. By 
Lemma 2A, there is a solenoidal field Z(x ;y )  in o a, having compact support 
in a prescribed neighborhood o~ of 2:, such that  Z(x; y)----E(x, y) if ye27, and 
such that  ] Z ( x ; y ) I < C R  -1, [ V Z ( x ; y ) [ < C R  -1 throughout oao. (One verifies 
easily that  ~B d a = 0 ,  thus assuring the existence of Z(x; y).) 

2:  

In terms of .~ .=A--Z,  equation (32) becomes 

A .--.+w o �9 V.- ' . -  V o t = - - A g - - w o .  VZ  

where ot is the "pressure" term associated with A(x, y). Multiply by  ~, integrate 
over an annular region 8 R of outer radius R, and let R-+  0% obtaining 

ll.=ll ~ = - [=., z] + {z ,  w0,  =} 
the outer surface integral vanishing in the limit by  Corollary 2.8. Hence 

1 1 ~ ((z)) + ~ Hz? < ~-II=ll ~ + ~ II/ll ~ + _ .  ~ I Wo[ II=ll 

for any positive A. The result now follows, after suitable choice of 2, by  Min- 
kowski's inequality. 

Lemma 2.10. Let 270: Ix[ : - R  0 be an arbitrary but fixed spherical sur/ace sur- 
rounding Z,. Then at all points YC ~o there holds, i/Ix] = R >  2R o, [A(x, y)[ < C R -~, 
[vA(x, y)l < CRy, I Vot(x, Y)I < CR-~. The estimates are uni/orm on any finite 
interval o/the parameter Wo. 

The proof is obtained immediately from Lemma 2.9 and Corollary 2.6. 

L e m m a  2.11. Let 270 be as above. Then/or y outside X o and Ixl =R>_2R0,  
there holds, uni/ormly in any finite interval o/the parameter Wo, 

la( x, Y)I < C R-I[ a .  E ( - - y )  + be(- -  y) + e(-y) l ,  
(34) 

lot( x, Y)I < CR-I[ ~. e ( - - y )  + ~ ( -  Y)I 

after normalization o/ ot(x, y) by a suitable additive constant. Here e(y), z(y), 
a, b, ~ have the same meaning as in Corollary 2.8. These inequalities may be 
differentiated ]ormally with respect to y on both sides. 

Proof.  For fixed x exterior to X o, we may apply Theorem 2.8 to obtain, 
after normalizing 0~ (x, y), 

A(x, y) = ~ {.4. TE* -- E*. T A  + (E*. A) Wo} de ,  
~o 

ot (x, y) = ~ {ot" Te* -- e*.  Tot + (e*. u) Wo} de 

where E*, e* are the fundamental tensor and pressure for the adjoint system 
(32), whenever y is exterior to 270. The stated result then follows by using the 
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symmetry  property E * ( x - - y ) = B  (y - -x ) ,  placing the estimates of Lemma 2A0 
- -  and the corresponding estimates for the higher derivatives of E - -  into the 
integrand and repeating the reasoning that  led to Corollary 2.8. 

L e m m a  2.12. Let Z o be as above. In  any closed neighborhood ~ o/27 which 
does not contain 27o there holds, uni/orrnly /or w o in any/ ini te  interval, 

IA( x, Y)I < CR-X, [~7A(x, Y)I < CR-1, 

I.(x, y)l<CR-~ 
whenever [x[ = R > 2R 0. 

Proof.  In the annular region bounded by  27 and by  270, A(x,  y), ot (x, y) can 
be represented, as functions of y, by the Green's tensor for the system (32). 
The result then follows from Lemma 2.9, Lemma 2.t0, and from the estimates 
of ODQVlST on the Green's tensor for (32) in a finite region. The procedure is 
identical to the method of proof of Theorem 2.7, and details can be found in 
the reference cited there. 

3. The Underlying Estimate 
The existence theorem for physically reasonable solutions of (2) will be made 

to depend on the following estimate for the Green's tensor G(x, y;  Wo) of (4)0 
in 6~: 

Th e o r e m  3.1. There is a constant H, uni/orm in any /inite interval o/ w o, 
such that 

(35) Ixlf ly[- ' l~ G(x, y; w0) I dy < H 

/or all x 6 ~. 

Several auxiliary lemmas will be needed to prove this result. 

L e m m a  3.2. Let x be interior to a sphere 27R o/ radius R, and suppose the 
distance/tom x to 27R exceeds R/2. There exists a constant C, not depending on 
R or on w o, such that 

(36) ~ I V E ( x  - - y ;  w0) [ d a <  C. 
SR 

Proof.  If w o = 0 ,  then l Y E  I < C l x - - Y l - ' ,  from which the lemma follows 
immediately. Otherwise, the dependence on this parameter  can be eliminated 
by  observing that  E (x; 2 wo) ------ 2 g (4 x; wo). Thus, setting s = ;t x, ~ = ;ty, one 
has 

,J; [ VE(x - -y ) ;  ;t wo)l d,r = ~ l IZE(~ - -7;  wo)l dcr. 
2R Zx 

I t  follows that  if the lemma is established for a single value w 0 4=0 and ar- 
b i t rary  R, it holds also for all other values w 0 4= 0. But  for given w o, an estimate 
(36) is obtained for large R by  an easy calculation, using the estimates (29). 
For small R, (36) is a consequence of the local estimate I VEI <CIx--yl ', as 

Ix-yl ~o. 
L e m m a  3.3. There is a constant H such that 

Ixl f ]yI-~IVyA( x, Y; Wo)l dy < ~ H 

uni]ormly in any finite interval o/ w o, /or all su//iciently large Ix[. 
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This result follows from Lemmas 2. i t ,  2.12, and 3.2. As a consequence, the 
proof of (35) in the case of large lxl is reduced to the study of the corresponding 
expression, in which G is replaced by the fundamental tensor E ( x - - y ;  wo). 

Lemrna 3.4. Let Ix] = R  and suppose x lies exterior to a sphere 27, about the 
origin and o/ radius r ~  l R. Let w o be arbitrary but fixed, with w o 4:0. There 
is a constant C, depending on w o but not on R, such that/or all R > 1 there holds 

(37) ~ [ V E  (x -- y; Wo) ] day< C r2 R -~. 
.Y.r 

Proof.  The estimate (29) yields in particular I VE(x ;  w0) [ < C R - t  if R > t,  
and from this the result follows. 

L e m m a  3.5. Under the above assumptions, suppose R~<--2r<--R. There is a 
constant C, depending on w o but not on R, such that/or all R > 1 there holds 

~l VE(x--y;  w0)l d~y < Cr n- , .  (38) z, 

Proof. Consider the contribution to the integral of that  part of Z,  which 
lies in a cylinder Z of radius r~ R~, whose axis contains x and has the direction 
4 - w  0. Replacing I VE [ by  the estimate (29), and the quanti ty ] x - - y  I in (38) 
by its minimum, R -  r, one sees that  this contribution will be maximized when 
Z subtends the maximum possible area on Z,.  This situation in turn will occur 
when Z lies interior to a parallel cylinder Z 0 of radius 2r0 R~, whose axis is 
tangent to 27,. The area d 0 of that  part of 27, which lies interior to Z o is easily 
estimated and has the order of magnitude r~ R~. 

I t  does not suffice to multiply by  d o the maximum of ]VE[ on 27, in Z0, 
as the resulting estimate would be too weak. It  is necessary to split the integra- 
tion into two parts, as follows: 

i) a concentric subcylinder Z~ in Z 0, of radius r~ R~ (smaller than 2@ R~, 
t # since 2r>R~).  The area subtended by Z 0 is of order r~ R*~. In Zo, replace [VE[ 

by the uniform estimate of order R -  ~, obtaining as a bound for the net contribu- 
tion of the integral over this part of 27, an order of magnitude 

@R-~;  

ii) the remainder of Z o. The integral here can be estimated by multiplying 
the full area of 27, in Z 0, of order r~ R:', by the maximum of the estimate (29) 
for I VEI outside Zo on 27,. We obtain an order 

r~R ~, . r -  ~ R -~, = r~, R -~. 

Finally, we estimate the contribution from the part of Z, exterior to Z o. 
To do so, it suffices to multiply the area of the full sphere 2~, by the maximum 
of the estimate (29) for I VE] outside Z o. We find an order, 

r * . r - ~ R - ~ = r ~ R - ~ .  

Thus, all three estimates have the same order and yield the stated result. 



380 ROBERT FINN : 

Lemma 3.6. Under the hypotheses o/ Theorem 3.1, there is a constant H, not 
depending on w o, such that 

(39) [x I flYl-~lV~E(x - - y ;  Wo) ] d y <  ] H  

the integration being extended over all space. 

If w0=0,  the uniform estimate [ ~ E ( x - - y ; O ) [ < C l x - - y [ - 2  reduces the 
lemma to a classical potentialtheoretic result. If w0 4: 0, the relation E (x; 2 w0) = 
2E(2x;  wo) shows that  the left side of (39) is independent of w o, and it there- 
fore suffices to prove the result for any particular w o :4=0. To do so, write 
Ix] = R  and split the region of integration into three parts, as follows: 

I. The exterior of a sphere Z2R about the origin. The desired estimate follows 
from Lemma 3.2. 

II. The annular region between 2~R/2 and 272R. In this region, R <  2[y[ < 4R, 
hence Lemma 3.2 can again be applied to obtain the correct estimate. 

III.  The interior of 2~R/2. If R < 1, we have the uniform estimate [ VE(x;  w0) [ 
<C[x[  -2 for small Ix], and the desired estimate is immediate. If R > t ,  we 
split this integral again into two parts: 

I I Ia .  The interior of a concentric sphere of radius ~R~. The uniform esti- 
mate [VE[ < C R - t  over this sphere leads to an evaluation of the form 

R�89 
C R . R - ~ . f  d r = C  

o 

for the integral in question. 

I I Ib .  The remaining part Q of the interior of 27R/2. By Lemma3.5, if 
R~<_2r<_R, then ~ [ V E ( x - - y ; W o )  [ d(r<Cr~R-*. Denote this integral by 4 .  
Then z, 

~R 

R f lyl- l Wo)dy = R  f r - 2 ~ d r <  
o ~R~ 

~R 
< C R ~ . f r - ~ d r < C  

which completes the proof of the lemma. 

Lemma 3.7. Suppose S lies interior to a sphere SRo, and let ~r be the annular 
region between the two sur/aces. Let y lie on the concentric sur/ace 272R ,. Then 
on any /inite interval o/ values Wo, [G(x,y; wo)l is bounded, uni/ormly in w o 
and /or all x c ~ .  The same assertion holds /or all derivatives o/ G ( x , y ;  wo), 
and all bounds tend to zero uni/ormly as x---~.S. 

This assertion follows from the definition of G(x, y ;  w0), from the sym- 
metry property (33), from Lemma 2.9, and from Corollary 2.6. 

Applying Corollary 2.8 to the function u ( y ) = G ( x ,  y; Wo) exterior to 2J2R ,, 
we find 

Lemma 3.8. Under the hypotheses o/ the preceding lemma, i/  x~ ~ o and i/ 
y is exterior to ~'3R,, then 

I V G (x, y ;  Wo) I < A (I VE ( -  Y) I + I Ve ( -  y) l + lower order terms) 

where A --~ 0 as x ~ ~,. 
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Finally, estimates on G (x, y; wo) will be needed in the case that both x, yE~r 
These estimates will be obtained by comparing G(x, y; Wo) with the simpler 
tensor Go(x, y) corresponding to the Stokes system (6), in the (finite) region 
&o bounded by 2] and by 212R," 

Let W(x, y; Wo) = G(x,y;  Wo) -- Go(x, y ). 
As function of y for fixed xE~r W satisfies the system 

V W  + w o . V W  + w o . V G o -  V P = O , 
(40) V. W = 0 

and IV, V W  are finite in ~o- On 27, W=0.  On 272R,, W = G ( x , y ;  Wo). By 
Lemma 2.1 there is a solenoidal field ~(x;y) in ~o, such that ~ ( x ; y ) ~ 0  for 
yE~r and such that ~ (x; y) = W(x, y; Wo) for YE272Ro. Further, using Lemma 3.7, 
it is clear that ~ can be chosen so that [~[, IV r ~[ are uniformly bounded when 
xE~r Let K~=W--~. Then $2=0 on 27, 212R0, and V ' ~ = 0  in ~o. Multiply 
(40) by $2 and integrate over ~o- We find, for arbitrary fixed XE~r 

f I VKZlg' d y :  - -  f ~. w o �9 V n  dy - -  f (VK~. V ~) dy - -  f G o �9 w o �9 V~2 dy 

from which, for any ~t>0, 

(4~) f lV~l 9'ay< 3z=-T a f I vS'~lg'aY+ ~-~f~,,.. ~9"*g+lVglg'+G~176 9, 
do do do 

The estimates of ODQVlST [15 3 imply in particular I Go(x,y)] <cl . -y l -1 ,  
uniformly for x, YE~o. Hence (41) implies: 

Lemma 3.9. H Go(x,Y) is the Green's tensor/or (6) in ~o and G ( x , y ;  wo) 
the Green's tensor ~or (4) in e, then W =  G--Go satislies IIWtl ~ o <  c as l,,nction 
o / y ,  uni/ormty /or XE d o and ]or w o in any finite interval. 

Let us represent the tensor field IV in ~o with the aid of the fundamental 
tensor G O and the auxiliary field { (x, y). We find 

W(x, y;  Wo) = g (x, y) + f a o (y, z) . Wo" VW(x,  z) dz -- 
do 

- -  f Go (Y, z) . wo" V G O (x, z) d z  - -  f G O (y, z) . A g (x, z) dz. 
do do 

If y 4= x, we may differentiate under the sign with respect to y. Using the 
Odqvist estimate I VGo(x, y)] < C[x--YI-9', we have following: 

IV, w(x, y)l <-_cfr;*,l~w(~,z)l dz+Cfr~*,r;*,dz+C. 
do do 

-9, and integrating over ~o, we obtain Setting [Yl =roy, multiplying by ro~, 

-1 _9, _,1 f ro~[~W(x ,y ) [  dy<=C f ro, [V.W(x,z)[ d z + C  f r o y r . y d y + C  
.~o ~o do 

<= C f r'~ dz-I-C f l VWJ" dz -I-Cllogro,~] 
d ,  d ,  

for a suitable constant C. We have proved: 
Arch. Rational  Mech. Anal., Vol. t9  2 6  
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Lemma 3.10. Under the hypotheses o~ the preceding lemma there holds /or 
X E ~r , 

Ixl flyl-'l VG(x, y, wo)l dy < _H2 
~0 

/or some constant H, uni/ormly on any finite set o/values w o. 
This lemma has completed the proof of Theorem 3.1, which now follows from 

Lemmas 3.3 and 3.6 if Ix[ is large, and from Lemmas 3.8 and 3.10 if x is near Z'. 

4. The Nonlinear Problem; Existence 
In terms of the variable u (x)= 2 -1 ( w -  wo), the Navier-Stokes equations (2) 

take the form 
A u - w o .  VU--  V p = f ( x )  + 2 u .  Vu,  

(3) V" u = O. 

Let u* be prescribed data on 27, and suppose [(x) is locally smooth and 
decays suitably at infinity. 

I t  is proposed to solve (3) for a function u(x) satisfying ]u(x)] < C r  -1 at 
infinity, by an approximation procedure. To do so, we begin by representing 
an arbitrary solution u(x) in ~ by the Green's tensor G(x, y; wo) introduced 
in the preceding section. For an annular region ~ bounded by 27 and by a 
sphere 27R of (large) radius R, we find 

u(x) = ~ u*. TGd•  + f G . Idy  + 2 f G.  u .  V u d y  + 

+ ~  [u" T G - -  G" T u  + (G'u)  woJda. 
ZR 

We may also write, since G(x, y ) = O  if y6Z,  

f G .u .  Vudy=--  f u . u .  1 7 G d y + ~ ( G ' u )  u d a .  
�9 ~B .~R ZR 

If we assume for the moment the results of w 5, then Corollary 2.8, applied to 
G(x, y) for y-+  co, shows that  the outer surface integral vanishes in the limit, 
and we obtain the representation, valid whenever ]x[#I(x)~L2(r fl> ,~, 

(42) u(x) = # u * .  T G d , +  f G . f  dy--  k f u . u .  VGdy .  
2 s s 

The first two terms on the right represent the solution U(x) of the inhomo- 
geneous linear equation (4), such that  U(x)=u* on 27. Thus, any solution u(x) 
of (3) with the specified decay at infinity admits the representation 

(43) u (x) = U(x) -- 2 f u .  u .  V G  dy 

where G =  G(x, y; wo) in the Green's tensor for (4) in 6L 
Let us suppose I(x) so chosen that  ]U(x)l <Cr  -1 in 6'. In particular, this 

will be the case if [(x) has compact support in 6 ~. We seek to write u(x) as 
an expansion 

OO 

(44) u (x) = U(x) + ~. u~ (x) 2 i 
1 
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in the parameter 2, such that  ]ui(x)[<Cr-1 for each j.  Assuming (44), set 
v i (x) = r  u i (x), v o (x) = r  U(x), obtaining 

(45) v (x) ----- r u (x) = ~ v i (x) I j. 
9 

The representation (43) leads to the recursion relation 

v.+l  (,) = I x IJ lyl-'  [vo (y). v .  (y) + v, (y). v ,_ ,  (y) + . . .  + 
(46) 

+ v,,(y).  Vo(Y)] �9 V G ( x , y ;  Wo) dy. 

By Theorem 3.t there holds 

Ix l J  [y[-~ [VG (x, y ;  Wo)[ dy < S 

uniformly for xEg. Thus the series with constant coefficients 

(47) v = ~, v,. ~J 
0 

will be a dominant series for (45), provided 

IVo(X)l ~Vo, an x~# ,  
K + I =  (Vo v. + v, K_I + . . .  + v, vo) H. 

The convergence of (47) then implies 

V =  Vo+ ~ H V  ~. 

The solution of this equation has a branch which is analytic in 1 in a circle 
about the origin, whose radius is determined by the vanishing of the discriminant. 

Thus, the series (47), and hence also the series (44), converges whenever 1 <  (4H V0)-a, 
and provides a solution o/ (3) in ,~ /or such ,L 

o o  

We may state further: the solution u ( x) = Uo ( X) + Y. ui ( x) t i  is unique among 
1 

all solutions V,(x) satis/ying the same boundary conditions and admitting cor- 
responding expansions, such that ]ui[ = 0  (r -~) at infinity. For then the recursion 
relations, applied to the difference u (x) -- u (x), lead successively to the identities 
u i (x) --  ui (x) = 0 in d", for each j. 

One consequence of the above result for the original Navier-Stokes equations 
(2) is as follows. Suppose data w* are prescribed on 27. Set u * = w * - - w  o, 
and let U(x) be the solution of the linearized system (4) with data u*. Suppose 
u* and I are sufficiently small that 4H sup Ix[ [U(x)] < I. Then the series (44) 

converges for the value t----1. We have proved: 

Theorem 4.1. I] the data w* are sufficiently close to w o, and the external 
/orce [(x) su//iciently small, in the sense indicated above, then there is a solution 
w (x) o/the Navier-Stokes equations (2) in @, such that w ( x ) = w *  on Z, w (x)->w o 
at infinity and [w(x)--wo] < Cr -~ in ~. The solution can be obtained explicitly 
by a successive approximation procedure, requiring only the solution o/linear in- 
homogeneous equations, with vanishing boundary conditions. 

The estimates leading to Theorem 4A are uniform on any finite interval of 
values w o. Hence, we obtain the following special case of the above result: 

26* 
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Corollary 4.1. I[ w o and I(x) are su//iciently small, then there is a solution 
w(x)  o/(2) in ~, such that w ( x ) = 0  on X, w ( x ) - + w  o at in/inity, and Iw(x)--Wol 
< C r  -x in ~. 

The solutions just constructed are unique in a broad class for small data, 
and they are physically reasonable in the sense that  they exhibit a paraboloidal 
"wake region" in the direction of the flow at infinity. The demonstrations of 
these facts require, however, some effort; they are a consequence of the material 
in the following section. 

5. Asymptotic Structure of the Solutions; Uniqueness 

The material to follow is based on the representation 

(48) u(x) = - - f u . u .  V E d y + ~ E u .  T E - - E .  T u +  (E.u)  (U+Wo)]da 
22 

with u ( x ) = w  ( x ) - - w  o, which, like (42), is valid for any of the solutions of (2)0 
in 6 ~ to be considered. Under suitable assumptions, we shall estimate u(x) at 
infinity. 

8.1. The case w o 4=0 

If w 0 4= 0, the solutions constructed in the preceding section have at infinity 
a structure which is identical, up to terms of small order, with that  of the 
fundamental tensor E (x), e (x), in the sense 

w (x) = W o + a  �9 E(x) + b e (x) + o  (x) 

where a, b, a (x) have the significance indicated in Coronary 2.8. To show this, 
it suffices to show that  the nonlinear operator 

N[,,] = f l u ( y ) l ' l  VE(x,y)I  dy 
8 

has the order a(x) at infinity whenever u(x) is a solution of (3) satisfying 
l u (x)[ = 0 (r-a). The proof of this can be obtained as a consequence of the follow- 
ing general result. 

Theorem 5.1. Suppose Wo4=O. Let ~: denote distance along an axis in the 
direction w o, and let ~ be distance orthogonal to the axis. suppose u(x) satis[ies 
in 8 the inequalities 

11 x I-  ~ throughout 8,  

(49) lu(x)l  < J l x l - ~ + ~ e  -a i !  5>__ I~I ~, 
/ I x l - ~ - , ,  i/ 3 <  o, 
tt  q Ix l_~a,  

where ~ < ~ r  and ~>0. Then N[u] satisfies,/or some constant C independent 
o[ the particular choice o / u  (x), 

Ic Ixl -~ throughout e ,  
/ C l x l - ~ + ~ e  -~  i l  e>_-I~l ~, 

(50) N[u] < ] c  Ixl ' 'z  i/  �9 < o, 
tc i l  Ixl ~- I 
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where ~ is any quantity such that 

[ m i n [ ~ + 2 ,  0 ~ + 2  fl--] i/ fl~--2' 
min [or+e, ot +__~ i/ fl> ~ 

with e =  oc-  ] ,  fl*-~ min [fl, 1], and fl is replaced by 

(52) /~= min[2e+fl, 2~+fl, ,2fl ,  f l+ 2,3] q fl>= e 
2 " 

Remark 1. The hypothesis (49) implies the existence of a paraboloidal "wake 
region" in the direction Wo, in which u(x)=O([x]-~). Outside any cone whose 

axis coincides with that  of the paraboloid, there holds u(x)=O([x[-~-~). 

Remark 2. The reason for excluding equality in (51) is the possible occurrence 
of logarithmic terms. Such terms can occur in the estimate for N[u] in the 
three cases f l = t ,  t + f l - - 2 ~ = 0 ,  or 3 - - 2 ~ - - f l * = 0 .  In all other cases the in- 
equality in (51) can be replaced by  equality. 

Theorem 5.t will be proved by  splitting the region of integration into a number 
of subregions, in each of which one of the two factors occurring in the integrand 
of the expression for N[u] is constant on each of a suitable family of surfaces of inte- 
gration. The decomposition is indicated in Fig. 1 (overleaf), the various symmetries 
in the figure being indicated in the end view. The origin of coordinates is de- 
signated by  0, x is the point of evaluation, Ix[ = R ,  and x is (at first) assumed 
at distance CR~ +~ from the paraboloidal axis through 0, where 0--<a--<�89 a = 0  
corresponds to a paraboloidal "wake" surface, while a =  ~ yields a cone con- 
taining all such paraboloids at infinity. For purposes of definiteness the value 
C =  2 is chosen in Fig. t .  The points 0 and x are each enclosed in cylinders 
of radius ]R~ +~, and both these cylinders are enclosed in a larger one of radius 
{R~+ ~. 

In the estimates that  follow, multiplicative constants having no relevance 
to order of magnitude are omitted; thus a term R ~ is to be understood as a term 
bounded for large R by CR ~ for some constant C. The Roman numerals cor- 
respond to the estimates for fu2[ V/E] dy over the regions indicated in Fig. t. 
The symbol ~ denotes the exponent of r which appears in each estimate. 

I. In this region, lu]~<RC-2~'-a)r +~ [VE[ < R  -31~+*1. Hence 

~__< ( -  2~-~ - 3) ( ~ + ~ )  + 3  ( 1 + ~ )  

= - ( 2 ~ + / ~ ) ( ~ + ~ ) .  

II. Here [u[~<z-2~+~R-2~r +*1, while ]VJE[ < R  - ~ - ~ .  Hence 
R 

II < R-c~+3)r f ~-2~+adT ' 
R~+a 

so that  

~II=<:max{ - ~ x - e - 2 ~ 0 - - 0 ' ' - ~ - ~ - 2 a r  

unless 1 + f l - - 2 ~ = 0 ,  in which case a logarithmic term appears. 
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III. A formal calculation yields the estimate for the surface integral of u 2 (y) 
over a sphere V, of radius r ~ t about the origin: 

u~ da < r ~ - ~ - ~  *. 
Hence ~" 

r u d d y <  max{r a -~-~ ' ,  t }  
B. 

unless 3 -  2~-- /~=0,  in which case a logarithmic factor enters. 
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The radius of the sphere I I I  is r = R  ~+a. In this sphere ]VE[ < R  -3(�89 
Thus if 3--20~--/54=0, then 

&,~< max{-  (2~+~)(~+~), - 3 (~+~)}, 

a logarithmic factor appearing in the other case. 

IV. One has 
f l VEl dy < r~. 

V, 

Again r=R~+ L while l u l~<R -2(~+a~ in IV. Thus 

< --  ot - -  e - -  2 fl a 
since a < ~. 

V. There holds uniformly [VE[ < R  -3(~+~). Consider first the subregion Va 
defined by setting 0~<z. In Va one has [u[2<z  -2~. Therefore 

R .�89 
Va < R -a(~+~) f d ,  ~-z~ f 0 de .  

R ~ + a  0 
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Since ~ >  }, 
~v.< - (2~+ t) (}+~). 

In the remaining part  Vb of V there holds [u l i< r -*~+aQ -*p, so that  

R R~§ 
Vb < R -s(~'+~ f dr r-2~+tJ f 0 -2~+~ dq 

R~I§ r�89 

=R-~1�89176 f drr-~+~[r-r f l > t  
R~+a 

Thus, { - a -  e -  2 f l a - a ,  

a-- ~ -- 2aa-- f la ,  
2Vb --~ max  

0r ~ - -  30" , 

i 2 a a  
2 

unless f l = l  or t q - f l - - 2 u = 0 ,  in which cases logarithmic factors appear. 

VI. In  this region all quantities are of not larger magnitude than in V, hence 
the above estimate dominates. 

VII .  The distance from 0 to x along the y-axis has the order R, and there 
is no loss of generality in setting it equal to R. One then has r=R--s ,  where 
s is distance from x along the y-axis in the direction - - w  0. Let  /~, denote a 
section of the cylinder containing x, at  distance s ~ R  6§ from x. One computes 
from (29) 

f[ VE[ d a <  s - t =  (R - - r )  - t .  
/ ;  

In  VII ,  l u l ,<  r-~=+"R-=ac~ § Thus, 
R 

VII  ~ R -za(6+a) f r-2~+r - -  r ) -6  d r .  
g~+a 

Set r---- R t. Then 
1 

VII  ~ R -*~l~+~l R-*~+~+~ f t-*~+r (t -- t)-�89 dt 
R--[+r 

--<__ R -~-za~+~ [t q- RI-Z~+a+~)l-�89 

or a logarithm replacing the bracketed expression if t q - B - - 2 ~ = 0 .  Therefore 

{ [J f la--2ea} 2wi ~ max  --  ~ - -  e - -  2fl a, - -  a - -  ~- - -  

a logarithm appearing in the exceptional case t +f l --2~----0.  

VI I I .  Here 
[u[* < R-*~'+~ R -*tJ(~+~), 

f l e e  I d~< I sl-~R ~+~o, 
so that  

o r  

V I I I  _~ R-~-*P" RX +*" R -2(~+~) 

~ V I I I ~ - - C Z - -  2 2 
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IX. In this region, [ul*<R (-s~-~lll+~ five[ da<:R-~. 
r, 

IX <= R I-*~-~l (~+~) R-~ R ~+~, 
SO that 

- -  2 

2 

X. There holds here fIVE[ da<R-~, l ul~<~ -~-a. Hence 
r, 

R 

X ~  R-~ f ~-2~-~d~ 
R~+a 

from which 

Thus 

2 x <  - ~ - - 2  

_ ~ - - ~ - - s  
2 

since ~-- ] -k e. 
XI. We have [ul~<T -s~-~, IVEI < e  -a, so that 

R co 

X I  < f dv z -2=-~ f e-Zde 
R~+a R~-Fa 

from which 

JtxI<max{ -~r 

unless i-b~--2cr in which case a logarithm appears. 
xII. Here I.l'<e-s~-~, I~EI <e -s, hence 

co 

XII ~ Ri+"fe-s~-~e-~de 
R~+O 

and 

XIII. In this region, lulZ<z-z~+~0 -2~, I VEI < e  -s, so that 

R R 

XIII < f d~ ~:-2~+r f e-2~-s de 

and there follows 

with the proviso that a logarithmic factor enters if t - t - E - 2 e ~ o .  

XlV. Here lu l ,<e  s~-,, I vEI < e  -3, 
R co 

XlV <= f d-r f e-so,-~-~ de 
R~ +a "r 

so that 

~xIv~--~--~--2~(r--~(r~-----(2~ " -  2 
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XV. We integrate over concentric spherical surfaces S, of radius r>2R 
centered at 0. On these surfaces, i VEi <r -3, while fu2da is less than the cor- 

Sr 
responding integral over the entire sphere of that  radius, 

f u~da < ~u2da < r~-~-a *, 
Sr •r 

a result obtained by  an easy calculation, using the hypothesis (49). Thus, 
oo 

XV < f r -1-2~-a* dr, 
and 

2 x v < - -  2~--fl*.  

XVI. In this case [u [Z<r  - ~ - a ,  ]VE[ < r  -3. There certainly holds 
co 

XVI < fr-3r-~-~r2dr 
so that  

2XVI__~-- 2 0 r  

XVII. Again we integrate over concentric spherical surfaces about 0, noting 

this time that  41VEI da< r-�89 

Since l u l * < r  -2~-~ in XVII,  we obtain 

2 x v H  < -  ~ - / 7  - ~. 

This completes the estimates in the situation considered, for which ~ =  CR ~+~ 
0--< a--< ~. There are two cases not covered by  this situation, namely the one in 
which x lies exterior to a cone ~----CR which opens in the direction w0, and the 
one in which e<R&. In the former case, all the above estimates apply with 

= ~ in fact, they simplify greatly). The latter case requires a special discussion. 

I 
I 

I 
I 

/ ' 1  ' 1  I X l  ,, , ,, / I  / / I , I I  / /  \ i , , / / / / /  
/ / / / / / /  i , / / / / / / / / /  
/'tZO//,; z ,  " / / g o / / , / ,  

1 

! 

2R ~ 

Z 
/?2 

Fig. 2 

The situation is illustrated in Fig. 2. We may assume that  0 lies on the 
axis of a cylinder Z of a radius 2R~ and that x is of distance <R'~ from this 
axis. This cylinder is now enclosed in another concentric one of radius 3R~. 
One sees immediately that  all estimates corresponding to regions outside Z 
proceed as before, simply by setting a----0. In Z, the estimate is now most easily 
established, using the decomposition indicated in Fig. 2. 

I 0. H e r e [ V E [  < R - ~ ,  and 

.V, 
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Thus, 
{ 3 ~I~ -~- max - -  ~-, 

unless 3 - - 2 o t - - f l * = 0 ,  in which event a logarithm appears. 

I I  o. We have ] u l ' < R  -*~, # [ V E  I da<r-*. We compute 
l:r 

~.II~ < - -  20r "J- ~; = - -  0t ~ 8. 

I I I  o. There holds [VE] <R- t ,  and on a cylindrical section P~, 

flul'd~ = 3-z~'f o do + 3-z~'+a f o-'aodo 
rr o A 

I§ -~, ~ > t 
" ~ - 2 ~ + # { T - ~ X + O R - ~ - I ) ,  f l <  1.  

Integrating with respect to 3, we find 
R 

I I I  o <  R-! f lu l~d~ 
R~ 

so that  

<R-BJ R1-%3 a fl > t  
[R-~+~-~, ~< t, 

lm~ <= -- ~ 2 
IV o. Here all quantities are smaller than in I I I  o, so the estimate for tha t  

region prevails. 
Vo. Throughout this region, l u l ~ < R  - ~ .  On a section 1~,, f l  VE'I d a < s - t  

Integrating in s, we find r, 

; t v , < -  2 ~ +  ~ = -  ~ -  e. 

VI  0. All quantities entering in the estimations are smaller than in the case 
just considered, so the estimate for V o prevails. 

The demonstration of Theorem 5.t is now completed by  collecting all the 
above estimates and examining the finite number of possibilities tha t  can occur. 

A case of special interest is that  in which u (x) decays asymptotically as the 
fundamental  tensor E (x - -y ) .  Then x = t, f l =  2. This is one of the exceptional 
cases in which a logarithm appears (c!. Remark 2 following Theorem 5.1). All 
estimates remain unchanged, however, except I I I  and I I I  0. We are led to the 
result: 

Corollary 5.1. 
N[u] satisfies: 

Under the hypotheses o/ Theorem 5.1, i/ o~ = 1, fl=2, then 

[C[x[-elog([x[ + t )  throughout ~, 

NEu]<Jcq-31~ # q=>13l ~, (53) 
]c]xl-81og([x l + l )  q 3 < 0 ,  

[c i/ [x]_~l  

where the constant C does not depend on u(x). 
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We may apply the above results to the solutions of (2)0 in d'. Let  w(x) be 
such a solution, such that  w(x)-->w o at infinity. Set u ( x ) = w - - w  o, and sup- 
pose ]u(x)[ <C]xl -~ with ~ > ~ .  We may write 

u (x) = u~  (x) + u~ (x) 

corresponding to the surface and volume integrals in the representation (48). 
u~(x) satisfies (50) with a-----t, f l=2 ,  so that  N[uz] satisfies (53). On the other 
hand, u(x) satisfies (50) with the given ~ and with f l=0 .  According to Theo- 
rem 5.t, N[u] satisfies again (50) with any ~<:r and with some f i > 0  (in this 
case we may choose ~=0r Since [u(x)[ = luz(x)+u,~(x)[ ~_ lu (x)l +NEu], it 
follows that  the original solution u(x) satisfies this improved estimate, with 
the proviso that  ~ ~ I. Inserting this result into N[u] now yields larger values 
for 0r and for fl in the estimate (50). A finite number of iterations then leads 
to the result: 

Theorem 5.2. Let w(x) be smooth in ~ + X  and satis/y (2)0 in ,3'. Suppose 
Iw(x)-wol <Clxl -= as ]or some ~>~. Let u ( x ) = w ( x ) - - w  o. Then 

(5 4) u (x) = u z (x) + N [u] 

where u1:(x) is the sur]ace integral in (48) and N[u], the volume integral in (48), 
satisfies (50) with fi=3 and any ~ such that ~< ~. In particular, w(x) exhibits 
a paraboloidal "wake region" at infinity. The behavior o] u (x) along any path 
tending to infinity is, up to terms o/order N[u], identical to that o/the/undamental 
tensor E(x; wo) considered as ]unction o/ x. 

Let us consider the derivatives of the solution w(x). The representation 
(48) cannot be differentiated under the sign, but  the following device is effec- 
tive. Consider that  part of the volume integral which is extended over a unit 
ball V centered at x. We may write, since V . w =  V . u =  O, 

(55) f u ' u "  V E d y = ~ ( E ' u )  u d a - -  f E ' u "  V u d y  
V S V 

where S is the bounding surface. 

At any point z having distance > 2y from X, we may represent u(x) with 
the aid of the truncated tensor EV(x--z; Wo) (c]. w 2.3) obtaining 

u(z) = f EY. u .  V u d y  + f Hy. u d y  
V? V ? 

= -- f u .  u .  VEYdy + fHY.  u dy. 
V y V y 

The latter relation leads to a H61der bound on u (z) for any exponent a < t,  
with constant proportional (for fixed :~) to max tu(x)[. But we may also write 

V y 

(56) u(z) = - - f l u ( y ) . u ( y )  - -u(z) .  u(z)] .  VEYdy+ f I t r . u d y .  
V y V ~ 

Because of the H61der continuity of u(x), (56) can be differentiated under 
the sign, leading to the estimate 

I < c max I - (y ) l ,  
Vv 
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C depending only on w o and on y. Thus, ]Vu I satisfies at infinity the same 
estimates which were shown in Theorem 5.2 to hold for lu(x)[. Placing this 
result in (55) shows that  the quanti ty V { f u ( y ) .  u(y) .  VE(x - - y )dy}  satisfies 
an estimate (50) with ~-=2, #----4. v 

The remaining terms in the representation (48) can now be estimated by 
differentiating under the sign and repeating the reasoning which led to The- 
orem 5.2. The procedure is formally unchanged, and details are omitted. We 
find 

Theorem 5.3. Under the hypotheses o/ Theorem 5.2, we may write 

V u (x) = Vu~(x) + N'[u] 

~here IX'[u][ satis/ies (50) wah ~=2 ,  # = 4 .  
Similarly, one may discuss the pressure term, starting from the representa- 

tion (see (28)) 

(57) p(x)=Po + f e ( x - -  y) . u .  Vudy  + ~ { u .  T e - - e .  Tu  + (e.U)Wo}da 

and using the fact that the kernel e (x - -y )  can be expressed as a gradient. We 
obtain 

Theorem 5.4. Under the hypotheses o! Theorem 5.2, there holds, analogous 
to (54), 

p (x) =p~(x) + f[u] 

where P[u] satisfies (50) with ~ = 2 ,  f i=2 .  

5.2. The case w 0 =  0 

If Wo=0, the nonlinear term in (48) does not appear in general to decay 
at infinity more rapidly than the surface integral. Nevertheless, this term ad- 
mits a qualitative estimate for all functions w(x) such that  Iw(x)[ =O(r-1). 
The estimate can be obtained by subdividing the region of integration into a 
sphere of radius {Ix I about the origin, the exterior of a concentric sphere of 
radius 21xl, and the remaining annular region. We find easily N[w]<Clx[-1. 
If w (x) is a solution in d ~ then Vw and p (x) can be estimated as above. Thus : 

Theorem 5.5. Suppose w0=0,  and Iw(z)l < Ix1-1 as z ~  oo Then  N [ w ] <  
C]x] -1, where C does not depend on the choice o] w(x). I] w(x) is a solution o/ 
(2)0 in g, then N ' [ w 3 < C l x l - * l o g i x  ] as x~oo ,  and Prwl<Clxl-*. 

Theorem 5.5 exhibits the compactness property of the operator N[w], which 
is the underlying reason that  the existence theorem of the preceding section 
could be obtained with vanishing data on X and nonvanishing data at infinity. 
The class of functions which decay as I xl l  is mapped compactly into itself, 
uniformly on an interval of w o which extends to Wo= 0. This is evidently not 
the case for any family of functions which decay as I x]-~, if a < 1, whereas 
the method requires such an estimate to hold for some e ~ !.  

In the material that  follows, the following definitions will be adopted: 

Definition 5.1. A solution w(x) o/ (2) in ~ will be said to be in the class PR 
(physically reasonable) i / i t  satisfies the hypotheses o/Theorem 5.2 or o[ Theorem 5.5. 
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The justification for the definition lies in the conclusions of those theorems. 
Although those results were proved under the assumption f----O, they evidently 
hold whenever the volume integrals containing f(x) are sufficiently well behaved 
at infinity. This is the case, for example, whenever f(x) has compact support 
in 8 + X .  

Definition 5.2. A solution iv (x) o/ (2) in 8 will be said to be in the class D 
i/ it has finite Dirichlet integral over 8, i.e., i] 

fl  |zivl~d~ < o o .  

Solutions of class D were first constructed by L ~ Y  [2], see also [5, 13, 
16, 17, 4]. Such solutions are known to be continuous at infinity, but no further 
asymptotic properties have been demonstrated (see, however, the discussion in 
w 6 of [13]). On the other hand, it follows from Theorems 5.3 and 5.5 that  
every solution o/ class PR is also in the class D. 

g.3. Consequences 
Let ~- be the force exerted on 27 by the fluid, 

5r = _ ~ T w  da,  
2: 

, I I ~wi ~wil The follow- and define the deformation tensor by (def ivh~=~-(~:-xi + 0xi ]" 

ing results are easy formal consequences of the above estimates. (For further 
details, see [7].) 

Theorem 5.6. Let w(x)E PR,  [=--0. Then the term IV[u] in the representation 
(48) yields no contribution to the/orce on 27, that is, ~" is determined by the solution 
o] the linear system (4)o defined by the sur]ace integral in (48). 

The hypothesis [ ~ 0  can, of course, be weakened. 

Theorem 5.7. Let w ( x ) c  P R  in 8, [=--0, and suppose iv(x)--->w*=constant 
on 27. Then 

(58) ~ ' "  (ivo -- iv*) ~- 2 f  (def iv)~dx. 

Corollary 5.7a. Under the "physical" boundary condition i v*=  0, there holds 
o ~ - w 0 >  0, that is, there is a "drag" /orce in the direction ivo. 

Corollary 5.7b. I] i v ( x ) c P R  in 8, [----0 and w ( x ) = i v  0 on X, then w(x )  
is the unilorm ]low iv (x)=ivo in 8. 

Theorem 5.8. Let i v ( x ) c P R  in 8, f = O ,  and set 

a = ~ {Tiv - - i v i v  -- ivoiv} dg.  
s 

Then [ iv (x) -- ivol =o([x[-1) at infinity i/ and only i~ a = 0 .  In  particular, i/ 
the flux and momentum /lux across 27 o/ the (prescribed) data both vanish, then 
l iv-ivol  =o(Ix] - ' )  i /  a~d only i /  the , ,a lorce exerted by the lluid on 27 i ,  ~ero. 

Corollary $.8a (c]. BERKER [18]). Let iv(x) satisly (2)o in 8, iv--3,iv*----const. 
o~ 27, and suppose liv(x)--ivol =o(Ix]-0 at in/inity. Then iv(x)----ivo in 8. 

Theorem 5.9. Let iv (x) be a solution o/ (2)0 throughout Euclidean three-space, 
and suppose iv(x)E PR .  Then i v (x )=ivo .  
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Finally we establish the uniqueness of solutions w(x)~PR,  which are suf- 
ficiently close to a uniform flow. 

Theorem 5.10. Let w(x) be a solution o/ (2)0, such that w(x)----w* on 27. 
v suppose [ w ( x ) - ~ o l  < ~  I xl-' throughout e.  Let v (,) be a solution o/ (2)0 such 

that v(x)EPR, and suppose v ( x ) = w *  on X. Then v ( x ) ~ w ( x )  throughout g. 

Proof.  Let ~ i = w - - v ,  and let q(x) be the difference of pressures. Then 

v A~l --~1" Vaq -- Vq=(~ .  V w - - w .  V~I). 

Multiply by  v i and integrate over the annular region gR bounded between 27 
and a large sphere Za.  We obtain 

(59) tn en ;r~ 

~R XR XR 

By Theorems 5.2 to 5.5 all boundary terms vanish in the limit. Further,  

8R ~R 

= - -  f ( w  - -  Wo) .,t I �9 V~q dx  + # ~ .  ( w  - -  Wo) ~q dtT. 

Again the surface integral tends to zero. But  by  hypothesis, JW--Wol < 2 Ixl-a' 
hence if V~i ~ O, there holds 

e~ (W-Wo).n.vnax'< ~fr-~,.vnaxl' 
~_, r-,l,al,ax IV , l l  = f 

d'R ~'n 

by  the Schwarz inequality. Since ~i = 0 on 27, we may  extend aq to a continuous 
field in all space by  setting ~1 = 0 in the complement of 6~+ X. Applying Lemma 
2.2, we find 

f r-'lvil2dx<4 f[ V~]l'dx. 
g g 

Inserting this result into (59) leads to a contradiction unless V~ 1 = 0 in g. But  
~1 = 0 on 27, hence B ~ 0 in g,  which was to be proved. 

Remark. Note that  the hypothesis [ = 0  could be weakened considerably. 
I t  would suffice, for example, that  (E, De, (VE, I)e, (e, De=o(r  -1) at infinity. 

6. Perturbation to Zero Reynolds' Number 
Let w (x) be a solution of the exterior problem for (2) in 6 ~, such that  w (x) = w* 

on 27 and w (x)--~w o at infinity. If  w * - - w  0 is small, can the corresponding 
solution u (x) of the linear system (4) or (6) serve as an approximation to zc (x) 
in 6 ~, and if so, in what sense ? The answer to this question appears to depend 
heavily on the asymptotic  structure of the given solution w (x), and also on the 
way in which the approximation is constructed. The question is conveniently 
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rephrased as a perturbation problem. A given solution w (x) of (2) in ~ will 
be supposed embedded, for small 2, in a one-parameter family of solutions 
w(x;2)=wo+2u(x ;2  ), where u(x; 2), appearing as a solution of (3), is to 
achieve fixed boundary data u*, u o on z~ and at infinity. Here w o is an arbitrary 
constant vector, which may or may not be velocity at infinity. Let  U(x) be a 
solution of the corresponding linear equations (4), and satisfying the same con- 
ditions on z~ and at infinity. One seeks to estimate [u(x;  2 ) -  U(x)] uniformly 
in 8 for small 2. 

The various possibilities available to us may  be illustrated by the following 
considerations. Suppose for simplicity w (x) = w (x; 1) and w (x) --~wo* at infinity. 
Then it may  be convenient to set wo=w ~ and prescribe u(x; 2)--~0 at infinity 
for each 2, that  is, u0=  0. I t  will be seen shortly that  this case leads to a per- 
turbation which is uniformly well behaved throughout 8. On the other hand, 
the equation satisfied by U(x) is still relatively complicated, because of the 
factor w o. Alternatively, one may set wo=0 ,  uo=w*, thus perturbing the data 
at infinity. Then U(x) satisfies the simpler system (6), but  the perturbation 
turns out to be singular at infinity. I t  leads in the three-dimensional case con- 
sidered here to Whitehead's paradox [6, p. 163], and in two dimensions to the 
more striking Stokes paradox, which arises from the fact that,  in general, solu- 
tions U(x) corresponding to the prescribed data u*, u o do not exist [8, 9, 10] 2 

A further difficulty arises according to the asymptotic behavior assumed 
of w (x) at infinity. If the solutions are assumed of the type constructed in w 4, 
i.e., if w(x)~PR (w 5.2), then for small 2 (or, alternatively, for given 2 and small 
u*, uo) the solutions are unique (Theorem 5.t0) and the perturbation completely 
determined by  the expansion (44). However, solutions exist which satisfy the 
stated conditions on Z and at infinity and which are only known to be of class D. 
The relation between these solutions and those of class PR is not clear; never- 
theless, one may again examine the perturbations for the presumably broader 
class D in both cases, obtaining uniform estimates in 8. 

There are thus four cases to consider, and we shall take them in turn. In 
each of these cases it will be necessary to distinguish the subcase w 0 =  0, as the 
order of approximation appears generally to be weaker in this situation. Through- 
out the ensuring discussion it will be supposed that  [ ( x ) ~ 0 ,  although this as- 
sumption could be replaced by suitable hypotheses on f(x).  

6.1. Perturbations Vanishing at Infinity 
Case 1, wEPR. We consider a family of solutions w(x; 2) of (2)0 in o #, cor- 

responding to data w * = W o + 2  u* on Z', with u* prescribed, and we suppose 
Iw(x; 2)--Wol <2C(2 ) Ix l  -~ at infinity for some 0r for each 2. C(2) is not 
supposed uniform in 2. If 2 is sufficiently small, a solution w(x; 2) can be 
obtained as an expansion in powers of 2 (w 4), and for small 2 this is the only 
solution in PR (Theorem 5.t0). Thus, uniformly in o*, there holds 

(60) w(x; 2) --Wo= 2[U(x) + ~ ui(x) 2i ] 

The former perturbation (u0=0) is similar to the "outer expansion" of KAPI.UN, 
or of PROtIDMAN & PEARSON (see, e.g., [19, 20]). If u04= 0, one obtains a perturbation 
analogous to their "inner expansion". See, however, Footnote 7 in [10]. 
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where U(x) is the solution of the linear system (4)0 which assumes data u* on 
2; and vanishes at infinity. This relation may be differentiated term by term 
as many times as the smoothness of the data u* will permit. Note that  in (60) 
the functions U(x), u i (x) do not depend on 2. This shows, in particular, that  
C(2) can be chosen uniformly for all 2 sufficiently small. 

As a particular consequence we obtain: 

Theorem 6.1. Let w (x; 2) be a solution o/(2)0 in PR /or each ~ and set u (x; ~t) = 

~-1 [w (x; ~ ) -  Wo]. Suppose u (x; ~L)= at infinity]' and let U(x) be the solution 

o[ (4)0 in 8 with the same data. Then i/ w o ~ O, there holds uni/ormly in 8 as 2--+0, 

(6t) I n ( x ;  2) - V(x)l < 

where z(x) is bounded in e and satisfies (50) with f l = 2  and ~r I / W o = 0  , then 

(62) 

in ~. 
That  is, any 

approximated in 
order. 

The proof of 
VE+ VA. Thus, 

2) - v( )l < c 21 1 

solution w (x) with data on 2: sufficiently close to w o can be 
d ~ by the solution of the linearized equations, to the indicated 

(6t) may be obtained from (43), noting that  VG(x, y; Wo)= 
f u .  u .  VG dy splits into two terms, the first of which can 

be estimated by  Theorem 5.t. As to the second, we observe that  A(x, y; Wo) 
is a solution in o a of the adjoint of (4)0, and, if w o 4=0, assumes boundary data 
of the form B (x) �9 (x), where B (x) is bounded with all its tangential derivatives 
on 2:. The methods of w 2.6 then yield estimates for A(x ,y;  Wo) as function 
of y, from which the result follows. 

The derivatives admit a corresponding estimate when w o 4: 0, with/5 = 3 and 
any ~ < ~ .  For the pressure one obtains /5=2 and any ~ < 2 .  If w 0 =0 ,  then 
for the derivatives and pressure, Ix] -1 should be replaced by  Ix[-21og]xl, [xl-*, 
respectively. 

1 Case 2, Perturbation o/Class D. A family of solutions u (x; 2) = 2- [w (x; 2)--wo] 
of (3)0 is considered, such that  u(x; 2 ) = u *  on 27, u(x; ~t)-->0 at infinity, and 
Hu]le< C <  0% uniformly for 2 sufficiently small 8. Again let U(x) be the solution 
of the linearized system (4)o with the same data. Then 

(63) u(x; 2) -- U(x) = 2 f G(x, y; Wo) .u(y;  2)" Vu(y; 2) dy. 

Now G(x,y;  Wo)=E(x- -y ;  Wo)+A(x, y; Wo). Because of (29), there holds in 
particular ]g(x-y;Wo)[<C[x-y]  -~. The estimates of w show that  for 
large x, ]A(x,y; Wo) [ <C[x[qly[ -1. We may therefore write 

( / G .  u . V u d y ) ' ~ /  [ u[2 ([x - y [ - 2 +  [y[-2)dyJ[  V u]2 dy 

~_C 

8 The existence of such solutions can be proved by a procedure due to LERAY [~] ,  
c[. the remarks in [13, p. 237]. 
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for some uniform constant C, by Schwarz' inequality and Lemma 2.2. Thus, 
setting ~1 (x) = u  (x; 2) -- U(x), 

(64) [~ (x)l = lu(x;  2) -- U(x)I < Ck 

as ~--~0, for all x bounded from 27. The representation (c/. w 2.3) 

(65) ~q(x) = ~t f E ~'. u .  V u d y  + f l F . ~  Iay 

then yields a corresponding estimate for the derivatives of ~q up to second order. 
Thus, in particular, a bound of the form (64) holds for ~ (x) and its derivatives 
on the surface of a sphere Z o containing X and bounding, with Z, an annular 
region ~o. 

Let ~(x) be a solenoidal field in d 0 such that ~ (x )=u*  on Z and ~ (x )~  0 
outside X o. Let v(x; 2 ) = u ( x ;  2) --g(x). Let Z 1 be a concentric sphere contain- 
ing 2; o, let d 1 be the region between Z and 271. We may represent v(x;  ~) in 

by the Green's tensor G 0(x, y) of (6): 

v(x; ,~) = {Go, Wo, v} + ,k { Go, u, u} + {Go, Wo, ~) + [Go, ~] -- (Go,I) + 

+(Ru" TGodu.  
x, 

Because of (64), u (x; k) is hounded on 271. By assumption, Ilu (x; ~)II < c, hence 
IIv (x; ~)11 < c Schwarz' inequality and the Odqvist estimates ] G o(x, y)[ < 
c l ~ - y l  -~, I V~ol < c l ~ - y l  -~ then show that  Iv(x; k)[ < C  in do; hence also 
l u ( x ;  J.)] < C  in ~r 

Now let ~ (x; ~[) be a solenoidal field in d o, equal to ~i on X o and vanishing 
outside a neighborhood of Z o which does not meet 27. Because of what has 
been proved, { (x) can be constructed so that 

IIZ;ll~,.< c,~. 
Set y = ~ q -  ~. Since y =  0 on 27, Zo, we have in ~r 

I M I ' - - -  ,UY ,  ,,, , ,} - ly ,  ~;2 - {y ,  , , ,o, ~;} 

= ~ {,,, ,,, ,6  - hr, ~2 - {v, Wo, ~} 

--< ~ Ilvll'+ c ~ , +  c I1~;11' 
for a suitable C, since u(x; 2) is bounded in ~r Hence IlvlP.<c~, and also 

(66) II,~!k,.< c 4. 

Finally, we represent ~i in ~0 by the fundamental tensor Go, obtaining 

,1 (~; ~) = {~o, Wo, ~} + ~{~o, u, u} + ~,l" TOo do. 
Zo 

Since on 270, [~q[< C)l by (64), (66) implies that  (64) holds up to 27 for a suit- 
able C. Similarly, one may estimate the derivatives and the pressure terms. 
We have proved 

Theorem 6.2. Let w (x; 2) be a/amily o/solutions o/(2)o , such that i / u  (x; 2) = 
}t-l[w(x; ~)--Wo], then u(x; ~)--->0 at infinity and u(x; }t)=u* on X. Suppose 
/urther that [[u(x; ~.)[[<C, uni/ormly /or small ~. Then there holds uni/ormly in 
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8 ,  as ~---->-0, 

(67) [ u (x; A) -- U(x)[ < C A 

/or the solution U(x) o/ (4)0 in ~ with corresponding data. 

Note that  in this case the method does not lead to improved estimates when 
w o 4=0. 

For the derivatives one obtains a stronger estimate: 

Theorem 6.2a. Under the hypotheses o/ Theorem 6.2, there holds/or x bounded 
lrom 27, 

I Vu(~;  ;t) - vu (~ )  I < c [ ; :  + A 1~.1 (%)] 

where ~l(x) satisfies (50) with ~ = 3  and any ~<~ when w0~=0; il w 0 =0 ,  the 
same inequality holds i /x l  (x) is re#laced by Ix I -~ log I xl. Uni/ormly ~,p to Z., one has 

I Vu(x; ~)-VU(x)[ < cA. 

Proof. From 
~q (x)=A{G, u, u} 

we find 
~l(x)=~t{G, Yi, ~i}+~I{G, ~1, U}+A{G, U, ~}+A{G, U, U} 

=A(~h+~.+~+~4). 

Let V be a unit ball centered at x, S its surface. Then for any derivative ~i'(x), 

YI; = {G', ~, ~q}v+ {G', ~q, ~i}~-v, 

I~;I < c ~ + A II G' I1,,-~ Ih I1~ - , ,  
< C A  

for small A, by  Theorem 6.2, Schwarz' inequality, (65), and the hypothesis IM < c.  
lq: is estimated similarly. Next, integrating by  parts, 

~q'3 = {G', U, ~}v + ~ (G' .  U) ~q d .  --  {~, U, G'}#_v,  
S 

I~,1 < Alxl- '  + ,~ I~1-* + .~[v, G"],,_,.. 
< C A  

for small ~. Finally, we may write 

~ , , = -  {u, u, E} - {u, u, a}. 
To the first term, we may apply the method of proof of Theorem 5.3 or Theorem 
5.5. In the second, we observe that  A~(x, y;  wo) is a solution in 6 ~ of the adjoint 
of (4)0, and, if w04:0,  assumes boundary data of the form B(x) ~l(x), where 
T1 (x) satisfies (50) with/5 = 3, any ~ < 3, and B (x) is bounded with all its tangen- 
tial derivatives on 27. The result then follows from the estimates of w 2.6. If wo=o, 
one uses the estimate [A,[ <C[x [  -2 on 27. This establishes the theorem when x 
is bounded away from 27. For x near 2~, the result is obtained by  a procedure 
analogous to the discussion of this case for Theorem 6.2. 
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6.2. A Lemma on Green's Tensor 
We shall need information on the variation of the Green's tensor, as function 

of the parameter w 0. 

L e m m a  6.3. Uni]ormly /or y E ~, there holds as x-+ co, i/ w o :# O, wo= 
(1 - 4) Wo,  

(68) [TG(x, y; Wo) -- TG(x ,  y; ~0)] < C ~ ~(x) 

where T(x) satisfies (50) with ~=1,  fl----2. Also, 

(69) [ TV. G(x, y; Wo) -- TV.G(x, y; ii;0) [ < C ,t *x(x) 

where vl(x) satisfies (50) with any a<-~ and /5----3. 

Proof. We have G(x, y; Wo)----E(x--y; wo)+A(x, y; Wo). Using the rela- 
tion E(x; tWo)=tE(tx; Wo) with t-----t--~ leads to 

(70) E(x ;  tWo) - -E(x ;  u,o) ---E(tx; wo) - -E(x;  wo) -- ~E(tx;  Wo), 

so that,  applying the mean value theorem to the first two terms on the right, 

(7t) [E(x; tWo) -- E ( . ;  wo) [ < CAr(x) 

where z (x) has the properties indicated above. 

Differentiating (70) in x, 

VE(x; two) -- VE(x; Wo) 
(72) 

~- VE(t x; Wo) -- VE( . ;  Wo) -- ~L(2 -- ~t) VE(t x; Wo). 

Again using the mean value theorem, 

(73) [VE(x ; t  Wo) -- VE(x; Wo)[ < C ~ ,l(X) 

where 31 satisfies (50) with _ 3 ~--~-, /5-----3. The pressure term, e(x- -y )  does not 
depend on w 0. Hence, (68) is verified for the singular part of G(x, y; Wo). 

The regular part A(x, y; wo) satisfies the system 

A u  + w o. V u - -  V p = 0 ,  
(74) V- u ---- 0 

as function of y, and A-= A* = E (x, y ;  wo) for y on 27. We may write A*---- B* ~ (x), 
where B* is bounded and has bounded derivatives on 27, uniformly as x -+  oo. 

The field ZI=A(x, y; tWo) satisfies 

A u + Wo" V u  - -  V p  = - -  ~ w o. V u ,  

(75) V .  u = o .  

We may write, because of the linearity of (75), 

A - - - - A I + A  ~ 

where 2t1=A* on 27, A2=E(x,  y; wo)--E(x,  y; two) on 27, and A,, A~ each 
satisfy (75) in y. 

We may write A - - A = ~ ]  --212, where ~]=A--211. ~] and A2 will be estimated 
in turn. 
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Using the estimates of Theorem 2.8 and its Corollary on the solutions of the 
linear systems, we find 

~il (x, y; .1)=Bl(x, y; .1) ~(x) 

where Bx(x, y ;  .1) satisfies (75) in y, is bounded together with its derivatives 
up to 27, and admits estimates of the form (3t) in y uniformly in x for all suf- 
ficiently small ,t. 

The field -- v I (x, y) satisfies 

A~I--Wo" V ~ -  Vp = *1Wo" VA~, 
(76) V. ~ = 0 

in ~, and ~1 = 0 for y ~ Z. Hence 

~l(X, y)=--*1{G(x, y; t Wo), Wo, 2I} 
= -  ~ ~ (x) {G (x, y; t Wo), Wo, B~}. 

For large x, G(x, y; two) is in Lp(8) whenever 2 < P < 3 ,  uniformly for I t - - i ]  
sufficiently small. Also, [VB[ is in Lq(~) whenever q>~ .  Choosing p and q 

in these intervals, such that  + ~- = t ,  we obtain 

1 1 

( 7 7 )  ]~](x'Y)[<*1"(x)]w~ u 
< C ~ ( x )  

uniformly for small .1 and large x. 

Suppose YE2:o, a spherical surface containing 27. We represent )~(x, y) by 
the truncated tensor (c]. w 2.5), obtaining 

(78) ~l (x, y) = -- .1 {By (y, z; two), w o, .r + (HL ~)~,. 

From (78) we conclude 
I E~ (~, y)l < c ~  ~(x) 

for y~27, and corresponding estimates for all higher derivatives of ~i. 

Hence we may construct, for each x and t, a solenoidal field ~ (y) in the 
region d o between 27 and 2: o, vanishing outside a given neighborhood of 2:0, 
such that  {=~i on 2:0, and such that  

IlglP.< c.1 ,(~). 
Set v = ~ l -  ~. We find, since v = 0 on 27, 270, 

UvlI~--*1{,,, wo, ~ 1 } -  E,,, ~]-{,,, Wo, ~} 
from which we conclude 

I1~1~0< c.1 ~(~) 
and hence 

I1~.< c~ ~(~). 
Now represent v I in d o by the Odqvist tensor G O (x, y) for (6): 

(,,,y) = -  {Go,,,,o, ~) -- ~{Oo, Wo,-~} -- ~ .  TGo a,,. 
2: o 
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The above estimates of ~ on X o, of Ilnl~., and of At, and the Odqvist estimates 
for Go (x, y) in d o, yield the results 

(79) [~q(x, y)[, [T~(x, y)l < C 2 ~(x) 
up to X. 

I t  remains to estimate A2. On 27, [A2[<C2T(x)  with a corresponding 
estimate for its tangential derivatives of all orders. Hence we may write 

-4~(x, y; 2 ) = 2  v(x)B2(x, y; 3.) 

where B~(x, y; 2) has the same properties as were shown for Bl(x, y; 2). Thus, 
]TB2I is bounded up to 27, and therefore 

I T.~I < c 2  ~(x) 
up to 2:. This completes the proof of the first part of the lemma. The remaining 
estimate (69) is obtained by the same procedure, using the appropriate estimates 
for the derivatives of the fundamental tensor when yE27 and Ix] is large. 

Lemma 6.4. Suppose Wo=0, [Wo[ <~- Then there holds/or y~27, as x--->oo, 

ITG(x, y; O)- TG(x, y; ~o)1 < C  Xo(X; 2) 
where 

Also, 
"to (x; 2 )=min  (2 log ,~-1, I'~1-' log I~1). 

[TV. G(x, y; O)- TV. G(x, y; wo)[ < C  To(X, y) 

wh~e ~o=V~ Ixl-' 
Proof. Observe first that  the change of E can not be estimated as above, 

and it is necessary to obtain this estimate directly from the defining relations 
(t6). A formal calculation yields 

[E(x; Wo) --E(x; o)l < c min (2, I~l-'), (8o) 
I vE (~ ,  ~o) - ~'E(,,; o)1 < C,~lxl - ' .  

For the regular part A(x, y) we write as before A : A I + A  ~, with J 1 = . 4  on 27, 
and set v l =-4  -- At. ~i (x, y) satisfies 

(81) A n  - V p  = - ~o" V ~ ,  

V ' ~ I = 0  

as function of y, and v i = 0 on X. We represent ~i over the region ovR between 
X and a sphere of large radius X R, using the Green's tensor G(x, y) for (6) in g:  

(82) " t l ( x , y )=- - fG(y , z ) '~o 'VAa(z )dz+~(~ .TG- -G.T~)da .  
8R XR 

Using (29) and the results of w we find A t = Bl ( X ,y ) I x l  -~ where B,(x,y) 
satisfies (8t) and remains bounded as x--> 0% 2-+0. Consequently, on a surface 
27,, there holds 

(83) ~ I VB, I d,~ < C 
Zlt 

uniformly for large x, as 2--+0. 
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Consider (82) for a point y on a fixed spherical surface 27 o containing 27 but  
inside 27R. One has 

I G(y, z)l < CErTr; l+r~I]  ; 
hence using (83), 

f G(y,z) "-wo" lTB(z) dz < C 2 1 o g R  

for yeXo. 
On 27R, I~l <CR-X, ]G] < C R  -1, [TG[ < C R  -2, and # IT~I  da<C, if Y~27o. 

Hence zn 

~ (~1" T G  - -  G .  T~i) da  < C R -x 

for large R and Y E27o. Thus 

I~1 (x, Y)I < C[R-I+ 21 x l -qogR ] . 

The choice R=2-1lx[  yields the estimate 

I~l (x, Y)I < c21x1-1log 2-11xl 
for large x and small 2, and y E 2Jo. 

Now we may represent v I (x, y) in d 0 by means of the Green's tensor G o (x, y) 
for sr 0. The procedure is identical to the one used in proving the previous lemma. 
We find 

IT~I < c21xl-llog 2-~1~1 

for large x, small 4, and y627. 

To estimate A2, observe that  on 27 we have I~LI < C m i n ( L  1~1-9 vath 
stronger estimates for its tangential derivatives, and A 2 satisfies 

zlZi~ - v p = ~o" v a2, 

V.A2= 0  

in 6 ~. The results of w 2.5 show that  

I T-421 < C min (2, Ix[ -1) 
on ~. 

Collecting the above estimates, one obtains easily the first assertion of the 
lemma. The second assertion follows from the same procedure, using the estimate 
for the variation of VE. In this case, the volume integral is convergent. 

6.3. General Perturbation o! Class PR 

It  will be assumed throughout that  the direction of the velocity field is 
unvaried at infinity, that  is, u o and w o are parallel if w o 4=0. If Wo=0, no 
restriction is made on u o. 

T h e o r e m  6.5. Let w(x; 4) be a/amily o/ solutions o] (2)0 o] class PR, such 
that i] u(x; 2)=2-1[w(x ;  2)--Wo], then u(x; 2 ) = u *  on 2~ and u(x; 2)--->u o as 
x--->oo. Let U(x) be the solution o] the linearized system (4)o with corresponding 
data. Then i] w o 4= 0 there holds uni/ormly in e, as 2->0, 

[ . (x;  4) - u(x) I < c 2  ~(x) 
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where ~(x) satisfies (50) with ~t-~t, f l=2 .  I]  Wo=O, then 

lu(x;  ,~) - V(x)] < C  ~o(X; ~) 
where ~o(X; 2 )=min (2  log2 -a, Ixl-llog [xl). 

Proof.  For small 4, solutions of the indicated class exist (w 4), and they are 
unique (Theorem 5.10). Therefore the solutions w(x ;  2) can be represented by 
an expansion (44) based on the equations 

Au--(w o + 4 u o ) .  Vu-- Vp= 4(**--Uo). Vu, 
(84) V. to -- o 

for each ~, from which one sees from the method of construction that the per- 
turbations are uniformly in PR, i.e., [U--Uo[ <C[x [  -1, with C independent of 
2, if 4 is small. 

We have 

u ( x ; 4 ) - - u  o = 4 { G , u - u  o, U --  Uo} + ~ (u* - -  Uo) " T G da  
27 

---- - -  2 { u  - -  u o , u - -  u o, C.} + ~ ( u *  - -  Uo)" T G d a  
2; 

where G = G (x, y ;  w o + 2 Uo), while 

U(x) - -  u o = ~ (u* - -  Uo)" T G  do  
27 

with G = G (x, y ;  Wo). Thus 

(85) u ( x ;  4) -- U(x) = --  4{u - -  u o, u --  u o, G} + ~ (u* - -  Uo) ( T G - -  T G )  da .  
2; 

Suppose first w 0 4= 0. Since u - -  uocPR,  it satisfies (50) with g = 1, p =  2. There- 
fore, as in the proof of Theorem 6.t, the volume integral on the right satisfies (50) 
with any g =  ~, fl----2. To the surface integral we apply Lemma 6.3. This yields the 
asserted theorem if Ix I is large. If x is near 27 one may proceed in a way analogous 
to the corresponding estimate near X in the proof of Theorem 6.2, and there 
should be no need to reiterate the details. 

If w0=0 ,  the method is the same, only Lemma 6.3 must be replaced by  
Lemma 6.4. 

T h e o r e m  6.5a. Under the hypotheses o/ Theorem6.5,  i /  Wo~=O, there holds 

(86) [ Vu(x;  4) -- VV(x)[  < C 4  rl(x)  

where 31 (x) is as in Lemma 6.3. I / w  o =-O, then 

(87) I Vu(x; 4 ) -  v U(x)l < c V~ l xl-~. 

Proof. The volume integral in (85) can be differentiated and estimated as 
in the proof of Theorem 6.2a. To the surface integral we apply the second part 
of Lemma 6.3 or 6.4. 

6,g. General Perturbation o /Class  D 

Theorem 6.6. Let w (x; 4) be a / a m i l y  o/solutions o/(2)0, such that/]  u (x; 4) ---- 
4-a[w(x; 4)--Wo], then u ( x ;  2)-+u o at in f in i ty  and u ( x ;  4 ) = u *  on ~ .  Suppose 
/urther tho2 ll,, ~.)II < c, uni /ormly /or small 4. Then i /  w o 4= O, there holds 
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uni/ormly in 8, as 2-+0, 
[u(x; 4 ) -  v(x)] < c  2 

/or the solution U(x) o/ (4)0 in 8 with corresponding data. I / W o = O ,  one has 

(88) lu(~; 4) - v(.)l < C(~o(~; 4) + 4) 

where % (x; 4) = rain (4 log 2 -1, Ix [-1 log Ix [). 

Proof. Suppose first w04:0.  The functions u(x;  4 ) -  U(x)=~i(x; 4) admit 
the representation 

~i (x; 4) ---- --  2{G, u --  Uo, u -- Uo} + ~ (u* --  Uo) ( T G  --  TG)  da 

with G = G (x, y ; w o + 2 Uo), G = G (x, y;  Wo). Thus, applying the Schwarz in- 
equality and Lemma 2.2 to the volume integral, and Lemma 6.3 to the surface 
integral, we obtain [~1[ < C 2  uniformly over 8, as 4-+0. 

If Wo=0, the same reasoning, with Lemma 6.3 replaced by  Lemma 6.4, 
yields I~1 < C [min (4 log 4 -1, Ix[-1 log I xl) + 2] the stated result. 

For the derivatives one may obtain an improved result. Again suppose first 
w 0 =~0. We have, for a derivative YI', 

~i'(x; 2) = -- 2{(-~', u --  u o, u --  Uo} + ~ (u* --  Uo) (TG '  --  TG')  da.  

The volume integral is amenable to the method of proof of Theorem 6.22, yield- 
ing again an estimate 

I{G', , , - - o ,  u-uo} l  < c(2~+ 2 ~1(~)) 

where Ta(x) is as in Theorem 6.2a. To the surface term we apply Lemma 6. 3. 
In case w0=0 ,  we repeat the reasoning, using the second part of Theorem 6.2a 
and Lemma 6.4. 

These estimates hold if x is bounded from 27. Estimates up to 27 follow 
from the method used in the proof of Theorem 6.2. Thus we have 

Theorem 6.62. Under the hypotheses o/ Theorem 6.6, i/  WoW-O, there holds 

(89) I Vu(x; 4 ) -  vv(x)  I < c 2  
uni/ormly in ~, and 

(vo) I vu(~; 4) - v u(~)l < c(z~ + 2 ~(~)) 
/or x bounded trom Z, where ~(x) satidies (50) with : c = l ,  f l=2 .  I t  Wo=0, (89) 
and (90) are replaced by 

(9~) I Vu  (x; 2) --  V U(x) l < C 2 log 2 -1 

unilormly in g /or small 4, and 

(92) [ Z u  (x; 2) --  V U(x)[ < C (2 ~ + V 2 Ix l- ~) 

/or x bounded /rom 27. 
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The  Table  summar izes  the  results  of this section. In  this table  the following 
no ta t ion  is used:  

~i(x; 2 ) = u ( x ;  ~ ) - -  U(x), where u(x; 2), U(x) are solutions of (3)0, (4)o, 
respectively,  wi th  the same data .  

w o (x; it) ----- min  (it log it-1 [X[-1 log [X[). 

W (X) = funct ion sat isfying (50), with ~ = t ,  3 = 2. 

wx (x) = funct ion sat isfying (50), wi th  f l = 3 ,  a n y  ~ <  ] .  

w2 (x) = funct ion sat isfying (50), wi th  ~---- 2, /~ = 4. 

Table. Perturbation estimates ]or small Reynolds' number 
The symbols YI, zi are defined a t  the end of w 6.4. 

Flow Limiting Limiting Uniform Estimate in 
Class Velocity Perturbation 

P R  

Wo=P 0 

W O ~ 0  

Wo=~ 0 

~ o ~ 0  

uo~  O 

U o = O  

uo4  0 

U o ~ O  

uo~= 0 

Uo=O 

Uo~= 0 

D 

oo 
x(x; a)= s ui(.) a~ 

i 

Ix(,,; a ) l<ca~( , ` )  
I Vn (.,,; a) I < c  a T(.) 

Ix (.','; a)l < c  ,~ ~ ( . )  
IVx (* ;  ~)f < c  a Tx(.) 

X(,`; ~)=  Z %.(,`) ~i 
1 

Ix(*; a}l<CZl*l -~ 
IVx(.; ;~)1 < c  a l.l-=]ogl,,I 

Ix (x; a)[ < C  To (x; ,~) 

IVx(,~; .~ ) l<C~I , , I  -, 

I x (x ;  ,a.)l < c .a 
Ivx  (,`; .a)l < c  a 

In(x; a ) l<ca  
lvn(*; a) l<c  

I x(-',; a ) l <  c ,a. 
I vn(* ;  .a.)l < c  .a. 

ix(x;  ~)<C(To(X; a )+z )  
Ira (.; ~)] < c a log ~-, 

Estimate away from 2: 

same 

s a m e  

same 

s~me 

]vx(,`; a)] <cEa,+a tl(x)] 

IVx(x; a)l <cc~ '+  a T1 (x)] 

Ivn(,`; a)]< 
< t E a ' +  Ixl-' log Ixl] 
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