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Introduction 

We are interested in large time behavior of solutions to nonlinear partial 
differential equations of evolution. More precisely we deal with the Initial-Value 
Problem for nonlinear equations which are perturbations of classical linear 
equations like: the Wave Equation, Klein-Gordon Equation, Linear Isotropic 
Elasticity Equations, Heat Equation, Schr6dinger Equation, etc. The aim is to 
show that for sufficiently small nonlinear perturbations the corresponding solu- 
tions behave asymptotically like the solutions of the linear equations. In particu- 
lar, we recover and extend our earlier results on global existence for nonlinear 
wave equations [1]. As in that work our method relies on a special version of the 
powerful Nash-Moser-H6rmander scheme which allows us to treat a very large 
class of perturbations. The method seems to be particularly suited for hyperbolic 
equations; however, we attempt here a treatement of other classical equations 
like the Heat Equation and the Schr6dinger Equation. 

For  some specific examples our method is too rough and indiscriminate to 
give optimal results. In particular, for the special class of  semilinear perturbations 
our results are weaker than what is available in the literature. However, we can 
allow here perturbations which contain, in general, derivatives of the same order 
as the linear part, for which the classical methods used in the semilinear case do 
not seem to work. 

We assume the linear equations that we intend to perturb to have the form 

(1 )  u, - F u  = 0 ,  

with the initial condition u(x, O) = u(~ 
Here u ---- u(x, t), (x, t )ERn• is a real (or complex) vector function. 

/"  is a linear differential operator with constant coefficients of order 7: 

[ 8 

,~,~ \~--~I " ' "  I,~-~-~.1 ; 
/ ~  are r •  r matrices with constant entries. 
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We assume that /~ satisfies a dissipative condition of the following type. 
There is a positive definite r x r matr ix  A ~ such that either 

(D) f Re ( A ~  dx  <= 0 

o r  

(D')  f P,e (a~ dx <= II 2 - VflIL~(R.) 

for any f E  C~(Rn). 

Examples:  

(LWE) Linear Wave Equation: 

Ytt - -  A y  = O, y(x,  O) = f (x ) ,  yt(x, O) = g(x) .  

To write it in the form (1) we introduce u0 = Yt, Ui = y x i ,  

rewrite (LWE) in the form 

U t - -  U =  0 
j = l  

where .4 /=  (akl)k,t=o,...,n 
data have the form 

i = 1 , . . . ,n .  We 

and a,t = 0 except for a0j = aj0 = 1. The initial 

( u(~ = g' Oxl . . . . .  Ox~ I 

u(.O ) 0 
' u ~  

is a first order linear operator with constant 

i~176 

(2)  

n 0 

The operator F = ~ .4i 
coefficients and i=l- 

f R e ( F f ,  f)dx-----  ~ R e R f ( 0 f J  - ~ )  So+ Z d x = O .  

Therefore condition (D) is satisfied with A ~ = L 

(LKGE) Linear Klein-Gordon Equation: 

Ytt - -  A y  + mZy = O, m =4= O, 

y(x ,  O) = f ,  yt(x,  O) = g.  

As before, we introduce the unknowns Uo = Yt, Ul = yx 1 . . . . .  Un = yx n, Un+l = Y 

and rewrite (LKGE) in the form (1). The initial data have the form 

uO(x) = g,-i~x f ,  . . . .  Ox ~ 

i . e .  

0 , (o) = u}O), 0 u}O) o o) 
(3) axj ax~ 0X O~*n+l - -  = ~ U )  . 
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(LIEE) Linear  Isotropic Elastici ty Equation: 

~2y i 82yk 02yi 

where c~, c2 are the speeds o f  propagat ion  o f  waves, are given as follows in terms 
o f  the Lam6 constants 2, #, and the density ~: 

c~ = (2 + 2ff)/e, 4 = #/e-  

The initial condit ions are yi(x, O) = f i (x) ,  yi,t(x, O) = gi(x), i = 1 . . . .  , n. 
For  convenience we rewrite the equation (L.I.E.E.) in the following form 

(see [6]): 
~2y i ~ 0 
Ot 2 = Cikjm OX k OX m YJ 

where Cikj,,, = Cikj,n + C~(OikOjm - -  dimOjk) and also 

Cikjm = ( 4  - -  2c2 2) f~ik(~jm -J(- C2( Oijt~km "q- (}kjf~im) �9 

Int roducing u~ k : DkYi, i : 1, 2, 3, k = 0, 1, 2, 3, 
12 first order  equat ions for  the u e 

D~176 : Z Cikjm DkUj m' 
k,j,ra 

OoUik ~ DkUiO, 

or, in vector  notat ion,  
3 

Dou : ~ A r D ,u ,  
r = l  

we obtain a system o f  

where Ai~jm = Cirjm OkO(1 - -  OmO) "q- OmO f~rk is defined for  i, j = 1, 2, 3, k, m = 
0, 1, 2, 3. (The subscripts i, k count  the rows and j ,  m the columns o f  the matr ix 

3 
A';  see [6].) Setting /~ : y~ ArDr  u and taking 

r ~ l  

AOkym : (1  - -  OkO) (1 - -  dtmo) Cikjm -~ (~ij ~kO (~mO, 

one verifies (see [6]) tha t  A ~ and A ~  r are symmetric and A ~ is positive definite. 
Therefore  Re f ( A ~  dx  ---- 0 which is our  condit ion (D). 

The initial da ta  u (~ have the form 

o r  

(4) 

0 
~<o> g , ( x ) ,  , ~o~ _ T - 7 - f ~  so = "ik - -  (X), i =  1 , 2 , 3 ,  k =  1 , 2 , 3  

CXk 

0 
.,(o) ! , , ( . 9 )  for  any i, j ,  k = 1, 2, 3. 

3xj "ik oX "w , 

In the next  examples / '  will be a scalar opera tor  o f  order  greater than 1. 
Also in these examples A ~ = L 
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(L.S.E.) Linear Schr6dinger Equation: 

1 A 
U t - -  - : -  U =  O, 

l 

u(x, o) = u(~ 

Here / ' =  L A satisfies 
l 

Re f ( I f ,  f )  dx = O, 

which is our condition (D), with A ~ = I. 

(L.H.E.) Linear Heat Equation: 

ut -- Au = O, 

u(x, o) = Uo(X); 
F ----- A satisfies 

Re f (Iy, f ) d x  = -- f IVfl ~ dx, 

which is condition (D'). 

(A.E.) The Airy Equation: 
8a 

ut + U~x : O, F = - -  ~3X3 ' 

u(x, O) = Uo(X), 

Re f (Ff, f )  dx = O. 

In what follows we denote by W(t) the fundamental solution of (1.1). Thus 
W(t) u (~ is a solution of (1.1) with initial data u (~ and it is unique. In all the 
examples mentioned before W(t) satisfies the following basic decay property: 
There is a differential matrix P such that 

([]) I W(t) u(~ ~ C(1 + t)  -k~ Ilu<~ 
for all u (~ E L~(R")/5 L~176 ") that satisfy 

Pu (~ : O. 

Indeed, one derives this estimate for all the above examples from the classical 
explicit form of the solutions. For (L.W.E.), (L.K.G.E.) and (L.I.E.E.) the differ- 
ential matrix P is defined by the relations (2), (3), (4) and imposes the natural 
restrictions on the initial data u (~ corresponding to the initial data of the original 
second order equations. In all other examples P ~ 0. For (L.W.E.) we have 

n - - 1  
(see [1]) ko- -  2 ' for (L.I.E.E.) n = 3  and k o =  1 (see [6]) while for 

n 1 
(L.K.G.E.), (L.S.E.) or (L.H.E.) ko = -~--. Finally for (A.E.) n = 1, ko = -~- 

(see [7]). 
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We now consider nonlinear perturbations of (1) 

(N) ut -- 1-'u ---- F(u, Du), Du = (U,, UXl . . . . .  U x n ) ,  

u(x, O) -- u(~ Pu (~ = O. 

Naturally, we assume that F is compatible with the set of constraints induced 
by P, i.e., 

PF(u, Du) :~ O, u Du. 

We also impose the following conditions: 

(Fx) A~ A~ i = 1 . . . . .  n, 

are symmetric r • r matrices and Fut is independent of Ur 

(F2) IF(u, Du) I ~= C(lu [ § IOu[) v+l 

for [u] + ]Du[ sufficiently small. 
In case F satisfies the condition (D') we can allow F = F(u, Dxu, D2u) in 

our perturbation. In this case (F1) is unnecessary. 
We now state our main theorems. 

Theorem 1. Assume ,(pl) 
(C) - -  1 + < ko 

P 

where ko, p are the numbers defined by ([]) and (F2). Also assume p is an integer 
and that F is smooth. There is an integer No ~ 0 and a small ~7 > 0 such that i f  

I1U(~ =< ~, II U(0)IIL~,No < ~, 

then there is a unique smooth solution u E C1([0, T], Cr(Rn)) of  (N). Moreover, 
the solution behaves, for t large, like 

/ _ I + ~  
[u(x,t)l-- Okt , }, as t - - ~ ,  

for some small e > O. Also 

[[U(t)l[L2Otn)=O(1), as t ~ .  

Remarks. (1) The unpleasant requirement that p be an integer is imposed only 
to ensure that F is smooth near the origin. It can be avoided if the number No 
appearing in the theorem can be made small. The value of No can be made precise 
(see Section 4) but our results are very crude for estimating it closely in concrete 
examples. (2) The asymptotic behavior of the solution given in Theorem 1 can be ,(pl) 
improved if ko >> -)-- 1 + at the expense, eventually, of requiring No to be 
larger. 

Theorem 2. Let u(x, t) be the solution of  (N) introduced by Theorem 1. There is 
a unique solution u+ of (1.1) such that 

II u(t) -- u+(t)[IL~ -+ O, as t -+ -4- oo. 



78 S. KLAINERMAN 

Proof  of Theorem 2. We define 

(5) u+(t) = u(t) + f W(t -- s) F(u(s)) ds 
t 

where W is the fundamenal solution of  the linear equation. The convergence of 
the integral in (5) follows easily from the asymptotic properties of u given in 
Theorem 1. 

In the remaining part of this introduction we illustrate our theorems on per- 
turbations of  the linear problems presented above. 

(N.W.E.) Nonlinear Wave Equations (see [1]): 

Yn -- dy  =- G(Dy, D2y), 

y(x, O) = f(x),  Yt(X, O) = g(x). 

Rewriting the (N.W.E.) as a symmetric hyperbolic system verifies condition (F1) *, 
provided t h a t  aytt be independent of Ytr Also condition (F2) is equivalent to 

[a(Oy, O~y)l < C(IOy I + IO2yl) "+' 
n - - 1  

for small I Dy l, [D2y 1. Since for this case k o = 2 , condition (C) becomes 

1 +  < - - - ~  

For  p = 1, this implies n > 6 which is the result obtained in [2]. For  p = 2, 
n > 2 + {. In particular the result is valid for n = 3. For  p = 3, n > 1 + { ;  
therefore, Theorem 1 holds for n = 2. 

(N.I.E.E.) Nonlinear Isotropic Elasticity Equations: 

t~2y i 
a2Yi = Cijkm (Vy) a ~ k X  m 
~t2 j,k,m=l 

where y = (Yl, Y2, Ya) as a function of  ( x , t ) E R a •  is the displacement 
vector (see [6]) and Vy is the gradient (Yxl, Yxv Yx) of y. We also have (see [6]) 

a2E au t 
auik aUjm where U~k ~ aXk ' Cikjm ~ Cjmik : 

Cikjm(O) = C~kjm 

We assume 

defined in the (L.I.E.E.). 

(6) ]C,kjm(Vy) -- c,~j,~(0) I ~ C IVy[" vi, k,j, m. 

Following FmTZ JOHN [6], we can rewrite (N.I.E.E.) as a symmetric hyperbolic 
system: 

3 
(7) A~ ut = ~_~ A~ At(u) D,u 

r = l  

* See the next example. 
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where Uik=DkYi ,  i---- 1,2,3,  k = 0 , 1 , 2 , 3 .  Also A ~  ~ A ' ( 0 ) = A  ~, 
previously defined in (L.I.E.E.). Thus we can rewrite (D) in the form 

u t - -  F u  = F ( u ,  Du) 

where, with Br(u) = A~ �9 A'(u) and B r =  A~  ~, 

3 

A ~  F(u, Ou) : ~ (Br(U) - -  B r) D~u - -  (B~ - -  B ~ Dtu. 
r=l 

The condition PF(u, Du) : 0 is automatically satisfied by our construction. 
Condition (Ft) is also satisfied since Br(u) - -  B r and B~ - -  B ~ are symmetric. 
Finally (F2) is equivalent with condition (6). Since n : 3, ko = 1, condition (C) 
o f  Theorem 1 becomes: 

1 +  < 1 .  

which holds for p ~ 2. 

(N.K.G.E.) Nonlinear Klein-Gordon Equation: 

Y t t  - -  V y : G(y, h y ,  D2y). 

Assume t h a t  aytt is independent of Ytt and 

]a(y, By, D2y)l < C([yl + IDYl + Io2ylF +1. 
Then Theorem 1 holds provided that 

For  rates of decay of solutions of (L.K.G.E.) see [8]. 

(N.S.E.) Nonlinear-Schr6dinger Equation: 

ut 1 d u ---- F(u, Du).  
l 

Assume that Fut is independent on Yt and ]F(u, Du)] <-- C(lul + IDu[)p§ 
Then Theorems 1 and 2 hold, provided that Fou is real and 

1+ __<~-. 

For F = F(u) and n = 1 we improve the results of W. STI~OSS [7]. How- 
ever, for this case, even better results were obtained recently in [4], [5]. (See also 
[10].) 

Remark.  Our result will also apply to coupled nonlinear Schr6dinger equations 

1 A ut - -  - 7  u = F(u, Du), where u is an r-vector. In addition to the assumptions t 
made before we also need 

Fit, F~,xi, i = 1 . . . . .  n, are selfadjoint r•  r matrices. 
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(K.W.D.) Korteweg-De Vries Equation: 

ut + Uxxx = F(u, Du). 

Here Fur is independent of  ut: 

IF(u, Du)[ ~ C(iul + [Dul) p+', 

3 +  1) 1 
1 + < - ~ - ,  or p >  2 

which improves the result of [7] where it was assumed F(u, Du) = f'(u) ux and 
p > 4 .  

(N.H.E.) Coupled Nonlinear Heat Equations: 

u t -- zl u = F(u, Dxu, D2xu); 

u is an r-vector and F satisfies IF(u, Dxu, D~u)[ <= C(lul + IOxul + ID ul) p§ 
for small ]u 1, I D~u 1, t D~ u 1. 

Theorem (1) holds provided that 

1 +  < - ~ -  

where n is the dimension of the space of x. The linear part of the N.H.E. satisfies 
condition (D'). The only difference in the case where (D') is satisfied rather than 
(D) is in the derivation of the energy estimate (Section 3). The modifications are 
rather straightforward, but a complete proof for the case (D') will be omitted 
here. 

The heart of the paper is Section 4, where we construct a solution to'(N) using 
a NASH-MOSER-HORMANDER scheme. The scheme follows, with some modifica- 
tion, that presented by HORMANDER in [9]. The main modification consists in 
the presence, in addition to the usual "smoothing" operator, of a "cut off" in 
time operator. This is necessary in view of the "loss of decay" in the linear esti- 
mates presented in Sections 2 and 3. Further complications arise since it is nec- 
essary here to work not just with one scale of Banach spaces, as in [9], but with 
three double-scales of different nature corresponding to the norms 

[ tk,N = sup (1 + t )  k ][U(t)llLOO,N , 
t~O 

II Ilk,N----- sup (1 + t) k IIu(t)IIL,.N, 
t~0 

I1[ 14lk,N = sup (1 + t)kllu(t)llLi,N. 
t~0 

However, some of these difficulties have been already encountered in [1 ]. Further 
difficulties are due, here, to decay estimates more general than those in [1]. 

Section 1 is devoted to a review of the calculus inequalities needed in this 
work. They have already been used and proved in [1]. I also present here the 
properties of the "smoothing" and "cut-off" operators S~ $2(0'). Section 2 
is devoted to decay estimates for the linearized problem. Due to the more general 



Nonlinear Evolution Equations 81 

condition (F2) on the nonlinear perturbation the estimates here are quite different 
from the corresponding ones derived in [l]. Finally, Section 3 is devoted to energy 
estimates. Condition (F~), on the nonlinear perturbation F(u, Du), assure similar 
type of  energy estimates as for the Symmetric Hyperbolic Systems. 

Notation 

We use the following standard notation: x-----(xl . . . . .  x,) E R n, 

D~ ~ = Dxl,~l. . . . . .  D~" with~ Ox~ = ~x--~ =O~, o~=(~ l . . . . .  o<,)Elgn, 1or [ = oq + ... + 0 %  

F o r f : R " - + W  we write [IflILP = max ( f If(x)lP dx) I/p, I]fl[LP N ~- Z IID~fIILP ' 
i=l , . . . , r  ' I M ~ N  

I[ D~fI[L, = ~ [ID~fIILp for s > O. 
I~l =s  

For  a given r-vector u----u(x, t), (x, t ) E R n •  we set 

Du = (Uxo, Uxl . . . . .  Ux) 

where Uxo stands for u t. Also A u  = (u, Du) is the vector u together with its first 
derivatives. For  an r-function F(2) which depends on the variables 2 = (~i, ~jk), 
i = 1, . . . ,  r, j---- 1 . . . . .  r, k = 0 . . . . .  r, we shall use the following notations for 
the Fr6chet derivatives: 

F'~(Au) Av  = ~ F;ivi + Y~ F;jk DkV j .  
i = l  j , k  

Occasionally we also use the notation Fu, Fi t, F~ku, k = 1, . . . ,  n for the r •  r 

matrices (Fi]~), (F/intu), (FilokU), i, j = 1 , . . . ,  r. 
We also use the norms 

with 

IlUIILP.kN = sup (1 + t)l' llu(t)llLPN 
, , t > O  

l U fk, N = II ulILo ;,,N, 

I/ull , ,N= IlulIv;k,N, IlUlIN = IlUlIo, r 

Ilrul[l ,N = IluftLl; ,N. 

w 1. Preliminaries 

Consider the nonlinear functional ~(u) = u t - - l " u -  F(Au) 
stands for (u, Du). To solve our nonlinear equation 

(1.1) O(u) = O, u(x, O) = u~~ 

where Au  
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by an iteration scheme, we have to be able to obtain "good" estimates for the 
following linearized problem: 

(1.2) Lo(u) v =- g, V(x, O) = 0 

where 

(1.3) Lo(u) v = v t - -  Fv  - -  V'~(SoAu) . A v .  

Note that Lo(u) differs from the Fr6chet derivative q)'(u) by the mollifying 
operator So which was defined in [1] (see Sections (6) and (7)). So is the product 
of a "cut off" operator S~ in t with a smoothing operator S(2)(0 ') in x where 
0' = 0 ~, ~ > 0, and has the properties 

(S1) lift -- So)ul[L~;o,o < C~,k,u(O -~ II ullLq;k,o + o--;N HUI[Lq;O,N )' 

($2) II SoUlILq;k,N <= C~,k,u Ok-k~176 l U ILq,ko,uo 

for 0 ~ ko ~ k; 0 <= No =< N. The norms here are those defined in the section 
on notation, above. 

The following properties of the norms ] ]L.;k,N will be used repeatedly: 

1 1 1 
Lemma 1.1. Assume gl ,  g2 E C~176 cx~) >(•n) ,  - -  + h and k = k l  q- k 2. 

Then q qx q2 

Igxg21L2;k,N <= C(llglllLq,;k.N" Ilg21lLq*;k=,N + IlgallLq,.,k~,N" IlgallLa2;k,,0)" 

Lemma 1.2. Assume u is a vector function in (C~((0, ~ )  •  and F = F(u) 
is a smooth function o f  u. Then 

II F(u)I[Lq;k,N ~ CL0;k,n (1 + l[ ulILq;k,N), 
provided that 

IlullL~;0,0 < 1. 

The proofs of these two propositions are based on the following two lemmas of 
calculus. 

~J 

1 1 1 
Lemma 1.3. Suppose f t , f 2  E C~176 Then fo r  - -  § - -  we have 

q ql q2 

(i) [[DSflf2llLg <= Cs(IIA[IL~ " llD~f21[Lq~ + IID%IIL~ [[AIILq), 
(ii) [[D~(Af2) - -  f l  O~f2llLq <= Cs(llOf~llL~ IID'-~f2IIL~= + IID~TII[Lq~ " IIAIIL~=. 

Lemma 1.4. Suppose w is a vector function in (C~(R")f and F = F(u) a smooth 
funct ion o f  u. Then 

IIDNT(w)IIL~ <_ CN, q(IIDNWIILq -+- l), 

provided that [] wlILo~ --< 1. 
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We also use the following interpolation lemma (see [1], Section 6).  

Lemma 1.5. Suppose u E (C~[0, c~] • be such that 

[u Io,o =< C 0 %  

]u ]k,N <: C OK+~N-~, for  k q- 2N -- fl >: "~ and 0 <-- k <-- 1c, 0 ~ L ~ L .  

Here ~ > O, fl > ~ and k, N are f i xed  positive numbers such that 

~-~>=~, a~-~>~. 
Then 

I u Ik,N ~ (Ck, N" C) 0 k+AN-~, 

for  all O<_k<-- fq  O < : N < : N .  

Remark 1. The Lemmas 1.1 and 1.2 will be used specifically for the norms 

(1.4) I Ik,N = II I[L~176 

H I[k.N = [I I[L2;k,N, 

][I I][k,N = II II~I*,N" 

w 2. Decay estimates for the linearized equation 

As stated in the Introduction, the fundamental solution W(t) of the linear 
equation 

(2.1) v t - - / - ' v = 0  

has the property 

(n) I W(t) vo[LoO ~: C(1 + t) -k~ [[V0[ILIn, 

for all Vo such that Pvo = O. 
We recall that, by definition, W(t) Vo is the solution of(2.1)for initial data Vo. 

Also, by the dissipative condition (D) imposed o n / ~  we also have 

(2.2) II W(t) v011L2 =~ II V011L2. 

In what follows we investigate the decay of solutions of the inhomogeneous 
equation 

(2.3) v t -- 1-'v = h(t), Ph(t) = 0 

where we write the solution v of (2.3) in the form 

t 

(2.4) v(t, .) = f w( t  - s) h(s, .) ds. 
0 
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Splitting the integral in (2.4) into an integral between 0 and t/2 and one between 
t/2 and t and applying (i) on the first part and (ii) on the second, we derive 

tl2 t 
(2.5) Iv(x, t) l < c f (1 + (t - s))-ko II h(s)IILI..'ts + C f II h(s)llL=.. ,Is. 

0 t12 

Applying (2.4), we can also write 

o 

(1 + t) k~ v(x, t) <= Csup (1 + s) k~ llh(s)llL,,.of (1 + s) -k~ ds 
s~_O 

0 
+ Csup(1 + s) k~ ][h(s)[[L2,n f (1 + s)-k~ 

s~O 0 

and, with the notations (1.4), 

(2.6) 

where 

(2.7) 

[vlko,O ~ c~(o)I[Ihlll~o(p-,),~ + I[hllko~,,., 

0 

Z(0) = f (1 + S) -k~ 
o 

Similarly, taking space derivatives of the equations (2.3) we deduce 

(2.8) 

where 

(2.9) 

Also from (2.3) 

I v Iko,N ~ Cz(O) Rko,n+N(h), 

Rko,N(h) = Ill h Ill~o~-,,u + Ilhllkop,N" 

IV, lko,N ~ IVIko,~+N + lhlko,N, 
where y is the order of the operator F. Thus 

I v, lko.~ < Cz(O) R~o..+~+~(h). 
Hence 

(2.1o) [AVlko,N < CZ(0)R~o,;+N; P = e + n. 

We are going to apply this estimate to equation (1.2) which we rewrite in the 
form 

v, -- l"v = Fa(SoAu) . Ao + g, v(O) = O. 

Thus, assuming that (2.3) is satisfied for g, we deduce from (2.10) that 

(2.11) IAvl~o,N 

<= CnZ(O) till F'~(S~Au) Av II Iko<~-,,~+~ + 11 e;(aoAu) Av Ilko~.N+~ + Rko,N+~(g)]. 

By Lemma 1.1., 

(2.12) IIIF'~(SoAu) Avlll~oo,-,),N+~ 
-<- CN(II V'~(SoAu)Ilko~- ~),0" 11Av IIN§ + II F'~(SoAu)II ko<p- ,,N+~" U Av I[o), 
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and 

(2.13) 

I[ F'~(SoAu) AUlIko,N+;, < CN([F'~(SoAu) [ko,.O " IIAVlIN+;, 4- [F~fSoAu)[koWV+; Ilavl[o) �9 

On the other hand, by Lemma 1.1., 

(2.14) 

II F~( SoAu) IIKoO,- ,~,M < c~(] Au I'~FA . Il SoAullM 4- IS~iul~o~. [[Aul[~,o 2. ItAullo), 

(2.15) [ F; ( So Au) I~o~,~ <= c ~, l S ~ u  [~o,~. 1Au I~J 

provided that [Au Io,o <- 1. 
Thus assuming that 

IAu [o,o _< 1, 
we conclude from (2.11)-(2.15) that 

(2.16) 

where 

and 

[[Aul[o ~ 1, 

[AUIko,N ~ z(O) [Rko,~+N(g) .2y CN [IAvllo- ([S0AUIko.~+N 

+ IlS~ull~+N)(1 + IAuls + cNIIAvII~+N" (1 + [Au[~o,o), 

~ , = r + n  

o 
z(O) -- f (1 + s)  -ko~ ds, 

o 

Rko,N(g) = II[gll[koO,-1),N 4- Ilgllkop,,,§ 

This estimate will be used in the proof of convergence in Section 4. 

w 3. Energy estimates for the linearized equations 

Lemma 3.1. Consider the following linear system: 

(3.1) EV t - -  ~ v  = ~ Aivxi 4- By 4- g ,  
i=l 

where v, g are r-vector functions in (x, t ) E R " •  and E, At . . . . .  An, B are 
r • r matrices. Assume 

(i) P is a linear differential operator with constant coefficients in R n, such that 

f Re (/~f,.f) dx ~ O, Y fE  C~~ 

(ii) E, A1 . . . .  , A ,  are self  adjoint r •  matrices and 

(E(x, t) ~, ~) > co 1~ I 2, co > O, 

for  any ~ 6 R  ~, (x, t)ERn• 
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Then 

,4 
(iii) ~ II v(t)lie ~ c(I DtE(t) ]L ~ + [DxA(t) IL~) �9 II v(t)HE + [[ H(t)ILL2, 

where H =  By + g and 

[[v(t)ll~-- f <E(x, t) v, v> dx. 
It n 

Also 
d "  2 

(iv) ~-I[ v(t)IIE, N ~ CN(I DiE(t)]L ~ + IDeA(t)IL ~ + I B(t) ]L~)" I[ v(t)IIE, N 

+ I DxE(t) IL~N_I + ]DxA(t) IL~,N_I q- [B(t) [ L ~ , N )  �9 II v(t)lie --}- II g(t)HL2,N, 

where 
IIv(t)llZe.N = ~ IID~%(t)llZE �9 

[al<N 

The proof of Lemma 3.1. is a straightforward modification of the proof for 
the classical energy estimates for symmetric hyperbolic systems. 

By Gronwall's inequality and (i i)we derive from (iii) 

( j ) i c IIv(0)IIL2 + Ilg(s)lIL2dS II V(t) l L2 <= 

t 

• f (JD,E(S)IL~ + ID~A(s) IL~ + IB(S) IL~)aS. 
0 

Using the notation introduced above, we rewrite 

(3.2) 

Ilvl(o =< :C,(JIv(O)IIL~ + [IHl[l+~,0) �9 exp C3(ID,E[~+,.o + [DxA [~+,,o + [BI1+~,o), 

where t is a small positive constant. Similarly, from Lemma 3.1 (iii), and (3.2) 
we infer that 

(3.3) IlvllN < C~,N[IIv(O)IIL2.N + IIglII+~,N + (ID,E],+~.N-1 

+ [a ]~+~,N + IBI,+~,N)I[gll~+,,o] �9 exp C~(IO,El,+~,o + IDxA 11+,,0 + ISli+~,0) �9 

We now apply (3.2) and (3.3) to the linearized form (1.2) of our nonlinear equa- 
tion (1.1). In this case we have E = A ~ -- A~ Ai = A~ 

i = 1, . . . ,  n , 'B = A~ and /~ = AoF. Also, in this case, v(0) = 0. 
To estimate IIAIII+,,N, IIB]II+,.N, IDEI,+,,~-,, IA Ii+,,u, we apply Lemmas 1.1. 

and 1.2. Also, by the hypothesis (F2) on F, we deduce 

ID,EI,+,.~-i + IA 11+,,~ + IBI,+~,N--<-- C~ IS~ul,+~ ~, 
P 

provided that ]Aul1+,,0 =< 1. Since E depends only on (u, D~u), 
P 

IotE[,+,,o + lZ~A I,+,,o < C IAul,+, ,. 
P 
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We thus obtain from (3.3) the following estimate: 

(3.4) Itvllu < C~,N([lgllt+~,N+ ISoAu[t+__.2,N'llg[lt+,,o ) '  
P 

provided that [Au It+__2, t <= 1. 
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P 

We can estimate vt from our linear equation (1.2): 

v t (I ' 1 = -- F~,,)- Fv  + FJ, xiVxi + F',,v + g 

and thus, for [Au Io,o <= 1, 

(3.5) IIV, IIN <= CN(llVllN+~ + [SoAu[o,N. llvll:, + IlgllN), 

where ~ is the order of our differential operator / ' .  
Combining the last two inequalities we obtain 

(3.6) 

[IAVIIN <= C,,N(IIgIII+,,N+~, + ISoAul_~,,,+, Ilglh+,,0 + ISoAulo,N" Ilglh+., 0, 
provided that I Au I~+, <= 1. 

P 

w 4. Iteration Scheme 

To solve our nonlinear problem, we construct,: following HORMANDER [9], the 
iteration scheme 

(4.1) ui+l = ui + u i ,  i - -0 ,  1 . . . . .  

where ui is the solution of the lineafized equation 

(4.2) Lii~i ---- gi, ui(0) = 0 

with L i = Loi(Ui) defined in w 1, i.e., 

(4.3) Liv = vt --  -Pv --  F'~(StAui) Av ,  

Here S i is the mollifying operator Soi defined in w I where 

(4.4) 0j = 2 i, i = 1, 2 . . . . .  

The first step Uo in our iteration is selected so t h a t  

Uo,t -- I'Uo = O,  

(4.5) Uo(0, x) = u~ 

Thus every uz in our iteration scheme satisfies the given initial condition. 
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The g{s in (3.2) are so defined that the u{s converge formally to a solution 
of  our equation. More precisely, 

go = - - S o O ( U o ) ,  
(4.6) 

gi = - - ( S i  - -  S i - 1 )  E i - 1  - -  S ie i -1  - -  (S i  - -  S i - l )  ~(Uo), 
where 

i - - 2  

(4.7) Et-1 = ~ ej ,  
j=0 

r t  
(4 .8)  ej = e j +  e j ,  

(4 .9 )  e j  = ( # ' ( u j )  - -  Lj )  uj ,  

(4.10) ej '  = ~b(Uj+x) - -  ~ ( u j )  - -  ~ ' (u~)  (uj+~ - -  u j ) .  

The g[s depend only on u 1 . . . . .  ui; according to (3.2) and the definition of  g, 
they satisfy the relation 

(4.11) ~(ui+l) -- ~/i(ui) ----- gi + ei.  

Adding and applying (4.6), we find that 

(4.12) ~ ( u i + O  = ( I  - -  S t )  Ei  q- et + ( I  - -  S i )  ~(u0). 

Since Si---> 1 and ei ~ 0 as i---~ c~, we have formally 

lira ~(u~+l) = 0. 
i---~- oo  

Therefore, if u = lim u~ exists, it will be the desired solution to our problem. 
l---~ oo  

�9 The convergence of  the u{s is an immediate consequence of  the following 
estimates: 

(El) II AujlIN < ~Off fl+;N, 

(E2) IA/~sl~,~ = < ~07 a+k+;N, 

valid for all 0 _--< N <__ No, 0 _< k --< ko, 

(E3) [Aujl~+, ~ 1, IIAuAo'< 1 .  
P 

Here fl and No are fixed constants which depend on ko, p and also on y, n, 
in the following way: 

1 +  

Moreover, k .  is the number defined by (~-1) (see the Introduction). 
To choose fl we distinguish between two cases: 

C a s e  I .  

1 ( 1  + 1 ) <  ko < 1 
= p - - l "  
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Then fl has to satisfy the restrictions 

89 

1 + e-l- ~@ q- 1) <fl<kop--'~ 
([22) p : 1 -q- p 

Case 2. 
1 

~ <  ko. p - - 1  

Then fl has to satisfy ([22) and 

ko(p -- 1) + ~ ~ p/~, 
([23) 

ko(p -- 2) + ~ _< (p -- l) ft. 

Here ~, e are two sufficiently small positive numbers which appeared previously 
in the definition of  So and also in the linear estimates of  Sections 2, 3. 

Assuming El, E2, E3 are satisfied, we have 

o o  

~ llA(uj§ -- uj)llN ~ C < oo, if --fl + -~N < O, 
i=0  

I A ( U j + l -  u~)[k,N ~ C < oo, 
j = 0  

if --fl q- k q- gN < 0, 

which implies the convergence of uj to a solution u E C1([0, T], &(R~)) of  our 
1-+-e 

problem. Moreover, since fl > ~ ,  we have 
P 

[u(x, t)[ = O V---p-),  as t -+  oo, 

which proves Theorem 1. 

Warning. In the long proof  of  (El), (E2), (E3) which follows we will use the 
same letter C for any constant independent of  0~. C may depend, however, on No, 
ko, e, ~, fl which are supposed to be fixed by ([21), ([22). Constants depending on N 
will be denoted by CN. 

We remind the reader of  the following assumption on F (in the Introduction) 
which will be used repeatedly in the sequel: 

IF(au)[ < C Iaul ,§ 
and also 

I•(/u) I < c  IAul', 

IF~(Au)I <= C IAul "-~ 
valid for 

IAul < 1. 
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In the process of proving (E1)-(E3) we will derive the following sequence of 
estimates: 

(E5) IF~(S, Au)Iko~,N + I[~(S, Au)Ilko<~-,,N~ CN~20~k~247 for all N ~  0, 

(E6) [(I--Sj)AUj]kN<C~O k - ~ + ; N ,  = for all 0 < k < k o ; - -  -- 0<N<--No,-- 

(a) I1 ey-i [[l+e.N ~-~ C ~20j ~-~ -2~+iN, 
(E7) 

(h) II ej-~l[koP,N <= C ~r162176 , for all 0 _~ N =< No, 

(E8) I llej-~ [[ kp--1)ko.N <: C ~20?-m~ 
l + r  

(a) [Igj I[I+~,N ~ C ~20j%---~+~N 

(b). II gj Ilpko,N ~ C ~20fik~ +I,)~+gN 
(E9) 

(c) I[Ig~lll~o<~_,,~=< C6 2, if e N + ( p  - -  1) ko - -  pfl <= --~, 

[llgjllIkoo_,),,,<_-- c o~o +-')~.+~+~ if N <-- No + "/, J 

(El0) Z(Oj) Rk,N+~gj) <= C t$20 k~ for all 0 --< N --< No. 

The strategy for proving these estimates consists in the following steps: 
Step L We prove that (E4)-(E6) and (Eg), (El0) hold for i = 0. These estimates 
depend only on the given initial da ta .  
Step 11. Assuming that (E1)-(E10) hold for all j ~ i -- 1, we show that (E4), 
(El0) hold for j = 1. 
Step III. We show that if (E4)-(E10) hold for j ~ i, then (El), (E2) and (E3) 
also hold for j =  i. 

Step L By definition Uo is a solution of (4.5). Thus by (I~) (see the Introduction) 

l Uo(t) IL~,~ <-- C(1 + t)-k~ II u~ 

and immediately from this 

I Auo Iko,N <= C [I U <~ 
Therefore, by the hypothesis of Theorem 1 

I Auo Iko,N <= C ~, for all 0 ~ N ~ No. 
Similarly, 

IIAuolIN < I[ u<O)IIL~,N+, <= C ,~ for 0 ~ N <: No. 
and (E5), (E6) follow easily from (E4) (see Step II). 

(a) IIAjulIN <: C ~, if --fl + ~N --<__ --~, 
(E4) 

[Auj [k,N "~: C ~, if k -- fl -}- ~N :< --~, 
and 

(b) IIAujlIN <: C 807~+;s, if --fl + ~N :> ~; N ~ No, 

IZujlk+, <= C ~O~-~+~ if k -- fl q- ~N >~ "~; N ~= No, k <= ko, 
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To prove (E9) we remark that, by (4.6) and (4.5), 

go = -- SotlS( uo) = -- SoF( Auo) ; 

thus, by our hypothesis on F, 

IIg01[l+,,N =< C IAuoI~++,N. I[ZuollN < C6,  
P 

Ilgollpkp.N "< C IAuolL.N" ItauollN <= C ~, 

Illglltlko~-,.N < C I h u o l s  IIZu01[ 2 ~_ C ~2, 

(El()) follows easily now from (E9). 

for any 0 ~ N ~ N o + 7 .  

(4.13) 

Step H. From (El) and (4.1) we derive the inequality 

i--1 

IIAusllN < IIAuollN + Y~ IlAi~/Is 
j = 0  

t - 1  
< C~ + ~ ~ OJ  +~N. 

j = o  
Similarly, 

(4.14) 
t - i  

IAU,[k.N ~ [AUoIk.N + ~ E [Af~jlk 
j = 0  

1-1 
< c ~ + ~ Y~ O~ -~+'+N. 

j - O  

(E4) is now an immediate consequence of (4.13), (4.14). 
To prove (E5) we make use of Lemmas 1.1 and 1.2. and E3 to get 

(4.15) 

II F';.(SiAu,)[[koO-I),N ~ CN(II StAu, IIN " I Au, IL-~o t + [ S~Au, [ko,N " I Au, I~Zo 2 . I[ Au, IIo), 

(4.16) ' . =  . i A u  p--1 ]F~(S, Au3 ]kop,N < CN [S, Au, Iko.N ', , ko.0. 

Since ko > fl + ~ we use (E4) (b), and apply the property ($2) of  the "molli- 
fying" operator, thus obtaining for all N >_ 0 

II F'a(S~Au3 Ilko~-t).N + I F'a(SiAu3 ikop,N <= CN ~(0~-l• + op~ko-a)+'N ), 

which is precisely (E5). 

To verify (E6) we use the property (S~) of the mollifying operator, 

(4.17) ](I --  S,) Au, lo,o < C(Oi -ko IAu, lko.o + 0, -+No Iau,  lo,,o) 

=< CO;-a+;No 
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Also, according to (E4), 

(4.18) I ( I -  S,)AU, Iko.N o <-- C [AU,[ko.No <= C ~0~[ ~176 

valid for all N ~ No. (E6) follows now by interpolating between (4.17) and (4.18) 
(see Lemma 1.5.). 

We proceed now to prove (E7). By definition (see (4.8), (4.9), (4.10)), 
p t t  

e i _  1 = e i _  1 -1- e i _ l ,  

t t 

ei-i = (F (Aut-O -- F'(Si- lAui-1))  ui- t .  

Using Lemmas 1.I., 1.2. also (S1) and (E1)-(E4), we can write 
p t t 

(4.19) II e~-llh+,,o <: C lF'~(Aui_t) -- F'~(Si_lAUi_t)]l+,,o. Ilu,-lllo 

C [ ( I -  Si-O Au~_t It+.__2, o. 11~,-111o 
P l+e 

=< C ~20~-7--a. 0/_ a 
l+ s  

=< c ~20,-7--u. 
Also, similarly, 

l+e 
t Ilei-lllt+.,No < C t}20, "-~-21J+*N~ 

and by interpolating between these last two inequalities (Lemma 1.5) we infer 
that 

1+, 
-- 2fl + gNo �9 < 

(4.20) [I ei- 1111+*,N : C ~20 i p , 

for all N ~ No. We also have 

(4.21) II e~-l/lpko,N 

<= C(IF'a(hu,-O lpko,N + [F'~(S~-tAu,-1) Ipko,N) " IIA/~,l[o + C(IF](Au,-O [pko,O 

e A + IF'a(s~-i U,-O[Pko,O" IIAk, IIN 
C t~20f k~  , 

t r  t �9 

ei- 1 = #(ui) --  #(u~_ 1) -- ~ (u~_ l) Ui- 1 

= --(F(Au,) --  F(Au,_t)  --  F'~(Au,_I). A/~,_t) 
1 

--  f (s - 1) F'~'a(Au,_l + sAu3 Ai~i_ 1 �9 Ait,_t ds. 
0 

Therefore, using (Fa) and also Lemmas 1.1., 1.2., we see that  

(4.22) 

" [i Ilei-tl[t+,,N <= C Ai~, ,o" IIAuilIN 

+ ([Aie lI+_2.N + IAit, I!_~,o(IAui_II,+_/.,N + [Aui[t+_..2N))llAittllo ~. 
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Estimating for N = 0 and N----- No separately, by using (E1)-(E4) and then 
interpolating we conclude that 

1+* 
tt 

( 4 . 2 3 )  ]l el- l lll + e,N < C (~20~-- --2~ + ;N J 

for all 0 --< N ~ No. Similarly, for any 0 =< N ~ No, 

(4.24) II e~'l [Ipko,N ~ C ~24~k~ 

Now, (4.20) and (4.23) yield (E7) (a) while (4.21) yields (E7) (b). 
We continue with (E8). Applying again Lemmas 1.1., 1.2., we can write 

(4.25) Ille;-, lll,,o<,,-,,~ 
<: CN(I[ F;(S,_IAuI_I)IlkoO-l).o + II F;(S,_IAu~_I)[IkoO-l).o) II Au,_ ills 

+ CN(II t;~(Si- 1Aui - 1)[Iko~r- 1),N + 1 1 F 2 ( S i - I A u i  - 1)Ilkofp- 1),o) II Aiti- 11lo 

for all 0 ~ N ~ No. Similarly, 
tt 

(4.26) [lie,-11{{ko~,-1),N < C O20[p-1)t'~ 

It remains to prove (E9) and (El0). By (4.6) 

O < = N <  No. 

gi  : - - ( S i  - -  S i - 1 )  E l - 1  - -  Siei-1 - -  (Si - -  S t - l )  #(Uo), 
i--2 

where Ei-1 = 2~ ej. By ($1) and (E6) 
j = 0  

]](Si - -  S i _ I )  Ei_ l l l l+e ,o  < CO l+e-k~ I E  : i i-l]]kop,O + COi  - ;N~ I [E i - I{ I I+n ,  No 

Since by (l:]a), ([ '-]2), 

we conclude that 

i--2 i--2 l + e  --2~+~No 
. ~  "1 l+e--kop Okop--(l+p)fl ._]_ c ~ o, Z . c ~2o;~"0 ~ 0 7  

j=O j=O 

kop -- (1 + p) fl >=~, 

1 + 8  

P 
--  2fl + ~No ~ ~, 

(4.27) II(Si - S~_O E~-lJh+~,o 
_ l + e  - 

c o' + 
I -{.- e ^ 

-< c ~'0~ - 7 - ~ ,  



94 S. K L A I N E ~  

1 "q-8 
by virtue of fl > ~ Also, by (E7) (a), 

P 
1+__2_2# 

(4.28) [[ Stei-i l[1+,,o <= C ~20tP 

According to the definition of Uo (see (4.5)), q~(uo) = F(Auo) and hence 

II (s~ - S~_ 1) ~(//0)I11+e,0 "~ C 0 1 +,-kop II FfAuo)Ilko,,O + CO-ZN~ II F(Auo)II1 +,,No 
1+, 

(4.29) --__ C &2(0~§176 + 07, "-N~ <= C &2OiP , 

since by (D), (C) and e small 

1 + e - -  kop <= - -  

-- ,No ~ - -  -- 

l q - e  
2t~, 

P 

l + e  
2~. 

P 

The inequalities (4.27), (4.28), (4.29) yield 

l+e 

(4.30) [Igil[l+,,o <= C O20tp 

We can get a'corresponding estimate for IlglIh+,,No+7 and interpolating betweett 
(4.30) we derive (E9) (a). 

Similarly, 

h 2fjk~ for all 0 < N < No, (4.31) I lg t l l kop ,N  <=  C v - t  , = = 

which is precisely (E9) (b). 
Also, for all 0 --< N _< No, 

i--2 

Ill(S, - s,_,) Et-, III~o<P-,),~----< C ~= 2; O~ - ' )~~247 
j=0 

Using (S1), we have 

(4.32) 

Ill(St - S t - , )g t - , l [ l~o~- , ) ,~ - -  -< C~  =, if ~N+ (2 - 1 )ko  - - p f l = <  -~,  

I l l(s, - st_,) Et_, 111~or _ _ ~ . c  ,~2~(p--1)ko-pa+-,N, , for N <: No + ~, 

and 
~N + (p -- 1) ko --  p/5 ~ ~. 

To prove (El0) we recall that 

Rko,N(g) ~ -  I IIgt I I Iko~,-1),N "31- II gtllkop, N" 
Also 

Oi 

z(o~) = f (1 + s) -ko(p-l) ,Is. 
0 

We distinguish two cases. 
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Case 1 ~ 

then 

1 
ko < ~ " : p - - l '  

z(03 <= COl +;-k~ 

(we add an extra ~ for the case ko(p  - -  1) : 1). Thus, by (E9) and the choice 
of fl for this c a s e  

(4.31) 

)~(Oi) Rko,N+~gi) .~_< C O2Ol+~-k~ �9 ~- Oi N] =< C 020/k~ 

provided that (see (D2)) 
1 -+-~(~+ 1)<=pfl 

and 
1 + F + f l < = k o p .  

Case  2 ~ . 

then 

and, according to (E9), 

(4.32) 

for 

Also 

for 

Hence 

1 
ko > - -  " 

p - - l '  

z(03 <= 1 

z(Oi) Rko,N+~(gi) ~ [ok op-(I+p)[3+$(N+~) + O? -1)k~ 

~N + (p -- 1) ko - -  pfl + "~ >= F. 

z(Oj) Rko,N+~,(gi) ~ C t52[Oki ~ q-- 1], 

~N + (p -- 1) ko -- pfl + ~ --_< --~. 

z(Oi) Rko,N+~,(g3 <= C O20f~162 

provided that (see (1513)) 

ko(p  - -  1) + ~ ~pf l ,  

ko(p  - -  2) + ~ ~ (p--" 1)fl, 

for 
~N+ (p -  1)go --p~=>L 

Also 

ko(p -- 1) + ~ _--< p~ for ~N + (p -- 1) ko -- P# =< --~. 

S tep  I l L  First we remark that (E3) follows immediately from (E4) by just 
choosing ~ to be small. 
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We proceed now with a proof of (El). To this end we apply the estimate (3.6) 
to our linear equation (4.2) and show that 

(4.33) 

Similarly, 

(4.34) 

I[A~i~llo < C, llglh+,# <- c ~20iP 

[IA/~,IINo ~ CNo (llg, lh+,.No+v § IS~Au, l,+.._2..m+~, " ,  IIg, lh+..o § ISoAu, lo.No IIg, lh+.ir), 

/ I+~, - 1+,~ 1+,~_2 ~ l + e  - )  _, ~ - -2~+*(No+1 , )  ~ - - f l + ; ( N o + ~ ' )  --.~+sl, 
CN o (~2~OiP § Oi p Oi p § 0"~ l~+;N~ O T  

I 

1+* 2~ q- g(No + ~') 
<= CNo OzOi" 

By interpolating between this and (4.33) we get 

I+e 2/~ + $(No +~'o) 
(4.35) HAui[JN~CNo~20i v , for all O<=N<No,  

and (E2) now follows, by choosing t~ small, from the inequality 

l + e  
2~ + ~_--< --~, 

P 

1 + e + ~ ) ,  
which is satisfied since fl > 

P 
It remains only to prove (E2). For this reason we apply the estimate (2.16) 

to (4.2) and derive 

' A I Aft, Iko,N ~= Z(03 Rko,N+~(g3 + CNZ(03 [(H F'~(S~ u3 [[ko(V-'),0 + I F'~(S~A,~) Ikop,O) 

' A • IIAuiIIN+~ , + (IIF'~(S~Au3IIkotp-1),N+~ ' § ]Fi(Si u3 [~op,N+~) llAul[j �9 

We thus infer, from (El), (E5), and (El0), 

(4.36) 

= ~1 +~--ko(p-- 1)) rl~p(ko--~)fl--~+~(N+~) IAfhlko,N < CN~20"~ ~O+~ e N d 2 (  1 § - i  , tv i  ~'t 

+ Of (ko-~)+r(~v+:~) �9 O J ]  

CN ~2(OJ+;~ + ok ~ ~-~ ~)a+z(N+r ~)) 

_~. CN t~20i -~+-eN, 

provided that 
1 + ~ ( ~ +  1) ~ p / ~ ,  

which is satisfied by our assumptions. 
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By SOBOLEV'S Inequality we have 

(4.37) [Au,[o.o < CItAi~,ll[~] 

and since, again, 

we derive 

(4.38) 

~ >  

1+~ 2a+7(r+ff+l) =< C d2OiP 
+I  

( " )  l + e + ~  7 + - ~ - +  1 

P 

I Aui 10.0 ~ C ~20i-a. 

Combining (4.38) with (4.36), and choosing t~ small and dependent only on No, 
we obtain the desired estimate. 

This completes the p roof  of  (E2) and our induction. To finish the proof  of  
Theorem 1 we remark that, (by (4.12)), 

II~(u3110,0~0 as i ~ o o .  

Also it is easy to verify that 

l[ qi(ui) - -  #(u)l[o,o---> 0 as i - +  o~, 

where u = lim u~. Therefore, u is the solution to our problem. 
j---~ oo 
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