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1 .  Introduction 
In previous papers [2, 3] it has been shown how an arbitrary matrix poly- 

nomial in any number of symmetric 3 • 3 matrices may be expressed in a canonical 
form. From these results an integrity basis under the orthogonal transformation 
group for an arbitrary number of symmetric 3 • 3 matrices has been derived. This 
consists of traces of products formed from the matrices which have total degree 
six or less in the matrices. In deriving these results a number of theorems were 
obtained which enabled us fo express a product formed from any number of 
3 • 3 matrices, whether symmetric or non-symmetric, as a sum of products of 

par t icular  types formed from these matrices, with coefficients which are poly- 
nomials in traces of products formed from the matrices. 

In the present paper it is shown how these results may be used to obtain 
finite integrity bases under the "full and proper orthogonal transformation groups 
for an arbitrary number of three-dimensional vectors and symmetric 3 • 
matrices. This is done by replacing the vectors by skew-symmetric 3 • 3 matrices. 
The integrity bases derived consist of elements which involve the symmetric 
matrices alone and elements which involve both the vectors and matrices. The 
former elements are the same for  both the full and proper orthogonal groups 
and form the integrity basis for 3 • matrices derived in the previous papers. 
The integrity bases derived in this paper, for the full  and proper orthogonal 
groups differ in tke elements which involve both vectors and matrices. In neither 
case is the integrity basis irreducible. I t  is intended to pursue the further reduc- 
tion of the integrity bases in a later paper. 

The results obtained in the present paper are applied in w 7 to the problem 
of the formulation of constitutive equations for isotropic materials, which are 
applicable to physicat phenomena described by  the relation between the value 
of a tensor of arbitrary order at some instant-and the values of the displacement 
gradients and a number of vectors at that  instant and at times preceding that  
instant. 

2. Proper orthogonal transformation group 
In a previous paper [ I ]  it has been shown that  an integrity basis, under 

the proper orthogonal group, for a single symmetric tensor G~i and v vectors Vff ) 
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( ~ = t ,  2 . . . . .  v) in three dimensions, is given, with the nota t ion  G=[[G,i[[, by  

Vi(~) (GN)ii Vi(#) , t r  GN+I," 
e,/, (G~),p V(/> (G%q V(/' (G~),, V?'. (2.t) 
ei ik (GM)ip V(p a) (GN)jk, 

where M, N, P----0, 1, 2 . . . .  and ~,fl,  y = t ,  2 . . . . .  v and  e i i , = l  or - -1  accord- 
ingly as i, f, k is an even or an odd pe rmuta t ion  of t ,  2, 3 and otherwise eij k = 0 .  
Inva r i an t s  of the last  type  vanish identical ly since Gii is symmetr ic .  

The  first two invar iants  in (2.1) are i nvar ian t  under  bo th  the  proper  and 
the  full or thogonal  groups. The  remain ing ' invar ian ts  in (2.t) are invar iant  under  
t h e  proper  or thogonal  group but  not  under  the full or thogonal  group. 

In  a similar manner  it can be shown tha t  an integr i ty  basis, under  the proper  
or thogonal  group for/z symmet r ic  second-order  tensors G (~) (0~---- t 2, p) and v -- i j  , . . . ,  
vectors  I~(~) (fl = 1, 2 . . . . .  v) in three dimensions is given by  

i~C,l(ilL),i V/~', trII~, (2.2) 

, , .  (n,);p vp+ (n,,);q v ~  (n~)..  v,+. 
(2.3) 

e.,. (ii~}p, v~=)(ii~), j v~". flU),, v,+. 

gi ik (HL)ip Vp (') (IIM)ik, (2.4) 

e, j, (ilL)p, v~')(ilM).. 
where r i g ,  HL, I Im and IlN are any  ma t r ix  products  formed from the # symmet r ic  
matr ices  G~(=l[C?yil)- I l ~ , n M  and H N, bu t  not  H K, m a y  as par t icular  cases 
be the uni t  mat r ix .  The  invar iants  (2.'2) are invar iant  under  bo th  the proper  
and  the full or thogonal  groups. The  invar ian ts  (2.3) and (2.4) are invar iant  
under  the proper  or thogonal  group bu t  not  under  the  full ortfiogonal group. Now, 

~'IL)pi---- (I~_)ip, (II~/)q/. = (II~/)jq, (IIN)vk ---- (flaY)k,, (2.5) 

where I lL,  Il~t and I l ~  denote  the t ransposes of l i t ,  II.w and IlN respectively.  
In t roduc ing  (2.5) into (2.3), we have  

e , .  (xx~),p vp(-, (n.,,);~ ~)(nN),~ v?) = ~ , .  (ii~),p v~.)(riM);, v~(~)(n;,}~, v,+), 
e i i , ( i lL) ipV~' ) ( I IM)qiV(q~ ' ( i lN) ,kV,  (v) = e i i , ( i l L ) i t ,  V(p')(ilb)iqVq~O)o[ru)k,V~V), (2.6) 

e, i k (l'Ic)p, Vg :) ( I I i )q  i Vq ~o) (ilN)r k V(~) = e, i k ( i l l ) i t ,  Vg :) (IrM) i q Vq q~) (ii;v) k , V(:'). 

Since IlL is a ma t r ix  product  fo rmed . f r0m the symmet r ic  matr ices  G~, I I  L is 
the ma t r ix  product  formed by  writ ing down the factors in I l~  in reverse order. 
With  similar considerations applied to riM and I I~ ,  we see t ha t  the three invar iants  
on the right hand  sides of (2.6) are each of the form of the first of the invar iants  
(2.3). Hence  we m a y  omit  from the in tegr i ty  basis the last three of the invar iants  
(2.3). Similar considerat ions enable us to omi t  from the in tegr i ty  basis the last 
of the invar iants  (2.4). We thus see tha t  an integr i ty  basis for t ~ symmet r ic  
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tensors G!~ ) and v vectors V~ ~ under the proper orthogonal group is formed by 

V~ ~) (IIL)ii Vi(a), tr II~,  

eii, (YIc)i~ V~ ~) (IIM)i q Vq ~t~) (Iliv), , V~ ~), (2.7) 

~ii* (II~),, v~'> (II~b,,  

where the first two invariants in (2.7") are invariant under both the proper and 
the full orthogonai groups, and the last two invariants in (2.7) are invariant 
under the proper orthogonal grOUl~, but  not under the full orthogonal group. 

We now define the matrices v ,  ( =  ]]vii ]]) by 

v~) = ei; ,  v,('). (2.8) 
Employing the relation 

eiit, e i i ,=  2 6~k, (2.9) 

we readily obtain the inverse relation 

V(~) 1 a ~{~) 
i ~ i i p  ~i~ �9 

Introducing (2.t0) into the first of the invariants (2.7), we obtain 

(2.to) 

= - 4 ~  1 toni  m~t" 

Introducing into (2.t t) the relation 

C2.tl) 

we obtain 

[ ~ , . ,  6 , . ,  0,;I 
e,:~em,j=]6:,,, ~:,, 6:i] 

!Oi,,,, 6i., ~ii] (2.t2) 

- -  ~,,  ~:., 6O.+ 6, i 6: . .  ~ i .  - -  O*i ~ : .  6 i . , ] ,  

jk ~*~" ~, ~--LJ* i (2.t3) 
= -- �89 tr  IIL tr  v~ va + tr V~ va II  L. 

In deriving this result, we use the relation 

v!~ ) = -- v t~)~,, (2.t. 4) 
obtained directly from (2.8). 

Now, introducing (2.t0) into the last of the invariants (2.7), we obtain, with 
(2.t2), 

e,i,(IxL),pv~,'}gx,,,)i, = �89 ~.. ,(n,.) ,p v~. OxM). 

= �89 [6,.  6i. ~,p - ~ .  ~i, 6,. + ~ .  6jp 0,.. - 
, (2.t5) 

I I  ~- V(~t} t~r  
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Wi th  (2.5) and (2.t4), equation (2.t 5) yields 

eii~ (ilL) i~ V~ ~) (ilM)/k = --  tr  IILilM V~+ t r i l L i l  n V~ --  
(2A6) 

--  t r IXLtr  v~i l  M. 

Again, introducing (2.t0) into the third of the invariants (2.7), we obtain, 
with (2.5), (2A2) and (2A4), 

e.k (IIL),p (nM)i  v." 
_ _ 1  - -  -~ei i k ep.  n eq st e , .~( i lz) ip (ilM)ig (ilX)k, "'(')' ''(•) v(r) t / ran  ~$1 --~tO 

= i [0~, Oi,. Ok. - O;p 0~.. ~ k .  + 6~ra 0~-. Okp - -  0 . ,  Oip 6k. + 

+ Oi,t Oi# Okra --  Oin Oim Okp] [0qr 0su 6tw --  Oq, Osw Otu + 

+ Oq. O,. Or, --  Oq. O,, Or.+ Oq,, O,, Or. --  Oo,~ O.~. Ot,] • 

• (ilL)i# (ilM)iq ~--zvtk,fn ~ v(.),,,, v(a) ~w (2.t7) 

---- -~ [--  2 t r  i l l  t r  il~t v .  i lN t r v  a v v - -  8 tr  IIL t r  ilM V~ Va i l~  V~ + 

+ 2 t r  i l z  t r  i lU il~v V~ t r v  a v v + 4 tr  H L i lN H ~  v ,  t r v  a v~ - -  

- -  8 t r  I I r  i lN va v r i lM V~ - -  4 t r  i lL ilM ilN V~ tr  vp vv + 

+ 8 t r I ILIIM VvV/~IlNV=]. 

We note,  from (2A3), (2A6) and (2A7), tha t  each of the invariants (2.7) 
s ~ 

m a y  be wri t ten as a polynomial  in traces of products  formed the matrices G= 
(0t = l ,  2 . . . . .  p) and vp (~ = t,  2 . . . . .  v) which are of degree three or less in the 
matr ices  vp 0~= t ,  2 . . . . .  v). In the next  section we shall show how the trace 
o.f any  of these products  may  be expressed as a polynomial  in traces of a limited 
number  of products  of the same type.  

3. D e r i v a t i o n  of  a f inite in tegr i ty  bas i s  

As a part icular  case of a theorem proven in a previous paper  [2, Theorem 1 '], 
we have 

T h e o r e m  1. A n y  matrix product I I  in R,  3 • 3 matrices ap ( P  ~ ~,  2 . . . . .  R )  

can be expressed as a matrix polynomia~ in which 

(i) each matrix product is either the unit  matrix I or is ]ormed / tom one or all 
of t.he /actors ap (P = t ,  2 . . . . .  R) and at most two o/the factors a~ (P = t ,  2 . . . . .  R); 

(ii) no two factors in a single matrix product are th'e same; 

(iii) each matr ix  product is of lower or equal partial degree in each of the matrices 
ap ( P = t ,  2 . . . . .  R) than the matrix product i f ;  

(iv) matrix products containing two b] the ]actors a2e (P-----t, 2 . . . . .  , R) contain 
them consecutively; 

(v) no matrix product containing both of the factors a~ and a~ contains either 
o] the factors a~: or aL unless it is o/ the form a K az2 aK2 ," 

(vi) each matrix product which contains both a x and a~ as /actors has .a x as 
the first factor and a~ as the last/actor; 
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(vii) no matrix product has total degree greater than five in the matrices ap 
( P = t , 2  . . . . .  R); 

(viii) the coefficients in the matrix polynomial are polynomials in traces o/matrix 
products formed front the matrices ap (P = t,  2 . . . . .  R). 

I t  follows immediately from this result that  any matr ix  product in the matrices 
at, (P = t,  2 . . . . .  R) may be expressed as a matrix polynomial in which the matr ix  
terms are 

1,  ax,  aSx; aKaz,  aKa~, aagaL, at* az2, a x a L a ~  ' aga~aSg; 

a x a t . a  M , a s a  Ltl M , a  Kava  M , a  x a  La~,  2 i O K a L aM, a x a2L a~ ,  a x at- a M a~; 

aXaL •Ma N, a~at- aMaN, aK~L aMa N, (2"t) 

aKaLa2MaN, agaLaMaIN, axaLaMaNas;  

where K, L, M, N , S  are integers, which are all different and are chosen in all 
possible ways from the integers t ,  2 . . . . .  R. 

We may  now readily obtain* 

�9 L e m m a  1. The trace of any matrix product ! I  formed from the matrices at, 
( P = t ,  2 . . . . .  R) may be expressed as a polynomial in expressions o/ the ]orm 
t r  a r l ~ ,  where I I ,  ( ~ = t ,  2 . . . .  ) are the matrix products (3.t) and T may be any 
o/ the integers (t, 2 . . . . .  R). 

We employ the following theorem which has been proven in a previous paper 
[3, Theorem 2] : 

T h e o r e m  2. The trace o /any  matrix product formed/tom the R, 3 • 3 matrices ap 
(P = t,  2 ,  . . . .  R) may. be expressed as a polynomial in traces o /matr ix  products 
o] lower or equal partial degrees in each o/the matrices and o] lower or equal extensions, 
having the forms 

t r y  a~  ~L (K =4= L), 

t r v a ~ ,  

tru,  (2.2) 
.tr a M at- a~ a~ (K :4= L, M ~= L), 

and 
t r a ~ ,  

where ?! is either the unit matrix or a matrix product formed from some or all of 
the factors ae ( P = I ,  2 . . . . .  R; P~=K, L), no two /actors in y being the same; 
v is either the unit matrix or a matrix product formed from some or all o/the factors 
at, ~(P= t ,  2 . . . . .  R), such thai a K is not the first or last factor in v and no two 
factors in v are the same; u is a matrix product formed from some or all of the 
fac2x~rs at, (P = t,  2 . . . . .  R), no two/actors in which are the same. 

Combining this result with Lemma t,  we see that  in Theorem 2 we may  
take y, v and u to have total degrees in the matrices at, ( P =  t,  2 . . . . .  R) not 
greater than two, four and six respectively. 

* See [3, w 5] for an argument similar to that used in obtaining this result. 
Arch. Ratfoctal Mech. Anal., Vol. 9 4 
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W e  thus  ob ta in  

T h e o r e m  3, 7/'he trace o[ any matrix product in the 3 x 3 matrices ap (P = 
t,  2 . . . . .  R) may "be expressed as a polynomial in traces o/ the products 

S ~ 2 2 
aM aN aN aL, aM ag aZ, a~g ~tSL ; 

aL aMaNapaSx, aL aMaNaZ~, aL aMa~,  at` a~, agx; 

aKaL aMaNapaQ, aRaL aMaNap,  axctt` aMaN, axat` aM, axat` ,  ax; 

a L ft K aN. ap a~K, a L a M a x ftp ftZK, at. a x a N aZK; (3"3) 
2 2 2 2. 

~M aL aK aL, ax aL ax  at`, 

,4; 
in which K,  L, M,  N,  P and Q are integers, all different, chosen/row t,  2 . . . . .  R. 

W e  shall  now consider  t ha t  t he  set of mat r ices  a p  ( P = t ,  2 . . . . .  R) consis ts  
of the  p s y m m e t r i c  mat r ices  G p  ( P =  1, 2, . . . ,  p ) *  and  the v skew-symmet r i c  
ma t r i ces  v~ ( ~ =  t ,  2 . . . . .  v). We  note  t h a t  

W e  note  also t r  v ,  ----- t r  v~ = t r  v~ v~ = t r  v ,  G~ = t r  v ,  G~, = 0.  (3-4) 

L e m m a  2. I f  I f  1 is a matrix product ]armed from the symmetric matrices Gp 
( P = t , 2 ,  . . . , I t )  and the skew-symmetric matrices v~ ( ~ = t ,  2 . . . . .  ~) and I ~  is 
the matrix product formed by writing the/actors o/l ' l  t in inverse order, then t r  l ' l  t = 
t r I I  2, i / H a  is o/evem degree in the matrices v , ,  and t r  I I  1 = - -  t r  I f  2, i / I I  1 is o/ 
odd degree in the matrices v~. 

W e  shal l  also use 

L e m m a  3. I[ I I  1 and I I  s are two matrices.(which may be matrix products), 
then t r  I I  1 I ~  = t r  ] I  2 I I  1. 

We  subs t i t u t e  the  set  of mat r ices  G v  ( P  = t ,  2 . . . . .  p) and  v ,  (~ = t ,  2 . . . . .  v) 
for a p  ( P =  t ,  2 . . . . .  R) in (3.3) and  recall ,  f rom w t h a t  any  po lynomia l  i nva r i an t  
of the  tensors  G~. P) and  the  vectors  V~ ~*) m a y  be expressed as a po lynomia l  in �9 $ /  

t races  of m a t r i x  p roduc t s  of the  mat r ices  G p ( P = t, 2 . . . . .  t t) and v ,  (~ = t,  2 . . . .  ; ~), 
which are  of degree th ree  or  less in the  mat r ices  v~ (~ = t ,  2 . . . . .  ~,). Then  employ-  
ing the  re la t ions  (3.4) and  Lemmas  2 and  3, we ob t a in  from Theorem 3,. 

L e m m &  4. The trace o /any  matrix product in the It symmetric 3 • 3 matrices Gp 
(P = t,  2, . . . ,  It) and the v skew-symmeOic 3 • 3 matrices v a (~ = 1, 2 . . . . .  v) which 
is of degree three or less in the matrices v~, may be expressed as a polynomial in 
traces o /ma t r i x  products which do not involve the matrices v~, together with traces 
of the following matrix products: 

v .  GN G~ GZL , v .  G~ GZL ; 

i0~ G M Glv Gp G2K, G L I~= G N Gp GzK, v= G M G N G~K, G L v~ G N G2K, V= G M GsK ; 

V= G L G  M G N Gp G 0, v~ GI. GM.G N Gp,  v= Gt` G M GN, v= Gt` GM, (~.~) 

V,, G K Glv Gp G2K, G L G K v,, Gp Grog, v~ G u G K Gp GsK, I~,, G x G N G~K �9 

v= G t` G~  G~L ; 

�9 W e  shal l  use  roman capi ta l s  as subscr ipts  to  the  G's in order to  avo id  confus ion  
w i t h  th e  subscr ipts  on the  v's .  
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G L G ~ G N G p v  ~, GLG~GNV ~, GLGMV~, GLV ~, V~; 
G M G L v~ 

v~, % GN G j. a~, GL V. Vp Gp G~, v. GM GN vp G~, 
V= G M V$ Gp G~, V='V~ G N GIK, V= G M Vlt GsK, V= V~ GzK, (3.6) 

v=vBG~.GNGpG o, v= GL v~GNGpGo," V= GL GMVpGpG Q , D=vBGMG~vGp, 
v=GLv#GNG e, V~v#GMG N, V~GLVBG N, v~vpG M, v~v~; 
v= GKv~GpG~, ~= GKG Nv oG~K, G L G gv~vpG~; �9 

GLVfGNGev~-, GLV=GNv~, GMv~G~v~, v=a~v~a~; 
G ,, v l  G [ , G G',, , ,L  ; 

v . a ~ a N G p v ~ ,  GLV.a,vGpv~, v.a~ca~:v~, GLV. GNV~, V=GMV~; 

v, a~ v~ a*~; (3.7) 
V= V# V r Gp G~, V= V~ G N v v G~, v= v~ vz G~, 
v=v~vrG~GpG ~, v = % G ~ v r G p G  O, v=GL.v~O~vvGQ, v=V~vv.GNGp, 
v= v~ G M v~ Gp, v= v# v r Glv , v= V$ V~. V= G K v~ V~ G~, 

wh~e K, L, M, N, P, Q a~e integers, all different, chosen pore ~, 2 . . . . .  p a~d 
~, ~, 7 are i~tege~s, all diff~e~t, chosen fro~ t, 2 . . . . .  ~. 

4. Fur the r  reductions of the t races  of ma t r ix  products  

In this section it will be shown that  the traces of certain of the matrix 
products listed in (3.5), (3.6) and (3.7) can be expressed in terms of traces of 
other of these products. As in previous papers we use the notation 

t r P  ---- 0 (4.t) 

to express the fact that  the trace of some matrix polynomial P of degree n in 
a set of matrices Qp (P  = t,  2 . . . . .  R) can be expressed as a polynomial in traces 
of matr ix products H i in the matrices ap, in which each matrix product l'l~ 
has degree le~ than n in the.matrices a e. We shall use the following results, 
which were proven in [2] and [3]: 

t r z a x y a ~  + t r x a ~ y a  K ~ O, (4.2) 

t r  w (a K •L ~- OL ag) Z a ~ / ~  0, (4.3) 

where x,  y, w ~nd "z are matrix products formed from the matrices ap and are 
not equal t o  the unit matr ix L 

t r  GLG/cv~GpG'g and trv=GMGKGpGSg. Replacing w, ag ,  aL, Z ~ d  aM in 
(4.3) by  G L, Gg, v. ,  Gp and Gg respectively, and applying Lemmas 2 and 3, 
we obtain 

t r  G L Gg v~ Gp r ~ --  t r  G L Vffi Gg Gp G~ 
(4.4) 

tr v .  G L G~ Gp G K . 
4* 
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By a relation of the type (4.21 

try= G L G~ G p GK --- --  trv~ GL G K G p  G~,  (4.5) 

and by a further relation of the type (4.3) 

trv= G L G K Gv  G~ -~ --  t r v ,  G K G L Gp G~.  (4.6) 

Hence, combining (4.4), (4.5) and (4.6) 

t r  G L G g v~ Gv  G~ = trv= GK G L G p  G ~ .  (4.7) 

Furthe L by a relation of the type (4.3) 

trv= G M GK Gv G~ -~ -- tr v~ G K G M Gp G~.  (4.8) 

Thus tr G L G K v = G p G  ~ and t r V = G M G K G p G  ~ can be expressed in terms of 
traces of matrix products of the form t r v~GgGNGpGSg ,  and traces of matrix 
products of lower degree, and so they may be omitted from the set (3.5). 

2 2 tr G M G L V = G L  . By a relation of the type (4.2) and Lemmas 2 and 3 

tr G M 2 2 2 z G L v~  G L -~  - -  t r  G M G L v~  G L 

' 2 2 ----- - -  tr G M G L v~ G L . 
Hence 

tr G M G L v~  G2L ~ O, (4.9) 

and i 2 GMGLV~,G L may be omitted from (3.6). 
We next derive a further relation for matrix products containing two or 

more skew-symmetric matrices. Let v!~ ) be the i]'th component of a skew- 
symmetric matrix v=. Then, using the relation 

eii ,  %q, = ~ i p  ~iq -- ~iq ~i~, (4AO) 
we have 

. , ( a )  _ _  x. I , , ( a )  (a)~ "ii -- 2~vij --  vii �9 

= �89 (a~p ~q - ~ip a,q) v~~l (4./~) Pq 
& a ,, ,,(~) 

= 2 ~ i j r  ~pqr ~pq" 

Now let and (=llv! 'll) be skew-symmetric matrices, and let n 
( =  II/-/ii[D be an arbitrary matrix product. Then, using relations of the type (4A t) 

= ff,  
1 . . . .  c~) e v ~ )  (4.t 2 )  = - ~ i j p v r s p ~ r s  l - f j k e k l q  ranq r a n  

__  1 "'(~) v (~) I-I - - - 4 e i i p e k l q e r s p e r a n ~  ~rs r a n  jk"  

Introducing relations of the type (2A2) into (4A2) we obtain 

+ O r n O s q O p r a - -  OrnOs a p q ~ - O r q a s r a O p n - -  OrqOsnO "1V(~) V(ff) ~'~ m praJ rs ra~ ]k 

_ __ v(a)v(#)17 _ . ( ~ ) v ( # ) ] /  • .,(~) v(#) / 7  . - -  jk  kl aa]i  v i i  ik l k Y  t ' i j  ~1 aak lr  

1 . . ( ~ ) , , ( # ) T ' [ .  -1-.1~ /.,(g) ,,(O) /-'f _ _  1 . ( ~ ) ~ , ( 0 ) ] - /  
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This relation may be written 

v~Il va+ II' v~ v~ + v~ voII' (4.13) 
----- v~ v a tr  I I  + ~ II '  t r  v~ v 0 + l ( t r  v~ v# II '  --  ~ tr  v~ va t r  H),  

where II '  denotes the transpose of II. Unlike other relations which have been 
used in the reduction of matrix polynomials, (4.t3) does not appear to be a 
consequence of the Hamilton-Cayley theorem, although it reduces to the Hamilton- 
Cayley theorem for skew-symmetric 3 • matrices when v~=v#--=II. 

Replacing 1I in (4.13) by  II  1, multiplying the relation so obtained on the 
right by  a matrix product  I I  s, and taking the trace of each side of the resulting 
equation, we obtain 

t r  v~II1 vaII  z = --  t r  v~ va I I s I I  ~ --  tr  v~ v#II~ I I~+ 

+ tr  v= v0II2 t r  II1 + ~ t rH~Hs  tr  v~ v a +  (4.t4) 

+ tr  I I  2 (tr v= v# II~ --  �89 tr  v~ va tr H1), 

if IIs4=l.  If I I s - - L  by  Lemmas 2 and 3 

t r  v~II1 v # = t r  v~ v#II~. (4A 5) 
Thus we have 

Lemma 5. The trace o/ any matrix product o/ 3 x 3 matrices which contains 
two skew-symmetric matrices v~ and v# as/actors may be expressed as a polynomial 
in traces o/ matrix products wMch either 

a) contain both v= and v# as consecutive/actors 
of 

b) contain neither va "nor ivo as/actors. 
From Lemma 5, it follows that  the traces of all of the matrix products in 

(3.6) in which iva and v a do not occur consecutively may be expressed in terms 
of traces of matrix products in which iv~ and v# do occur consecutively, dr do 
not  occur at all. Hence all of the matr ix  products in which v~ and v# do not 
occur consecutively may be omitted from .(3.6). Similarly, the matrix product 
vaGLv#G~IVvG 0 may be omitted from (3.7). 

tr  GLv~vpGeG ~. Replacing IIl  and IX s in (4.t4) by G L and GpG~ respec- 
tively, we obtain 

t r  (v= G L ivO + GL V= iv# + iv~ V# GL) Gp G~ ~- O. (4.t 6) 

Also, from a relation of the type (4.3) 

t r  iv~ (G L iV# + iv# GL) Gp G~ =-- O. (4.t 7) 

Subracting (4.17) from (4A6), it follows that  

tr  GL IV~ V # Gp GsK -~- O, (4A8) 

and so GLIV~IV#GpG ~ may be omitted from (3.6). 

trv~vpivrGeG ~ and triv=GNG~v~. Replacing ivy, v#, l i t  and l'I s in (4A4) 
by v 0, ivv, Gp and G~iv~ respectively, and using Lemma 3, we have the relation 

t r  iv~ (iv# ivr Gp + iv# Gp ivv + Op iv# ~ )  G~ ~- O. (4.t 9) 
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Also, by a relation of the type (4.3), 

tr v~(v a Gp + G p va) vy G2 ~ O. (,~.20) 

Hence from (4.t9) and (4.20) 
tr v~ v 0 vy Gp G 2 ~--- O. (4.2t) 

Further, replacing v=, vy and Gp in (4.21) by  v 0, v~ and G~ respectively, and 
using Lemma 3, we have 2 2 _ _  trv= G N G K v 0 = O, (4.22) 

and so V~VoVyGpG 2 and z s v~,GNGrv 0 may be omitted from (3.7). 
Employing the relations (4.7), (4.8), (4.9), (4.t8), (4.2t) and (4.22), and 

Lemma 5, we obtain from Lemma 4 

Theorem 4. The trace o/ any matrix product in the p symmetric 3 • 3 matrices G v 
( P = t ,  2, . . . , p )  and the v skew-symmetric 3 x~  matrices v~ (Gt=t, 2 . . . . .  v) which 
is o] degree three or less in the matrices v~, may be expressed as a polynomial i~t 
traces o] matrix products which do not involve the matrices v~, together with traces 
o] the following matrix products: 

v ,  G2 v ,  G2 

v~ G M G2v Gp G2, G L v~ GN Gp G 2 , v~ G M G N G2, G L v,, G N G2, *)~ G M G 2 ; 

*)r G L G M G N Gp GO, *)r G L G M G N Gp, ~Pr GL GM GN, *):L ~L GM; (4.23) 

o= G KG NGPG2,  *)=G KG NG 2; 

*) G L G2 Gi  ; 

G2v Gr vT,, G2 3. GM ~ ~ Z G M GK V~t, *)~, 

GL GMGNGp*)~, GL GMGN*)~, GL GM*)~, GL V~ ' *)S; 

*)=*)p G2 G~.; (4.24) 

*)~ *)o G~v Gp G~, *)~, *)o GN G2 , *)~*)0 G2; 

*)~ *)0 GM GN Gp G O , *)~ *)0 GM GIV Gp, *)~ *)0 GM GN' *)r V 0 GM, *)~ *)0 ; 

GL G r v= V 0 G2 ; 

GLV=GNGpV~, GLO=G2vv~, GMV=G~v~, V~GLv~G2L; 
$ 2 tt o 

V~ G N *)0 GL, V~ G K *)0 ", 

V=GMGNGpv~, GLV=GNGeV~, VaGMGNV~; GLV=GNV~, v~GMv~; 
g g 

Vat GL *)o"GL" (4.25) 
*)~ *)0 GN Vy G2, v= vp vv G2; 

*)r *)0 vy G N Gp G o , v~ *)0 GM *)y Gp Go, v~ v 0 vy G2v Gp, 

*)~ *) o G M *)y G p , *)= *)O *)y G N , V=*)OVy; 

V~ V 0 Gr *)y G2' 

where K,  L, M, N, P, Q are integers, all diflerent, chosen ]rom i, 2 . . . . .  /~, and 
~t, fl, ~ am integers, all di]/erent, cho#en /rom t, 2 . . . . .  v. 
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5. Expression of the results in terms of vectors 
In this section we shall show how the traces of the matrix products (4.23), 

(4.24) and (4.25) may be expressed in terms of the components of the vectors V~ ~), 
which are related to the matrices v~ ( =  [[v!~) [I) by  (2.8) and (2A0). 

We note, with Lemma 3, that  the traces of each of the matr ix  products . 
(4.23) may be expressed in the form trv~lI,  where II  is a matrix product formed 
from the matrices Gj, ( P =  t ,  2 . . . . .  #). With (2.8), we have 

tr  v~II  = v~)(H)s i = e+i k V~, ~̀) (Ilji i. (5.t) 

Thus the traces of the matrix products (4.23) may be written in the form (5.t) 
where 1I is given by  

2 2 G N G K GL, "G~ GiL; 

G M G N Gp G~K, Gt~ Gp G~ G L, G M G~. G~, G N G~ GL, G~ G2K; 

G L G u G N Gp GO, Gt. G M G N Gp, GI. G M GN, G L GM; (5.2) 

G KG N G P G ~ ,  G KG NG~K; 

GL G~ G2L . 

Again, with Lemma 3, we see. that  the traces of eacn of the matrix products 
(4.24) may be expressed either in the .form trv~II or in the form trv=valI,  where 
I I  is a matrix product formed from the matrices.G,, (P = 1, 2, .. #). With (2.8) 
and the relation (4.t0), we have 

t r  v~ va II  = v!~ ) v (~ tHX ik t Iki 

= t ' i / p ' p  ~ q 
-(5.3) 

= vT<<' (H)p  VJ'> VT"' t r I I .  

Taking v~=va ,  and correspondingly V~t~)=VJal, we obtain 

tr  v~II = V~ ~'1 (II)#q Vq (al - -  Via)V(Ct)tr I'1" "~ "t, . . . . .  (5.4) 

We see that  each of the expressions of the form t rv~II  listed in (4.24) can be 
expressed as a polynomial in V (=) V la) traces of matrix products formed from Gp P P , 
(P = t,  2 . . . . .  #), and expressions of the form ~)(l ' l )pq Vq (~) where IX has the values 

GMGNGI~, GMG2K, G~; 
(5.5) 

G L G M G N Gp, G L G M GN,  G L GM, G L. 

Also, each of the expressions of the form trvav a II  listed in (4.24) can be expressed 
as a polynomial in Vp ~) Vp(a), traces of matrix products formed from Gp ( P =  
/,  2 . . . . .  #t), and expressions of the form Vp ~) (II)m Vq(01, where II  has the values 

G N Gp G2h., G N G~,  GzK; 
(5.6) 

(gM GN Gp Gq, G M G N Gp, G M G N ,  G M" 

Gzh " ~ z. GK. 
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Finally,  with Lemma 3, we see tha t  the trac.es of each of the matr ix products 
(4.25) m a y  be expressed either in the form t rv~vai l tv~IIz ,  or tre~IIxv=II  ~, or 
trv~l 'I lV, I I  ~, where I I  x and Iiz are matr ix products formed from the matrices Gp 
( P =  ~, 2 . . . . .  p) which, as particular cases, may  be the unit  matrix.  With  (2.8) 
and the relation (4A0), we have 

tr  v= vpI I  t vvXI 2 ----- "'(~) ,,(#) v (:') 

(s.7) 

Taking v~----v#, and replacing v~ by v~ in (5.7), 

tr ~ n ~ n ,  = ~,~,(ni),~ vo~a)(n~)~ W ) v / ~ , -  ~,~,(nin~),. v,(~,. ~(#, v~a~. (5.8) 

" Taking v : = v ~  in (5.8), 

tr  v~II~v,  I I  2 ----et.,(IIi),: V0(~) (II~),q I:q (~) V, (~ -- e , , , ( I I ; IL ' ) , .  V, (~) . V0r (5.9) 

From (5.7), we see tha t  each of the expressions of the form t rv~v#I I lV~I I  ~ 
listed in (4.25) can be expressed as a polynomial in expressions of the forms 
Vote, V~t~), e~mr 0[I~II~)t. V,(') and e , . ,  (IIi),p V~ (~) (II,).,Vq(#) V/'), where I I ,  and He take 
the sets of values 

G ~ : '  G ' 

, o%}. old}. o ,  L}. i}; ..,o, 

From (5.8), we see similarly that  each of the expressions of the form trv~ I I lv~ l I  2 
listed in (4.25) can be expressed as a polynomial in expressions of the forms 
Vp{#~ Vpl#~, e,m.(II~II~),m V(~ and et.,.(H~); p VpC#~ (H2)mq Vq(/~) ~('), where II ,  and H,  
take the sets of values 

G N G ; 

I Gpl, GL " Gz  
. ' G N Gp}' G~:GN}' GN}' GIM} ; (5.1t) GM G v  

GLJ 
Also, we see from (5.9) tha t  each of the expressions of the form trv_*IItv~II ~ 

listed in (4.25) can he expressed as d polynomial in e):pressions of the forms 
V/~) VJ ~, el,n, (II~II';)t,,, T~ (~ and et,., (l'l~)t p I~- (~) t l I "  V t~), p ~ ,).~Vet'~ where l'I, and II2 
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take the sets of values 
GL GL 

GNG P ' G N ' G2K ' G L "  

The results of this section show that  the traces of the matr ix  products (4.23), 
(4.24) and (4.25) can be expressed as polynomials in expressions of the forms 

t r  II ,  

e , ,  

(5 . t3)  

and V~I=I (II)p q'Vv<~)' 

where ~, ]~ and 7 are not necessarily all different, and II ,  I I  1 and I I  z are matr ix  
products formed from the matrices Gp ( P = I ,  2 . . . . .  p), whose possible values 
have been given above. From (2.2), (2.3) and (2.4), we see that  each of the 
expressions (5.13) is invariant  under the proper orthogonal group, and consequent- 
ly the trace of each of the matr ix  products listed in (4.23), (4.24) and (4.25) 
is an invariant  under this group*.  Since it was also shown in Sections 2 to 4 
tha t  any invariant  under the proper orthogonal groups of the tensors G~) --if 
(~=t,2 . . . . .  p) and the vectors V~ I~) ( f l = t ,  2 . . . . .  ~) can be expressed as a 
polynomial in traces of the matr ix  products (4.23), (4.24) and (4.25), and matr ix  
products formed from the matrices Gp ( P ~ t ,  2 . . . . .  p), it follows tha t  the 
traces of the matr ix  products listed in (4.23), (4.24) and (4.25), together with 
the traces of the matr ix  products which can be formed from the matrices Gp, 
form an integrity basis, under the proper orthogonal group, for the # symmetric  
second-order tensors G~ I (0t----1, 2 . . . . .  /~i and the v vectors V, IPt ( ~ =  t,  2 . . . . .  ~) 
in three dimensions. 

By a similar argument,  the results of Sections 2 to 5 show tha t  the traces 
of the matr ix  products listed in (4.24), together with the traces of matr ix  products 
formed from the matrices Gp ( P =  1, 2 . . . . .  p) form an integrity basis under the 
lull orthogonal group for the tensors G!~ ) (at= 4, 2 . . . . .  /t) and the vectors Vi(~) 

= t ,  2 . . . . .  

The integrity bases derived above are finite. They are, however, not irreducible 
since there are further relations between the invariants of which no account has 
been taken. They do have the possible advantage of symmetry  with respect to 
interchanges among the symmetr ic  matrices Gp and among the skew-s~mmetric 
matrices yd. 

6. Products  of a vector  and  symmet r i c  matr ices  

In this section we consider products of the forms VaII and lIVe, where V~ 
is a vector in three dimensions, with components V~ {~), and I I  is a matr ix  product 
formed from 3 • symmetric matrices G~ (fl== t,  2 . . . . .  ~u). We note that  

( ~ I I ) ,  ---- (II '  ~ ) , .  (6.t) 

* This result can also be derived directly, by applying (2.8) and the transformation 
laws for vectors and tensors to the traces of the matrix products formed from the 
matrices Gp and v~ and listed in (4.23), (4.24) and (4.25). 
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Let X be an arbitrary vector with components Xi and l e t / / i i  denote the il ah 
component of II. Then 

( I I  v~)~ = 11. ~') 
_ 0 (X*II* i  V/~)). .(6.2) 

Now define a skew-symmetric matrix v~ as in (2.8),' and a skew-symmetric 
matrix x in an analogous manner. Then, from (2.13) 

X ,  I I , /  Vi ~') --: - -  �89  t r x v , +  t r x v ~ H .  (6.3) 

From Theorem 4, t r x v ~ I I  can be expressed as a polynomial in traces of matrix 
products, which are either products which do not involve x or v , ,  or are products 
of the forms listed below the line in (4.24), with v~ and v# replaced by a~ and v~ 
respectively or v~ and x respectively. Hence (6.3) may be written in the form 

X,  H ,  / V/(~) = Z ('PR tr X V~ II  R + ,p~ t r v ,  x IIR), (6.4) 
R 

where 'PR and ,p~ are polynomials in traces of matrix products formed from the 
matrices 6/# (fl = t ,  2 . . . . .  /~), and xv~II  R and v~xII  R are matrix products of the 
forms given below the line in (4.24), with v~ and v# replaced in the first .case 
by a~ and v~ respectively, and in the second case by v~ and x respectively. 

Next, from (5.3) 

tr  ae v~ II  R = X, H(R)k/E(~)i -- X, Vk(~) tr  IX R , 

tr v~, x HR = V3 H~R)k i "~ _ X ,  V, ~r tr  H R, 

and hence with (6.4) 

Xk//hi ~(~) = ~ (ZR Xk H*(~ ) V/~I+ ZR Vkl~)//~R.I X/), (6.5) 
R 

where ZR and )~ are polynomials in traces of matrix products formed from the 
matrices (~# ( f l= t  2, .  ,/~) and /7 (RI iJ ~h , . . . , ~ /  are the components of the matrix 
products II  R, which are matrix products formed from the matrices G# (fl= 
t,  2 . . . . . .  u) of the forms listed in (5.6), with the addition of the unit matrix. 

From (6.2) and (6.5), it follows that  

I I  ]V~ = Z (ZRIIR IVy+ X'R V~IIR) . (6.6) 
R 

Finally, from (6.t) we see that ~ H  is also expressible in the form (6.6) and, 
also from (6.0, that I I ~  (or V~II) may be expressed in the forms 

II  V~ = Z (ZRIIR I/~,+ X~ II~ V~) = Z (ZR V~II~ + Z~ ~ HR). (6.7) 
R R 

Theorem 5. Any product o~ the /orm IIl'~ or V~II o / a  three-dimensional vector 
~ and a matr ix  product II,  where I I  i s / o r m e d / r o m  3 x 3 symmetr ic  matrices G# 
q3 = t ,  2 . . . . .  p) ,  can be expressed as a sum,  with coe//icients which are polynomials  
in traces o/ matr ix  products ]ormed /rom the matrices G~ (fl = t, 2 . . . . . .  u), o /products  
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a ~ ,  G' , ;  

G ~ G p G~g , G ~ 6ax , G~ ; 

~ p a ~ ,  a~,.~.p, G M a . ,  G~; (6 .8)  

I ;  

and K, L, M,  N, P, Q are integers, all di//erent, chosen /tom t ,  2 . . . . .  p. 

7. Application to L~0tropic materials possesshag a centre of symmet ry  
In E5], RIvLI~ has discussed the form taken by .a tensor u~,~,...~ of order p 

whose components describe some physical property of a body which in its initial 
undeformed state is isotropic and possesses a centre of symmetry. The components 
of u~,~,...~ are assumed to have continuous functional dependence on the defor- 
mation gradients and on the components of ~ vectors v~ ~) (z) (~---- 1, 2 . . . . .  ~) at  
all times z up to t, with particular dependence on their values at time t. I t  is 
further assumed that  v~')-----0 (ec-----t, 2 . . . . .  ~) in the initial state at z-----0~ The 
deformati3n is described by the dependence of the coordinates x i(T) in a rectangu- 
lar Cartesian coordinate system x of a generic particle of the body on the time T 
and the coordinates X~ of the particle in the coordinate system x at  time r----O. 
Thus it is assumed that  u~l~,...~ ~ is a continuous functional of Ox~(~)/aXr and 
.v~ ~ (g) (~---- 1, 2 . . . . .  ~) over the compact aggregate of these functions which are 
continuous over the range 0_~ r~_ t, with particular dependence on their values 
at time t. 

T h e  following notation is used: 

G , , -  ez~,(T) ,~x~,('r) 
~X, ~Xs ' 

G(T) = Ur a = G(t~, (7.~) 

- ext' (~) v c.) 

and V~(~) and V~ denote the vectors whose components are V,(=)(~) and V, (~) 
respectively. 

Then it was shown in [5] that, to any required degree of approximation, 
u~,~,.~ can be expressed in the form 

ui,,,...,~ = OXi, -~-Xi~ OX#, ~i,i,...h,, (7.2) 
where ~,i,. . .~ is a sum of outer products of order p formed from matrices of 
the type 

t t # 

" f f ' "  " I z (  t, r , ,  xe . . . . .  ~ )  IT*[G, G(~,), G(r~) ...... G ( ~ ) ] d r ,  d~ , . . ,  d ~ ,  (7.3) 
0 0  @ 

and vectors of the types 
t t t 

f f " " " f x(  t, r , ,  ~, . . . . .  ,R) F~II*[G, G(r,), G(~,) . . . . .  U(~)]  d~x d~, ... d ,R ,  .(7.4) 
0 0 @ 
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and 
t t t 

f f '"  "fz (t, ~o, z~ . . . . .  ~ )  ~(~o) II*[G, G(zl), G(z~), . . . .  G(zR)] dzo~/Vz.., dv~, (7.5) 
0 0  0 

the coefficients of these outer products being polynomials in expressions of the 
types 

t t 

f f - "  f z if, ~ ,  ~z .. . . .  ~R~ trl 'l* [G, G(vz), G(zz) . . . . .  G(VR) ] d zz d~z . . . .  d v~, (7.6) 
0 0  0 

t t t 

f f '"  "fzff, ~z, ~ . . . . .  ~ )  V~II*[G, G(z~), G(zz) . . . . .  G(VR) ] V~dzzdvz.. .  d v~, (7.7) 
0 0  0 

t t t 

ff'" "fzff, To, ~ .... , ~ ,  ~R+;) ~ (~o) X (7.8) 
0 0  0 

t t t 

f f " "  f g (t, ~ .  ~z . . . . .  ~R, ~ + ]) ~ II*[G, G(~I), G(z=), (7.9) 
0 0  0 

. . . .  G(~'R) ] V~CvR+~) d~xdz,_.., dvRdVR+~. 

In (7.~) to (7.9), the kernels Z are continuous functions of their  arguments, and 
the matrices II* axe matrix products formed from the matrices G, G(~) ,  G(v~), 
. . . .  G(TR) which are linear in each of the matrices G(vz), 6/(~) . . . .  , G(~) .  

We consider now further restrictions which can be placed upon the matrix 
products H*. From 0A) ,  it follows that, in (7.~), H* can be expressed as a 
matrix polynomial in which the coefficients are polynomials in traces of matrix 
products formed from G, G(%), G(~z) . . . . .  G(~g), and the matrix terms are of 
the forms 

G G(~K~ ) G 2, G G(zrl ) G(TK,) GS; 

G 2, G2 G(ZK~ ), G(zr~ ) G 2, G2 G(~r.)G(zr, ), G(~KI ) G 2 G(rr. ), 

G(zKI) G(zr,) G I, G s G(Tr,) G('~K. ) G('~K. ), G(TK,) G s G('~K,) G(7;K, ), 

G(~r~) G(zr,) G z G(zK.), G('CKz ) G(~IG) G(TK, ) GS; 

G, G G(zK, ), G(Tr,)G, G G(~KI ) G(zK, ), G(zKI ) G G(vK, ), 

G(zr,) G(zK.) G, G G(zK~) G(zK.) G(~r,), G(~K~) G G(zK,) G(~r.), 
(7.t0) 

G ( ~ )  G(~.) G G(~.). G(TK.) a(~-,,) G(~,~.) G. 

G G(~,,.) G(T,,.) G(~,,.) G(vK.), G(~,:~) G G(~KJ G(~,,.) G(~,~.). 
G(~r.) G(~K.) G G(~x.)G(vr.). G(~K.) G(TK.) G(~x.) G G(~K.). 

G(~,~J #(~,,.) G(~,,.~ G(~K.) G; 

I, G(vx.). G(~K.~ G(~,.). G(~r.) G(~r.) G(~r.). 
G(zr, ) GCzr,) G(~rJ G(ZK,), GCzK, ) G(~K,) G(zK.) G(~K,) G(~K, ) , 

where KI, Kz, K a, K 4, K~ are integers, all different, chosen from t, 2 . . . . .  R. 
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From (6.7) and (6.8), it  follows that  in (7.4) and (7.5), If* can be expressed 
as a matrix polynomial in which the coefficients are polynomials in traces of 
matrix products formed from G, G(T~), G(r~) . . . . .  G(re), and the matrix terms 
are ~f the forms 

G, o(~.) G; 

O*, O(rr)  G ~, G* G(~g,~, G(rx,) G(r~.) G*, O* O(Tx,) G(rx.); 

G, o G(~,~J, O(r,,,)G, O0(r~,)G(r~.), G(~J O G(rx.), 
(7.~t) 

o (~ , )  ~(r~..) o ,  o ~(r~,) G(r~,) O(r~.), O(r~.) G G(r~.) G(r~.), 

where K~ ~, K s, K s and K~ are integers, all different, chosen from" t ,  2 . . . .  , R. 
The matr ix product G G ( ~ r , ) G  ffi has been omitted from (7.1J) because it can be 
expressed in terms of G*G(rr , )G and matr ix products of lower degree, by  
means of a relation proven in [4]. 

From these results, it follows that  ~'d,..4~ can be expressed as a sum of 
terms of the form 

# t t 

f f . . .  f 0 (t, ~ ,  r~ . . . . .  re) O~,i,...~,, (t, "q, r, . . . . .  rR) dr~ dra.. ,  drR, 
O 0  O 

(7.t2) 

in which Oi, i,...i ~ is an outer product of order p formed from matrices II* and 
vectors VffiII* and V~(ru)II~, where l l*  and II~ are matrices of the forms listed 
in (7.t0) and (7.tt)  respectively, such that  Oi, i,...i~ (t, r l, rs . . . . .  rs) is linear in 
each of the matrices G(Tr,) and in each of the vectors V~(rUo) which occurs 
a s  factors in OJ,i,...i~ (t, rx, r t  . . . . .  re), and the integers K e and Mo are a per- 
mutat ion of the integers t ,  2 . . . . .  R. I f  Oi, io...i~(t, ~ ,  r l  . . . . .  rR) is an outer 
product of say 7 matrices II~ and 8 vectors V~II~ and V~(rM)II*, then 

-- 2~ + 8. (7.t3) 

Since each matrix II~ involves at most five distinct arguments r re ,  and each 
vector V~(~)II~ also involves at most five distinct arguments rHo and rr~,  
it follows that  Ojd,...h,(t, r t ,  T, . . . .  ~ 'rR) involves at most 5p distinct arguments, 
apart  from t. Thus in (7.t2) we have R ~  5/~. As a special case we may have 
R----0, in which case Oid...i ~ is a function of t only, that  is, it depends only on 
G and Vffi. 

The coefficient 0(t, r l ,  r l  . . . . .  ze) in (7.t2) is a continuous function of its 
arguments and a polynomial in expressions of the types .(7.6), (7.7), (7.8) and 
(7.9). Expressions of the type  (7.6) were considered in a previous paper [9], 
where it was shown that  t r I l*  in" (7.6) can be expressed as a polynomial in traces 
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of matrix products of the following forms: 

G,  G s, GS; 

G G(r~,), G' G(~g.) ; 
G G(~'K~) G(T'K,), Gs G(~K~ ) G(TK,), G G(~Kx ) G(TK, ) G(TK,), 

Gs GC~x.) G(~K.) G(Tx.J, G(~x,) a(~x,) G G(~g0) GS; 
(7A4) 

G G(~x,) G(TK.) G(Tx.) G(Tx.), Gs a(Tx~) r G(~x.) a(Tx~; 
G G(T~.) G(Tx.) G(Tx.) G(~.)  G(T~,); 

G(TK,), G('QQ) G(~'K,), G(TK, ) G('~K. ) G(~K,~," G(TK, ) G(lrK, ) G(~K~ G(lrg,), 

G(TIQ ) GC'~K. ) G('CK, ) G(~K, ) G(TK.), GCzK~ ) G(TYK, ) G(~K, ) G('~K, ) G(~K,) G(~'K.), 

where K 1, K s . . . . .  K s are integers, all different, chosen from t, 2 . . . . .  R. Also, 
from (2.t3) and (5.6), we see that K I I * ~  in (7.7), K(~o)II*Va(TR+I) in (7.8), 
and ~ I I *  V~ (rk + 1) in (7.9) can be replaced by V~ P~ Vp + Vp Ps ~ ,  V= (%) P; Vp (~R + I) + 
~(VR+I) P2V=(To), and KPi  Va(~R+I)~Vp(zR+I)PzV~ respectively, where P~ and P~ 
are matrix polynondals, with coefficients which are traces of matrix products 
listed in (7.t4), and matrix terms of the forms" 

G s G(~r,) G ,  

G s, G(~g,) G~, G(~,)  G(~J  G s, 

G, G(~g,)G, G(~x,) G G(~.) ,  G(~g,) G(zg,) G, (7 A 5) 

G(~g,) G(~,)  G G(z~,,), G(~g,) G(~g0) G(~J  G; 

where .K~, Ks, Ks, Ks are integers, all different, chosen from t, 2 . . . . .  R. I t  
follows, by  an argument .similar to that  used in [6], that the coefficients 
O(t, ~1, % . . . . .  ~k) ( R ~  5p) can be expressed as continuous functions of their 
arguments and polynomials in expressions of the types 

t t t 

f f . . .  f ~o(t, z~, ~s . . . . .  ~s) tr II*[G, G(rl), G(~=) . . . . .  G(zs)] ,t~i dzz  . . .  ,l~s, 
O 0  0 

f f " "  f W(t, ~,, ~s ..... ~r) ~ I~ [G ,  G(~I), G(~s) .... .  G(~r)] V a d~l d~z.., d~r, 
0 O  0 

t t t 

Yf'" f~(~, =o, ~, . . . . .  =r, ~r+s) V~(~o)II*~G, G(v~), G(za) . . . . .  G(VT)] X 
o o o ( 7 . t 6 )  

V~ (ZT+I) d~0 d~ l . . ,  dTr dTT+I, 
t t # 

f f ' "  "fw( t, ~,, ~s . . . . .  *r, ~r+1) V~I~[O, O(.1), O(.,) . . . . .  G(=r)] x 
o o o ~ ~.(vr+t) d'Q d'~s.., dvrd~'r+~, 

t t t 

f f . . .  f ~o (t, n ,  st, .  :., =r) V~ (To) l ~ [ O ,  GC~z), ~(=s) . . . . .  G(zr)] x 
o o o x ~ d % d z ~ . . . d ~ : r  ' 

where the ks.reels V are continuous functions of their arguments, l l~ are matrix 
produdts listed in (7A4), with K~, K s . . . . .  K s chosen from the integers t,  2 . . . . .  S, 



Integri ty bases for vectors and tensors. I 63 

and I I*  are mat r ix  products  listed in (7.t 5), with Kt ,  K~, K 8, K 4 chosen f rom 
the  integers t ,  2 . . . . .  T. Since the mat r ix  products  in (7A4) involve at  mos t  
6 dist inct  arguments ,  apar t  f rom t, and the mat r ix  products  in (7.t 5) involve 
a t  m o s t  4 dist inct  arguments ,  apar t  f rom t, we have  S ~ 6 ,  T_~4. 
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