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Introduction

We are interested in large time behavior of solutions to nonlinear partial
differential equations of evolution. More precisely we deal with the Initial-Value
Problem for nonlinear equations which are perturbations of classical linear
equations like: the Wave Equation, Klein-Gordon Equation, Linear Isotropic
Elasticity Equations, Heat Equation, Schrédinger Equation, etc. The aim is to
show that for sufficiently small nonlinear perturbations the corresponding solu-
tions behave asymptotically like the solutions of the linear equations. In particu-
lar, we recover and extend our earlier results on global existence for nonlinear
wave equations [1]. As in that work our method relies on a special version of the
powerful Nash-Moser-Hérmander scheme which allows us to treat a very large
class of perturbations. The method seems to be particularly suited for hyperbolic
equations; however, we attempt here a treatement of other classical equations
like the Heat Equation and the Schrodinger Equation.

For some specific examples our method is too rough and indiscriminate to
give optimal results. In particular, for the special class of semilinear perturbations
our results are weaker than what is available in the literature. However, we can
allow here perturbations which contain, in general, derivatives of the same order
as the linear part, for which the classical methods used in the semilinear case do
not seem to work.

We assume the linear equations that we intend to perturb to have the form

¢)) u—I'u=0,
with the initial condition u(x, 0) = 4¥(x).

Here u=u(x,1t), (x,t)cR"xR,, is a real (or complex) vector function.
I' is a linear differential operator with constant coefficients of order y:

o \* 2 \%n
r= 3% r.,p%; D§:‘>=(——) ( ) ;

lal <y 3x1 3x,,

I, are rxr matrices with constant entries.
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We assume that I satisfies a dissipative condition of the following type.
There is a positive definite rxXr matrix A° such that either

(D) [Re (4°Tf,f)dx <0
or
D) S Re (A°Tf, ) dx < ~ I VflZ2pm,

for any fe Cy(R").
Examples:
(LWE) Linear Wave Equation:
Yo —4y =0, ¥x,0=f(x), yx 0 =g).

To write it in the form (1) we introduce uy =y, i =y, i=1,...,n. We
rewrite (LWE) in the form

where A4; = (@) 1-0,.» and ay; =0 except for ag; = g = 1. The initial
data have the form

of of
(0) — - —
u (x) (g’ axl LR axn)’
ie.,
d 0
2o L.
&) ox, 0x; “

The operator I'= Z is a first order linear operator with constant

coefficients and j=

fRe(Ff,f)dx———jé ReRf( /. f°f)dx: 0.

8

Therefore condition (D) is satisfied with 4% = I.

(LKGE) Linear Klein-Gordon Egquation:
Ve — Ay +m?*y =0, m=£E0,
¥x,0 =1 ydx,0)=g.

As before, we introduce the unknowns uy = y;, 4y = Yeps o0y Uy = Yy, Uniy =¥
and rewrite (LKGE) in the form (1). The initial data have the form

o J 0
W) =(g, —; ---,3—xjf,f)

ie.
a d 0
W9, = 4O ORI}
® oxo " w ox; u ox;
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(LIEE) Linear Isotropic Elasticity Equation:

32 0%y, 0%y,
E(Cz cz)@ ; 0X, Te Zaxkaxk

where ¢,, ¢, are the speeds of propagation of waves, are given as follows in terms
of the Lamé constants 4, x4, and the density o:

=@+ 2w, G =pf.

The initial conditions are y,(x, 0) = fi(x), y;(x,0) = g(x), i=1, ..., n
For convenience we rewrite the equation (L.I.LE.E.) in the following form

(see [6]):
8%y, o 0

212 = Cikim Ex—k 67,,, Y
Where Cikjm = C,-kjm + C%(Csiké-m - (5im5jk) and aISO
Cigm = (] — 263) Oy + (8;0m + B4Bim) -

Introducing w, = D.y;, i=1,2,3, k=0,1,2,3, we obtain a system of
12 first order equations for the u;;

Dguyy = Z C;k,m D,

k,jm
Doy, = Dytyg,
or, in vector notation,

3
Dy = Y, A" D,u,

r=1

where Al = Cijm 6401 — Opo) + 6,0 6, is defined for i,j=1,2,3, k,m =
0, 1, 2, 3. (The subscripts Z, k count the rows and j, m the columns of the matrix
3

A"; see [6].) Setting I'= Y, A" D,u and taking

r=1

xkjm - (1 - 6k0) (1 - 6m0) Clkjm + 61] cskO 6m0’
one verifies (see [6]) that 4° and A°4" are symmetric and A° is positive definite.
Therefore Re f (A°If, f)dx = 0 which is our condition (D).
The initial data ¥©® have the form
i =g, U= —fi(), i=1,23 k=123
ox;,

or

€Y

0

0
P uld = —uld, for any i,j,k=1,2,3.

ox;,

In the next examples I" will be a scalar operator of order greater than 1.
Also in these examples 4° = 1.
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(L.S.E.) Linear Schriodinger Equation:

U — —Au=0,
i

u(x, 0) = u9(x).
1
Here I'= —i-A satisfies
Re f If,NHdx=0,
which is our condition (D), with 4° = I.
(L.H.E.) Linear Heat Equation:
u, — Au=0,
u(x’ 0) = uO(x);
Re [ (If,f)dx = — [ |Vf]? dx,

which is condition (D").

I' = A satisfies

(A.E.) The Airy Equation:
33
ut+uxxx:0’ F:'—b?,

u(x, 0) = uo(x),
Re [ (If,f)dx = 0.

In what follows we denote by W(z) the fundamental solution of (1.1). Thus
W(t) u® is a solution of (1.1) with initial data ¥, and it is unique. In all the
examples mentioned before W(r) satisfies the following basic decay property:
There is a differential matrix P such that

(O | (1) u® |10 < C(1 4 )75 4O,
for all u®@ ¢ LI®™" N L°(R") that satisfy
Pu® = 0.

Indeed, one derives this estimate for all the above examples from the classical
explicit form of the solutions. For (L.W.E.), (L.K.G.E.) and (L.I.E.E.) the differ-
ential matrix P is defined by the relations (2), (3), (4) and imposes the natural
restrictions on the initial data #‘® corresponding to the initial data of the original
second order equations. In all other examples P =0. For (L.W.E.) we have

—1
(see [1]) ko= nT’ for (L.LE.E) n=3 and k, =1 (see [6]) while for
1
(L.K.G.E), (L.S.E.) or (L.H.E)) ko= —’21— Finally for (A.E.) n =1, k¢ = Y
(see [7]).
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We now consider nonlinear perturbations of (1)
(N) U — Fu:F(u’ Du)’ Du = (ut’ uxla---aux”)’
u(x, 0) — u9x), Pu®=0.

Naturally, we assume that F is compatible with the set of constraints induced
by P, i.e.,
PF(u,Du)y=0, Vu, Du.

We also impose the following conditions:

F) A°F,, AOF"x,-’ i=1..,n,
are symmetric r Xr matrices and F, is independent of .
(F2) |Fu, Du)| < C(Ju] + | Du ™!

for |u| 4+ |Du| sufficiently small.

In case I' satisfies the condition (D) we can allow F = F(u, D, D%u) in
our perturbation. In this case (F,) is unnecessary.

We now state our main theorems.

Theorem 1. Assume
1 1
© i+ )<k
p P
where kg, p are the numbers defined by (O) and (F,). Also assume p is an integer
and that F is smooth. There is an integer No > 0 and a small v > 0 such that if

[ u(O)”Ll,No =n | u(O)“Lz,No =17,

then there is a unique smooth solution u¢ C'([0, T], C'(R™) of (N). Moreover,
the solution behaves, for t large, like
1+¢

lu(x, t)| = O(t— ? ), as t—>oo,
Jor some small ¢ > 0. Also

lu(®)ll2mey = O(1), as t—>oco.

Remarks. (1) The unpleasant requirement that p be an integer is imposed only
to ensure that F is smooth near the origin. It can be avoided if the number N,
appearing in the theorem can be made small. The value of N, can be made precise
(see Section 4) but our results are very crude for estimating it closely in concrete
examples. (2) The asymptotic behavior of the solution given in Theorem 1 can be

1 1
improved if k¢ > —(1 + —p—) at the expense, eventually, of requiring N, to be

larger. b

Theorem 2. Let u(x, t) be the solution of (N) introduced by Theorem 1. There is
a unique solution u_ of (1.1) such that

Ju(t) — u (Dl >0, as - oo
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Proof of Theorem 2. We define

) u,(t) = u(t) + f W(t — 3) F(u(s)) ds
t

where W is the fundamenal solution of the linear equation. The convergence of
the integral in (5) follows easily from the asymptotic properties of u given in
Theorem 1.

In the remaining part of this introduction we illustrate our theorems on per-
turbations of the linear problems presented above.

(N.W.E.) Nonlinear Wave Egquations (see [1]):
ytt ~Ay = G(Dys Dzy)9
¥(x,0) = f(x), y(x,0) = gx).

Rewriting the (N.W.E.) as a symmetric hyperbolic system verifies condition (F,) *,
provided that G, be independent of y,. Also condition (F,) is equivalent to

|G(Dy, D%)| < C(|Dy| + | Dy yr*!

—1
for small | Dy|, | D?y|. Since for this case k, = n—i—, condition (C) becomes
1 (1 n 1 )< n—1
p p 2

For p =1, this implies » > 6 which is the result obtained in [2]. For p =2,
n>2+4 % In particular the result is valid for n = 3. For p=3,n> 1+ %;
therefore, Theorem 1 holds for n = 2.

(N.I.E.E.) Nonlinear Isotropic Elasticity Equations:

2y _
3 Z Ctjkm( }’)

Jkm=1

axx

where y = (y1,¥2,y3) as a function of (x,7)€R3*xR__ is the displacement
vector (see [6]) and Vy is the gradient (y,,, y.,, ¥x,) of y. We also have (see [6])

o’E ou;
Citgm = Cimite = m where uy = é?k ,
Citgn(0) = Cyjm  defined in the (L.LE.E.).
We assume
©) |cam¥) — Cam(®| < C|VyP Vi k,j, m

Following FriTz JoHN [6], we can rewrite (N.I.LE.E.) as a symmetric hyperbolic
system:

Q) A% u, = )i A°u) A"(u) Dyu
r=1

* See the next example.
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where wy =Dy, i=1,2,3, k=0,1,2,3. Also A4°%0) = A° A'(0) = 4',
previously defined in (L.L.E.E.). Thus we can rewrite (D) in the form
u, — I'u = F(u, Du)
where, with B'(u) = A%u) - A"(v) and B" = A°A’,

A° - F(u, Du) = é (B'(u) — B") Du — (B%(u) — B%) Dyu.
r=1

The condition PF(u, Du) = 0 is automatically satisfied by our construction.
Condition (F,) is also satisfied since B'(x) — B" and B%wu) — B° are symmetric.
Finally (F,) is equivalent with condition (6). Since n = 3, k;, = 1, condition (C)
of Theorem 1 becomes:

1

1
1+ )<
P p
{N.K.G.E.) Nonlinear Klein-Gordon Equation:
Yu — Vy = G(3, Dy, D*y).
Assume that G,, is independent of y,, and
|G(y, Dy, D*y)| < C(|y| + | Dy| + | D*p|y*.
‘Then Theorem 1 holds provided that
1 1 n
i+ )<T
p p 2
For rates of decay of solutions of (L.K.G.E.) see [8].

which holds for p = 2.

(N.S.E.) Nonlinear-Schridinger Equation:
1
u, — TAu = F(u, Du).

Assume that F, is independent on y, and |F(u, Du)| < C(|u| + |Du)P*+'.
‘Then Theorems 1 and 2 hold, provided that Fg, is real and

1 1 n
—(1+—=)=—.
p( +p)_2

For F= F(u) and » =1 we improve the results of W. STrRAUSS [7]. How-
ever, for this case, even better results were obtained recently in [4], [5]. (See also

[10])

Remark. Our result will also apply to coupled nonlinear Schrédinger equations
U — —i—Au = F(u, Du), where u is an r-vector. In addition to the assumptions
made before we also need

F,;t, F,:x‘, i=1,...,n, are selfadjoint rxr matrices.
1
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(K.W.D.) Korteweg-De Vries Equation:
U, + ., = F(u, Du).
Here F, is independent of u,:
| F(u, Du)| < C(lu| + | Dul)P*?,

1 1\ 1 34 Y21
—;(1+?)<_§, or P>_T—

which improves the result of [7] where it was assumed F(u, Du) = f'(u) u, and
p>4

(N.H.E.) Coupled Nonlinear Heat Equations:
u, — Au = F(u, D u, Du);

u is an r-vector and F satisfies |F(u, D, D2u)| < C(|lu| + |Dyu| + | D2uP*!
for small |u|, |Du|, |DZul.
Theorem (1) holds provided that

1 1 n
S(1+5)<%
p p 2
where #» is the dimension of the space of x. The linear part of the N.H.E. satisfies
condition (D’). The only difference in the case where (D’) is satisfied rather than
(D) is in the derivation of the energy estimate (Section 3). The modifications are
rather straightforward, but a complete proof for the case (D’) will be omitted
here.

The heart of the paper is Section 4, where we construct a solution to'(N) using
a NasH-MoOSER-HORMANDER scheme. The scheme follows, with some modifica-
tion, that presented by HOGRMANDER in [9]. The main modification consists in
the presence, in addition to the usual “smoothing” operator, of a “cut off” in
time operator. This is necessary in view of the ““loss of decay” in the linear esti-
mates presented in Sections 2 and 3. Further complications arise since it is nec-
essary here to work not just with one scale of Banach spaces, as in [9], but with
three double-scales of different nature corresponding to the norms

| v = sup (1 4 0 u(®)]|Loons
I e = sup (L + % (D] L2ns
t=0
I [Hen = sup (1 + % Jlu(@)]|ps,n-
t=0

However, some of these difficulties have been already encountered in [1]. Further
difficulties are due, here, to decay estimates more general than those in [1].
Section 1 is devoted to a review of the calculus inequalities needed in this
work. They have already been used and proved in [1]. I also present here the
properties of the “smoothing” and “cut-off”” operators S®(6), $%0"). Section 2
is devoted to decay estimates for the linearized problem. Due to the more general
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condition (F,) on the nonlinear perturbation the estimates here are quite different
from the corresponding ones derived in [1]. Finally, Section 3 is devoted to energy
estimates. Condition (F,), on the nonlinear perturbation F(u, Du), assure similar
type of energy estimates as for the Symmetric Hyperbolic Systems.

Notation

We use the following standard notation: x = (xy,..., x,) € R",

*1

%y . 4
D;=D,,..., D" with D, =a—x—.——=D,., &= (0p .0, 0)EN", || =0ty + ...+«

For f:R"—R’ we write | = max ([[fi(x)[?dx)'"?, |fl,, v = 3 Dl p
i=1,..,r s I

| EN

1Dfl,, = > 1D, for s>0.

|| =s
For a given r-vector u = u(x, 1), (x,1)eR"xXR_, we set
Du = (uy, uys .. ux")

where u, stands for u,. Also Au = (u, Du) is the vector u together with its first
derivatives. For an r-function F(4) which depends on the variables 4 = (4, 4y),
i=1,...,r,j=1,...,r, k=0,...,r, we shall use the following notations for
the Fréchet derivatives:

r
Fy(Au) Av = 3 Fv;+ Zk: F,{jk D,y;.
fmg i
Occasionally we also use the notation F,, F,, Fp,, k=1, ...,n for the rxr
matrices (E:uj)s (E:Dtuj)’ (E:Dkuj)’ ls.] - 1, ey 1

We also use the norms

)l g = sUP (1 + U@

with
[t = “u”Loo;k,Nl
luleny = lulizgenws Nully = llullons
[[4|l|eny = Nallrsen-

§ 1. Preliminaries

Consider the nonlinear functional D(u) = u, — I'u — F(Au) where Au
stands for (u, Du). To solve our nonlinear equation

(1.1 D) =0, u(x,0) = ux),
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by an iteration scheme, we have to be able to obtain “good” estimates for the
following linearized problem:

1.2) Lyu)v =g, V(x,0) =0
where
(1.3) Lw) v = v, — I'v — Fy(S,Au) - Av.

Note that Ly(u) differs from the Fréchet derivative @'(u) by the mollifying
operator S; which was defined in [1] (see Sections (6) and (7)). S, is the product
of a “cut off”” operator S®(6) in ¢ with a smoothing operator S®(6’) in x where

6’ = 6°, >0, and has the properties
(S1) 1 — Sl ag0 = Con®@F N0l g, o + 67 N1l g0 )
(S2) I Soull g, v S Copn0 6NN |y

L9k, N = L9ko,No

for 0 < ko £ k; 0= N, =< N. The norms here are those defined in the section
on notation, above.
The following properties of the norms | |7,y Will be used repeatedly:

1
Lemma 1.1. Assume g,, g,€ C*([0,00) xR"), — = — + — and k=k{+ k,.
Then T

|g1g2 IL2 kN = C(”gllqul kN ”gZHqu;k;,N + ||gl“Lq1;k1,N : ”g2”qu;k2,())'

Lemma 1.2. Assume u is a vector function in (C®((0, 00) XRM))" and F = F(u)
is a smooth function of u. Then

”F(u)”quN—- quN(l + ”u”quN)
provided that

The proofs of these two propositions are based on the following two lemmas of
calculus.

i 1 1
Lemma 1.3, Suppose f,, f, € C°(R"). Then for —q— =— + —  we have

q:

O 1 D%1flle = Clfill g, - 1PFollan + 1 PFill o, Hlequ,),
@) 1D°(fif) — fi Dhallg = Cll Dfill o, 1 D" fall g, + 1 D%fill g, 1ol g

Lemma 1.4, Suppose w is a vector function in (C=M®™) and F = F(u) a smooth
function of u. Then

1D W) ¢ = Cngl D™Wlq + D,

provided that ||w|;~ < 1.
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We also use the following interpolation lemma (see [1], Section 6).
Lemma 1.5. Suppose uc (C*[0, c0] xR"))" be such that
' luI0,0 § Ce—ﬁ9
|uln < COTNP, for k - AN —f=Fand 0=k <k, O<L=<L.
Here §>0, 8> % and k, N are fixed positive numbers such that
k—B=% AIN—p==.
Then
|#]iw = (Cy - C) 02N,

forall 0 <k<k,0<NZN.

Remark 1. The Lemmas 1.1 and 1.2 will be used specifically for the norms

(1'4) ] Ik,N = ” ”L°°;k,Ns
I v = I llz2spns
]H ”lk,N = || ”Ll;k,N-

§ 2. Decay estimates for the linearized equation

As stated in the Introduction, the fundamental solution W(t) of the linear
equation

2.1 v,—Iv=0
has the property
(m)) | (1) 0|0 = C(1 4 1)~ || vyl 1,05
for all v, such that Py, = 0.
We recall that, by definition, W(t) v, is the solution of (2.1) for initial data v,.
Also, by the dissipative condition (D) imposed on I" we also have

22 I W(®) vollz2 = llvollLa

In what follows we investigate the decay of solutions of the inhomogeneous
equation

(2.3) v, — I'v = h(t), Ph(t) =0

where we write the solution v of (2.3) in the form

(2.4) o1, ) = f W(t — s) h(s, -) ds.
1]
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Splitting the integral in (2.4) into an integral between 0 and /2 and one between
t/2 and ¢ and applying (i) on the first part and (ii) on the second, we derive

12 t

25  |uxp|<C of (1 + (¢ — 5))~%0 || h(s) | s nds + C /{ A5 )2, s
t
Applying (2.4), we can also write

. [
(1 + % u(x, 1) < Csup (1 + D h(s) ||, [ (1 + 8)7F@=D s
s=0 . 0

]
+ Csup (L + Y [ A(s)lan [ (1 + 5)7@D ds
s20 )

and, with the notations (1.4),

(2.6 9 le00 = C2O) |11 [lksto— 10 + | Bllkopyms
where
[}

@7 #6) = [ (1 + S)=heD,

1]
Similarly, taking space derivatives of the equations (2.3) we deduce
(2.8 [0lkov = C2(0) Rippn i n(H),
where
(2.9) R, n(8) = 1|| B ||kso— 0. + [ Bllicop,v-

Also from (2.3)
9tk = 12 lko+n + | B leovs

where y is the order of the operator I'. Thus

|0 ko v = Cr(0) Regnsyin(R).
Hence

(2.10) |Avig,n = Cx(0) Rey4ns 7=y + 1.

We are going to apply this estimate to equation (1.2) which we rewrite in the

form
v, — I'v = Fy(Spdu)- Av + g, v(0)=0.

Thus, assuming that (2.3) is satisfied for g, we deduce from (2.10) that
1)  |Avl N
= Cox(0) || Fa(Sedu) Av|||eyp—nv+5 + 1 Fi(SeAu) Avlgpns7 + Reon+5(8)]-
By Lemma 1.1,,
212 |[|Fx(Sedu) A ||kocp—nyv+5
= CMI FiSsAt) lyto—13,0 - | 401w 457 + I Fi(SoAm)liocp—nn+5 * [ 4010),
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and
(2.13)
| Fi(SsAu) Aullg,niy = Cp Fy(SeAu) lk.,p,o N Avllyty + IF «(SeAu) 'kop,N+-F | Avllo).
On the other hand, by Lemma 1.1.,

2.19)
”FI:(SOAu)”kO(p—l),M = CM(IA“ Iﬁ.:ol - || SeAul|as + lSoA“ |k,,,M . ”Auﬂi.:oz « | Aullo),
(2.15) | F2(SoA1t) leopre = Caa | SoAttlipa - | Aulfcy

provided that |Aujoy < 1.
Thus assuming that

|[Auloo =1, [dulp<1,
we conclude from (2.11)-(2.15) that

(2.16) | Aulgn = 1(0) [Re,54n(8) + CxllAvllg - (| Sedtt ko745

+ 1Ssdully 1) (A + |Aulfy ) + Cyll Avlln- (1 + |Aulf, ),
where

y=y+n
and
0
10 = [ (1 + S0~V ds,
0
R (®) = ||| & [llkeo—08 + 18 llkopnsn-
This estimate will be used in the proof of convergence in Section 4.

§ 3. Energy estimates for the linearized equations

Lemma 3.1. Consider the following linear system:
3. Ev,— I'v = > Ap,,+ Bv + g,
i=1

where v, g are r-vector functions in (x,t)€R"XR,, and E, A, ..., A, B are
rXr matrices. Assume

@) I is a linear differential operator with constant coefficients in R", such that
JRe(I,/)dx <0, Vfe CE®,
(ii) E, Ay, ..., A, are self adjoint rxr matrices and
CE(x, )& 8 =z |E?, w>0,
Sor any EcR”, (x,5)eR"XR,.
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Then

d
(i) —lols= C(DEW) e+ [DeA@) [r) - [0 + | H) ez,

;vhere H = By + g and
lo@ = [ <E(x, 1) v, v) dx.
Rn
Also

; d- ‘
(@) — 1oOlEn = Cn(| DEW) |1 + | DeA(®) |poo + | BEO) 1) - |2 |en

+ | DLE(t) |ron—1 + | DrA@) |Lon—1+ | BE) [ron) - |0+ 180 20
where
”?(’)“122,1\' = ¥ 1DPu(0)lE.

=N

The proof of Lemma 3.1. is a straightforward modification of the proof for
the classical energy estimates for symmetric hyperbolic systems.
By Gronwall’s inequality and (i) we derive from (iii)

JLOIPE (RO FOTR

Xexp of (| D.E(s) |p + | D.A(s) |z + | B(s) |po0) ds.

Using the notation introduced above, we rewrite
(3.2) | |
loflo = Cs(” W0} |z: + 1| H|l140) - €XP C3(| DE|s1e0 + | DyA 1460 + |Bl1+e0)>

where ¢ is a small positive constant. Similarly, from Lemma 3.1 (iii), and (3.2)
we infer that

3.3 lolly = C (028 + 11811 4ew + (IDtEIl+e,N—1
+ [Aliren + |Blirem) 18]l1160l - €XP C| DE|1 460 + | DxAiyeo + | Bli4eo)-

We now apply (3.2) and (3.3) to the linearized form (1.2) of our nonlinear equa-
tion (1.1). In this case we have E = 4° — A°F,(Sedu), 4; = A°Fp,(SsAu),

i=1,..,n B= A°F(SeAu) and I'= A,I'. Also, in this case, »(0) = O.
To estimate | A}l e, || Blli+ons |DE|14en—15 |4 ]14en> We apply Lemmas 1.1.
and 1.2. Also, by the hypothesis (F,) on F, we deduce

lDtE|1+s,N—I + ]Ail-i-E,N ~+ |B|1+s,N§ Cn |SoAu|li’N,
r
provided that |Au ]ﬁ o < 1. Since E depends only on (u, Du),
=

| DEli1e0+ [Dedliseo=C IA”‘ljr_e,l'
p
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We thus obtain from (3.3) the following estimate:
(3.4) lvlv= Con (”g”H—e,N + | Sedu llﬁ,N‘ ”g”1+e,0);
b

provided that [Aufiie <1.
-

We can estimate v, from our linear equation (1.2):

v,=(I—F)" (Fv + X F, v+ F,:v) +g
i=1
and thus, for [Aujpo =1,

(3.5) Iy < Ch(lolin+y + | Sedulon - livll, + gl

where y is the order of our differential operator I
Combining the last two inequalities we obtain

(3.6) | |
”AU”N é Cs,N (I|gll1+e,N+y + ISQAu lli——e,N+'y : ”g”l+s,0 + ISOAu ‘O,N * ”g”l+e,y)a
¥4

provided that |Au|i+. =1
==

§ 4. Iteration Scheme

To solve our nonlinear problem, we construct, following HORMANDER [9], thg
iteration scheme '

4.1) wgy=u;+u i=01..,
where u; is the solution of the linearized equation
4.2) Li,=g;, u0)=0
with L; = Ls(u;) defined in § 1, i.e.,
4.3) Ly=v,— T, — F,{(SiAu,.) Av,
Here S;is the mollifying operator Sy, defined in §1 where
4.4 0; =2, i=12,...

The first step u, in our iteration is selected so that”

uo’r—“Fu():O,

(43) (0, x) = u°(x).

Thus every #; in our iteration scheme satisfies the given initial condition.
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The g/’s in (3.2) are so defined that the u;s converge formally to a solution
of our equation. More precisely,

8o = —SoP(uo),

4.6)
8= —(S;— Si_) Ei_1 — Siei_1 — (S; — Si—p) Pluy),
where
i—2
@.n E_ = 2 e,
j=0
(4'8) 6 = le + e.;”
4.9 g = (D' (w) — L) u;,
(4.10) e;’ = ¢(uj+1) —_— @(u]) — @,(Uj) (uj+1 — j)'

The g;’s depend only on u, ..., u;; according to (3.2) and the definition of g,
they satisfy the relation :

@.11) D(u;y1) — P(w) = g + &;.
Adding and applying (4.6), we find that
4.12) D(upyy) = — S)E; + e, + (I — ) D(wo).

Since S;— I and ¢;— 0 as i — oo, we have formally
_l_i)m D(u;41) = 0.

Therefore, if u = ‘l_i}g u, exists, it will be the desired solution to our problem.

. The convergence of the ’s is an immediate consequence of the following
estimates: '

(E1) | Awyfly < 86578+,
(E2) | A}y < D07FFEHEN,
valid for all 0 S N=Z Ny, 0=k = k,,

(E3) [Auliee <1, [ Auo=< 1.

P

Here B and N, are fixed constants which depend on k,, p and also on y, n,
in the following way:

@ Noz (2 -

14+ 8)

7 )

Moreover, k, is the number defined by (1) (see the Introduction).
To choose B we distinguish between two cases:

Case 1.

1(1+ 1)<k <!
2 2 Tp—17
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Then B has to satisfy the restrictions

l4+e4+ey+1) kop — €
<7
((mPY) 7 =p 1+p°

HIA

Case 2.
. _—< ko.

Then § has to satisfy (O,) and

ko(p — 1) + ey < pf,

() kop =2+ <(p—1)8B.

Here ¢, ¢ are two sufficiently small positive numbers which appeared previously
in the definition of S, and also in the linear estimates of Sections 2, 3.
Assuming El1, E2, E3 are satisfied, we have

2 NA@ . —w) Iy = C<oo, if —B+EN<O,
=0

[+

2 AW — )y = C<oo, if —B+k+:eN<O,
j=0
which implies the convergence of u to a solution u¢ CY([0, T], C*(R") of our
1
problem. Moreover, since f > —%f, we have

[u(x,t)|=0(t_1pj), as t-—>o00,

which proves Theorem 1.

Warning. In the long proof of (El), (E2), (E3) which follows we will use the
same letter C for any constant independent of 6;. C may depend, however, on N,,
ko, ¢, &, § which are supposed to be fixed by ((1,), (O,). Constants depending on N
will be denoted by Cy.

We remind the reader of the following assumption on F (in the Introduction)
which will be used repeatedly in the sequel:

|F(Au)| < C | Aulpt!
and also

FiAu)| = C |AuP,

|Fa(Aw) | < C | Aulp—?
valid for
|Au| < 1.
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In the process of proving (E1)-(E3) we will derive the following sequence of
estimates:

@) lduly< €8, if —p+EINZ —F,

(E4 . § )
|[du vy =Cé, if k—p+:iN=Z —5,

and
B Aylly < Co07F+ N, if —B+EN=E N=N,,
|Au |, x < C 80524V, if k—B+EN=E N= N, k<ko,

(ES) | FA(SiA1) |ippn + | Fi(SiAth) ooty w = Cy 8%67%~P+N, for all N =0,
(E6) |(I — 8) Auyliy < COOFP+N  for all 0<k < ko; 0= N< N,

14-¢ -
———28+eN
(E7) (a) o lei—1llren < C 0%;7 s
®) - lllkopN< C §%0kor—U+PB+eN | for all 0 < N < N,,
(E9) [l1€-11llip— oy = € $p~Deompb 42N,
: —2B+eN
(@) l&gilli4en = C 520 p R
& O I8ty < € i (4093,
© |H81|||ko(p on<C& if EN+(p—1)ky—pp< —F,
1&gl koot v S € 80P~ DN i N < N+ 7,
(E10) 200) Rins(g) < C0%65°~P+N  for all 0= N N,.

The strategy for proving these estimates consists in the following steps:
Step I. We prove that (E4)~(E6) and (E9) (E10) hold for i = 0. These estimates
depend only on the given initial data.

Step II. Assuming that (E1)-(E10) hold for all j < i — 1, we show that (E4)-
(E10) hold for j=1.

Step III. We show that if (E4)—(E10) hold for j<i, then (El), (E2) and (E3)
also hold for ] =1,

Step I. By definition Uy is a solution of (4.5). Thus by (O) (see the Introduction)
‘ [uo(t) [Loo v = C(1L + )% |61 34
and immediétely from this
| Aug |iov = C | u(O)”Li,N-H-f‘
Therefore, by the hypothesis of Theorem 1

| Aupfu, v < C8, for all 0= N N,.

Similarly, o
lAuollw < 14Plsys, = C8  for 0= N No,

and (E5), (E6) follow easily from (E4) (see Step II).
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To prove (E9) we remark that, by (4.6) and (4.5),
8o = —SoP(uo) = —SoF(Auy);
thus, by our hypothesis on F,
I olli+en = C |Aug |%,N' [ Auolly < C 9,

”gollpkp,N = ClAulf, v - | Augly = C 9,
118 llkoto—ov = C [Aug|fon - | Augllk < C &, for any 0 < N < No + 7.
(E10) follows easily now from (E9). '

Step I1. From (E1) and (4.1) we derive the inequality

i—1

(4.13) Al = 1| Auglly +- go I Awlly

i—1

<Co+6 36,7+,
Jj=0
Similarly,

i—1
(4.14) IAui lk,N é [Au0|k’N + 0 jzo [Aujlk
i—1 .
<C84 83 Oh0HN,
j—0

(E4) is now an immediate consequence of (4.13), (4.14).
To prove (ES) we make use of Lemmas 1.1 and 1.2. and E3 to get
4.15)

I Fi(SiAu) lkoo—yv = Chlll Siduylly - | Auyffd + | Sidu, ko * | At e - 1| Auylo),
(4.16) |F£(SiAui) Ikop,N =Cy lSiAui 'ko,N' !Auilfo_,ol .

Since ko > f 4 ¢ we use (E4) (b), and apply the property (S2) of the “molli-
fying” operator, thus obtaining for all N =0

I FA(SiAu) koo -1y + | Fa(SiAny) ikop¥ = Cu 8(6F~Diko—BrteN of(krﬂ)“w)’

< CN 605)([(0—5)4-.5}\[';
which is precisely (ES5).

To verify (E6) we use the property (S,) of the mollifying operator,
(4.17) (I~ 8) Auylog < COT* | Aurlagy + 67 | Auyfoin,)

< C'ei—15+8.No.
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Also, according to (E4),
(4'18) |(I - S') Aui Iko,No é C lAuitko,No g C 60?0"ﬂ+3~o’

valid for all N < N,. (E6) follows now by interpolating between (4.17) and (4.18)

(see Lemma 1.5.).
We proceed now to prove (E7). By definition (see (4.8), (4.9), (4.10)),

&1 =¢€_1+ .4,
e;-l = (F'(Aui—l) - F’(Si~l/1ui—l)) U_q.
Using Lemmas 1.1., 1.2. also (S1) and (E1)~(E4), we can write

4.19) I e;——l”l+z,0 =C [F)’.(Aui~l) - F)’.(Si—l/lui~—l)|l+s,0' e -1llo
= C|U - Si-) Au;_, |l_+_e’0' ll#:—1llo
Ite_, ?
<C 620,-1’ . 0,-_”
1+
<ce&or ¥,
Also, similarly,
14-¢
’ —— —28+eNo
lei—1lliyen, = C 620i2p s

and by interpolating between these last two inequalities (Lemma 1.5) we infer
that

(4.20) €S CEGE 2
for all N < N,. We also have
@21 | e;-l"pko,N
= C(Fi(Asti_1) |peo, v + | FASi—1483 1) |pieo,w) + 1 Attillo 4+ C(| Fi(At;_1) |pic0
+ | FA(Si—1A4;_1) | Proo - | Aty
< C §3pho—+DB+IN

elf—’—l = O(u) — D(u;_y) — ¢’(ui——l) i‘i—l
= —(F(Au) — F(Au;_,) — Fi(Au;_y) - Ai‘i—l)

1
= f (s — 1) Fif(Au;_q + sAu) A, - Aig;_, ds.
o .

Therefore, using (F3) and also Lemmas 1.1., 1.2., we see that
4.22)

e lillizen = C IAi‘ihj‘__{ N Aulln
220

+ ([Ad hﬂiN + | A |%,o (lAui—l |-'pﬂ,1v + |Ay; IL;,J:N)) ||/11.4i”o]-
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Estimating for N=0 and N = N, separately, by using (E1)-(E4) and then
interpolating we conclude that

(4.23) (A T Kiail

for all 0 < N < N,. Similarly, for any 0 < N < N,,
(4.29) e 1l gy <= C §2pPko—(pHDBEN

Now, (4.20) and (4.23) yield (E7) (a) while (4.21) yields (E7) (b).
We continue with (E8). Applying again Lemmas 1.1., 1.2, we can write

425 |llei-1llleoo-nv
= CN(llFﬁ(Si—lA"}-l) lkoio-10 + 1 F2(Si— 148 1) leso—1,0) 1 Ati 1[I v
+ Cy(IFi(Si— 144 Dllgo— v + I FA(Si— 1A Dllkao—1,0) | Atti—1llo
< C §2P~Dko—pB+iN_
for all 0 < N< N,. Similarly,
(4.26) 1€ 1|l lkp—ryw = € 82~ Dko =P+ 0 < N < N,
It remains to prove (E9) and (E10). By (4.6)

&= —(S; ~ Si_1) Ei_y — Sie;_y — (5; — Si—1) D(uo),
i—2
where E; ;= Y, ¢. By (S;) and (E6)
=0

1GSi — Si—1) Ei_qll14e0 < €O} ToRe? | E;_illkopo + Cei_EN" N E;~1fl1 45,3,
i-2 1+e

< C6201+‘“k°p2 ekop a+ 4 ¢ 8%0;” &Ny Z 0,

j=0

——— —28-£-&Ng

Since by (Dl), (Dz), -
kop_(l +P)/328,

1+e

we conclude that

(4.27)  |I(S; — Si—1) Eiilli+e0

< Cé (01+s—kop0kop e O’ENOB p 2ﬂ+¢1v<,>

1+e
<& (eil+e—(p+1)ﬂ . 0:7— —25)
14e

<cegr 7,
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14
by virtug of 8> —j—f. Also, by (E7) (a),

lj
(4.28) I Si€i-illi+e0 = C‘Szaip

According to the definition of u, (see (4.5)), P(uy) = F(Au,) and hence

1(S; — Si—1) Pl |l14e0 = C 1+ %o || F(Aug) |xop0 + €O =No | F(Auo) |1 +o,m,

1+e
- 2o
(4.29) S CHOITTR L 0N S €8
since by (0), (C) and ¢ small v
1
l+e—kop= +8—2ﬁ,
1
_aN, =12,

The inequalities (4.27), (4.28), (4.29) yield

1+e
(4.30) I&illi4e0 = € 876,7

We can get a’corresponding estimate for | g;|l;1 .17 and interpolating between
(4.30) we derive (E9) (a).
Similarly,

(4.31) I gillkop,y < C 820for—(FPPHEN " for all 0= N = N,

which is precisely (E9) (b).
Also, for all 0 =< N =< N,,
i-2 _
1168 = Si—1) Ei—tlllkao—nv = € 87 3, O~ Deomsfi e,

7=
Using (Sl), we have
4.32)

IH(Si — Si—1) Ei4 H|ko(p—1),N§ C&, if =N+ —Dky—pB< —s,

1S — Si—1) Eit|llkep—nv = Caze,(-p'__l)kvpﬂm, for N=No+7,

and
EN+(p—Dko—pf=c.

To prove (E10) we recall that

Rko,N(g) = ngiHlko(p—l),N + ”gi”kop,N'
Also
6i
26) = [ (1 + S)~C=Dds.
0
We distinguish two cases.
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Case 1°.
ko £ ——

then
720) < Coil+e-—-ko(p-l)

(we add an extra ¢ for the case ko(p — 1) = 1). Thus, by (E9) and the choice
of B for this case

(4.”31)
x(oi) Rko,N+ ;7(&') < C520,!+E—ko(p—l)[0{,cop—(l+p)ﬂ+E(N+§) + glEN] <C 620{_‘0—5‘*‘;1\’,

provided that (see ([J,))
1+3y+ 1 =pp

and
1+e+B=kop.
Case 2°.
1
ko >—;
o p _
then
x0) =1
and, according to (E9),
43D 700 Riniifg) < [Bform(HPPHNAD 4 o= Dlomsbravts)
for
EN+(p—Dko —pB+ey=ce.
Also
x(ol) Rko,N—H;(gi) g C 52[0{;017—(1 +p)B+&(N+7) + 1],
for .
EN+(p— D ko —pp+ &y < —¢.
Hence

200 Ry 17(8) = € 6%k —P+N,
provided that (see (O3))

kop—2+eF=(p— 1B,
for

eN+@—Dko —pf=c=.
Also

kfp—D+ey=pp for EN+(p—Dko—pf= —%.

Step III. First we remark that (E3) follows immediately from (E4) by just
choosing é to be small.
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We proceed now with a proof of (E1). To this end we apply the estimate (3.6)
to our linear equation (4.2) and show that

1+e
(4.33) ”Al.‘i”o =C, “g”l+e,y =C 529ip

Similarly,

(4.34)

| Awn, = Cu, (“gi"l+e,No+y + |SiAui’_1_j_—_§’ND+y Ngilliteo + | SedAu;fon, ”gi”l+3,y)
p

—28+ey

1+e - 142 - 1+ 1+e -
—— —28+6(No+¥) = —BHENo+y) ———28 . Zo284ey
= Cy, 6,” + 0, 6,7 4 670Neg,” )

e apiamot+n

1
< Cy, 66,

By interpolating between this and (4.33) we get

e aptiNot+ve)
(4.35) | Auyfixy < Cy, 8°6;7 , forall 0<NZN,,

and (E2) now follows, by choosing é small, from the inequality
1+e¢
p
14 ¢+ 2y
-
It remains only to prove (E2). For this reason we apply the estimate (2.16)

to (4.2) and derive
lAdi‘ko,N = 200) Rko,N+§(gi) + CNX(Oi) [(” F/{(Si/l“:) “ko(p—l),o + IF;.(SiAui) 1k.,p,o)
X || Augllyss + U FSiAu) i, o—yn+s + | FAlSidu) lepn+7) 1 At ]

We thus infer, from (E1), (E5), and (E10),

which is satisfied since £ >

(4.36)
| Ath; g v = Cy 820, PN 1 C %1 + g1 +3—ke(p—D) [gptko—F)g ~B+V+)
- grko—BHEN D) 6]
< Cy 52(0i—ﬂ+EN + 6§o+1—(p+l)ﬁ+s'(N+y'+l))
< Cy 077,

provided that
1+ + 1) =pb,

which is satisfied by our assumptions.
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By SoBoLev’s Inequality we have
1te spiz(yr 2
437 | Ao < C |l Aty <cogr F (r+5+1)
i10,0 i [_721_] +1 i

and since, again,

1+s+§(y+§-+1)

> >
p 4

we derive
(4.38) | Aujlop = C 8%0;7°.

Combining (4.38) with (4.36), and choosing § small and dependent only on N,,
we obtain the desired estimate.
This completes the proof of (E2) and our induction. To finish the proof of

Theorem 1 we remark that, (by (4.12)),
@@)lloo—>0 as i—oo.
Also it is easy to verify that
D) — P)]oo—~0 as i—oo,

where u = lim u;. Therefore, u is the solution to our problem.
joroo
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