Isotropic Integrity Bases for Vectors
and Second-Order Tensors

Part I

A.J. M. SPENCER & R. S. RIVLIN

‘1. Introduction

In previous papers [2, 3] it has been shown how an arbitrary matrix poly-
nomial in any number of symmetric 3 X 3 matrices may be expressed in a canonical
form. From these results an integrity basis under the orthogonal transformation
group for an arbitrary number of symmetric 3 x 3 matrices has been derived. This
consists of traces of products formed from the matrices which have total degree
six or less in the matrices. In deriving these results a number of theorems were
obtained which enabled us to express a product formed from any number of
3 X3 matrices, whether symmetric or non-symmetric, as a sum of products of
‘particular types formed from these matrices, with coefficients which are poly-
nomials in traces of products formed from the matrices.

In the present paper it is shown how these results may be used to obtain
finite integrity bases under the full and proper orthogonal transformation groups
for an arbitrary number of three-dimensional vectors and symmetric 3 x3
matrices. This is done by replacing the vectors by skew-symmetric 3 X 3 matrices.
The integrity bases derived consist of elements which involve the symmetric
matrices alone and elements which involve both the vectors and matrices. The
former elements are the same for both the full and proper orthogonal groups
and form the integrity basis for 3 X3 matrices derived in the previous papers.
The integrity bases derived in this paper.for the full and proper orthogonal
groups differ in the elements which involve both vectors and matrices. In neither
case is the integrity basis irreducible. It is intended to pursue the further reduc-
tion of the integrity bases in a later paper.

The results obtained in the present paper are applied in §7 to the problem
of the formulation of constitutive equations for isotropic materials, which are
applicable to physical phenomena described by the relation between the value
of a tensor of arbitrary order at some instant-and the values of the displacement
gradients and a number of vectors at that instant and at times preceding that
instant.

2, Proper orthogonal transformation group

In a previous paper [I] it has been shown that an integrity basis, under
the proper orthogonal group, for a single symmetric tensor G,; and » vectors V/®
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(®=1,2,...,») in three dimensions, is given, with the notation G=|G,,|, by
I/"_(a) (GN) .. V(ﬁ) trGN+ 1,.
e;1:(GM);, VIR (GY), VI (GF),, VD, (2.1)

€k (GM);p Vlga) (GN)jk ,

where M, N, P=0,1,2,... and o, §,9=1,2,...,v and e;;x=1 or —1 accord-
ingly as ¢,7, & is an even or an odd permutation of 1, 2,3 and otherwise ¢;,, =0.
Invariants of the last type vanish identically since G,; is symmetric.

The first two invariants in (2.1) are invariant under both the proper and
the full orthogonal groups. The remaining-invariants in (2.1) are invariant under
the- proper orthogonal group but not under the full orthogonal group.

In a similar manner it can be shown that an integrity basis, under the proper

orthogonal group for u symmetnc second-order tensors G‘“‘ (x=1,2,...,u)and »
vectors V# (8=1, 2,...,7) in three dimensions is given by
VI, ..V.(ﬁ), trIo, (2.2)

€iik (HL)xp v (My);q V(B) (Iy)s, V7,
e i)y V;“) (M) g V(ﬁ) @), VY,

2.
e,-,-k(nL 11>V;§ )(I]M “ V(ﬂ) (L), V"(y), (2.3)
e; i), V(“) (M), V“’) @), VI,
”k(nL)'PV( )(nM)jk: 2.4

iik(HL)pi Vp( )(nM)ik’

where I, II; , II,, and II, are any matrix products formed from the u symmetric
matrices G, (=[G%]). I, I, and IIy, but not Iy, may as particular cases
be the unit matrix. The invariants (2.2) are invariant under both the proper
and the full orthogonal groups. The invariants (2.3) and (2.4) are invariant
under the proper orthogonal group but not under the full orthiogonal group. Now,

), = nL);p: M)y = My)ip @), e = Ty, (2.5)

where II}, IT}, and II denote the transposes of II; , II,, and II, respectively.
Introducing (2.5) into (2.3), we have

eijk (nL)ip (oz) (n’ll (ﬁ) (HN)rk V(Y) = el]k (nL 11) (o:) (HM)jq Vq(ﬁ) (n;V)kr ‘V'(y)'

Ciik I, ) V( )(HM)q; V(m (Hy), s Vy(y) == eiik(nL)ip ;5“) (nlM)jq I/q(p) (n;V)kr V'(y), (2.6)
eiin(Mp),: V™ @ (M), ; VP My), VY = e, 7, (1), V;ﬁa) (M) ;i I/q(p) (@Iy), VI

Since II; is a matrix product formed-from the symmetric matrices G,,II; is
the matrix product formed by writing down the factors in II; in reverse order.
With similar considerations applied to ITj; and Iy, we see that the three invariants
on the right hand sides of (2.6) are each of the form of the first of the invariants
(2.3). Hence we may omit from the integrity basis the last three of the invariants
(2.3). Similar considerations enable us to omit from the integrity basis the last
of the invariants (2.4). We thus see that an integrity basis for /1t symmetric
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tensors G{? and » vectors V/® under the proper orthogonal group is formed by

VO [L), Ve, i,
e;ix (L), Vi© M), VIO (M), V), (2.7)
e ip Vi¥ Mag) s

where the first two invariants in (2.7) are invariant under both the proper and
the full orthogonal groups, and the last two invariants in (2.7) are invariant
under the proper orthogonal group, but not under the full orthogonal group.

We now define the matrices v, (=|v{¥|) by

v =e;;, V. (2.8)
Employing the relation

iipCije =20, (2.9)
we readily obtain the inverse relation

Vi =4, (2.10)

iip Yij

Introducing (2.10) into the first of the invariants (2.7), we obtain
V;'(a)(nL)iiI/j(m __“%eklivﬁ)(nl_.)i; mn;"ffln (2'11)

Introducing into (2.11) the relation

Oim» Okns Oy
Cr1iCmn; = Sims Opns 51;
"Bim: Oin, Oy (2.42)

= [6im 519 8;j— Okm0;;0;,+ 84, 070, —
— Ok Oy 055+ 0400 65 — 8, 6y, 0],

we obtain VML), Vi = — 3L, vf) + v@ o (IT), 213)
=~ $trll, tro, v+ tro, v, . '
In deriving this result, we use the relation
.,,(a) = — pl® (2.14)

s

obtained directly from (2.8).
Now, introducing (2.10} into the last of the invariants (2.7), we obtain, with
(242),
t;k(nL)tpV (nM)jk— ukemnp(nl)lp mn (nM)1k
=3 [6un 61» 6hp - 6|m 6“7 6kn+ 61n i? akn -
— 0,4 0im0pt 0,y 6,'_... Opn— 8:p iy Opm) X

x (M), ”m(nM)ik-

(2.15)
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With (2.5) and (2.14), equation (2.15) yields
e;ija ML)y VO M) = — tr I My o, + tr 1L I, v, — (2.16)
— trI; tro 10,
Again, introducing (2.10) into the third of the invariants (2.7), we obtain,
with (2.5), (2.12) and (2.14),
€;in (1) ip Vi Myy)j, VP W), VI
=36k ComnCqssCruwTL)ip My);, My)i, ”iﬂ; o) W7,
=500ip0imOkn—0ip0;s Opmt 0; 0 Opp— 0,1, 0,504+
+0,u0;p0m— 00 0;m Oy p] [0y, 054 01y — 8y, 650y 840+
4 840 0509 0sp — Oy Oy O+ g4y O, By — 644 05y 64, ] X
X (L) p (yy)jq @i, v5n v 000

=4[— 2trI, trITy 0, My troge, — 8tr I, trIT, v, vy v, +

(2.17)

+2trI tr 1L, Iy v, trogo, + 4tr XL I DT, o, trop o, —
—8trI Iy o0, My 0, — 4tr I 10, My v, trogw, +
+ 8trI, I, v, v, My 0,].

We ngte, from (2.13), (2.16) and (2.17), that each of the invariants (2.7)
may be written as a polynomial in traces of products formed the matrices G,
(x=1,2,...,u) and v; (8=1,2,...,v) which are of degree three or less in the
matrices 7] (8=1,2,...,7). In the next section we shall show how the trace
of any of these products may be expressed as a polynomial in traces of a limited
number of products of the same type.

3. Derivation of a finite integrity basis

As a particular case of a theorem proven in a previous paper [2, Theorem 1'],
we have

Theorem 1. Any matrix product II in R, 3 X3 matrices ap (P=1,2,..., R)
can be expressed as a malrix polynomial in which

(i) each matrix product is either the unit matrix I or is formed from one or all
of the factors ap (P=1, 2, ..., R) and at most two of the factors a’ (P=1,2,...,R);

(ii) no two factors in a single matrix product are the same;

(iii) each matrix product is of lower or equal partial degree in each of the matrices
ap (P=1,2,..., R) than the matrix product II;

(iv) matrix products containing two of the factors a% (P=1, 2, ..., R) contain
them consecutively;

(v) mo matrix product containing both of the factors ay and a} contains either
of the factors ay or @, unless it is of the form ayalal;

(vi) each matrix product which comtains both ay and ay as factors has ay as
the first factor and a% as the last factor;



Integrity bases for vectors and tensors. I 49

{(vil) no matrix product has total degree greater than five in the malrices ap
(P=1,2,...,R);

(viii) the coefficients in the matrix polynomial are polynomials in traces of matrix
products formed from the matrices ap (P=1,2, ..., R).

It follows immediately from this result that any matrix product in the matrices
ap (P=1, 2, ..., R) may be expressed as a matrix polynomial in which the matrix
terms are '

. 3. 2 3 2 2 2 1.2,
I; ay, ax; agxa;, aya;, axa,, agxa;, 6, a;, ay, GxG; Gy ;

3 2 2 2 2 12 2.
Qe By, B Q; By, B B By, Ap B; Apy, A Ay, A Q] Ay, A @y Q) Ay,

(3-1)

: 2
Gy, GyAy, GxQ; Ay Ay, ayaiayay,

2 t .
QA CByGy, QB By Gy, B Q; Ay Gy as,

where K, L, M, N, S are integers, which are all different and are chosen in all
possible ways from the integers 1, 2, ..., R.

We may now readily obtain*

-Lemma 1. The trace of any matrix product X1 formed from the matrices ap
{(P=1,2, ..., R) may be expressed as a polynomial in expressions of the form
tra M, where I, (a=1, 2, ...} are the malrix products (3.1) and T may be any
of the integers (1,2, ..., R).

We employ the following theorem which has been proven in a previous paper
[3, Theorem 2]:

Theorem 2. The trace of any matrix product formed from the R, 3 X 3 matrices ap
(P=1,2, ..., R) may be expressed as a polynomial in traces of matrix products
of lower or equal partial degrees in each of the matrices and of lower or equal extensions,
having the forms

tryakal (K+1),

troak,
tre, ' (3.2)
traya,akal (KL, M&+L),

and s
tr Ay,

where Yy is either the unit malrix or a matrix product formed from some or all of
the factors ap (P=1,2,...,R; P+ K, L), no two factors in y being the same;
© is either the unit matrix or a matrix product formed from some or ali of the factors
ap (P=1,2, ..., R), such that ay is not the first or last factor in v and no two
Jactors in v are the same; u is a matrix product formed from some or all of the
factors ap (P=1,2,..., R), no two factors in which are the same.

Combining this result with Lemma 1, we see that in Theorem 2 we may
take y, » and u to have total degrees in the matrices @, (P=1, 2, ..., R) not
greater than two, four and six respectively.

* See [3, §5) for an argument similar to that used in obtaining this result.
Arch. Rational Mech. Anal., Vol, 9 4
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We thus obtain

Theorem 3. 1'he trace of any matrix product in the 3 X3 matrices ap (P=
1, 2, ..., R) may be expressed as a polynomial in traces of the products

quana?(ai, ayayaj, ayai;
a ayayapay, a,ayayay, a,ayay, a,ay, ak;
Q@ Gy Ay aAp Ay, BB Ay Ay ap, GyG Ay Ay, Ax Q) Gy, Gy @), Gy,
a. G, ayapa%, G, Ay ax0pa%, G G aya%; (-3)
aya aiai, aga ayai;
ak;
in whick K, L, M, N, P and Q are inlegers, all diffevent, chosen from 1,2,..., R.

We shall now consider that the set of matrices @y (P=1, 2, ..., R) consists
of the 4 symmetric matrices Gp (P=1, 2, ..., u)* and the v skew-symmetric
matrices v, (#=1, 2, ...,¥). We note that

Wenotealse HO=troi=tro,of=tro,Gp=tro,G3=0. (3.4)

Lemma 2. If IL, s a matrix product formed from the symmetric matrices Gp
(P=1,2,..., ) and the skew-symmetric matrices v, (x=1,2,...,v) and IL; is
the matrix product formed by writing the factors of IL, tn inverse order, then trII, =
trl;, if I, is of even degreein the matrices v,, and trII,= —trIL,, if I, is of
odd degree in the matrices ©v,.

We shall also use

Lemma 3. If II, and X1, are two matrices (which may be matrix products),
then trII, IL,=tr IL I, .

We substitute the set of matrices Gp (P=1, 2, ...,u) and v, (=1, 2, ...,9) -
forap (P=1, 2, ..., R) in (3.3) and recall, from §2, that any polynomial invariant
of the tensors G’ and the vectors V/® may be expressed as a polynomial in
traces of matrix products of the matrices Gp (P=1, 2, ..., y) and v, (x=1,2,...,%),
which are of degree three or less in the matrices v, (x=1, 2, ..., »). Then employ-
ing the relations (3.4) and Lemmas 2 and 3, we obtain from Theorem 3,

Lemma 4. The trace of any matrix product in the u symmetric 3 X 3 matrices Gp
(P=1, 2, ..., u) and the v skew-symmelric 3 X3 matrices v, (=1, 2, ..., v) which
is of degree three or less in the matrices v,, may be expressed as a polynomial in
traces of matrix products which do not involve the matrices v, together with traces
of the following matrix products:
Uy GN G?( Gir Oy G?( Gi’
v, Gy Gy Gp G, G, v, Gy G, GY, v,G, Gy Gk, G v, Gy GY, v, Gy GY;
Y, GLGM GN Gp GQ, U, GL GMGN GP, U, GL GM GN' D, GL GM; (3.5)
v, Gy Gy Gp G, GLGv,Gp G, v, Gy G4 G, Gy, v,G Gy GY;
v, G, G% G} ;

. * We shall use roman capitals as subscripts to the G's in order to avoid confusion
with the subscripts on the »'s. ’
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Gy Gy Gy}, Gy Gy v;, G},

G.GyGyGp?l, G, Gy GyY:, G, Gyvs, G0}, V2,
Gy G, v GE;

0,0, Gy G1;

0,9 Gy G, Gy, G v,9,G, Gk, v,Gy Gyv, Gy, 6
0, Gy 0, Gr GY, 0,0,Gy Gk, 1, Gy 0, G, v,0,GY; (3-6)
0,06y GyGp Gy, v, G Gy Gp Gy, v, G, Gy, Gp Gy, v, 0, Gy Gy Gp,
0, G v,GyGp, 0,9,Gy Gy, v, G Gy, U,V Gy, V0,

v, G v, Gp Gy, v,Gx Gy v, Gk, G, Gxv, v, Gk;

v, Gy v, Gk;

G.9,GyGpv;, G v,GyY;, Gyv,Gxv;, v,G, v, GY;

v, Gy v3Gl, v, Gy Gk v}, v, Gk v};

v,Gy Gy Gpv}, G v, Gy Gpv}, v,Gy Gy}, G v, Gy}, v, Gy},

v, G, v} GL; | ~ (3.7)
v,9,9,Gp G, v,0,Gyv, Gk, p,v,0,Gx;

9,99, Gy Gp Gy, v,0,Gy0,Gp Gy, 0,G, 03 Gyv,Gy, v,0,0,Gy Gp,

0,9 Gyv,Gp, v,9,0,Gy, v,0,0,, v, Gyv,v, Gy,

where K,L,M,N, P, Q are integers, all different, chosen from 1,2, ..., u and
o, B,y are sniegers, all different, chosen from 1,2, ..., .

4. Further reductions of the traces of matrix products
In this section it will be shown that the traces of certain of the matrix
products listed in (3.5), (3.6) and (3.7) can be expressed in terms of traces of
other of these products. As in previous papers we use the notation

trP=0 (4.1)

to express the fact that the trace of some matrix polynomial P of degree # in
a set of matrices @p (P=1, 2, ..., R) can be expressed as a polynomial in traces
of matrix products H; in the matrices @p, in which each matrix product II;
has degree less than # in the matrices ap. We shall use the following results,
which were proven in [2] and [3]: ' :

trzayyay +trezakya, =0, 4.2)
trw(aya, +a ax)zay, =0, (4.3)

where &, y, w0 4nd 'z are matrix products formed from the matrices @, and are
not equal to the unit matrix I.

tr G, Gxv,GrG% and tr v,G,, G, G, Gx. Replacing w, a,, a,, z and a,, in
(4.3) by G, Gg, ., Gp and Gy respectively, and applying Lemmas 2 and 3,
we obtain

trG, Gy v, Gp G% = — tr G, v, Gy G, G}

(4.4
=trv¢GLG=‘GPGK. ( )

4*
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By a relation of the type {4.2)

tro, G, G%x G, Gy = — trv, G, G, G, G%, (4.5)
and by a further relation of the type (4.3)

trv, G, Gy Gp Gy = — trv, Gy G, Gp G%. (4.6)
Hence, combining (4.4), (4.5) and (4.6)

tr G, Gy v, Gp Gk = trv, Gx G, G, G%. (4.7)

Further, by a relation of the type (4.3)
trva GM GK GP G?(E —_ tr'va GK GM GPG?(. (4.8)

Thus tr G, Gxv,GpG% and trv,G, G, GprG% can be expressed in terms of
traces of matrix products of the form tr v, Gy Gy GpG%, and traces of matrix

products of lower degree, and so they may be omitted from the set (3.5).
tr Gy G v2G}. By a relation of the type (4.2) and Lemmas 2 and 3
Hence tr Gy G, v GL =0, (4.9)
and Gy G, v2G}? may be omitted from (3.6).
We next derive a further relation for matrix products containing two or

more skew-symmetric matrices. Let »!3 be the i/*® component of a skew-
symmetric matrix »,. Then, using the relation

eii,epq,—'_—-"a"p 67q— 6,‘1 6,0, (4-10)
we have )
49 = 30l — o)
=$(0:5p 05 — 05 05g) v55) (4.11)
=FCiirCpqr V5.

Now let v, (=[v!?]) and v; (=[v}?|) be skew-symmetric matrices, and let IT
(=|T; ) be an arbitrary matrix product. Then, using relations of the type (4.11)

(v, Ivy);, = 7’57) 11, o)
__T%eiiperspvg)nikequ Cmng v&), (4.12)
=3€iipCh1gCrsplmny V% VLTI,
Introducing relations of the type (2.12) into (4.12) we obtain
(@ TEvg);; =362 6,4 0pg— 055 0;4 051+ 0,404 8pp — 8,1 814 8,0+
+ 8¢ 9jn apl —0:50,,8,1) [0m Osn0pg— Oym Osq Oput
+0,u040pm— 0,n0sm0pgt Org OsmOpn— 8,9 05y ] v VB, IT,
= — v o) II;; — v v I+ @ o IT, , +
+ i—vg.",‘,) v}fi’ I+ 6, v,‘.i) v}f;ﬂi, — %'L}“,? 1‘}5’17,,,).



Integrity bases for vectors and tensors. I 53

This relation may be written
o, v+ Il'v, v,+ v, 0,11

41
=0, 05 tr I + $ I tro, v5+ I{tr v, v, 11 — }tro, vy te 1), (#13)

where II' denotes the transpose of II. Unlike other relations which have been
used in the reduction of matrix polynomials, (4.13) does not appear to be a
consequence of the Hamilton-Cayley theorem, although it reduces to the Hamilton-
Cayley theorem for skew-symmetric 3 X3 matrices when v, =v,=IIL

Replacing II in (4.13) by II,, multiplying the relation so obtained on the
right by a matrix product II,, and taking the trace of each side of the resulting
equation, we obtain

tro, I, 03I, = — tro, v ILIL — tro, v, 1L I, +
+ tro, v I trIL, + $tr IL I, tro, v+ (4.14)
+ trIL (trv, v I — jtro, v, tril),
if,=4=1. IfII,=1, by Lemmas 2 and 3

' tro, I, vy = tro, v, I1; . (4.15)
Thus we have

Lemma 5. The trace of any matrix product of 3 X3 matrices which contains
two skew-symmetric malrices v, and vy as factors may be expressed as a polynomial
in lraces of matrix products which either

a) contain both v, and vy as consecutive factors
or

b) contain nesther v, nor vy as factors.

From Lemma 5, it follows that the traces of all of the matrix products in
(3.6) in which », and v; do not occur consecutively may be expressed in terms
of traces of matrix products in which v, and v; do occur consecutively, or do
not occur at all. Hence all of the matrix products in which v, and v; do not
occur consecutively may be omitted from (3.6). Similarly, the matrix product
v, G, v;Gyv, G, may be omitted from (3.7).

tr G;v,v,G-G. Replacing I, and II, in (4.14) by G, and GpG¥ respec-
tively, we obtain

tr(v, G, v+ G0, + 0,0, G;) Gp Gy = 0. (4.16)
Also, from a relation of the type (4.3)
tro, (GLv+ 13 G;) Gp G =0. 417)
Subracting (4.17) from (4.16), it follows that '
tr G, v, v, Gp G =0, (418)

and so G v,v,Gp Gy may be omitted from (3.6).
tr v,0,0,GpG% and trv,GyGiv;. Replacing v,, v, II, and II, in (4.14)
by vg, ,, Gp and Gk v, respectively, and using Lemma 3, we have the relation

tro, (0,0, Gp+ v, Gpv,+ Gp1p0,) G = 0. (4.19)
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Also, by a relation of the type (4.3),
tro, (v, Gp+ Gpvy) v, G = 0. (4.20)
Hence from (4.19) and (4.20)
tro, 0,0, Gp G =0. (4.21)

Further, replacing v,, v, and Gp in (4.21) by v, v, and Gy respectiirely, and
using Lemma 3, we have tro, Gy GL o2 =0, (4.22)
and so ®,0,0,GpG% and v, Gy Gy v may be omitted from (3.7).

Employing the relations (4.7), (4.8), (4.9), (4.18), (4.21) and (4.22), and
Lemma 5, we obtain from Lemma 4

Theorem 4. The trace of any matrix product in the u symmetric 3 X3 matrices Gp
(P=1,2,..., u) and the v skew-symmetric 3 X3 matrices v, (a=1, 2, ..., v) which
ts of degree three or less in the matrices v,, may be expressed as a polynomial in.
traces of matrix products which do not involve the matrices v,, together with traces
of the following matrix products:

v, Gy G% G}, v,Gy G} ;
v, Gy Gy Gp Gy, G v, Gy Gp G}, v, Gy Gy Gk, G, v, Gy Gy, v, G, Gi;

v,G.GyGyGp Gy, v,G, Gy Gy Gp, v, G, Gy Gy, v, G, Gy; (4.23)
v, Gy Gy Gp G, v, Gy Gy Gi;
v, G, G% G} ;

Gy Gy Gy v}, Gy Gy v}, Gy v;;

GGy Gy Gpv;, GGy Gy}, G Gy}, G 7}, 05;

0,9, Gx Gi; (4.24)
0,0 Gy Gp G}, v, 03 Gy G, 0,0, G;

2,0 Gy Gy Gp Gy, 0,0,Gy Gy Gp, v,0Gy Gy, v,0,Gy, v,0;

G, Gy v,v,G%; .

G, v,Gy G}, G b, G0}, Gyv, Gk v;, v,G v, GL;

v, Gy v} G}, v, Gk v};

0,Gy Gy Gpv}, G v, Gy Gpt}, v,G, Gy}, GLv, Gy, v,Gy 15,
0 G, 0 GL: (4.25)
0,0, Gy v, Gk, 0,030, Gk;

0,030, Gy Gp Gy, v,,'vanyGpGQ, 0,030, Gy Gp,

0, 0Gy0,Gp, v,0,9, Gy, v,00,;

0,03 G, v, G%,

where K, L, M, N, P, Q are integers, all different, chbsen from 1,2,..., 4, and
o, B,y are integers, all different, chosen from 1,2, ..., ».
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5. Expression of the results in terms of vectors
In this section we shall show how the traces of the matrix products (4.23),
*(4.24) and (4.25) may be expressed in terms of the components of the vectors V{®,
which are related to the matrices v, (=|»\?[) by (2.8) and (2.10).
We note, with Lemma 3, that the traces of each of the matrix products .
(4.23) may be expressed in the form trv I, where Il is a matrix product formed
from the matrices Gp (P=1, 2, ..., u). With (2.8), we have

tro l'I_-v‘“)(l'I;---— e VL), ;. (5.1)

Thus the traces of the matrix products (4.23) may be written in the form (5.1)
where II is given by

Gy GLGE, GLGE;

Gy Gy Gp Gk, Gy Gp Gk Gy, Gy Gy Gy, GyGLG,, G, Gy;

G,GyGyGp Gy, GGy Gy Gp, G, Gy Gy, G, Gy, (5.2)
Gk GN Gp G?{» GGy fo;
G, G% GE.

Again, with Lemma 3, we see that the traces of each of the matrix products
(4.24) may be expressed either in the form troZII or in the form trv,v,II, where
II is a matrix product formed from the matrices.Gp (P=1, 2, ..., u). With (2.8)
and the relation (4.10), we have .

tro, 0l =v% o8 (M),
» :7pV,§ )e]qu(m(n)kt
= [0pr0;g — 8y 04, ] VIR VIO @)y,
=V M), VP — V@ Ve I
Taking v, =%, and correspondingly V/*=V#), we obtain
tr o} Il = VO (D), Vi — V@ Vi@ tril. : (5.4)
We see that each of the expressions of the form tro2II listed in (4.24) can be
expressed as a polynomial in V{® V¥, traces of matrix products formed from G
(P=1,2, ..., p), and expressions of the form V;* (II),, V™ where II has the values
GMGNGI%: GMGz, G%; i (5.5)
G,.GyGyGp, GGGy, GGy, G, . .

Also, each of the expressions of the form tre, v, II listed in (4.24) can be expressed
as a polynomial in V@ V;“” traces of matrix products formed from Gp (P=

1,2, ..., ), and expressions of the form V® (Il), V/®, where H has the values
G% G%;
Gy Gp,G%, G, G%, G%; 56)
GyGnGpGy, Gy Gy Gp, GGy, Gy,

G% et Gy
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Finally, with Lemma 3, we see that the traces of each of the matrix products
(4.25) may be expressed either in the form tro, oIl v II;, or trojI v II,, or
tro2 I, v,II,, where I, and I, are matrix products formed from the matrices G,
(P=1, 2, ..., ) which, as particular cases, may be the unit matrix. With (2.8)
and the relation (4.10), we have
tro, v, II, v, Im, = '01'7) v,(f,? (L), "’m (L), ; .

=&p Vp(a) €ikg Vq(m @X)ss€rms V;(y) 41
= [6pk 61’q - 6ik 61)4] Cmy Vp(“) I{I(ﬂ) (Hl)kl ]’/"(y) (nz)mi
= €imys (ni)lp Vp(a) (n2)mq ]'/;03) V'(y) € (ni né)lm I/;(:’) . Vp(a) V'}ﬂ)_

(5.7)

Taking v, =vg, and replacing », by v, in (5.7),

tr o3 T, 0,10, = 6y, (I8}), Vi (B V;2 V2 — ey, (G T, V1) VO VIR, (5.8)
r Taking vg=v, in (5.8),

tr v:nl Vs nz = elmr(ni)lp V;a) (nz)mq I{](a) I/;(a) — Cime (nl’. né)lm V'(a) y I/;(a) I/;(a)‘ (59)

From (5.7), we see that each of the expressions of the form tro,v,1I,0,II,
listed in (4.25) can be expressed as a polynomial in expressions of the forms
I/;“) V;(ﬂ), €imyr miné)lm I/'(V) and elmr(ni)lp I/;a) (H2)m qI/q(m [/'()’)’ where IIl and n2 take
the sets of values

Gy 1)
6%’ 6L’

1 Gy I Gyl I I (5.10)
GyGp Gyl GpGyf’' Gy G|’ Gp|' Gyf’' I}’ ’

Gy
Gk’

From (5.8), we see similarly that each of the expressions of the form tro3 IT, v, II,
listed in (4.25) can be expressed as a polynomial in expressions of the forms
V;,(ﬁ) I/p(mr €1, (ML), V) and elmr(ni)lp I/p(m (ML) g V;(ﬂ) V®, where I, and II,
take the sets of values

G 1)
G|’ G%|’

1 } G, } 1 } GL}’ I }; (5.14)
Gy GyGp| GyGp) GyGy|' Gy) Gy
Gi} |
G
Also, we see from (5.9) that each of the expressions of the form trof I, v, I1,

listed in (4.25) can be expressed as a polynomial in expressions of the forms
I/;)(rz) V;,(a): 6Imr(n;né)lm V'(ex) and glmr(ni)lp V;;(a) (Hz)mq V;(G) I/;(a), where nl and n2
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GG Gy’ G%|’ G,

The results of this section show that the traces of the matrix products (4.23),
(4.24) and (4.25) can be expressed as polynomials in expressions of the forms

trII,

ei-ik Vk(a)(n)fix

NG (5-13)
VI @), VP,

C1omy (T3 Vi (IL,),,, VO V0,

take the sets of values G, } GL} GM} G"}_} (5.12)

and

where «, § and y are not necessarily all different, and II, IT, and II, are matrix
products formed from the matrices Gp (P=1, 2, ..., ¢), whose possible values
have been given above. From (2.2), (2.3) and (2.4}, we see that each of the
expressions (5.13) is invariant under the proper orthogonal group, and consequent-
ly the trace of each of the matrix products listed in (4.23), (4.24) and (4.25)
is an invariant under this group*. Since it was also shown in Sections 2 to 4
that any invariant under the proper orthogonal groups of the tensors G
(x=1,2,...,4) and the vectors V! (8=1,2,...,%) can be expressed as a
polynomial in traces of the matrix products (4.23), (4.24) and (4.25), and matrix
products formed from the matrices Gp (P=1, 2, ..., u), it follows that the
traces of the matrix products listed in (4.23), (4.24) and (4.25), together with
the traces of the matrix products which can be formed from the matrices Gp,
form an integrity basis, under the proper orthogonal group, for the y symmetric
second-order tensors Gg‘,‘) (@=1,2,...,u) and the v vectors V¥ (8=1,2, ...,)
in three dimensions. :

By a similar argument, the results of Sections 2 to 5§ show that the traces
of the matrix products listed in (4.24), together with the traces of matrix products
formed from the matrices Gp (P=1, 2, ..., u) form an integrity basis under the
full orthogonal group for the tensors G{¥ (@=1,2,..., 1) and the vectors V¥
B=1,2,...,7).

The integrity bases derived above are finite. They are, however, not irreducible
since there are further relations between the invariants of which no account has
been taken. They do have the possible advantage of symmetry with respect to
interchanges among the symmetric matrices G and among the skew-symmetric
matrices v,.

6. Products of a vector and symmetric matrices

In this section we consider products of the forms V,II and IIV,, where ¥
is a vector in three dimensions, with components V®, andIl is a matrix product
formed from 3 X3 symmetric matrices Gy (8==1, 2, ..., u). We note that

e (V. 1), = (II'V),. : (6.1)

* This result can also be derived directly, by applying (2.8) and the transformation
laws for vectors and tensors to the traces of the matrix products formed from the
matrices Gp and ¥, and listed in (4.23), (4.24) and (4.25).
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Let X be an arbitrary vector with components X, and let I7;; denote the 7t
component of II. Then

(H Va)i=ni;‘ V,T(“)

a 6.2)
~ 2 Ty ). '

Now define a skew-symmetric matrix v, aé_ in (2.8),-and a skew-symmetric
matrix & in an analogous manner. Then, from (2.13)

X 11, V¥ = — jtrlltre v, + trx o, I1. (6.3)

From Theorem 4, trev,II can be expressed as a polynomial in traces of matrix
products, which are either products which do not involve & or v,, or are products
of the forms listed below the line in (4.24), with.v, and v replaced by @ and v,
respectively or v, anid ® respectively. Hence (6.3) may be written in the form

XkaiI/;(a):Z(y’R trwvanR+ 'P;etf”a-’”nk), (64)
R

where g and yj are polynomials in traces of matrix products formed from the
matrices Gy (=1, 2, ..., u), and v,II; and v,xII; are matrix products of the
forms given below the line in (4.24), with v, and v, replaced in the first case
by & and v, respectively, and in the second case by v, and & respectively.

Next, from (5.3)
treo,d, = X, [TV — X, V@ trI,
tro, 2l = VOIIR X, — X, V@ tr I,
and hence with (6.4)
XoIL; Vi = 2 (e Xy LD VO + 2 VO ILT X)), (6.5)

where yz and y are polynomials in traces of matrix products formed from the
matrices G5 (8=1,2,...,u) and II{®) are the ij** components of the matrix
products IIp, which are matrix products formed from the matrices G, (8=
1,2,...,u) of the forms listed in (5.6), with the addition of the unit matrix.

From (6.2) and (6.5), it follows that
HI’az:ZR:(XRnR Vot 1x V.I0g) (6.6)

Finally, from (6.1) we see that V. II is also expressible in the form (6.6) and,
also from (6.1), that II'¥V, (or ¥,I¥) may be expressed in the forms

OV, = (elle Vot 2 e Vo) = 2 (i VaTLe - 2 B0 6.7)
R

Theorem 5. Any product of the form LV, or VX1 of a three-dimensional vector

V, and a matrix product II, where I1 is formed from 3 x3 symmetric matrices G,

(B=1,2,...,u), can be expressed as a sum, with coefficients which are polynomials

in traces of matrix products formed from the matrices Gy (=1, 2, ..., n), of products
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of the forms MoV, (=V,II;) and V,IN, (=I1V,), where I, are the matrix products
G% G};
Gy Gp Gk, Gy Gy, Gi;
Gy Gy GpGy, GyGyGp, Gy Gy, Gy (6.8)
GG Gy; »
I
and K,LLM,N, P, Q are integefs, all different, chosen from 1,2, ..., u.

7. Application to isotropic materials possessing a centre of symmetry

In [5], RIvLIN has discussed the form taken by a tensor u;;,. ,, of order u
whose components describe some physical property of a body which in its initial
undeformed state is isotropic and possesses a centre of symmetry. The components
of %, ., are assumed to have continuous functional dependence on the defor-
mation gradients and on the components of » vectors v{* (z) (@=1,2,...,9) at
all times z up to ¢, with particular dependence on their values at time t It is
further assumed that v{®=0 (x=1,2,...,%) in the initial state at 7=0. The
deformation is described by the dependence of the coordinates x;(7) in a rectangu-
lar Cartesian coordinate system x of a generic particle of the body on the time r
and the coordinates X; of the particle in the coordinate system x at time v=0.
Thus it is assumed that %;i,..iy iS @ continuous functional of 9x,(r)/0X, and
(1) (k=1,2,...,9) over the compact aggregate of these functions which are
contmuous over the range 0= t<?, with particular dependence on their values
at time ¢. :

The following notation is used:
8:, (f) 31’, (T)

G" aX, aX ’
G(r) =G, (. G=G(), (7.1)

Ve (z) = 6xp (f) Y(x), VO=T=(,

and ¥,(z) and V, denote the vectors whose components are ¥ () and V@
respectively.

Then it was shown in [5] that, to any required degree of approximation,
can be expressed in the form

Uirig.uip

i = OFh O, 0%

ullt....l“ - aXfl aX’_. aX”. Fa7a - "‘) (7-2)
where &;; . is a sum of outer products of order u formed from matrices of
the type

tr . '
'Jéf---éfx(t, 7, T3, -, TRV II¥[G, G(1y), G(ry), ..., G(r)ldTyd7,... dg, (7.3)
and vectors of the types

(2 [ .
ofof- . -ofx(t, 7, %y, ..., 7p) LG, G(1,), G(zy), ..., G(rg)ldrydvy.. . d1g, (7.4)
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and

et ¢ _
J{---{x(t,to,t,,...,tR)K(to)l'l"[G,G(rl),G('r,),...,G(tR)]dtodrl...dtR, (7.5)

the coefficients of these outer products being polynomials in expressions of the
types

|21 ! R
ff-uofx(t, 75, Ts, -, 1) T II*[G, G(v), G(7y), ..., G(rp)]d T, d7,, ... dTg, (7.6)
00

1

't
J’J...éfx(t,-rl,r,,...f'rk) V.II*G, G(t), G(ty), ..., G(tg)] Vod1yd, .. .dTy, (7.7)

|4

/

-~

|4

"'ofFC(t- To» Trs -5 Trs Trt) Va(To) X (7.8)
xH‘[G, G(ty), G(ty), ..., G(tg)] V3(tp11) Tod Ty ... drgd gy,

e,

¢ i

SISl mm ot Ten) WG, G(r), (), 79)

s GlrR)] W (tRyn) fitld'r,...drkdtkﬂ.

-

In (7.3) to (7.9), the kernels y are continuous functions of their arguments, and
the matrices II* are matrix products formed from the matrices G, G(t,), G(t,),
..., G(tg) which are linear in each of the matrices G(t,), G(t,), ..., G(vg).

We consider now furiaer restrictions which can be placed upon the matrix
products II*. From (3.1), it follows that, in (7.3), II* can be expressed as a
matrix polynomial in which the coefficients are polynomials in traces of matrix
products formed from G, G(t,), G(ty), ..., G(g), and the matrix terms are of
the forms

G G(tg) G?, G G(tg) G(g,) G*;

6%, G*G(rx), Glrx) G2 G*Glry) Glr,), Glrx) G Glry),
G(vx,) Gk, G*, G? G(tg) G(tg,) G(rK,), G(tg,) G* G(tg,) G(tk,),
G(tx,) G(ry,) G* G(rk,), Gltg) Glrg,) Glvg,) G*;

G, GG(rg), G(rg) G, G G(vg) G(rg), G(rx) G G(zg,),
G1g) G(tx,) G, G Gty ) Glrg) G(rK.), G(ty) G Glzg,) Glzg ),
G(tg,) G(rk,) G G(tk)), G(rg) G(rk) Grx) G,

G G(rg) G(vg,) G(zx,) Glrk), Glry,) G G(rg,) G(TK._) G(ig,),
G(tx,) G(tx,) G G(1x) G(rx), G(ry,) Gry,) G(rg) G G(rg),
G(ry,) G(rk,) G(t,) G(vk,) G;

I, G(rg), G(vg,) Glrk,). G(1g,) G(vg,) G(ry,),

G(tg,) G(rg,) Gltx) G(1g), G(tx) G(vg,) Grg,) Glrk) Glry,),

(7.10)

where K, K,, Ky, K,, K; are integers, all different, chosen from 1,2,..., R.
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From (6.7) and (6.8), it follows that in (7.4) and (7.5), II* can be expressed
as a matrix polynomial in which the coefficients are polynomials in traces of
matrix products formed from @, G(r,), G(1y), -.., G(tg), and the matrix terms
are pf the forms

G*'G(ry) G;

G, G(rg) G, G*G(rk), G(ry,) Glrg,) G?, G*G(ry,) G(ry,);

G, GG(ry), G{rx) G, GG(ry) G(ry), G(ry) G Glrg),

G(ry) G(r) G, G G(ry) G(zy) G(zx), Glrx) G Glry) G(tg),

G(tk,) G(vg,) G Glry), Glrx) Glrg) G(rx,) G

I, G(z), G(fx‘) Glrx), Glry) Glrg) Glrx,). Glrx) Glry) G(ry,) Glry,),

(7.11)

where K,, K,, K, and K, are integers, all different, chosen from 1,2,..., R.
The matrix product & G(zx,) G* has been omitted from (7.11) because it can be
expressed in terms of G*G{ry )G and matrix products of lower degree, by
means of a relation proven in [4].

From these results, it follows that @;

.7, Can be expressed as a sum of
terms of the form

t ¢ 13 :
6[!---6[0(:,1,,1,,...,rR)G,-I;,__',“(t,t,,t,,...,tg)dt,dr,...dtg, (7.12)

in which 6, . ;, is an outer product of order x formed from matrices II# and
vectors V,II and ¥, (7, )II§, where I} and II§ are matrices of the forms listed
in (7.10) and (7.11) respectively, such that 8, ;, (¢ 7,, Ta, --., Tg) is linear in
each of the matrices G(-rxq) and in each of the vectors ¥, (ry, which occurs
-as factors in €, .. (4 7y, s, ..., Tg), and the integers K, and M, are a per-
mutation of the integers 1,2,...,R. 'If 6;;, (¢ 7y, Ts, .-, Tx) is an outer

product of say y matrices II# and 6 vectors V II¥ and ¥V, (1,)II¥, then

Since each matrix II¥ involves at most five distinct arguments 7, and each
vector ¥, (ty)MI¥ also involves at most five distinct arguments ,,, and Tky»
it follows that @, ;, . i (t, 71, Ty, ..., Tg) involves at most 5u distinct arguments,
apart from ¢. Thus in (7.12) we have R<5iu. As a spec1a.l case we may have

R=0, in which case 6,11. .ju 18 @ function of ¢ only, that is, it depends only on
G and V.

The coefficient #{¢, 7;, 75, ..., Tg) in (7.12) is a continuous function of its
arguments and a polynomial in expressions of the types (7.6}, (7.7), (7.8) and
{7.9). Expressions of the type (7.6) were considered in a previous paper [2],
where it was shown that trTI* in' (7.6) can be expressed as a polynomial in traces
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of matrix products of the following forms:

G, G, G3;

G G(rg), G*G(ry);

G G(vg,) G(tk,), G*G(rg,) G(rx,), G G(tg,) G(tg,) Grg),

G? G(tx,) G(vy,) G(x,), G(tx) G(rg,) G G(tx) G*;

G G(TK.) G(zg,) G(tg,) G (tK.)’ G? G(Tx,) G(ry,) G(tx,) G(fx)i

G G(tx,) G(tg,) G(vg,) G(tg,) G(vx,);

G(tx,), G(vx,) G(tx,), G(g,) G(vg,) Gk} G(vy,) G(vg,) G(rx,) G(7g),
G(rx,) G(rx,) G(vk,) Glvg) G(k), G(r,) Glvg,) G(tk,) G(rx) Glvk,) G(k,),
where K, K,, ..., K, are integers, all different, chosen from 1, 2, ..., R. Also,
from (2.13) and (5.6), we see that W, II*V} in-(7.7), W, (to)II* V() in (7.8),
and VII* V;(15,,) in (7.9) can bereplaced by V, B, V; + %, B Y, V, (t0) P, ¥y (vz.1,) +
Vi (trs2) BiVa(zg), and V,BW,(rg ) + ¥ (1x4,) BV, respectively, where P, and P,

are matrix polynomials, with coefficients which are traces of matrix products
listed in (7.14), and matrix terms of the forms

G Gty) G,

G*, G(tg,) G*, G(vg,) G(tg,) G,

G, G(tx,) G, G(7g,) G G(tg), G(rg,} G(rg) G, (7.15)
G(tg,) G(tx,) G G(ty,), G(tg,) G(r,) G(rk,) G;

1, G(wg), G(rg,) G(rg,), G(wg) G(rx,) Glrk), G(rg,) G(1x,) G(vg) Glg),

where K, K,, K,, K, are integers, all different, chosen from 1,2,...,R. It
follows, by an argument similar to that used in [6], that the coefficients
O, 1y, T3, ..., TR) (R<Su) can be expressed as continuous functions of their
arguments and polynomials in expressions of the types

(7.14)

éfof---ofw(t, 11, Ty, ..., Ts) trIR[G, G(1,), G(1y), ..., G(zs)] dr,d1y ... d1s,
!J---ofy)(t, Ty, Ty 70) VIIG, G(1y), G(3y), ... G(17)] Vydrydrs... d1y,

L TPt 7,500 BEITLG, 6(5), 6z, ... Gler)] X

(7.16)
X Va(rri1) dTod, . ..d‘r,-d'rTHT

[ 3 ¢

J!"‘JV’“» T T - 7, Tr) RIR[G, G(1y), G(1y), ..., G(r7)] X

' , ><;'Iﬂ_(tT+l)drldfl"'dderT+]'

ofof---éfv(‘. Tos T1s -0 1) Va(T) HIE[G, G(1y), G(7a), ..., G(v7)] X
' X Vzdrodv, ... dvy,

where the kernels p are continuous functions of their arguments, II¥ are matrix
products listed in (7.14), with K, K,, ..., K4 chosen from the integers 1,2, ..., S,



Integrity bases for vectors and tensors. 1 63

and II} are matrix products listed in (7.15), with K,, K,, K,, K, chosen from
the integers 1,2, ..., T. Since the matrix products in (7.14) involve at most
6 distinct arguments, apart from £, and the matrix products in {7.15) involve
at most 4 distinct arguments, apart from ¢, we have S<6, T<4.

Acknowlédgment. As far as one of the authors (R.S.R.) is concerned, the results
presented in this paper were obtained in the course of research sponsored by the
National Science Foundation.

References

(1} PrexinN, A.C.,, & R. S, RivriN: The formulation- of constitutive equations in
continuum physics. I. Arch. Rational Mech. Anal. 4, 129 (1959).

[2] SPENCER, A. J. M., & R. S. RivLIN: Further results in the theory of matrix
polynomials. Arch. Rational Mech. Anal. 4, 214 (1960).

[3] SPENCER, A. J. M., & R. S. RivLiN: The theory of matrix polynomials and its
application to the mechanics of isotropic continua. Arch. Rational Mech.
Anal. 2, 309 (1959).

(4] ReivLin, R. S.: Further remarks on the theory of matrix polynomials. J. Rational
Mech. Anal. 4, 681 (1955).

[5] RivLin, R. S.: The formulation of constitutive equations in continuum physics. I1.
Arch. Rational Mech. Anal. 4, 262 (1960). )

[6] GreEN, A.E.,, R. S. RivLINn & A. J. M. SpENCER: The mechanics of non-linear
materials with memory. II. Arch. Rational Mech. Anal. 3, 82 (1959).

University of Nottingham
and
Brown University
Providence, Rhode Island

(Received July 13, 1961}



