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Abstract 

We state a particular case of one of the theorems which we shall prove. Let 
Q be a bounded open set in IR" with smooth boundary and let a=(ao)  be a 
symmetric second-order tensor with components aqsHk(Q) for some (positive or 

~ui ~u~ 
negative) integer k; H k are Sobolev spaces on ~. Then we have a ~ i = ~ x  + ~ . .  for 

j i 

some uieHk+l(Q), i= 1, ...,n, if and only if ~ Saiiogqdx=O (if k<0,  the integral 
i , j  

is in fact a duality) for any symmetric tensor co with components coO~H~(~) 
~co~J 

= 0 H~(O) and such that ~ - = 0 .  Some applications in the theory of 
m ~ 0  J ~ x j  

elasticity are also given. 

1. Introduction 

The aim of this paper is to prove an analogue of DE RHAM'S theorem ([13] 
w th. 17') for the space of symmetric second-order tensors having (tempered) 
distributions as components, the operator of exterior derivation being replaced 
by the operator of "symmetric differentiation". We work on a compact Rieman- 
nian manifold with boundary E If F = 0 ,  nay results coincide with those of 
BERGER & EBIN [1] (their first decomposition theorem can easily be extended, 
by their methods, to Sobolev spaces of any order if F = 0). If F 4= 0, my theorem 
is a generalization of TING'S results [-14] in two directions: first, we show that 
the condition (3.4) of [14] can be replaced by S = 0  on F ( - ~ M )  (it is very 
difficult, in my opinion, to do this using TING's method) and second, the 
symmetric second-order tensors are allowed to have arbitrary (tempered) distri- 
butions as components, not only square integrable functions. 
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In order to prove their results, BERGER & EBIN and TING followed essen- 
tially the same idea, namely, they reduced the problem to the proof of the 
existence and regularity of the solution for some elliptic system of equations 
(this is SPENCER'S method; see KOHN & NIRENBERG [-8]). My proof of the 
decomposition theorem (Corollary 4.2) is much easier being based only on a 
regularity theorem for the gradient operator and some abstract lemmas. I use an 
elliptic type argument only to show that this decomposition is "regular" 
(Theorem 4.9.). 

Let us now say some words about the organization of this paper. In the rest 
of the introduction, the necessary definitions and notations will be given. 
Section 2 is devoted to some abstract considerations. Then in Section 3 we study 
some properties of the gradient operator. Probably all the results of this section 
are well known, but I have not found any reference for the essential theorem 
which I shall use, namely Theorem 3.1. All results are easy consequences of this 
theorem. In Section 3 I give also a very simple proof of a particular case of the 
de Rham theorem, a decomposition very useful in hydrodynamics. The decom- 
position theorems related to the operator of symmetric differentiation are given 
in Section 4. Section 5 has a special character, being devoted to a somewhat 
different subject. My interest in the problems treated in this paper was aroused 
by reading [14]. In the introduction of [14] St. Venant's compatibility con- 
ditions for "linear strain tensors" are criticised. The reproaches are the follow- 
ing: first "the differentiability requirements are unnecessarily strong" and second 
"the full set of compatibility conditions is still insufficient even for a multiply 
connected domain in Euclidean space". The aim of Section 5 is to remedy these 
defects. When the manifold is Euclidean St. Venant's compatibility conditions 
are augmented by a finite number of linear conditions (number equal to zero if 
and only if the manifold is simply connected) and we prove the conditions 
obtained to be necessary and sufficient even in a multiply connected domain; we 
do not use any requirements of differentiability beyond those necessary. I have 
not treated a general Riemannian manifold, for which difficulties of a different 
nature arise (see [15] sect. 84). 

We shall always work on a C ~, n-dimensional, Riemannian, compact, 
orientable and oriented manifold t~, with a C ~ boundary E We denote by f2 
= ~ \ F  the interior of ~ and * le  (respectively �9 lr) the canonical volume form 
on ~ (respectively F; on F the induced Riemann structure and orientation are 
considered). We identify covariant and contravariant tensors using the Rieman- 
nian structure (we speak about covariant tij .... or contravariant t i j ,  etc., 
components of a tensor t in some local coordinates). If u, v are first order tensors 

on ~ we define the function (u,v): ~<12  by (u,v)(x)=ui(x)vi(x), x e~  (com- 
ponents in local coordinates). Similarly, if ~o, w are symmetric second-order 

tensors, then (co, w)(x)=�89 wiJ(x) is a function on ~. 

Let H62) (respectively/q(Q), H(Q)) be the Hilbert space of square-integrable 
functions (respectively first-order tensors, symmetric second-order tensors) on f2, 
with scalar product ( f g ) 0 . e = ~ f g ,  1 a (if J; g are first order, or symmetric 

fk 

second-order tensors, then f g  is replaced by (J~g)). For any seN,  HS((2),/-Js(~2), 
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H+(O) are the corresponding Sobolev spaces (see [9]). We recall that they are 
Hilbertizable topological vector spaces such that H(O)=  H~ etc., as topologi- 
cal vector spaces. If s >0, then H-S(f2) is identified with the strong antidual of 

H~(O), so that if s 1 <s2, then H ' 2 ( O ) c H S ' ( Q )  linearly. Similarly for/~+ and H+. 
The antiduality ( . , . )  between H~ and H -~ (s>0) is defined so that i f f e H *  o and 
g e H ~  -~, then ( f ,g )=( f ,g )0 .e .  Similarly for the other cases (/4 and H). 
H~(Q)-- ~ H'(E2), H~(O)= ~ H~(Q) (projective limits) are the spaces of all C ~176 

s > - 0  s__>0 

functions on O, respectively of all C ~ functions on O which are zero, together 
with all their derivatives (in local coordinates), on E The (projective limit) 
topology of Hoo(f2) coincides with the topology of the uniform convergence on 
of the function and of all its derivatives (in local charts). H~(O) is a closed 
subspace of H~176 its (projective limit) topology being identical with that 
induced by H~(E2). Then H-~176 ~H-~( O)  (inductive limit), the strong 

s > 0  

antidual ~ H~(~2), is the space of all "tempered distributions" on f2. Similarly, 
/4 -~176 H-oo(~) will be the spaces of first order (respectively symmetric second 
order) tensors having as components tempered distributions on Q. 

We denote by v the first-order tensor on ~ defined as follows, only for points 
on F: if xeF,, then v(x) is the outward unit normal to F at x. Let T be a C 1, pth_ 
order tensor on ~, V T  its covariant derivative (a (p + 1)+'-order tensor on ~ with 
covariant components 17/, T~...~+ ~) and S a C ~, (p+ 1)+t-order tensor on ~. Then 
Stokes' theorem is equivalent to 

�9 . .  s  . , . I v  J 

0 

= ~ Th...i~ vjSJi~'"i~, i r  
F 

(the expressions under the integrals have an invariant meaning). If f is a C I 
function on ~, we define g rad f  = Vf. Then the symmetr ic  derivative of a C I first- 
order tensor u on 0 will be the symmetric second order tensor ~(u) on ~ with 
covariant components ~(u)o = V i ui + Vj u i. The divergence of u is div u = V ~ ui, and 
the divergence of a symmetric C I second-order tensor o) on 0 will be the first 
order tensor (Div w)~ = vJo.)ij+ Clearly 

(I) (grad f, U)o,o + ( f  div u)o,~-- ~ f v  i u i * i r, 
F 

(2) (e(u), O0)o,~ + (u, Div CO)o,~ = ~7 i vj co 0 * 1 r. 
F 

Using these formulas, we define the continuous operators 

grad: H-~ e: /~-~((2)~H-~(O) ,  

div: /4 -~( (2)~H-~(O) ,  Div: _~-~(O)--,/4-~(O) 

in the usual way. If s4=�89 then their restrictions to a space with index s is a 
continuous operator into the space with index s - 1  (see [9], Chapter 1, w 
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For example, if s+�89 then e: /7~(t2)--,H~-l(f2) is continuous. The object of this 
paper is, essentially, to show that it has a closed range, too. 

2. Abstract Preliminaries 

The following lemma is due to DEETRE; see [9] Chapter 2, w for a proof. 

Lemma 2.1. Let XI ,  X2, Y be Banach spaces, i: XI  ~ Y linear and compact, T: 
X I ~ X  2 linear and continuous. Then the following conditions are equivalent: 
1) The kernel of T is finite-dimensional, the image of T is closed and if Tx=O, 

ix=O, then x = 0 .  
2) There is a finite constant c such that for any x ~ X l :  

[Ix[I <c(LITxll + Ihix[I). 

Remark. The same proof easily gives the following assertion: Let X l, X 2 be 
Banach spaces and let T: X ~ X  2 be linear and continuous, having finite 
dimensional kernel and closed image. Suppose 1.11 is a continuous seminorm on 
X 1 such that x~KerT, x4:0  ~ IXl140. Then there is a finite constant c such that 
for any x e X  1 

IkXHx, <c(llZxllx2 +lxll). 

Suppose now that Xi, Y~ (i = 1,2) are reflexive Banach spaces such that X~ r Y~ 
continuously and densely. If we denote X*, Y~* their strong antiduals (spaces of 
continuous antilinear forms), we will also have Y/*cX* continuously and 
densely. Let T: X I ~ X  2 be linear, continuous and having a continuous exten- 
sion T: Yi~Y2.  It follows that the adjoint T*'  * * X 2 ~ X  ~ of T is an extension of 
the adjoint T*: ~*--, YI* of T. In particular K e r T * c  KerT*,  and we ask under 
what conditions is the first subspace dense in the second one. 

Lemma 2.2. I f  T and 7- have closed images, then Ker 7"* is dense in Ker T* if 
and only if I m T = I m T c ~ X  2. If, moreover, Ker ' i r cx~ ,  then this is clearly 
equivalent to: 

y e Y  I and 7"yeX 2 ~ y e X  1. 

Proof. Since X 2 is reflexive, KerT"* is dense in KerT* if and only if KerT"* 

and KerT* have the same polar set in X 2. But the polar set of KerT* is imr, 
the closure of the image of T. It is easily seen that the polar set of KerT"* is the 
intersection of X 2 with the closure of the image of T (in the topology of Y2). 

Thus we obtain I m T = X  2 ~ I m T  as a necessary and sufficient 
condition. Q.E.D. 

Lemma 2.3. Suppose the inclusion X 1 c Y1 compact, and suppose the condition: 
{Y~Y1 and 7"y~X z ~ y~X1} verified. Then there is a finite constant c such that 
for any x e X l :  

(*) IIXNx, <c(NTxllx2 + Ilxll~,). 

In particular, KerT=KerT"  is finite-dimensional, and the image of T is closed. 
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Proof. Let D = {ye Y11TyGX2} with the graph topology. It is clearly a Banach 
space topology, X 1 c D  continuously and X1 = D as vector spaces. We obtain X 1 
= D as topological vector spaces using a theorem of Banach. In particular (,) is 
true. Then we apply PEETRE's lemma. Q.E.D. 

For any positive integer k > 0  let jgk be a Hilbertizable topological vector 
space, and let ~o k be a closed subspace of ~k .  We suppose 
(I) if k>0,  then ~ k + ~ c ~ k ,  the inclusion being compact and with dense 

image. 
(II) for any k>0,  9fo k+~ is a dense subspace of 3r k (3fo k+~ is embedded in ~/g,k, 

by (I)) and ~o ~ = ~ o .  
(III) on ~ o  is given a scalar product (.,-), antilinear in the first variable, which 

defines its topology. We denote by ~o the corresponding Hilbert space. 
If k>__0, we define ~ - k  as the strong antidual of ~k .  We identify 

=Jet ~~176 using the Riesz theorem. Then by transposition in 
~0 k+! ~J~/g~kc~ we get J~CY-~-kc~ -k-l, the injections being compact and 
with dense images. In conclusion, we obtain 9f~k~H ~, the inclusion being 
compact and with dense image, for any integers k__> m. 

Let 3(Zo~ = ~ ~o k, ~vt~~ = N ~ k  with the projective limit topologies (~o ~ is a 
k>_-0 k=>0 

closed subspace of : ~  and its topology coincides with the induced one). They 
are reflexive Fr6chet spaces, the strong antidual of ~o ~ being , ~ f - ~ =  U j~(c~-k 

k_>_0 
(inductive limit topology). ~ is dense in any ~ k  ke2~ (=set  of integers). We 
denote < . , . ) :  ~o ~ x ~vf-~--.C the canonical sesquilinear form, antilinear in the 
first variable; its restriction to ~ 0 ~ •  ~-k (some k__>0) coincides with the 
restriction to the same set of the antiduality ~o k x ~ - k ~ c ,  which will also be 
denoted <-, .) .  In particular, if k_->0, Xe~o  k, y e ~ c ~  -k, then <x,y)=(x ,y )  
= scalar product in .~. 

Suppose {~ffk, ~k} is another set of Hilbertizable topological vector spaces 
with properties similar to {.~ok, Jerk}. Let So: ~ o ~ f ' o  ~, To: X o ~ 1 7 6  be two 
linear continuous operators such that (Sox, y)=(x, Toy) for any x e ~ o  ~176 y e ~ o  ~. 
Then S O (respectively To) has a unique extension to a continuous application S: 
Jf-~176 (respectively T: ~,Y~-~~176176 equal to the adjoint of T O (re- 
spectively So), i.e. <Tox , y )  ~- <x, Sy)  (respectively <Sox, y)  = <x, Ty) )  if Xe~o ~, 
y~JCf-~ (respectively X ~ o  ~, y ~ f f - ~ ) .  

Theorem 2.4. Suppose that, for any integer k, T maps ~k+l into ~ k  and 
enjoys the following regularity: if u e ~  -~  and T u E ~  k, then ue~:,Y ~k+l. Then the 
following assertions are true: 
1) T: A/r-~ - ~  has a closed image, equal to the polar set of KerSo, i.e. 

I m T =  {u~C~-~[<x, u) =0  if x ~ 0  ~ and Sox=O}. 

2) Ker T is a finite-dimensional subspace of ~ .  
3) For any integer k the restriction T (k) = T[~t'~k + l : ~/ 'k  + l ' -* ~ k is continuous and 

has a closed image equal to 

{u~f'~kl<x,u ) --0 if x~gffo ~ and Sox =0}. 
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4) Let II'[[k be a norm on aU k (or ~'~g) defining its topology and I']k+l a 
continuous seminorm on aUk § l such that x :l=O, T x = O  ~ Ixlk+l*0. Then for 
any integer k there is a finite constant c such that if ueaU k+l, 

HUNk+ 1 ~-~ C([I rullk + lulk+ 1). 

5) Let E o be the closure in ovf of KerSo={Xeafo~lSox=O} and F 
= T(aUI)---ImT <~ Then aU=E o |  (Hilbert direct sum). 

Proof. T~k~: O~,k+~--+oCf k is continuous, since it has a closed graph. By 
Lemma 2.3, K e r T  {k) (which is clearly equal to KerT, and K e r T c a U  ~176 is finite- 
dimensional and Im T (k) is closed, for any integer k. Then 4) is a consequence of 
the remark following Lemma2.1. If k>__0, it is easily seen that the adjoint of 
T~-k-1): a U - k ~ j s  is the restriction S~}: Jf0k+l~aU k of S to ~o  k+~. By 
Lemma 2.2, E~ + 2 ) :  KerS~ + 1)is a dense subspace of E~ + i)= Ker S~)(k > 0). We 
prove that E~0~176 = 0 E~ ) is dense in any E~ ). Let xoEE~ ~ and ~>0. For 

k > 0  let ]l" Ilk be a norm on ~0 k defining its topology and such that If. Ilk < H'IIk+X 
on ~o  k+l For  any i > 0  let xi+ 1 �9 eE~ +i+1) such that [Ixi--xi+lllk+i<e2 -i-1.  
Then the sequence {xi} is convergent in any ~0", since, i f j > i > m ,  

j--1 j -1  
]lxi--Xj Nm~ 2 [Ixp--Xp+I []m~ 2 [IXp--Xp+lilk+P<2i 

p~i p=i 

so that x = l i m x i ~ o  ~, Sox=O and 

I[XO--Xl[k <~ ~, HXi--Xi+lNk+i "Qg, 
i=0 

i.e. the assertion regarding density is proved�9 If now we use the closed range 
theorem, we obtain Assertion 3) of the theorem for k=  - m -  1 and m > 0  (since 
I m T ( - " - ~ ) = p o l a r  in ~ f - , , - i  of KerS(oml). 

Let us prove Assertion 1). The closed range theorem states that Im T  
=(KerSo) ~ Let ue~'(( ' - ~  with us(KerSo) ~ There is a k > 0  such that u e J g  -k-~. 
By the part of Assertion 3) jus t  proved, ueImT(-k- l~ ;  in particular uEImT, 
which proves Assertion 1). Then Assertion 3) for any k is easily obtained. 

We know F = T ( a u ~ ) = I m T  ~~ is closed in ,;~ and F = { u ~ a f l ( x , u ) - ( x , u )  
= 0  for any xeKerSo},  i . e . .X f=E o |  Q.E.D. 

3. Regularity for the Gradient Operator and Consequences 

The main technical point of this paper is the theorem which we now prove. 
While the result must be known, I have not found it stated in this generality. 
Theorem 3.2, Chapter 3 of DUVAUT ~: LIONS [4] asserts a result very near to 
the following one. Also, the theorem which we shall prove is a generalization of 
Theorem 9.7 in Chapter 1 of LIONS &; MAGENES [9-1 for the case s__<0 (this is 
essential for us). In fact, my proof is almost the same as LIONS & MAGENES', the 
only difference being in the choice of the extension operator P. 
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Theorem3.1. Let s6lR, s ~ - ( k + � 8 9  if k is a non-negative integer. I f  
f ~H-~ and gradf~/4~(~2), then f ~H ~ + x (Y2). 

Proof. We may suppose that f~H~(Y2). In fact, if the assertion is proved in 
this case (for any s), we obtain the general case in the following way: Clearly 
there is t__<s with f~Ht(Y2); since gradfd~(~2)c /4 t (O) ,  we have f~H'+l(s We 
repeat the argument until we obtain f 6 H  t +k(~2), S < t + k < s + 1; a new step gives 
f~H~+l((2), which finishes the proof. If f ~ H  ~, g r a d f J 4  ~ and OeH~(Y2), then 
Of~H ~, grad(0f)6/~ ~. Using a partition of unity, we reduce the problem to the 
case in which f has as support a compact subset of a domain of chart. Then 
using local coordinates, we reduce the problem still further to the case in which 

f~H~(IR"), ~jf6H~(IR") ( j = l  . . . .  ,n), where IR" ={x~]R']x~<0},  ~3~-~x3x ~. We 

must show f 6 H  ~+ ~ (IR" ). 
Let m be an integer, [si__<m-2. If u is a function on IR", let Pu  be the 

function on IR" defined by: 

[u(~) 
(n u)(x) = ~ 2 

[ k~= l~k U(ak XI, X") 

if x ~ <0  

if x 1 > 0  

2 m  

where ak<O and ~ ak(ak)~= 1 if - -m<j<m--1  (see [9] Lemma 12.2, Chapter 1). 
k = l  

1 t !  We have set x=(x  ,x ), x " = ( x  2 . . . .  ,x"). Then P: H"(IR")~Hm(IR ") is con- 
tinuous and has an extension to a continuous operator H-m(IR" )~H -" ( IR ' ) ,  
which also we denote by P; PullR"_=u for any ueH- ' ( IR")  (see LIONS & 
MAGENES, loc. cit.). By interpolation P: Ht(IR")~Ht(IR ") is continuous if it[ <m, 
t +  - k  -1- k being a non-negative integer ([9] Theorem 12.4 Chapter 1). Let P' 2 ,  

be the operator obtained when we replace ek by ~kak. Clearly P' has exactly the 
same properties with respect to m - 1  as P does with respect to m, i.e. P': 
Ht(IR"_)--*Ht(IR ") is continuous if Itl < m - 1 ,  t + - k - � 8 9  k being a non-negative 
integer. 

Let l t l<m-2 ,  t # : - k  -1 ,  k being a non-negative integer, and geHt(IR"). 
Then Pg~Ht(]R ") and P~ig=OiPg if i__>2, P'c~lg=~lPg. Thus for t=s, g = f :  
Pf~H~(IR"), ~IPf6H~(IR ") ( i=1 ,2  . . . . .  n). Using the Fourier transform we see 
easily that Pf~H*+I(IR'). But then f=PfIIR"6HS+I(IR").  Q.E.D. 

The remainder of this section will not be used in later ones. The following 
theorem is very useful in hydrodynamics. It is a particular case of a theorem of 
DE RHAM [13], w Theorem 17'. We note it because it is a simple consequence 
of the theorem above and of Theorem 2.4. In Theorem 2.4 take J{'o k = Hk(Q), aT "k 
=HR(y2), 3r ~k=/~k(~) ,  To=grad:  H~O(f2)_~/j~(s S0=div:  
/4~(~2)~H~((2). The compactness of the inclusions H k + l c H  k, ~qk+l ~Hk fol- 
lows from Theorem 16.1, Chapter l, of [9]. The hypotheses of Theorem 2.4 are 
easily seen to be satisfied. In particular, if f~H-~((2) and grad f = 0 ,  then 
fEH~(Q), so f must be locally constant on Q. If O is connected, this implies 
that f must be a constant. We have obtained 
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Theorem 3.2. 1) ue_O-~'(f2) is of the form g r a d f  for some . f~H-~(f2)  if and 
only if ( v , u ) = O  for any vEfi~(E2) with divv=0.  Moreover, the function f is 
uniquely determined modulo a locally constant function, i.e. if f eH- '~( f2)  and 
grad f = 0 ,  then f is constant on each connected component of (2. 2) I f  Z o is the 
closure in l~(t?) of {vE/-7~(f2)Idivv=0} and/-/=gradH1 (f2), then/q(~)=2; 0 @/7. 

Remark. If m > l  is an integer, then we have the trivial inequality [If[],,.~ 
< c  Ilgradfl l , ,_~,e+c ]]fll,,-1,~. Lemma 2.1 shows that grad: Hm(f2)~H " ~((2) 
has a closed image. Let div 0 be the Hilbert-space closure of the operator div: 
~ ( ( 2 )  c/4(Q)--,H(~2). Using the closed-range theorem, one can show easily that 
H(Q)=  Ker div o 0 / I .  It is much more difficult to show that ~r o = Ker div o (this is 
what the theorem above says). 

There is another important fact about the decomposition /t(Q)=17 o @H, 
namely it enjoys the following regularity: If ueIq'(Q), s>O, and u=u I +u 2 is its 
orthogonal decomposition in/t(g2), then u I, u2e/4~(~). 

I have not been able to find a proof of this assertion without reducing the 
problem to demonstrating the regularity of a second-order elliptic operator. This 
is the idea of the usual proof (see [-2] for example), and we recall it, since we 
shall use a similar reasoning in Section4. Let u2=gradf ,  feH~(f2), be the 
component of u in /7. Clearly div u = div g r a d f  = A f 6 H  ~- 1 (Q). Suppose, more- 
over, that s__>l, and let gelid(Q). Since g r a d g e H  and ul~X o, we shall have 
(gradg, u)o.e =(grad g, gradf)o, o. We write vu for the function on F given by 
viuiIE It is known that vu~HS-~(F) and a limiting procedure applied to (1) gives 
(grad g, u)o. e = - (g, div u)0 .o + (gIE v U)o" r. Finally 

(grad g, grad J)0.~. = - (g, div u)0 ,e + (gl E v U)o ' r 

for any g~HI(Q). Since fEHI(Q),  this means that f is solution of the Neumann 
problem : 

A f =div u, 

~ V U .  

Appealing to the regularity of this elliptic boundary-value problem, we conclude 
that f~H~+l((2), i.e. u2=gradf~HS(Q).  Let P2: /4(~2)~/q(Q) be the orthogonal 

projection on /7. We have proved that Pz(/4~(f2))c/4~(f2)if s > l  (or for an 
integer s > 1, if you prefer). By the closed-graph theorem P2: H~(f2)--*/4s((2) is also 
continuous. Then we interpolate and obtain Pa(/qs(~))c/fs(f2) for any 
s>0 .  Q.E.D. 

Another useful corollary of Theorem 3.1 is the following (see 4) of Theo- 
rem 2.4). 

Corollary 3.3. Let sMR, s 4 : - ( k  +�89 if k >=O is an integer. Let II'lls,a (respec- 
tively [l'J[s+l,~) be a norm on HS(g2) (respectively Hs+i(g2)) which defines its 
topology, and let ['[s§ be a continuous seminorm on H~+1(s such that if c is a 



Differentiation on Riemannian Manifolds 151 

constant ~=0 then 1c1++14=0. We suppose f2 connected. Then there is a finite 
constant c~ such that, for any feH++X((2), 

Ilfll~+ L~ <-_ q(llgrad fll+,a + lfl++ O. 

4. The Operator of Symmetric Differentiations 

Our essential result is 

Theorem4.1. Let s~IR, s + - ( k + � 8 9  for k an integer not less than - 1 .  I f  
u~lq-~(f2) and e(u)6HS(Q), then u Elq S+ 1 (f2). 

Proof. Suppose first that ~2 is an open subset of the Euclidean space, with the 
induced Riemannian structure. Then the theorem is an immediate consequence 
of Theorem 3.1 and of the identity 

(3) 2 Oi ~j  Uk = Oi e (U)j k -4- ~j  ~ (U)i k --  ~k ~ (U)ij" 

In the general case, if u~/~-~(f2), then there is t<=s (t an integer, for example) 
such that u~/4'(I2). In local coordinates: Oi u j +  ~; ul = e(u)ij+ terms of zero order 
in u, so that O~uj+Oju~6H'. By use of the result just proved, it follows that 
udtt+l(f2) .  We repeat the argument until we reach the required result. Q.E.D. 

Theorems 4.2, 4.3 and 4.4 will now be easy corollaries of Theorems 4.1 and 
2.4. They are proved exactly in the same way as Theorem 3.2 (see the remarks 
preceding it) using the fact that ~k+ 1 c ~ k  compactly (again use Theorem 16.1, 
Chapter 1, [9]). Notice that in the proof of Theorem 4.2 Korn's inequality is 
not used. In fact, a generalized Korn inequality follows directly from 4) of 
Theorem 2.4 and it is stated below as Theorem 4.4. 

Theorem 4.2. o~H-~( f2)  is of the form e(u) for some u~lff, -~(f2) if and only 
if ~w,r forany  w~H~(f2) with Divw=0.  In particu~r, if 5r is the closure 
in H((2) of {w~H~(~?)lDivw=O} and ~'=e(Hl(~?)), then H ( f 2 ) = ~  o O~. 

Theorem 4.3. I f  u~l~-~(f2) and e(u) = 0 then u~H~176 
Kere---{u6/t~(f2)le(u)=0} is finite-dimensional, and it coincides with the space 

Q.(s of Killing vector fields on ~'2. In particular Ker e has dimension <_n(n+ 1) if 
f2 is connected. Moreover, if e(u)=0 and u = 0  on F, then u=0.  2 

Proof. We have only to prove the last assertion, the others being known (see 
Assertion 2) of Theorem 2.4). However we shall also prove the assertion con- 
cerning the dimension of Kere. More precisely, we shall prove that any 
q~/~~176163 with e(cp)=0 is uniquely (and linearly) determined by the values 
{~p(P),(Vcp)(P)} in some (fixed) point Peg2. Since q~(P) can have n independent 
components and (V q~)(P), being a second-order antisymmetric tensor (G % + Vj q~i 

=0), can have n(n-1)  independent components, we shall have at most n+  
2 

n ( n - 1 ) _ n ( n + l )  linearly independent q~'s. In local coordinates e(cp)=0 is 
2 2 
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equivalent to ~?i q~i + ~J q)i = 2 Fig ~0 k. Using (3), we get 

+ I6 + 6 

The linear system of equations 

~i(~j =l/llj 
(4) c~i ~gjk = Fi~ Oj, + Fk~ ~9i, -- Fi~ Ok, 

is of Frobenius type. It may have no solution, but if it has one, that solution 
(~Pi, ~:k) is certainly uniquely defined by its value at one point. Since ~i1 = - ~ ) i  
+2Fi{q~ k only ~gij with 1 <=i<j<=n can be prescribed arbitrarily, which proves 
the assertion. Suppose now that q~ = 0 on F. We shall work in the coordinates of 
a boundary chart, in the neighbourhood of a point P 6 F which has coordinates 
zero and is such that the equation of F in this neighbourhood is x 1 =0;  t~ is on 
the side where x l < 0 .  Since ~oi(0, x " ) = 0  near x"=0 ,  we shall also have 
0jq~i(0, x " ) = 0  if i > l ,  j > 2 .  But ~l~Ol(O,x")=(F~lq)k)(O,x")=O and 01(pi(0, x" ) 
= (2F1~ q~ k -0~qh)(0, x" )=  0. Thus (q~i, O~k) is the solution of (4) having value zero 
at P = 0 .  The system being linear we obtain ~o=0 in the neighbourhood 
of P. Repeating the argument shows that ~o-0. Q.E.D. 

Theorem 4.4 (Generalized Korn inequality). Let  s ~ IR, s 4=-  (k +�89 if  k is an 
integer not less than - 1 .  Let  1]-[[s,~ (respectively [['lls+Lr2) be a norm on H~((2) 
(respectively /~+~((2)) which defines its topology, and let ['1~+~ be a continuous 
seminorm on /~+1(~)  such that if ~o#0 is a Killing vector field on ~2 then 
liP[s+1 #0.  Suppose (2 connected. Then there is a finite constant c, such that for 
any u ~ H~ + ~ (0): 

[lulls+l,~ <q(lle(u)lls,~+lul~+,). 

Example. The usual Korn inequality is obtained by taking s = 0  and I'1~+1 
= I1" IIo,~r By use of Theorem 4.3 it is easily seen that for s>  - �89 s#�89 we can 
take 

[U[s+ 1 = ]]u[FH o.r =(S (ulF, u[F) * lr) i. 
F 

Remark. We have used in the proof of Theorem 4.1 a method due to 
DUVAUT & LIONS [-4]. They used it in their proof of Korn's inequality. Notice 
that the preceding generalized Korn inequality is a consequence of Theorems 2.4 
(point 4) and 4.1. 

Theorem 4.2 generalizes all of TING's results [14]. But we have not yet 
generalized BERGER & EBIN'S results [1] to a manifold with boundary: we must 
also show that the orthogonal decomposition H(t2)=SPo @)~ enjoys regularity 
similar to that of /~(t'/)=X o OH~see  the remarks between Theorem 3.2 and 
Corollary 3.3), namely that if oeHS(t2), s = 0  and o=~o 1 + 0  2 is its orthogonal 
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decomposition in H(Q), then ~ o , ,  (D2EHS(ff2)o To do so, we shall use the same 
idea as in Section 3, i.e. we shall reduce the question to the regularity of an 
elliptic boundary value problem (BERGER & EBIN have used the same method 
without considering boundary terms, since F = 0  in their case). 

We b e g i n b y  introducing some new notations. We denote by /~*(f2[F) 
(respectively H~(~?IF)) Sobolev spaces of first-order (respectively symmetric 
second-order) tensors on O over F (for example , /~( f2[  F) are C ~ sections of the 
fiber bundle of the first order tensors on O, but defined only on F). In particular 
H~ (respectively ~o H (OIF)-H(OIF)) is a Hilbert space with the 
scalar product 

(u, V)o,~= S (u, v)* 1~. 
F 

Since F has no boundary, &(alr)=n+(alr), if s>0 .  If 
ue/4~(~2), let rueH~(~lF)  be its restriction to F, i.e. for any xeF:  (ru)(x) 
=u(x). It is known that for s>�89 the operator r has an extension to a continuous 
surjection r: / t~(O)~iq~-§ ). Similarly, if coeH~(O), we set (voo)~(x) 
=v~(x)%j(x) (xeF), so that v m s H ~ ( @ F ) .  This application also has a con- 
tinuous surjective extension v: Hs(~)--*H~-~(O] F) if s >�89 From (2), by a limit- 
ing procedure, we obtain for uekl~(~),  c~H~(O) ,  

(5) (e(u), m)o,e+(u, Div a))o,a=(ru, v~)o,r. 

We need the following 

Lemma 4.5. I f  s> 3, then the mapping 

H+(a)~u~(ru, ve(u))~H*-+(~lr) eB~-+(alr) 

is a continuous surjection. If, moreover, s G ~, then its kernel is -~*o(f2). 

Proof. Let q~e/~s-~-(g~lF), q,e/4~-+(t?lF) and 01, ...,O=eH~~ such that 

~O~IF= 1, each 0~ having its support in a domain of boundary chart. Then 01qo, 
i = 1  

0~ ~ have properties similar to (p, ~. If we construct u~ e/7+(fl) such that r u~ = 0 i q3, 

vz(ui)=OitP, then u =  ~ ule/4s(gJ), ru= ~ Oiq)=rp, ve(u)= ~ 0i~9= O. It follows 
i = l  i = l  i = 1  

that we can suppose from the beginning supp (p c U, supp ~ c U, where U is the 
domain of a boundary chart. It is known that we can choose the coordinates 
such that the components of v(x) be v 1 (x)= 1, vi(x ) = 0  if i__> 2 (x E U o = U c~ F). 
Working in these coordinates, we see that it is sufficient to consider the case in 
which 

U={x=(x  1, x") ~ 1R • IR"-ll Ix] < 1, x I ~_0}. 

Then +p, ~ are vector fields in N" defined on Uo={Xe U[x l=0} ,  and we must 
construct a vector field u in IR"_={x~lR"[xl<0},  with support in U, com- 
ponents in H s, and uj[ U0 =~pj, 

v'(V~uj + V,u~)l Uo =(V, uj + vjul)l Uo-(G u~ + c~ jul + 2 rl~jUOI Uo =Oj. 
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This is equivalent to ut[ Uo=q~ J, 

(~l ut + Otul)l Uo =@ ~-  2r~(O, . ) ~o~=~j. 

In particular 0lUll Uo=�89 ~ and for j > 2 :  ?~uflUo=~j-OH~ ~. Now we can use 
theorems 9.4 and 11.5 of [9] chapter 1. Q.E.D. 

Lemma 4.7. I f  for some u~.~l(g2) there is a ve_~~ such that 

(6) (e(q~), ~ (U))o. o = (q~, V)o, 

for any q~eHl((2), then u ff/~2(~'~). 

Proof. Let O~H~(O). Then OueHl(g2) and 

(e.(q,), ~(0 U))o,~, = (~(q,), 0 ~(U))o.~, + (~(~o), (vo.  U))o,~ 

= (~(0 q,), ~(U))o, ~ , -  ((vO. ~o), ~(U))o, ~, + (~(q,), (vo. U))o,~, 
=(~o, -e(u)- VO-Div(VO.  u)+Ov)o.o+(rq~, v(VO. U))o. r 

where (VO. u) has components ai O. ui+c~jO.u~ and (e(u). VO)i=e(u)~j VJO. Sup- 
pose 0 has support in a domain of chart U and take Uoe/qz(o), suppuocU,  
with ve(uo)=v(VO, u). Then u~ =Ou-uoeH~(O)  and if q~ ~/41(g2) 

(e(q~), e (u,))o. a = (q~, 0 v - e(u). VO- Div (V0. u) + Div g(Uo))o ' 

-(~#, V~)o,~ 

where v~ e~o(o) .  We shall treat only the more complicated case when U is the 
domain of a boundary chart, the coordinates being chosen exactly as in the 
proof of Lemma 4.5. Working only in these coordinates, we have 

�89 e(~O)ije(U,)k,gik g'it]//g dx=(~ ~ V,)o,v 
U 

for any q)6/t~(U) (U={x=(x l ,  x")~]R• xa__<O}, U o = { x 6 U I x  ~ 
=0}). Since e(~o)ij=c~iq~t+c~jq~i+2Fi~jq~k, by replacing v~ by v'a ~/-7~ we con- 
clude that 

S (Cgiq~j+P~t~Oi) e(Ul)k,gikga'l/g dx =(q~, r0o, v 
U 

for any r E/-JI(U). But, if OeHI(U),  

5 (a, ~t  + at ~o,)(a~ (u, - q,), + a, (u, - 4,)~) g,k gt, l / g  d x 
U 

(7) = J (0i ~.o t + at ~oi) e (u,)k, gi~ g j, t / g  d x 
U 

-- j (C')iCP j + atCPi)(2 Fk"]Ui,,, + Cqk~l + a,~,gk) gik gp ] f  g dx.  
U 

We choose ~e/42(U), with support at a strictly positive distance from the 
curved part of 3 U and such that (c?~ ~1 + az~ ,+  2 F~'~Ul,,) [ U o = 0 (this is possible, 



Differentiation on Riemannian Manifolds 155 

according to Lemma 4.5). Then, if we integrate by parts the last integral in (7), 
we obtain as boundary term 

-- I q~j(2I'kn]Ulm + Okl~l + ~l~lk)g lk g'it]/-~ d x  
(8) Vo 

_ J" qh(ZFk'TUlm+C~kq*z+Ot~k) g l k g l t ] / ~ d x .  
Uo 

Since v l(x ) = 1 and vi(x)= 0 i f / >  2, x ~ U o in these coordinates, we have g,k (0, X") 
= 1 if k=  1 and = 0  if k>2 .  It follows that the expression (8) vanishes, i.e. the 
boundary term disappears when we integrate by parts the last integral in (6). In 
conclusion, there is bstTI~ such that for any ~OE:/~I(U) 

(0 i ~o j + O~ ~o i) (0 k a t + O z a k) gik gjl ]//~ d x = (q), b)o. v 
U 

where a = u l - O .  We shall show by the method of "differential quotients" (see 
[12]) that a~/Tz (u) .  For m>=2, 2~IR\{0} and f a function defined in IR" 
= { x e l R " l x t < 0 }  we set ( p ' ~ f ) ( x ) = 2 - 1 ( f ( x + 2 e , , ) - f ( x ) ) ,  (z"~' f )(x)=f(x+2e, , ) ,  
where % is the unit vector in the direction of x,,-axis. If f e H ~  then we 
define f in IR"_\U by 0, so that f s H ~  If f ,  g e H ~  and one of them has 
support disjoint from the curved part of c3 U, then 

[, p T f .  g d x  = - [, f .  p"_j.g d x  
U U 

if ;t is sufficiently small. Also pT( fg )=  p~'j(f), z~'(g)+fp]'(g). We obtain, for small 
2, 

] ~ (O i q~i + O~ qol)(C~k P'~ az + ?~l P'~" ak) gik gjl ]//g d x [ 
U 

= 1- 5 (c~,z"-aq~i + c3Jr'-).q~,)(Oka, + O'ak) p.._x(g,k g jr ]/~) dx  
U 

- 5 (Oi P"- z q)j + Oj p" ). q~,) (O k a, + O, ak) gik g j, 1/~ d x [ 
U 

__<c II~oll , , v  II all ,, v + [(P"- x r b)o, ol 

< c  II q~ll a,v Ilall a , v +  IIp"_~.~0 I1 o, v Ilbllo, v 

< c  II ~oll a, v(llall 1 , v +  Ilbll o, v) 

- -  m a for any q~/-Jl(U). We take q~-p~ , so that 

m 2 
hlp~alh~,v<=c lip,'all 1,v([laH 1,v + Ilbll0,v) + c Hpz alho v 

< c  lip,'all 1, v(llall 1,o -'[- [Ibl lo,v)+ c IlallZ~, v 

where we have used Corollary 4.4 (case s=0 ,  i.e. the usual Korn inequality). The 
last inequality implies that lim sup IlpTall 1. v < e% i.e. ~,,,a ~/71 (U) for any m > 2. 

2 ~ O  

This is equivalent to c~m(0 u) e/71 (U) if m > 2. But Div ~(Ou) = 0 Div ~(u) + terms in 
/7~  in /-7~176 In local coordinates V~(~(Ou) 
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+Vi(Ou~))6H~ from which we easily obtain ?~(Ou)~H~ In conclusion, 
Ou~HZ(U), i.e. (0 being any C ~" function with small support) u~/42(~2). Q.E.D. 

Theorem 4.8. Let s>O, ~eH*+~(~2IF) and veH~((2). Then u~/~l(~Q) verifies 

(9) (e (~o), e(U))o, ~ = (r q~, ~)0, r -  (~0, V)o, o 

for any ~o~H~((2) if and only if uCH2(~2) and u is a solution of the boundary- 
value problem: 

I Div e(u) = v, 
(10) [ ve(u)=~. 

The problem (9) has a solution u ~ B~(Q) !f and only if for any ~ ~ Q(~2) (see 4.3): 

(11) (rA, a)o,r =(A, V)o. z. 

I f  a solution exists in /4a(~2), then it is unique modulo 0_(~) and it belongs to ~+s(~). 

Proof. (10) is an elliptic boundary-value problem known in elasticity theory 
(see [5-] for example). We shall however give a simple proof of the result, in 
order to make the paper self-contained. Clearly (e,(q~),e(ff))o. ~ is a closed, 
positive, sesquilinear form in/~(~2) (with domain/ql(f2)). Let A be the positive 
self-adjoint operator in H(12) associated with it. Using Theorem 2.1, Chapter VI, 
[-7-] and Lemma 4.7, we obtain D(A)= {u6H2(~)[ re(u)=0} and Au = -Dive(u)  
if u6D(A). Since/~2(Q) =/4(~2) is a compact injection, A will have only a discrete 
spectrum ((1 +A) 1 is compact in/4(~2)). In particular A has closed range: ImA 
= {u 6/4 (s (u, V)o ' ~ = 0 if v ~ Ker A }. Obviously Ker A = ~) (~). It follows that for 
v~/4(~2) there is u~/t1(~2) such that (e(q~),e(qJ))o.~=-(~o, v)0,~, V q ~ / q ~ ( ~ ) i f  
and only if (v,Y)o.Q=0 for any ~eQ(Q). In this case u is unique modulo Q(Q) 
and uE/f2(Q), ve(u)=0. Then, using (5) and Lemma 4.5, we easily show that (9) 
and (10) are equivalent. The same argument also shows that (11) is a necessary 
and sufficient condition for problem (9) to have a solution. The assertion of 
uniqueness is obvious. Let us now prove regularity. First we apply the remark 
following Lemma 2.1 with X1 =/~2(~), X2 =/~o(~) G/~(Q]F) ,  Tu 
=(Dive(u), ve(u)), I"11 = 11" IIo,~. W e  obtain 

][Ul]z.a<c HDiv e(u)j]o,~+ c Ilve(u)ll§ Ilull0,~ 

for any u~/q2(o), where c is some finite constant. Let uE/42(Q) such that 
Dive(u)~/ql(O), ve(u)~H~(O[F). Let U be the domain of a chart on ~ and 
OEH~(~2), supp0= U. Then 0u~/42(Q), Div e(0u)~/41(O), ve(Ou)~B~(~lF). We 
suppose U to be domain of a boundary chart (this is the more complicated case) 
and choose the coordinates as in Lemma 4.5. In particular, we identify U with a 
half-ball in IR" and U 0 = U c~ F with U ~ lR" - ~. Clearly, if v ~ H2 (U), supp v being 
disjoint from the curved part of ~ U, then 

II~)II2,U ~C IIDive(v)[Io,~:+c Ilve(v)ll~,vo+C Ilvll0,v. 
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Using the method of "differential quotients", we prove now that Oj(Ou)eg2(U), 
j = 2 . . . . .  n. With the same notations as in Lemma 4.7, for small enough 2 ~ IR 
and m > 2  

IIpT Oull2,u ~ C IlDiv ~(p'2 Ou)llo, v + c IIv ~(pT Ou)ll~,uo + C IIp~ Oullo+u. 

By common arguments the right-hand side is dominated by 

c(llDiv e(Ou)ll L v +  Ilv ~(Ou)ll+,Vo + II0ull2,v) 

for any small 2, which implies that 3,,(Ou)efl, e(u)  for m>2 .  Since 
Div~(u)e/7*(U), we also obtain 01(Ou)sH2(U).  In conclusion Oue-Iq3(u), i.e. 
u~/73(f2) (use a partition of unity). Regularity has been proved for s = l .  It is 
proved in a similar way for the case of any integer s + l  by employing the 
inequality: 

I l u l l 2+s ,~q  IIDiv ~(u)ll~,~ + q IIv~(u)L++,r + c+ Ilullo,m 

established at step s in the same manner as for s=0 .  For  general s, we 
interpolate (see Theorems 13.2 and 13.3, Chapter 1 [9]). Q.E.D. 

Theorem4.9. Let  0)sH(t2)=Seo @ ~  (see 4.2) and let (o=(Ol+O)2, ~%e6e 0, 
0 ) 2 ~ ,  be its orthogonal decomposition. I f  0)~H+(f2) for some s>=O, then 
O)1, 0)2 ens(~'~). If, moreover, s , �89 then r =e(u ) for  some u e H~ + l (f2). 

Proof. If s__>l and 0 ) = 0 ) l + e ) 2 = 0 ) l + e ( u  ), 0)1e~0, ueHl(g?), then for any 
q~e/71(~): 

(e (q)), e (U))o, a = (e(q)), CO)o ' a = (r q0, v 0))o,r-  (q), Div CO)o ' 

by (5). Theorem 4.8 shows u~/~s+l(I2). The case 0 < s < l  is proved by in- 
~rpolation. In fact, the orthogonal projection of H(f2) onto ~ maps HS(fJ) into 
HS(I2) for integer s ~ n  particular (by the closed-graph theorem) it is a continuous 
operator HS(f2)--*HS(f2). By interpolation this remains true for any real 
s=>0. Q.E.D. 

Remarks. Let e I be the restriction to /~1(f2) of e, considered as a closed, 
densely defined operator from /7(0) to H ( O ) . T h e n  its Hilbert space adjoint 
Div o is the closure of the restriction of Div to H~(f2). PEETRE's lemma and the 
usual Korn inequality allow us to prove that e 1 has closed image. The closed- 
range theorem gives then H ( f 2 ) = K ~ D i v  0 O l m g  1. This is a very simple proof 
of the orthogonal decomposition of H(f2) determined by Im e 1 . But it is difficult 
to show that {0)eH~(~2)lDiv0)=0} is dense in KerDivo (this is asserted in 
Theorem 4.2). On the other hand, using Theorem 4.8, one can show directly that 

{ 0 ) e ~ ( O ) l D i v 0 ) = 0 ,  v0)=0} 

is dense in Ker Div o. This is the result proved by TING [14]. My Lemma 4.7 is 
similar to Theorem 4.6 of 1-14]. However, I consider TING'S proof a little 
ambiguous because his space Z 1 (M) is not correctly defined. In fact, by LIONS & 
MAGENES' method [-9] we can define v0) as an element of/7-+(f21F) for any 
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0)~H((2) such that Div0)~/q((2). But this is certainly not true for all (o's of the 
form e(u), ue/t~((2). In this context note that 5~o=Ker Divo can also be defined 
by 

{0) e H((2)I Div 0) = 0, v0)=0} 

(since Div0)=0e/~((2) ,  v0)~H-~((2]F) is well defined). 
We close this section with three results related to the preceding ones. The 

first concerns the Dirichlet problem for the operator Dive, and we shall need it 
in the proof of the next theorem. 

T h e o r e m  4.10. For any s> 1, s4:~2, the mapping 

(12)  /q  ~ ((2) ~ u ~ ( D i v  e (u), r u) ~ / q  s - 2 ((2) @ H  s - ~ ((21 F)  

is a topological isomorphism. 

Proof. The mapping is continuous and injective, since Div e(u)= O, u ~ 1  ((2) 
and r u = O ~ e ( u ) = O  and we apply Theorem 4.3. If u~H~((2)--{u~Bl((2) lru  
= 0}, then (u, - Dive (u)) = (g(u), e (U))o, ~_-> c I] u I] 2 ~ (Theorem 4.4). The LAX-MIL- 

GRAM Lemma shows that Divoe: H~((2)~/q-x((2) is an isomorphism. In order 
to show that (12) is surjective if s - - l ,  it is enough to find for any c~/t~((21F) 
some u~Hl((2)  with Dive(u)=0 and ru=~.  Since H ((2)~uv--~ru~H~(f2lF) is a 
surjection with kernel/~(~2), it is enough to prove that ~# = {u 6/~1 ((2)[Div e(u) 
=0} is a topological supplement of/7~((2) in /~1((2). Since /~(s and ~5 are 
closed subspaces of/41 ((2) with zero intersection we need only show that/~1 ((2) 
=/4~((2)+d((. If u@/41((2), then Div~(u)~/t- l((2) .  In particular there is a 
Uo~/-I~((2 ) verifying Dive(u)=Dive(Uo). We get U=Uo+(U-Uo), uo~/1~((2), u 
- U o ~ X .  The theorem is proved for s = l .  As a consequence we obtain the 
inequality 

Ilull l,e_-<c IIDiv e(u)l/ x , e+c  Ilrull+,r 

for any u~/71((2). Regularity is then proved as in Theorem 4.8. Q.E.D. 

We have used in the above proof an idea of LIONS & MAGENES [-10]. The 
next result is an orthogonal decomposition theorem similar to (but simpler than) 
Theorem 4.9. 

Theorem4.11. Let ~ = { 0 ) e ~ ( ( 2 ) l D i v 0 ) = 0 }  and ~o=e~/-I~((2)). Then H((2) 
= S e O ~ o  (Hilbert direct sum). The subspace ,9~(~ is 
dense~ in 5 ~. Moreover, the above orthogonal decomposition is regularz i.e. if 
0)eH~((2) for some s>O and co=0) 1 +0)2, o) 1 e~/9, 0)2 e~0, then 0)1, c~ ~H~((2) �9 

Proof. Let Div 1 " D(DiVl)CH((2)~H((2  ) be the operator: 
4--+ 

D(DiVl)={0)~H((2)IDiv0)~H((2) } , 0) ~ D(DiVl)~DiVl 0) = Div 0). 

Then Div 1 is a closed, densely defined operator and its adjoint is equal to 
e o : D(eo) c / 4  (~)- ,  ~ ((2), D (~o) = H 1 ((2), eo (u) = ~ (u) if u e D (%). Since eo has closed 
range (see Lemma 2.1), the closed-range theorem implies that 

H((2) = Ker Div I |  eo - 5 0  |  o. 
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Let us now prove regularity. If (A)=(Dl-~-OJ2=(Dl-~-~(R)~HS(~'~), S~_~0, S=~ 1, 
091e5 ~ and us/7~(O), then Divg(u)=Div09eHS-1(f2). By Theorem 4.10: 
u e /7  ~+ 1(f2), which establishes regularity for any s > 0, s 4=�89 The case s =�89 is 
treated by interpolation, as in Theorem 4.9. The density assertion is trivial now. 
In fact P, the orthogonal projection of H(O) onto 5e, sends a dense subspace of 
H(~) onto a dense subspace of 5P and also P(H~(f2))cH~(f2). Q.E.D. 

As a corollary we get a generalization of a result by DORN & SCHILD [3] 
(see also [6] page 119 and [15] page 602). 

Theorem 4.12. Let 09 e H ((2) and o~ ~/4~(f2[F). Then there is u ~ 1~ 1 (~'~) such that 
e(u)=e9 and ru=~ if and only if (09, W)o,a=(~, VW)o,r for any wEH~(O) verifying 
Divw=0 .  If, u exists, then it is uniquely defined, and it belongs to H~+I(I2)/f and 
only if co6HS(f2) (s>O, s@�89 

Proof. Let uo~Hl(f2) such that rUo=Ct. Then 

(09 - ~ iu o), w)0, ~ = (09, W ) o , ~ -  (<  ~ w)0, 

for any w65  a~). By Theorem 4.11, 09-e(Uo)E~ o if and only if (co-e(Uo), W)o,~ 
=0  for any weSr i.e. if and only if (o9, w)0,o=(~ , VW)o,r , VwESr ~). Q.E.D. 

5. St. Venant's Compatibility Conditions and Related Topics 

This section is devoted to two questions of elasticity theory. However, I 
begin by stating a problem which I have not been able to solve in the general 
case. Let us go back for a moment to Theorem 3.2. According to that theorem 
u~/7(O) is of the form g r a d f  for some f ~ H l ( O )  if and only if (u, V)o.~=0 for 
a ny  v~/7~(I2) such that d ivv=0 .  This criterion is not very useful in practice 
since it involves an infinite number of conditions. A much more useful set of 
conditions on u is the following one: for some u~/7(O) there is an_f~Ht( f2)  
such that u = g r a d f  if and only if du=O and (u, v)0,n=0 for any veA+(O) (d is 
the exterior derivative and A+(O) is the finite-dimensional space of vector fields 
v~/4~(t2) satisfying dr=O, d i v v = 0 ,  vv=0).  Now we pose the analogous prob- 
lem for the operator g: find a "simple and natural" differential operator ~, acting 
on ~mmet r i c  second-order tensors, and a finite-dimensional vector space 
VcH(f2)  such that for 09~H(f2) the condition e~=e(u), u E/71(O), be equivalent 
to g(09) = 0 and (09, W)o ' ~ = 0 for any w E V. The difficulties related to this problem 
are explained in [15], page 351. We shall completely solve the problem in the 
case of Euclidean f2, because in this case the operator g is known, so that the 
"local" question is already solved. See GURTIN [6], Section 14 and TRUESDELL 
& TOUPIN [15], Section 34. There is also a ques t~n "dual" to that stated above, 
namely, describe the "structure" of the set {09 ~ H(f2)[ Div 09 =0}. We shall first 
give a complete solution of this last problem, also in the Euclidean case, which 
generalizes GURTIN's results (see [6], Section 17 especially Theorem (3); we 
avoid all differentiability requirements; see also 1-15], Sections 226 and 227), and 
then we solve the first problem by a duality argument. 
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In the rest of this section f~ will be a bounded, open subset of IR" with C a 
boundary F, such that ~ is locally on one side of F. Then ~ =  g2 w F, provided 
that the Riemannian structure induced by ~," satisfies all the conditions 
imposed on ~ in the Introduction. If u is a real vector field on ~, we have 

defined vu: F--*IR a s  viui]l'=- - ~ viui]I'. We also define zu: F-,IR" by (ru)(x) 
i=1 

= projection of the vector u(x)~ IR ~ on the tangent space to F at x e F. Let A~((2) 
(respectively A~((2)) be the finite-dimensional space of real vector fields 
ueH~(f2)  satisfying ?~iuj=P, jui ( l < i , j < n ) ,  d iv u = 0  and v u = 0  (respectively ru 
=0). We shall use the following lemma, which is an easy consequence of 
MORREY'S results [11]: 

Lemma 5.1. Let u~ H~((2), s>O. Then there is an antisymmetric second-order 

tensor oJ=(~Olj), e3ij= -o~jieH~+l((2) such that ui= ~ t~jo~ij, if and only /f divu 

=0  and (v, U)o,~=0 for any v~A~((~). ~=1 

TheoremS.2. Let s>O and S=(S~j), Si~=Sji , be a symmetric second-order 
tensor on (~ with Si~eH~((~) (any i,j). Then there is a fourth-order tensor T 
=(T/y) ,  with the properties T~kz= Tku~= -- T~ikt , Ti~k~ H~+ 2((~) (any i,j, k, l) such 

thatS~j= ~" (~k?~tT~k~tif a n d o n l y i f D i v S = O  (i.e. ~ ~S,~=O) and 
k , l = l  ~ j = l  

/ 

(13) ~ ~ S i~ ia~dx=O 
i , j = l  

for any Killing vector ~ ~ Q_((2) and any a e A~(t?). 

Proof. The conditions (13) are inspired from the relations defining "self- 
equilibrated stress fields" in GURTIN [63, Section 17. In the proof we shall 
follow the method of DORN & SCHILD. Remark that since g2 is Euclidean, the 

Killing vectors are the vector fields of the form ~fi(x)= ~" toijxj+ci, where coij , 
j = l  

c; are real constants, ~oij=-m~;. In particular, from (13) we get 

S S~a~dx=O 
j = l  f2 

for any i and aEAv(f2 ). We apply Lemma 5.1 and obtain UijkEHS+I(~), Uijk-= 

--Uik ~ such that Sij= ~ C~kUij k. We have ~" ~k(Ui~k--U~ik)=O since Sij=S~i. 
k=l  k=l  

Now, let c%= -coji be some real constants and ~i(x)= ~ o)ijxj, A~t~(f2). Then 
j = l  

0 =  E j" S i j A i a j d x  
i , j ~  

= ~ ~?k(AiU~jg)'aj d x -  ~ fUijk~' j iaj  dx 
i , j ,k  D i , j ,k  D 
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= E ~Uiik'(,ajVkdX-- 2 IUi~k~Oikaj d x  
i , j , k  F i , j , k  

= Z l~Uijk~Ci(ajVk--Vjak)dX-- Z ~COil~("ijk--Ukjl) aj Ox" 
i , j , k  F i < k ; j  D 

In the last member the first term is zero because za=O.  Since O~k are inde- 
pendent constants i f / <  k, we find, using ui~ k = --Uikj, that 

(15) ~ ~(Uij~--Ujik)akdx=O 
j = l ~  

for any aeAv(~) .  Applying once again Lemma 5.1, we find V~k~eH~+2(~), V~k~= 

-- V~j~, V~j~ = -- Vjlk~ such that u~j~- u~i k = ~ 0~ Vijk~. Clearly then 
1=1 

- ~ ~ 3~(V~k~ V~n). Ui jk l  - -  ~ + Vk i j l  - -  
/=1 

Using this expression a n d  2 0 k ( ~ l O i j k l ~ O  (antisymmetry in k, l of v~j~), we see 
that k,~ 

k, l  

1 We set TkijZ=--~(Vk~jz+V~ki ) and so obtain the required representation. Con- 
versely, if Sij = ~ O k 01TikjZ, T i j k l  = T k l i j  = - -  T j i k l  , then ~ Oj Sit = 0, and we have (13), 

k, l  j 

because of the following relations: 

}]'~z Sit = ~ [Ok 0Mi T~k~,) 
i i ,k , l  

- Ol '~i Ok Ti~j~ - Ok ,~ Ol T~kjl] 

I i,k 

- y .  Z 
1 i,k k i,1 

k i,l 

(note that 3l~e z are constants). Since ~z~ci=-0i~z, the expression ~( . . . )  is 
antisymmetric in j, k, so we can apply Lemma 5.1. Q.E.D. i,l 

Remark. Using the DE RHAM theorem ([13], ~22, Theorem 17'), one can 
prove in the same way the following result: If Av(O)=0, then a symmetric 
second-order tensor S with components S~FH-~176163 is of the form S~j 

= ~ O k O l Tikjl, Tijkt = Tklij = -- Tj iktGH-~(Q) if and only if Z OjS~j = 0. (The con- 
k.l j 

dition ,4v(~)=0 essentially means "F consists of a single closed surface"; see 
GURTIN [6], Section 17 Theorem 4). 

Now we shall prove the essential result of this section: 
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Theorem 5.3. Let s > 0, s 4= �89 and S = (S~), Sir = Sji be a symmetric second order 
tensor on g2 with components Sij~H~(t2). Then there is a vector field u=(ui) with 
components u i~ H ~ + ~ (0) such that Sir = ?'i uj + gj u i if and only if 

(16) ?k ~lSij--(?k CrSil-~-?iC jSk l - -CiCiSkj  = 0  

(these are St. Venant's compatibility conditions; the derivatives are in the sense of  
distributions) and, moreover, 

~. ~S i j~ ia jdx=O 
i,j= l -(2' 

Jbr any Killing vector ,(~__Q(f2) and any a~A~(f2). In particular, if (2 is simply 
connected (which implies A~(Q)=0), then (16) are necessary and sufficient con- 
ditions. 

Proof. This theorem can be proved using GURTIN'S method ([6], Section 14, 
Theorem 2) by an argument similar to that of Theorem 5.2. However, I prefer a 
proof based on a duality argument. We begin by recalling some known facts. Let 
div0: D ( d i v o ) c H ( O ) ~ H ( O  ) be the Hilbert-space closure of the restriction 
divl/7~(t2). Part of the Hodge-Kodaira decomposition theorem says that u 

=(ui )eKerdiv  o is of the form ui= ~ O;co~, ~oir= -aljienI((2), ~ v~c%IF=0, if 
j ~ t  j= 1 

and only if (u,a)o,a=0 for any aeA,(f2) (see MORREY [11]). In fact, it can be 
proved that in this case we can choose co~fH~(t2) for any i, j. Moreover, if 
U~/Tk((2) for some integer k>  1, then one can choose coiFHk+~(t2) (these are 
particular cases of some general theorems I have proved in a paper submitted 
for publication). We define now ,,Yr as the space of fourth-order tensors T 
=(T/jk~) such that T/rk~ = Tkzij= --Tjik~H(O),  provided with the scalar product 

(v, W)o.~= ~ ~(v,j~,, w,j~,)o.~., 
i,j,k,l 

so .~Y{~(f2) becomes a Hilbert space. Let ~ iv  o be the closure of the operator: 

k,l 
where 

-~0 2 (~"~) = { TE ~ (~r E H ~ (~'~) }. 

We call the operator ~: D ( # ) c H ( t 2 ) ~ f ( t g )  its adjoint. We see easily that 

D(#) = {Se H ((/)1 ~ ~?~ S~j - ?.k g jS .  

-}-~2i(OjSkl--~,iOlSkjEH((2) for any i,j, k, l}, 

and for S~D(8), 

# (S)~kjt = c~ k c~ z Sij - c3 k ?~j S ,  + ?~i ~j Sk~ - ~ ?'l Ski. 

Let ~ ( f2 )  be the (finite-dimensional~ vector subspace of H(t2) generated by 
tensors of the form ~r i, ,~aQ(('2), asA~(t2). Then K e r D i v o = I m @ i v  o 
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| a Hilbert direct sum (Div o is defined in the remarks following 
Theorem 4.9). This result is proved exactly as is Theorem 5.2, using the remarks 
made at the beginning of this proof. Namely, if S s K e r  Div o and (S, co)0,r~--0 for 
any cosJ~ff~(O), then for any i the vector field S i. = {Sijlj- ~ . . . . .  n} clearly belongs 
to Kerdivo,  and it satisfies (Si. ,a)o,e=0 for any aeA~(f2), so that there is 
Uijk~H~(f2), Uijk = --Uik j such that S ~ = ~ k U ~ j  k. As in the proof  of Theorem 5.2 

k 
we obtain (15) for any a~A~(O), noting that the boundary term in (14) is zero 

because of ~ v k UijklF----0. Then we can choose Vijkz~H2o(O), as explained before, 
k 

so the tensor T of Theorem 5.2 is now in Jgo2 (f2). We have proved that Ker Div 0 
=Nivo( . ) fo2(O))G~(O),  in particular ~iVol~gt~o2(f2) has a closed range. Ob- 
viously, its closure will have the same range, i.e. Ker D i v 0 = I m  ~ iv  0 OX~(f2). 
But Ime t  is H ( O ) @ K e r D i v  o (see the remarks after Theorem4.9),  i.e. Ime  1 
=( lm~iv0)~c~(~(O))Z=(Kerd~ -L. The proof  is finished by an appli- 
cation of Theorem 4.1. Q.E.D. 

Remark. Using GURTIN'S method ([6], Section 14, Theorem 2) and the DE 
RHAM theorem ([13], w Theorem 17'), one can prove the following result: If  
A~(O)=0 (in particular if f2 is simply connected), then a symmetric second order 
tensor S with components Si~eH-~(f2) is of the form S~j=Oiu~+~juz, with 
u~eH-~ for any i, if and only if St. Venanrs  compatibility conditions (16) are 
satisfied. 
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