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Abstract 
A general  t h e o r y  of mu l t ipo la r  d i sp lacement  and  ve loc i ty  fields wi th  cor- 

responding  mul t ipo la r  b o d y  and  surface forces and  mul t ipo la r  stresses is de-  
ve loped  using an  energy  principle,  an e n t r o p y  p roduc t ion  i ne qua l i t y  and  in- 
va r iance  condi t ions  under  superposed  r ig id  b o d y  motions.  Cons t i tu t ive  equat ions  
for the  mul t ipo la r  stresses are discussed and  expl ic i t  resul ts  are  given for an 
e las t ic  medium.  W o r k  in a previous  pape r  b y  the  presen t  au thors  (t964) is 
shown to be  a special  case of t h a t  given here. 
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1. Introduction 

In  a previous  pape r  GREEN & RIVLIN (t964) have  deve loped  a genera l  t heo ry  
of s imple force and  stress mul t ipoles  which were def ined  wi th  the  help of ve loc i ty  
componen t s  and  the i r  spa t i a l  der ivat ives .  In  t h a t  pape r  we ind ica t ed  direc-  
t ions  in which the  t heo ry  could be general ized.  Here  we l ay  the  founda t ions  
of a t h e o r y  of considerable  genera l i ty  which includes the  work  of the  previous  
p a p e r  as a special  case. 

The s t a r t i ng  po in t  of the  presen t  inves t iga t ion  rests  on some ideas of TRuEs- 
DELL & TOUPIN (1960, sect ions t66, 205, 232). These  au thors  in t roduced  gen- 
era l ized velocit ies,  b o d y  and  surface forces, and  genera l ized  stresses.* T h e y  

* Special types  of generalized displacement and velocity fields have been used 
b y  ERICKSEN (t960a, 1960b, t960c, 1961). 
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postulated equations of motion in terms of generalized stresses and body forces, 
and they postulated surface conditions. TRUESDELL & TOOPIN alSO discussed 
a general type of virtual work theorem and showed that  it was equivalent to 
their equations of motion and surface conditions. In the present paper we use, 
essentially, the same definitions of generalized body and surface forces and 
stresses as those of TRUESDELL & TOUPIN, but  a new condition is imposed on 
our definition of generalized displacement and velocity. We find that  the equa- 
tions of motion and surface conditions given by TRUESDELL & TOUPIN are not 
necessarily always satisfied. Sufficient conditions under which these equations 
are valid are discussed in section 16. The same conditions are then sufficient 
for the validity of the virtual work equation. 

Kinematics of ordinary displacement and velocity fields, now called mono- 
polar kinematics, is briefly reviewed in sections 2, 3. The theory of multipolar 
displacements and velocities is developed in section 4. Multipolar body forces 
are defined in section 5, and multipolar surface forces and stresses in section 6. 
Appropriate expressions for kinetic energy corresponding to multipolar velocities 
are given in section 7. The fundamental dynamical theory of multipolar forces 
and stresses is considered in section 8 using only an energy equation, an entropy 
production inequality, and invariance conditions under superposed rigid body 
motions. An alternative form for this theory is given in section 9. A general 
theory of elasticity for multipolar stresses and forces is developed in section t0, 
with an alternative form in section 1t. 

Questions concerning constitutive equations for materials which are not 
elastic are considered in sections t2, t3. In section t4 we show that  the elas- 
ticity theory given previously (1964) is a special case of tile theory of elasticity 
given in section t0. In section 15 we derive the approximate theory of infin- 
itesimal elasticity appropriate to elastic materials acted on by  monopolar and 
dipolar stresses.* 

2. Monopolar kinematics 

We refer the motion of the continuum to a fixed system of rectangular 
cartesian axes. The position of a typical particle of the continuum at time 
is denoted by  x i(3) where 

x~(~)=x~(X1, x~, x~, "0 ( -  ~176 (2.t) 

and X a is a reference position of the particle. We also use the notation 

X i ~ - x ~ ( t  ) . (2.2) 

If this deformation is to be possible in a real material then 

~, [ axi(~) ] d:~ [ -~7 -a  ] > o. (2.3) 

* After completing the present paper the authors saw a report by R. D. MINDLIN 
on "Microstructure in Linear Elasticity" in which he develops a theory which is 
essentially the same as that contained in w t 5 of our paper. MINDLIN has applied 
his theory to wave propagation and this application has not been studied here. 
This paper has now been published in Arch. Rational Mech. Anal. 16, 5t--78 (t964). 
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For  some purposes  it  is convenient  to express x i (3) in t e rms  of the current  
posit ion of the  part icle a t  t ime  t so t ha t  

x ~ ( z ) =  x i ( x l ,  x s, x 3, t, 3) (2.4) 
and  

[ a-,/~/1 det  [ ~ : - i  ] > 0. (2.5) 

Disp lacement  gradients  t aken  with  respect  to the posit ion X a are denoted b y  

~ x i ( r )  (/3 = t ,  2 . . . .  ), (2.6) 
xi,a~a .... ap (T) = OXal OXa, ... OXa~ 

and we use the  no ta t ion  
x~,a . . . .  a p =  x i , a  . . . .  ap (t).  (2.7) 

Displacement  gradients  t aken  with respect  to the  current  position x i a t  t ime t are 

OOxi(r) (/5 = t ,  2 . . . .  ). (2.8) 
Xi, i, i,... 0 (~) - -  ~x~ Ox~ . . . .  ~xia 

We observe t h a t  

xi, i, (t) = 0 ii,, (2.9) 

xi ,  i . . . .  i , ( t ) = 0  ( / ~ >  t ) ,  

and t h a t  the  gradients  in (2.7) and  (2.8) are symmet r i c  with respect  to  A1, A2, 
. . . .  A a and  i 1, i 2 . . . . .  ia respect ively.  

The  components  of veloci ty  a t  the  point  x i(z) are denoted  b y  v! x) ( 3 ) =  v i(r) 
so t h a t  

v! 1) (~) = D x i (r) /D z ,  v! x) (t) = v i (0 = vi, 

where D[D r denotes  different iat ion with  respect  to  r holding X a f ixed in (2A), 
or xi( t  ) and  t f ixed in (2.4). More generally,  n th veloci ty  components  m a y  be 
defined as 

v! ") (r) = D" x i (z) /D r", v! '0 (t) = v! "), v! ~ (x) = x i (r).  (2.t 0) 

F r o m  (2.8) and  (2A0) we have  

D" x~,il ... ip (3) ear!-) (T) 
- = ~!"),... , ,  (~), (2 .~ t )  

D T n 8xil Ore, ... Oxia 

and we use the no ta t ion  
v!"!l . . , ,  (0 = ~!"! . . . .  i ,  (2 .12)  

for gradients  of the  n tu veloci ty  components  a t  t ime  t wi th  respect  to coordinates 
a t  t ime t. Also 

v (~ �9 (r)-----x/, i .... i,(l~), v I~ - - - 0  ( f l > l )  (2A3) 

In  view of (2.3) we m a y  write xi, a (~) in the  polar  form 

Xi, a (3) = R i B  (3) MBa (~), (2A4) 

where MBa (r) is a posi t ive definite symmet r i c  tensor  and  RiB(r  ) is a ro ta t ion  
tensor,  so t h a t  

RiB (z) R ia  (r) = ~)A B, R ia  (T) R ia  (z) = ~)ii, det  Ri a  (3) = t .  (2.t 5) 
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Also 
R i B = R i B ( t  ) , M A B = M a B ( t  ) . (2.t6) 

In  general, th roughout  the paper ,  lower case Lat in  indices i, il . . . .  are as- 
sociated with  coordinates xi(3 ) or x i and  take  the values t ,  2, 3; upper  case 
Lat in  indices A, A1 . . . .  are associated with coordinates X A and t ake  the values 
l ,  2, 3. The  usual cartesian summat ion  convent ion is used, and  commas  denote  
par t ia l  differentiation. 

3. Superposed  r ig id -body  m o t i o n s  

We consider mot ions  of the con t inuum which differ f rom those given b y  
(2.t) only b y  superposed r igid-body motions,  a t  different t imes.  Thus  

x* (3*) = c* (3*) + Q .  (3) [xj (3) - c; (~)], (3.1) 

where c~(3), c*(z*) are vector  functions of z and  z * ( = r + a )  respectively,  a is 
an a rb i t r a ry  cons tant  and  Qii(3) is a proper  or thogonal  tensor  which depends  
on 3. In  section 2 vectors  and tensors are defined in t e rms  of the mot ion  (2.t) 
and  we denote corresponding quant i t ies  defined f rom (3.1) b y  the same let ter  
to which we add an asterisk. F rom (3.1) we have  

v*(3*) =~*(3") + Q,(3)  [v;(~) - ~ j ( 3 ) ]  +~%,(3) Ix*(3*) - c * ( 3 " ) ] ,  (3.2) 

where a dot  denotes  differentiat ion with respect  to ~ or ~* and  

(i~i (~) =~%, (3) Q,j(~), G j ( 3 )  = -Qii(3), (3.3) 
( G =  Q. ( t ) ,  G j - - G ; ( t ) .  

Also 
,~,a .... a . t  J - Q , ~ ( * ) x , , a  .... A,(3), (3.4) 

and  
~ x * ( , )  

e,i*, ... e~* - Q ~  (~) Qi, i , . . .  Qi. j. x,, j .... i~ (~), (3.5) 

for ~----1,2 . . . . .  
We summar ize  some results obta ined  in a previous paper  (GREE~ & RIVLIN 

1964). I f  
E a a  .... A .  (3)  = Xm,  A (~)  Xm,  A . . . .  A~ ( ' r ) ,  

(3.6) 
E .  .... i . (~)=x~, i (3)x~,~  .... ~.(3), 

for 0~ = 1, 2, . . . ,  then  

E * & . . . a .  (**) = E A A  . . . .  A, (Z), (3.7) 

E*i . . . .  i , (**)  = Q i i Q i ,  h . . .  Qi ,  i, E i i  . . . .  i,  (3).  
Also, if 

/* 
ACU) _ ~, {a~ vCV-#) yea). (3.8) ii . . . .  i~, - -  z.~ I r} m,* m, ~ . . .  i~,, 

.e=l 

for a = 2 ,  3, . . . ;  / , = 1 ,  2 . . . .  , then  

r~ ~l .)  (3.9) A * ( ~ )  " = Q i i Q i ~ j ~  'dio, i ~ , " i J  . . . .  j,, i i~ . . . ,~ . . . .  
In  addition, if 

A i j - ~ ' v i , j + v j ,  i ,  r  j - - v i ,  i ,  (3.10) 
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then  2 v i , i = A i  i +coi i, (3.1 l) 
and 

A*=Q~,,Qi,,A,,, ,~, w*.=qi , ,q i ,~w, , ,~+ 20 i i .  (3.12) 

4. Mul t ipo la r  k i n e m a t i c s  

The  d isplacement  funct ion x i (3) can be regarded either as a funct ion of X a ,  
as in (2.t) or as a funct ion of x i, t, ~ as in (2.4). The  form (2.1) is appropr ia te  

to  cont inua  in which a reference posit ion is required and  (2.4) is convenient  
when there is no preferred reference state.  We now define a simple 2~-pole 
d isplacement  field in two forms .*  Let  

x~a .... a n ( ~ ) = x ~ .  .... an(X,,X2, X2, 3) (-- oo<~__<t), (4.t) 

be a tensor  function under  changes of rec tangular  cartesian axes for fl : t ,  2 . . . . .  
The set  of tensors (4.t) is a set  of k inemat ic  variables  which m a y  be changed 
independent ly  of the  mot ion  (2A), but  when the  mot ion  (2.1) is changed these 
tensors will, in general, be altered. When  the  mot ion  is a l tered f rom (2.t) to  
(3.t) we denote  the  corresponding tensor  (4.t) b y  x*a .... an (3*). If, in addi t ion 
to the above  assumpt ions  about  the  tensor  (4A), 

x~a,...an(z*)=Q,,,,(r)x,,a,...an(r) (fl-__l), (4.2) 

then  we m a y  say  t ha t  xla .... an (3) is a simple 2&pole displacement /ield. For  
example ,  if 

xia .... an (3) = x~,a,...an (~), (4.3) 

then  the tensor  (4.3) satisfies the pos tu la ted  conditions. Re turn ing  to the general 
tensor  (4.1) we use the no ta t ion  

x~a .... an = x i a , . . . n n  (t) (4.4) 
and we observe t h a t  the tensor  in (4.t) does not  necessari ly have  symmetr ies  
in any  of its indices. 

Again let 

x~i . . . .  jn(~)=x~;  .... in(x1, x~, x3, t, 3) ( -  o o < , < t )  (4.5) 

be a tensor  function for fl = t ,  2 . . . .  which is such t ha t  

x~* i,... i ,  (3*) = Q,, ~ (3) QA i , - . .  Qin in x,, ~,... 0 (3). (4.6) 

Then we say  t ha t  xii  .... in (3) is also a simple 2a-pole displacement/ield and we 
use the nota t ion  

xii  .... ~'n = xii  .... ~'n (t). (4.7) 

An example  of such a displacement  field is 

xii  .. . .  in (3) = x, , i  .... in (3). (4.8) 

A 2a-pole d isplacement  field of the  t ype  (4.5) can be ob ta ined  f rom the field 
(4.t) in m a n y  different ways,  and  conversely,  as indicated in the appendix.  

* A possible motivation for the definitions given here is indicated in the Appendix. 
Arch. Rational Mech. Anal., Vol. 17 9 
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One simple me thod  of relat ing the two fields is b y  the equat ion  

%i .... ia (T) = x i l  ,B , . . .  xi a,B axiB .... Ba (T), (4.9) 

bu t  this m a y  not  a lways be  the  re levant  relat ion to  use. In  mos t  of this pape r  
we assume tha t  (4.1) and (4.5) are independent  descriptions of mul t ipolar  dis- 
p lacement  fields. 

We define 2a-pole velocity fields f rom the 2a-pole displacements  (4.t) or (4.5) 
b y  the equat ions 

vi~ .... ~.(~) = ~  .... ~ . (~) ,  (4 . to)  

vi i  . . . .  i ,  (T) = ~ i  . . . .  j, (~), (4.11) 

for fl = 1, 2 . . . . .  where a dot  denotes  mate r ia l  t ime differentiat ion with  respect  
to z holding X A fixed in (4.10) and  t and  x i f ixed in (4. t l ) .  We use the  no ta t ion  

viB,. . .B, = ViB,...Be (t), 
(4.12) 

vii  .... i a = v i i  .... i~(t), 

where we pu t  T = t  af ter  differentiation. I t  follows f rom (4.2) and (4.6) t ha t  

v * ~  . . . .  Be (3*) = Q ~ , ( , )  v,B .... ~p (3) + $ 2 ~ , ( r  x*,~l ...Bp ~{**~;, ( 4 . t3 )  
and 

v*. ,~ , , . . . i~(T*)=Q,~, ( , )Qi l i . . .  Qi, o v ,  i .... ip(T) +~2~, (~)  x*i .... ip(z). (4.14) 

Similarly, 2~-pole n th velocity fields m a y  be defined as*  

v!%.. .~ , (~)  c.> 
(4A5) (n} , , 

where (n) over  a symbol  denotes  n th mater ia l  t ime  differentiat ion with  respect  
to  , ,  and  we use the  nota t ion  

(n) __ (n) 
Vi~.. .BB-- V| (t) , (4.16) 

* I X . .  �9 ] #  - -~*]1 �9 . .  ]p  it*/ �9 

For  convenience we call 2a-pole displacement  and n th veloci ty  fields (n = t ,  2 .... ) 
multipolar displacement and n th velocities. We define gradients  of mul t ipolar  
displacements  b y  the  equat ions 

XiB  . . . .  B I I , A  . . . .  Affl (~*) - -  O X A I  . . .  ~ X a r  ~ ' 

(4.17) 
XiBt . . .B#,A1 ...A= ~ XiB1. . .B#,Ax ...A= (t) , 

and 
~= xli~...is (T) 

x i i  .... i", i '" ' i=(z')  - -  cqxi, .. .  ~xi= ' 
(4.t8) 

X i j  . . . .  Ja, i . . . .  G = X i i  . . . .  Ja, i . . . .  i,, (t) , 

for f l = t ,  2 . . . .  ; ~ = 1 ,  2 . . . . .  

* *r corresponds to a 2r-pole displacement and n =  1 to a 2r-pole velocity; 
in this latter case the superscript 0) is often omitted. 
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T h e  b e h a v i o u r  of the  mul t ipo la r  d i sp lacement  g rad ien t s  (4A7) a n d  (4.t8) 
w h e n  t he  m o t i o n  is c h a n g e d  b y  supe rposed  r ig id -body  mot ions  can  be  f o u n d  
a t  once  f rom (4.2) a n d  (4.6)�9 I f  

EB1...Ba:Aa .... n , ( z ) =  X,~,A (Z) XmB,...Ba,a .... a , (Z) ,  (4.19) 

E j  .... i s : "  .... i,(~) = x,~,~(3) x~j  .... is,i .... ~,(*), (4.20) 
t h e n  

E BI...Bs : A  A . . . .  A ~  ( ~ * )  = E B , . . . B  s : A A  . . . .  A~ ( '~ ) ,  ( 4 . 2 1 )  

a n d  

E*...is:ii .... r = Qi,,~,"" Qisms Q~iQi,~,... Qi, ,  E,~ . . . . .  a : i  . . . . . . .  (z), (4.22) 

where  

E.* Ox*(z*) i~x*A...is(z*) 

F r o m  (4.t9), (4.20) and  (3.6) we see t h a t  

E : a A  .... A , ( 3 ) = E  a a  .... a , (Z) ,  (4.23) 
E : i r 1 6 2  (1:) = E i r  .... r  

Mul t ipo lar  n tb velocit ies were def ined in (4.t5) an d  f rom the  second  fo rm 
we define mul t ipo la r  n th ve loc i ty  g rad ien t s  

(n) �9 T 
v!~) ~'vo'~...~s ( ) (4.24) 

for fl----t, 2 . . . .  ; st = 1, 2 . . . .  and  we use the  n o t a t i o n  

v!:~ . . . .  v (~.1 �9 �9 ...~,(t), 
~' ]1 . . .  I S  , $~1 . . . $ = - -  ~ ' l l . . � 9  ]S~ t l (4.25) 

v(Ol , ,  . . . .  ;~,~ . . . .  ~ . ( ~ ) = * ~ i  . . . .  i s ,~  . . . .  ~ ( ~ ) "  

I f  we d i f ferent ia te  b o t h  sides of e q u a t i o n  (4.22) / , - t imes wi th  respec t  to  T 
a n d  t h e n  p u t  3 * =  3----t we h a v e  

B* (~) .. �9 O. B(~) . fi...is : , ,  . . . . . .  = QA~,"" Ois,~, Oii Oil ~ . . .  ~ , .  ~. ~,,... ~p: 7,, . . . , . ,  (4.26) 
where  

= ~  ~ v (#-a, (4.27) m , $  r a i l . . .  ] S ,  $1 . . .  i ~ "  

I n  pa r t i cu la r  we see f rom (3.8) a n d  (4.27) t h a t  

�9 = A (~-) ( 4 . 2 8 )  

F r o m  (4.27) we h a v e  

Ng, I . . . . .  ,l~l . . ,,O,-al ,,(x~. (4.29) 

for/~ = 1, 2 . . . .  a n d  given ~, fl, a n d  hence,  b y  r epea ted  appl ica t ion  of this  formula ,  

v(V.) . .... is,i .... i~ = B~l . . i s : i i  .... ~. + a po lynomia l  
(4.30) 

in v (a). R(~) a n d  r#, ) ,  " ' A .  . . i ~  : i i ,  . . .  i~, X i i ,  . . .  i a  , i ,  . . .  , ; ,  

for 2 = ~ , 2  . . . .  , # ;  ~ = t , 2  . . . .  , # - - t .  

9* 
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Again, if we differentiate bo th  sides of (4.21) /z-times with respect to z we 
see tha t  

B~.~, ). Bp:a a .... a= (Z*) = B(~... Bp..a a .... a ,  (~) (4.3 t) 
where 

B(V) = v~B r . . . .  Ba,a . . . .  a,(Z) (4.32) B t . . . B # : A A 1 . . .  e, , . _ 

and 

~n .... n~,~ .... a,~ J ~ -R~. . .~X~,  ' (4.33) 

for ;t = 0, t . . . .  ; fl = t, 2 . . . .  ; e = 1, 2 . . . . .  Also, 

v(o) [-~ 
, , , B ~ . . . ~ , A  . . . .  a. ~ ~ -= X,,,~,...Ba,A .... a,, (r), (4.34) 

_ _  V (~.)  tt~ 

5. Mult ipolar  body  forces 

Multipolar b o d y  forces of the first kind associated with velocity components  
v~ at t ime t and their spatial derivatives were defined previously (GREEN & 
RIVLIN t964). Here we define mult ipolar  b o d y  forces of the ( f l + t )  th kind 
associated with mult ipolar  velocities and their spatial derivatives, evaluated 
at  t ime t. 

I f  F~ i .... i~ is a tensor* and vii .... j~ an arb i t rary  20-pole velocity at  t ime t, 
and if the scalar 

F~; . . . .  j~ v i i  . . . .  i~ (5 . t )  

is a rate of work per uni t  mass, then the tensor F~i .... ip is called a body [orce 
2a-pole o/ the ( f l + t )  th kind, per unit  mass. The total  ra te  of work of a body  
force 2a-pole of the ( f l + t )  th kind, per unit  mass, distr ibuted th roughout  a 
volume V at t ime t, is 

f qF~i .... j~ vii .... ip d r ,  (5 .2)  
v 

where Q is density. When  fl-----0 we recover the rate of work of a classical b o d y  
force vector  F~ in a vector  velocity field. If  F~i .... ip.il i, is a tensor of order 
0~ + fl + 1 and v ii .... i~, ~ .... i= is an arbi t rary  2tLpole "velocity gradient,  and if, 

F~j . . . .  jp:~ . . . .  i , v ~ j  . . . .  i~ , i  . . . .  i ,  (5 .3)  

is a rate of work per unit  mass, then the tensor Fii,..,ip:i .... ~, is called a body 
[orce 2~+#-pole o/ the ( f l + t )  th kind, per unit  mass. The total  rate of work of 
such a b o d y  force distr ibuted th roughout  a volume V is 

f q Fii,...i~:i .... ~ vij .... ip,i .... i. dV.  (5.4) 
v 

Without  loss of generali ty the tensor Fii .... ia:i .... i. m a y  be taken to be com- 
pletely symmetr ic  in the indices it . . . . .  is. When  f l = 0  we recover a body  
force 2~-pole of the first kind,** F/:~ .... i.. 

* Owing to the  grea ter  general i ty  of the  present  work  we have  no t  always been 
able to follow the  no ta t ion  which we used previous ly  (GREEN & RIVLn% 1964). 

** This  was denoted  by  / ~  .../~i in the  previous pape r  b u t  this no ta t ion  is now 
abandoned.  
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The mult ipolar  forces have been defined with the help of vii  .... ]p,i .... i, which 
is regarded as a funct ion of x~ and t and so the b o d y  forces m a y  also be regarded 
as functions of these variables, and distr ibuted th roughout  a material  volume 
V at  t ime t. For  some purposes it is more convenient  to  define mult ipolar  body  
forces associated with a volume V but  measured as functions of X a and t, 
where X a are coordinates of points in a material  volume V o at time to, which 
correspond to  points of V. If  F~B,. . .Bp:A . . . .  A. is a tensor function of X a , t, of 
order 0 r  and ViB .... Bp,a .... n, is an arb i t rary  2~-pole velocity gradient,  
also a funct ion of X a , t, and if 

t ~ B  . . . .  BO :a . . . .  Aog V i e  . . . .  ~ , a  . . . .  A~ (~'5) 
is a ra te  of work per uni t  mass, then the tensor FiB,...BB:A .... A. is a body  force 
2~+r of the ( f l + t )  th kind, per unit  mass. The total  ra te  of work of such 
a b o d y  force multipole distr ibuted th roughout  V is 

f o0 FiB . . . .  Bo:A .. . .  A,  ViB,. . .B~,A . . . .  A,  dVo, (5.6) 
v. 

where Qo is the densi ty  of the volume V 0. The mult ipolar  body  force is com- 
pletely symmetr ic  in the indices A 1 . . . . .  A~. 

Since the mult ipolar  velocity gradients vii  .... ia,i . . . .  i= can be regarded as a 
special case of a 2~+~-pole velocity it follows tha t  a body  force 2~+a-pole of 
the ( f l+  l )  th kind can be regarded as a special case of a body  force 2~+a-pole 
of the ( ~ + f l + t )  th kind. 

6. Mul t ipolar  sur face  forces and  stresses 

Consider a surface A whose uni t  normal  at  the point  x i at  t ime t, in a 
specified direction, is n i. I f  t i i  .... j~..i .... iv is a tensor function of x i, t of order 

+ f l  + t and if, for all a rb i t rary  2~-pole velocity gradients vii  .... ip,i .... i~, the 
scalar 

tii,...i~:~,...iv vii .... i~,i .... iv (6.1) 

is a rate of work per unit  area of A, then the tensor tii .... ia:i .... i, is called a 
sur[ace ]orce 2~+a-pole o[ the ( f l + t )  th kind,  per uni t  area. Wi thou t  loss of gen- 
eral i ty the tensor m a y  be taken  to  be completely symmetr ic  in the indices 
il ,  . . . ,  iz. When  r =  0 we have a surface force 2~-pole of the first k ind*  ti:i .... iv. 
When  ~ = 0 ,  ti i .... ia is called a sur[ace [orce 2~-pole o / t h e  ( f l +  1) th kind, per unit  
area, with fl----0 corresponding to  the classical surface force vector  t i. The tota l  
ra te  of work of the surface force 2~+a-pole of the ( f l+  t) th kind, per unit  area, 
over the surface A, is 

f t*i,...ia..*,...ivvli .... ia,i . . . .  i d A .  (6.2) 
A 

The tensor tii .... ia: i .... ~, at x i is associated with a surface whose unit  normal  
at  the point  is n~. When  n k is a unit  normal  to  the xa-plane th rough  the point  
we denote the corresponding tensor by  

ahii .... ip:i .... i,. (6.3) 

* Denoted  previously (GREEN & RIVLIN, t 964) b y  ti,.., i , i .  
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These are  the  components  of a sur/ace stress tensor 2~+~-pole o / t h e  ( f l +  t)  th k ind  
on an e lement  of a rea  a t  the  po in t  normal  to  the  xk-axis. The  ra te  of work  of 
this  t ensor  is 

aki i  .... ia:~, . . i ,  v i i  .... ia,i,...~, (6.4) 

per  uni t  a rea  of the  surface no rma l  to  the  xk-axis. The first  index  k is no t  
necessar i ly  a tensor  index  under  change of axes,  b u t  indica tes  the  surface on 
which the  stress tensor  acts,  the  surface be ing  fixed. When  ~----fl----0 we recover  
the  classical  stress tensor  aki which we shall  see l a te r  is a tensor  wi th  respect  
to  bo th  indices. 

Suppose  now t h a t  the  surface A ,  conta in ing  an a r b i t r a r y  ma te r i a l  volume 
V a t  t ime  t, was a surface A 0 a t  t ime  t o conta in ing  a cor responding  vo lume V 0. 
The  coordina tes  of cor responding poin ts  in V o and  V are X i and  x i r espec t ive ly  
and  N K is the  uni t  ou twa rd  normal  a t  the  surface A 0. Le t  PiBI...Bp:A .... a ,  be 
a tensor  funct ion of X a , t, assoc ia ted  wi th  the  surface A bu t  measured  per  uni t  
a rea  of A o. If, for all  a r b i t r a r y  2~-pole ve loc i ty  g rad ien t s  vi~,...B~,a . . . .  A, ,  the  
scalar  

P ~ . . . B ~ : A  .... A, ViB~...~,A .... A, (6.5) 

is a ra te  of work  per  uni t  a rea  of A o, t hen  the  tensor  Pie~...Bp:a .... A, is cal led 
a surface force* 2~+P-pole of the  ( f l +  t) th kind,  pe r  uni t  a rea  of A o. The to t a l  
r a te  of work  of this  surface force over  A is 

f PiB,...Bp:a .... A, Vi~I...Ba,A .... a ,  dAo" (6.6) 
Ao 

The surface force mul t ipo le  PiB,...Bp:a .... a ,  is associa ted  wi th  a surface A 
b u t  measu red  per  uni t  a rea  of A o whose uni t  no rma l  is N a . W h e n  N K is a uni t  
no rma l  at  X a to the  XK-plane th rough  this  po in t  we denote  the  cor responding  
stress  mul t ipo le  b y  

~KiB1...Ba:A .... A," (6.7) 

These are  the  components  of a s tress  tensor  2~+~-pole of the  ( f l + t )  th k ind  
associa ted  wi th  an e lement  of a rea  a t  the  po in t  x i in V, which in V o was per-  
pendicu la r  to  the  XK-axis, measured  per  uni t  a rea  of this  surface in V 0. The  
ra te  of work  of this  stress t ensor  is 

~iB1...Bp..a .... A, VIB,...Bp,A .... A, (6.8) 

per  un i t  a r ea  of surface in V o no rma l  to  the  XK-axis. The  first  i ndex  K is not  
necessar i ly  a t ensor  index  under  change of axes,  b u t  indica tes  the  surface on 
which the  stress tensor  acts,  the  surface being fixed. The classical  stress tensor  
~Ki corresponds to  a - - ~ f l = 0  and  we shall  see t h a t  this  is a tensor  wi th  respect  
to  bo th  indices. 

A surface 2~+P-pole of the  ( f l + l )  th k ind  m a y  be r ega rded  as a special  case 
of a surface force 2~+~-pole of the  ( ~ + f l + t )  th kind.  

* A simple surface force 2~-pole of the first kind is denoted by  P i : A  . . . .  A, instead 
of PA .... n , i  used previously (GREEN & I~IVLIN, 1964). When ~=0 ,  PiB .... B a is called 
a surface force 2/~-pole of the ( f l + l )  th kind, per  unit  area of A o. 
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7. Kine t ic  e n e r g y  

Kinet ic  energy per  uni t  mass  a t  t ime  3, corresponding to  veloci ty  vi(3 ) is 

�89 vi (3) v i (3) (7.t)  

and its mater ia l  ra te  of change is 

v i (3) v! *) (3). (7.2) 

In  par t icular ,  its ra te  of change a t  t ime t, per  uni t  mass,  is 

vi v! ~). (7.3) 

When  we have,  in addition, 2&pole veloci ty  fields v i i  .... ia(z) (/5----1 . . . . .  v) 
we postula te  t h a t  the corresponding kinetic energy,  per  uni t  mass,  is* 

{ ~ Y, .... i . : i  .... i, vii .... ,,(3) vii .... ia(z), (7.4) 
cx, f l = l  

where Yl .... i~:i .... i~, independent  of 3, is a tensor  funct ion of x i and t, and  we 
can pu t  

Yi  . . . .  r  . . . .  i ~ = Y i  . . . .  i~: i  . . . .  r (7.5) 

wi thout  loss of general i ty.  The  ra te  of change of this kinetic energy a t  t ime t, 
per  uni t  mass,  is found b y  different iat ing (7.4) wi th  respect  to  �9 and then  
pu t t ing  ~ = t ,  to give 

v 
~ l y i ,  .(s) ,. 

. . . i . : i  . . . .  Ja " i i  . . . .  i . ~ i  . . . .  ip" (7.6) 

Similarly,  when the  2&pole veloci ty  field is ViB,...Ba(Z) (fl----t . . . . .  V), the 
corresponding kinetic energy,  per  uni t  mass,  is 

{ ~ Ya .... A.:B1...Bp Via .... a.(3) V,~ .... ~ , (3) ,  (7.7)  
~, /~  = 1 

where Ya .... a,:B,...~p, independent  of 3, is a tensor  funct ion of X a ,  and  

YA . . . .  A, :B~. . .Ba --~ YB . . . .  Ba:A . . . .  Ac*" (7.8) 

The  mater ia l  ra te  of change of (7.7)  a t  t ime  t is 

,(2) , (7.9) ~' YAt. . .A.:Bt  ..B e ViAt...A~ ViB~...Bp" 
a, fl=l 

8. The  e n e r g y  e q u a t i o n  and  e n t r o p y  p roduc t i on  inequa l i t y  

We consider an a rb i t r a ry  mater ia l  vo lume V of the  con t inuum bounded  b y  
a surface A at  t ime  t. We assume**  t h a t  body  force 2&poles of the  ( / 5 + t )  th 
kind Fii .... i~ (fl----0, t . . . . .  v), per  uni t  mass,  act  th roughou t  V and tha t  surface 
force 2~-poles of the  ( f l + t )  th k ind  tij .... j~ (fl----0, t . . . . .  v), per  uni t  area, act  
across A. We also assume t h a t  there  is an internal  energy funct ion U per  uni t  
mass,  an  en t ropy  funct ion S, per  uni t  mass,  a hea t  supply  funct ion r per  uni t  
mass  and  unit  t ime,  a local t e m p e r a t u r e  T, which is assumed to be  a lways 

* See the Appendix for a motivat ion for this definition. 
** The remarks a t  the ends of sections 5, 6 indicate tha t  there is no essential 

loss of generality in restricting our discussion to body and surface force 2tLpoles of 
the (f l+t)  tu kind. 
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positive, a heat flux h across A per unit area, per unit time, and a heat flux 
Qi, where Qi is the flux of heat across a plane at x i perpendicular to the xi-axis, 
per unit area, per unit time. All these functions depend on x 1, x~, x~, t or, 
alternatively, on X 1, X 2, X~, t when a preferred position for the continuum 
exists. 

We postulate an energy balance at t ime t in the form 
v - -  

z[ " ] + t i v i + ~ t i i  .... Jpvii .... ip d A - - f h d A ,  
/~=1 A 

where a dot denotes the material  t ime derivative and where 

F, s .... ; = F , ;  . . . .  Y. y ,  . . . .  . . . .  (8.2) 

The second term in (8.2) arises from the contribution (7.6) to the energy equation 
from the kinetic energy. We also postulate an entropy production inequality 

f " r h f f _>0 SdV--  Qy-dV + ~ d A _  (8.3) 

V V A 

We suppose that  the continuum has arrived at  the given state at t ime t 
through some prescribed motion. We consider a second motion which differs 
from the given motion only by  a constant superposed rigid body translational 
velocity*, the continuum occupying the same position at t ime t. We assume 

that  U, t i, F i, tii .... J~' ~ J  .... ]a ( f l = l  . . . . .  v), h and r are unaltered by  such 
superposed rigid body velocity; and we observe from sect ion4 tha t  vii .... ip 
(fl----l, 2 . . . . .  v) and v!~ I ...ia (f l=0,  1 . . . . .  v) are also unaltered but  tha t  v i is 
changed to vi+a o where a s is constant. Thus equation (8.1) is also true when 
v i is replaced by  v i +  a i, all other terms being unaltered, so that,  by  sub- 
traction 

[ f Q FidV + !  tidA -- /pv!"  dV] a , = 0  (8.4) 

for all arbi trary constant a i. Since the quant i ty  in the square brackets in 
(8.4) is independent of a i it follows tha t  

f q~ dV + f ti dA = f q v!~ldV. (8.5) 
V A V 

If  the components of stress across the coordinate planes are aii  it follows from 
(8.5) that  

aii, i + e F i =  0 v! 2), (8.6) 

ti--~ ni ai i .  (8.7) 

In view of (8.7), aii is a tensor with respect to both indices 1", i under changes 
of rectangular cartesian axes, where the stresses in each coordinate system are 
associated with the three coordinate planes in that  system. 

* The i n d e p e n d e n t  t h e r m o d y n a m i c  variable,  which  can be t aken  to  be  S ,  is 
unal tered.  
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With the help of (8.6) and (8.7), equation (8A) becomes 
v _ 

I ,  

- ' l ' - J ~ ' i  j . . . .  jJ~ Vi i  . . . .  #a dA - -  f h d A .  
A # = I  = A 

We apply this equation to an arbitrary tetrahedron bounded by coordinate 
planes through the point x i and by a plane whose unit normal is nk, to obtain 
the result 

(ti s . . . .  #~- -n~  Oki j . . . .  #a ) Vi i . . . .  #a = h + n ~ Q i  = O i  (8"9)  

Then, using (8.9) in (8.8) and applying the resulting equation to an arbitrary 
volume, gives 

v 

~=~ (8Ao) 
v 

+ ~' ~rkii . . . .  ia Vii . . . .  ip,k ~ 0 .  

From (4.27) we have 

vi i  . . . .  #a= Bi,  . . . i a : i - -  vm, lXmi~ ...ia' (8.1t) 
vi i  . . . .  ia,k = B# .. . .  ia : i~- -  rm,~x~# .. . .  ia,k, 

where 

and with the help of (3.1]) equations (8.11) become 
1 

vi i  . . . .  i p =  B i  .... i a : i - - ~ ( A m i + C ~  Xmi .. . .  ia, (8.t2) 
vi i  . . . .  i a , k=  B i  .. . .  ia:ik - - { ( A m i + ~  xmi .. . .  ip,k" 

If we substitute the first of equations (8.t2) into equation (8.9), we see that 

1 x , Y t  XmS = 0 ,  (8 .13)  - ~ c ~  . . . .  s. . . . .  i ,  xt~j . . . .  ia (Bi  .. . .  i a : i - - ~ A m i  m# ... .  #a) - ~  a 

where 
h = h  --n~Q i, (8.14) 

eli,.., ia = t i i , . . .  #a - -  nk ok ih.. . ia" 

Also, with the help of (8.t2) and (3.1t) equation (8.10) becomes 

X # 

e r - -  Qi,~ - e ~ + ~ A ~ i ~ i m  + ~ 'e~ i  . . . .  ia B i  . . . .  ia:i + 
a=x (8.15) 

v 
j .  t 

+ ~ aki# .. . .  #a B i  .. . .  ip:ik + ~ m i a i m = O '  
#=1 

where 
e i i  . . . .  #a=e Fii .... ia +ak~i . . . .  #a,k, (8A6) 

and 
P p 

' --'p~x (8.17) r ~ ' ~ i i  . . . .  #pXm# ... .  ip aki i  . . . .  ipx ,  n# .. . .  ip, I," 
#=1 
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We now consider a motion of the continuum which is such that  the velocities 
differ from those of the given motion only by  a superposed uniform rigid body 
angular velocity, the continuum occupying the same position at t ime t, and we 

assume that  h, Qi,  t i i  . . . .  i~, r, (], a i ,  . ,  a~i . . . .  j~ and aki]  .... i~ are unaltered by  
such motions. Equations (8.t3) and (8A5) hold for all velocity and multipolar 
velocity fields, so the equations hold when ~o m i is replaced by  eo,~ i + 2Q**i with 
all other kinematic quantities unaltered, in view of results in section 4, where 
/2m~ is a constant arbi trary skew symmetric tensor. Hence 

and therefore 

v - 

Qr~ i ~= l t  i i . . . .  ia xrn i . . . .  ia = O, 

D,~i ~ ,~=0.  

t t 

~ i m ~G m i .  

Equations (8.t3) and (8.15) then reduce to 

(8.~8) 

( 8 A 9 )  

and 

i~i . . . .  ia (Bi ,  ...7,:: i - - � 89  ) - - h = O ,  
//=1 

oOi,~-qU- * ' ~ -  - -  + ~ A , . i a i , , ,  + ~ a i  i . . . .  ia B i  . . . .  i a : i +  5 r  
B=l 

v 

+ ~' a k i i  . . . .  ia B i  . . . .  i . . i k  ~- 0 

respectively. 

(8.20) 

(8.2t) 

9. Energy  and entropy production: alternative form 

The work of the previous section is sufficiently general to be applied to 
any continuum, whether solid or fluid. When the continuum has a reference 
configuration X a through which it passes at t ime t o it is convenient to have 
an alternative form of the theory in which multipolaz forces and stresses are 
measured with respect to this configuration. 

We consider an arbi trary volume V at t ime t bounded by  a surface A and 
we suppose that  V 0 is the corresponding volume at t ime t o, bounded by  a surface 
A o. Points of V 0 have coordinates X A . Recalling the definitions in sections 5--7, 
the energy equation (8.1) is replaced by  

f 5or, v!2)dg + f 5o Od~ = f 5o [r + ~ ~, + Y, ~ .  .... , .  ~,, .... . .  a g + 
v, Vo v, ~ ~=t (9.1) 

[ " 1 + f p~ v~ + ~. Pi8 .... B, v~B .... B, dAo -- f hodAo. 
A o ~I Ao 

where h o is the flux of heat across A, measured per unit area of A 0' and 

v 

~ ,  ~ = ~ ,  . , - F ,  Ya,...A.:~,....~ ~ . . . . . .  ~ a  . . . .  a.. (9.2) 
~x=l 
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The entropy production inequality (8.3) becomes 

fso~aVo-f~o~-aVo +f~aAo>:O. (9.3) 
Vo Vo Ao 

If we follow an argument similar to that  used at the beginning of section 8, 
we may deduce the classical equation of motion 

f 5o F~ d Vo + f p, dAo = f 5o v! 21 d V o. (9.4) 
Vo Ao Vo 

Hence 
~ i , ~  + 5o F~= qo v! ~), (9.5) 

P i =  NK ZtKi, (9.6) 

where N n is the unit outward normal vector to the surface A 0. In view of (9.6), 
Ztni is a tensor with respect to both indices, under changes of rectangular car- 
tesian axes, where the stresses in each coordinate system are associated with 
the three surfaces in that  system in V which correspond to coordinate planes 
in V 0. 

Using (9.5) and (9.6), equation (9.t) can be reduced to 
v _ 

v. (9.7) 

+ / ~ p,~,...,p v,~,...,p aAo-- / hoaAo. 
A0 fl=l Ao 

We apply this equation to a volume V which in the reference state V 0 was a 
tetrahedron bounded by coordinate planes through the point X a and by  a 
plane whose unit normal is NK, to obtain the result 

Y. (p~,...,,--N~I~,,...~)v,~l...,~--ho+N~q,~=o. (9.8) 
8=1 

Then, using (9.8) in (9.7) and applying the equation to an arbitrary volume, 
gives 

~0~- q~,~-  Qo/~ + ~ ,v , ,~  + ~ (Qo ~,~,...,~ + ~, , , . . . , , ,~/v, , , . . . , ,  + 
a=l (9.9) 

v 

"31- ~' ~KiBI...Bp ViBi...BB,K ~---- O, 

where qK is the flux of heat across surfaces in V which were originally coordinate 
planes perpendicular to the XK-axes through the point X B, measured per unit 
area of these planes, per unit time. 

From (4.32) and (3.tl) we have 

ViBt...BB = X A ,  i BB1...BI3 :A - -  ~ (A,,  i + o),, i) X,,B,...Sa, (9.t0) 
V i B , . . . B a , K : X A  IBB1 Ba'AK 1 . . . . .  - -~(A , ,~+O) , , i )X , ,B , . . .Ba ,K"  

With the help of (9.10) equations (9.8) and (9.9) become 
v 

1 E~iB , . . .Ba (XA , IBB , . . .B# :A  - -~AmiXmBt . . .Ba)  h ~  
8 = 1  (9A'I) 

o~,,,~l~iB~...~ ~ x, , ,8, . .~ = o, 
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and 

O0 r - -  qK,K ~0 0 1 ' 1 ' - -  + ~ A , ~ K , ~ x ~  K +  + �9 2(Om~ir~KmXi,K 

B v ... 
~ - X A , ~ ' B I . . . B f l  B t . . .B~ IA~-XA ,~ I~K 'BI . . .B~BBI  BB:AK = 0 ,  

where 

and 

(9.t2) 

v 

"~iB,...B# = O0 ~ B ,  ...B# + ~r'K iB,...B#,K, (9.14) 

f*~ h~ --  NK q~c' (9A5) 

~ iBI...Bp ~ P iB1...B~ - -  NK Y~K iBI...B~ " 

We consider a motion of the continuum which is such that  the velocities 
differ from those of the given motion only by a superposed rigid body angular 
velocity, the continuum occupying the same position at time t, and we assume 

that  ho, qK, P~B,...~a, r, U, ~K~, ~iB,...Ba and ~K~B~...Ba are unaltered by such 
motions. Equations (9.tt) and (9A2) hold for all velocity and multipolar velocity 
fields, so the equations hold when ~o~ i is replaced by  ~o m i + 2/2m i with all other 
kinematic quantities unaltered in view of results in section 4, where Q,~i is a 
constant arbitrary skew-symmetric tensor. Hence 

v 

t2~ i ~ P~,...~, x,~,...~, = o,  

~gm~ a ~ X i , ~ = 0 ,  
and therefore 

Y. ( ~ , . . . ~  x~,... ~ - ~ , . . . , ~  x~,... ~) = o,  (9. t 6) 
/ / = 1  

t t 
~K,~Xi,K=~KiX,~,K. (9A7) 

Equations (9.it) and (9A2) then reduce to 

and 

v X . . .  1 XPiB,. . .Ba( a, iBB, Ba:a---~A,~iX,nB,. . .B,)--ho = 0 '  

~o r - -  qK,~ --  Qo ~7 + ~ A ~ , ~ x i , n  + 

+ Xa ,  i ~  (~i~,...Bp BB,...B~: a + r~K~B,...~p Be,...8# :a K) = O. 

(9.18) 

(9.19) 

10. Elasticity 
We use the work of section 9 and suppose that  S, x i and XiB ,...8~ (fl = l ,  2 . . . . .  V) 

are functions of XA, t. Inspection of equations (9.5), (9.6), (9.t8) and (9.t9) 
suggests that  constitutive equations are required for T, ho, qK, U, ~r'Ki, ~KiB,...Bp, 
~iB,...Sp and /5iB,...8 , ( f l = t ,  2 . . . . .  v). We define an elastic body as one for 
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which the following const i tut ive equat ions* hold at each material  point  X a 
and for all t ime t: 

U = U(S, xl,a,  X~B,...B~, XiB,...B,a), (t0.1) 
t 

~Ki = ~K i( S'  Xi, A' XiB,...By' XiBt...B~,A)' ( t0 .2)  

~KiB,...Bp = Z~:iB,...B~ (S, x~,a, X~B,...B~, XiB,...B, a), (t0.3) 
~i~,...8# =~iB,...B# (S, xi, a , X~B,...B~, xi~, . . .8 ,  a),  (t0.4) 

T = T(S ,  xi, A , x~8,...B~, X~B,...B, A ) , (t0.5) 

Pi~,...Bp = P~B,...8~ (S, xi ,a,  x~8,...B~, xi~, . . .~,A,  N~:), (10.6) 

hO = ho (S, xi, A, XiB,...B~,, XiBx...B~,,A, NK)' (10.7) 

qK~-WK( S, Xi, A, XiBt...B~, XiB,...By,A' T A' T AAx' . . . .  T AAt...A~), (10.8) 

for fl = 1, 2 . . . . .  v; ~ = 1, 2 . . . . .  # ;  #=>v + 1, and all functions are assumed to  
be single-valued and sufficiently smooth.  

For  a given deformation and en t ropy  the 2~-pole velocities ViB,...Ba m a y  be 
chosen arbitrari ly and independent ly  of each other  so that ,  from (9.8) or (9.t8), 

ho=O, piBt...Ba=O, 
or 

ho ---- ArK qK, (t0.9) 

PiB,...B# --~ NK ~KiB,...B# (fl = 1, 2 . . . . .  V). 

The second equat ion in (t0.9) shows tha t  ZtKiB,...Bp t ransforms as a tensor with 
respect to all indices, including K, under  changes of rectangular  cartesian axes, 
where the mult ipolar  stresses in each coordinate sys tem are associated with 
the three surfaces in t ha t  system which were coordinate planes X u  = constant  
before deformation.  The first equat ion in (t0.9) shows tha t  qK transforms as 
a vector. Equat ions  (9.t3) and (9.14) then show tha t  Z~m, ~iB~...~ are tensors 
with respect to all indices. 

I f  we use 00.9)1 in (9.3) and apply  the equat ion to an a rb i t ra ry  volume 
we have 

qo S T --  Oo r + qK,K qK T,K > 0, (10.t0) 
T 

with the usual smoothness assumptions,  recalling also tha t  T >  0. If  we then 
subst i tute for r from (9.19) into (t0.t0) we obtain the inequali ty 

0 o ( T ~ _  ~) qK T, K 1 , T + 2 z c K m x i , K A ' i +  
(1o.1t) v 

+ XA, ~ I ( ~ B , . . . B e  B~, . . .~  :a + ~ : iB , . . . ~  B~,...Ba :a K) >= O. 

* The independent variables are all unchanged by superposed rigid body trans- 
lations at all times. The form of equation (9.9) suggests that  multipolar displace- 
ments and their gradients, as well as displacement gradients, should appear as in- 
dependent variables. By a method similar to tha t  used in this section and in a 
previous paper (GREEN & RIVLIN, t964) it can be shown that  gradients of multi- 
polar displacements of an order higher than the first cannot occur in the constitutive 
equations (t0.t)--(t0.6).  
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We assume that  the internal energy function U is unaltered when the con- 
t inuum undergoes a deformation which differs from the given deformation only 
by  superposed rigid body motions at all times. This assumption includes those 

already made about U. With the help of section 4 it follows that  

U(S, Xi, A, XiB,...By , XiB,...By,A ) = U(S, Qi/Xi,A,  QiiXiB,...B~, QiiXiB,...Bv,a) 

for all proper orthogonal values of Qii. I t  follows* tha t  U must  be expressible 
in the different functional form 

where 

and 

are defined in (4.19). 

0 ou g ou x - = ~  "3 t- ~ i,A X/,BZtij + 

U= U(S, E:AB, EB,..B~,:A , EB,...B~,:A~: ) (t0.t2) 

E:aB=EAB=EaB(t), 
00.t3) 

EB,...8,:A,...Ac,=EB,...B,:A,...A,, (t) , 

Recalling the results (4.3t) and (4.32), it follows that  

r= 1 0 E B  .... B~,:A BB'"'B~:A "j OE, B .... B~:AK 

(10.t4) 

where U is written as a symmetric function of EAB in the indices A, B and 
EAB is understood to mean �89 +EBa ) in OU/OEAe. The inequality ( t0 . t t )  
can now be written in the form 

+ XA,i = ~B,...B#--OoXi,B OEe .... Bo:B . . . .  
(1o.15) 

a~_'l( 0u 'B 
-~- XA, i  Y~KiBt...Ba--eoXi,B OEBx-~..-B#:BK- ) Bx...B#:AK-- 

- -& OEm~ff.B#:A Be'"'~#:A-+ OEB,..B~:AX Be'"'B~:A~: >0 .  
#~v+l  

For a given state of deformation and entropy this inequality is to be valid for 

all arbi t rary values of S, Ami, BB1...B~:A, BB1...B~:AK ( f l = t , 2  . . . . .  /~) which 
can be chosen independently of each other. I t  follows that  

OU OU 
- - 0 ,  - - 0 ,  

OEBI... BB:A OEB~ ... BB:AK 

for f l = v + t , v + 2  . . . . .  /, so that  U in (10.t2) reduces to 

U= U(S, Fan, EB,...Ba:A, E~,...B p :ate) (10.16) 

* This is analogous to a result obtained by GREEN & RIVLm (1964) and may 
be obtained by the methods of that paper. 
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with fl = t, 2 . . . . .  v. In  addition, 
T - -  ~U a s  ' (t0.t7) 

, ~u (to.t8) ~Kra=2OoXm'A OEAK ' 

- -  aU (t0.t9) ~7~iBt...B# ~ 00 Xi ,B  ~EB1. . .B~:B ' 

~U (t0.20) Y~KiB~...Bp ~ O o X i , B  ~EBx. . .B~:BK , 

the last two results holding for /5  = 1, 2 . . . . .  v. Also 

--q~T~>__0 (1o.2t) 
and with the help of (10.17)--(10.20) equat ion (9.t9) reduces to  

00 r - -  qK, K --  00 T S----- 0. (10.22) 

Because of (10.9)~ and (10.t8) equations (9.16) and (9.t7) are satisfied identi- 
cally. 

If  we introduce the Helmhol tz  free energy function 

A = U - -  T S  (10.23) 
and express A in the form 

A = A ( T ,  E A B  , EBI . . .Ba:A ,  EB~...Ba:.4K) , (t0.24) 
then 

S - -  0.4 aT ' (t0.25) 

, aA (t0.26) 7rKm = 200 X~'A 0EaK ' 

_ ~A (10.27) 7giB~...B# ~ OOXi,B ~EB~...Ba: B ' 

~A (to.28) 
7gKIB~...B# ~ 00 Xi ,B 8EBx... BB:BK " 

Equat ions  (9.14) and (10.27), together  with (9.5), form a basic set of equa- 
tions of mot ion  for the stresses ~rri and mult ipolar  stresses ~rKiB~...B ~, the con- 
st i tut ive equations for these stresses being given b y  (10.26), (t0.28) where, 
f rom (9.t3) 

v 

~ra ~ = n~ m + )Ca,~ Y (~B,...Ba X~B,...Ba + ~m~,...B~ x ~ , . . . a a , r ) .  (t0.29) 

11. E las t ic i ty :  a l te rna t ive  f o r m  

Before considering const i tut ive equations of a more general type,  based on 
the work of section 8, we obtain results for elasticity in the nota t ion of section 8. 
We suppose tha t  the con t inuum is in a reference state X B at t ime t o and we 
assume tha t  the internal energy U at some time T (to<=T<=t) has the fo rm* 

U(T)=UES, x~,a(~),x~j,., j~(~),x~j,., j~,k(~),xi, a,x~j,..j~(to),X~j,...j~,k(to)] (11.t) 
* Although U(T) is expressed in terms of the variables in (11.1) for convenience 

in this section it must  essentially be such that  it is a function of kinematic variables 
at  times T and t o. 
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for f l = t ,  2 . . . . .  /~. We consider a motion (3.t) which differs from the given 
motion by superposed rigid body translations and rotation and we assume that  
U is unaltered by such rigid body motions. Then 

u [ s ,  xl,4 (r), x,~j . . . .  ;p (3), Xmj .. . .  /p,k(3), X~,4, Xm/ .... /~(tO), X,~i . . . .  ip,k(to)] 

= u [ s ,  Qi j(3) xj, 4 (3), Qm, (r) Qj, i , . . .  Qj, ~, x ,~  .... ~ (3), 

Qm.(*) Qj,,,. '- Q/,~, Q~, x.i  .... i~,.(3), Q .  x,-4, 
Qj, i , - . -  Qi, i~ xmi ... .  4, (to), Q/,~, . . .  Qj,~, <2~, x . ~  .. . .  i , , , ( to)] ,  

for all proper orthogonal values of Qii(3). 

It  follows that  

u(T} = u [ s ,  ~ 4 B  (3}, ffB,. . .~,:4 (3}, ~ , . . . ~ , . . 4 ~  (3), E 4 ~ ,  
( t t .2)  

E~....B, :4 (to}, ~, . . .~ ,  :4K (t0}], 
where 

/T~, . . .~  :4 (3) = ~.  .... j,.. ~(3) x i ,4  x / , ~  . . .  x / , ,B , ,  ( t t .3)  

/~B,...~#:AK(3) =/Ti .... i#:~,(~) Xi, 4 Xk, n Xi,,B ' ... Xi#,B #. (tt.4) 

Using a dot to denote material time differentiation with respect to 3, and 
recalling (4.27), we have 

[EB,...B#:A (3)],=,= B i . . . .  i#:~ x~,4 x i , , B , " "  Xi#,B#' (11.5) 

[EB, . . .B# :a lC(3) ] ,= t=  B i .... i#:~,xi,4 x , ,g  xi,,B , ... x/a,B #, (11.6) 
and 

~U ~ + [ ~U ] , = A i i x , ,  4 Xi,B + [O(,)],=t = ~ ~Ea B (,) 

+ 0EB .... B#:4(~) ]~=~ Bi .... i#:iXi'a Xi~'~'"" Xia'B# + (tt.7) 

The development of elasticity equations from (8.20) and (8.21) is similar 
to that  given in section 10, so we omit the details and we quote the final results. 
Thus 

h = n~ (?~, (1 t .8) 

tiJ .... i # = n * a * i i  . . . .  /#, (1t .9)  

T - -  OU (ltA0) 
~S ' 

[ ~ v  ] , 0 1 . 1 t )  aim = 2e x, ,4 Xm,B [ OE4 B (*) Jr=t 

~,i .... i #=~x , ,4  xj,,B...x~.,,~,[- oU 1,=, (11.t2) 
~E~ .... B#:a (*) 

[ 0u 1 ( ~ . ~ }  
. . . .  . . . .  
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where U is given by  (11.2) and fl in (tl.2), (11.12), ( t t . t3)  takes the values 
1,2 . . . . .  v. Also 

- -Q,  T i>=0 (11.t4) 
and 

9 r - - Q i , ~ - - q T S = O .  (11.t5) 

The expression for U is symmetrized with respect to the indices A, B in EaB(z ) 
and EAB(* ) is understood to mean �89 ) + E B A  (,)] before (11.1t) is used, 
and then the symmetry condition (8.t9) is satisfied. In view of (tt.9) the con- 
dition (8.t8) is satisfied identically. 

12. Constitutive equations* 
For convenience we collect here all the fundamental equations of section 8, 

namely (8.6), (8A6), (8.t7), (8.19), and (8.21), together with (8.7), (8.14), (8.18), 
and (8.20), and the entropy production inequality (8.3). Thus 

~,.~.j + q F~ :  q v! ~1, (12.t) 

a~J . . . .  i~ = q ~ J  . . . .  i~ + a ~ i J  . . . .  i p , * ,  (12.2) 
v v 

a i '*  = a m i  = a i r ~ - -  a ~ i  . . . .  iB X'nJ . . . .  i~ - -  akii . . . .  i~ xmJ . . . .  j ~ , k ,  (t2.3) 

B = I  

+ ~ a k i i  . . . .  ia Bj . . . .  i a : i  k : O ,  
B=I 

and 

, , - ~  n4a , i$  , 

7~=h-ni Qi, 
~*~, . . .  #a = t i  i, . . .  ia - -  n ~  a k  i i ,  . . .  i a ,  

E (i,j .... i , x . j  .... j , - t L j  .... i x,j .... j , ) = 0 ,  
B = I  

(12.4) 

(12.5) 

(12.6) 

(12.7) 

(t2.8) 

(12.9) TdV + f TdA >=0. fe~dV_fe  r h 
V V A 

1 transforms as a tensor of order In equation (t2.8) B i . . . .  ia :~- -~Am~x,~  i . . . .  ia 

f l + l  under changes of rectangular cartesian axes. We assume that  iii .... ia 
also transforms as a tensor of order fl + t and that  h is a scalar, under change 
of axes, so that  the left hand side of equation (t2.8) is then a scalar. Since, 
for a given surface, tii .... ia is a tensor and h a scalar, it follows from (t2.6) 
tha t  Q~ transforms as a vector and ak i i  . . . .  i~ as a tensor under change of rectan- 
gular axes, where the appropriate quantities in each system of axes refer to the 

* See also section 16. 
Arch. Rational Mech. Anal., Vol. 17 10  
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coordinate surfaces in that  system. Thus, if Qi is the flux of heat across xi-planes 
at x i,  and Q* is the flux across x*-planes at the same point, then 

Ox* 
Q* = ~ Q j ,  (t2.t0) 

the transformation from x* to x~. being orthogonal. A similar result holds for 
the multipolar stress tensor. I t  follows from (12.2) and (t2.3) that  aii .... ia and 
a ~  transform as tensors under changes of rectangular cartesian axes and that  
the left-hand side of (12.4) is a scalar under such transformations. 

We now suppose that  a]~, ak i i  . . . .  ia, a i i  . . . .  ia, t~i . . . .  i~, h, Qi correspond to 
e.*. a deformation of the continuum given by (2A), and that  a* ,  a*ii . . . .  ]~, ,~ . . . .  ip, 

~* .... jp, h*, Q* correspond to the motion (3A), the entropy S being unaltered. 
If the superposed rigid body motions for all time do not change the values of 
ai ,  . . . . .  Qi,  except for orientation at time t, then 

a*ii . . . .  ia = Qk,,,Qi,~Qi, i~... Qi,  ipa.....i .... ia. (12A2) 

e*  .... j~ = 9 ,  Qj, ~.-. 9j~ ~, ej~ .... ~,, (t 2.13) 

/.'* -- (t2A4) , .... ~.p- Q,.Qj,~,... (?,.,~ t;~ .... r 

~*=7,, 02.15) 

Q * = Q i i Q i .  (t2A6) 

I t  follows from (12.3) and (4.6) that  a/'m satisfies an equation of the form (i2. t l ) .  
Also, recalling (4.6) and (4.26) we see that  the left-hand sides of equations 
(t2.4) and (12.8) are then unaltered by superposed rigid body motions, if r 
and U are unchanged by such motions. 

In order to make any further progress, constitutive equations must be ob- 
tained for U, a si ,  a~1  .. . .  ~ ,  a i i  . . . .  ~ ,  ti1 . . . .  ~ ,  h, and Qi which will represent different 
material properties of the continuum, and these equations can then be reduced 
to canonical forms with the help of the invariance conditions (t2A1)--(12.16). 
Results for an elastic material have already been obtained in section t l ,  and, 
in a different notation, in section 10. Other aspects of this problem are dis- 
cussed in section 16. 

13. Constitutive equat ions:  al ternative form 

We first collect together the fundamental formulae of section 9, and intro- 
duce some further notation. Thus 

~:~,~ + eo F~= ~oV! ~), ( t3.t)  

~ iB . . . .  Bp = ~0 ~B, . . .B ,6  "I- :7~K iB1...B,8,K ' (13.2) 

~a ~= xi,~, sa ~, ~ = x~.~ s ~ ,  (t 3.3) 

~7~KiB,...B a : X'i,A SKABI . . .BB,  ~iB1...BI~ : Xi ,  A "SAB1...BI~, (t3.4) 
v 

s'~a = s'aB = s , B  - z ~ , , ~  y (~ , ,~ , . . .~ ,  x,,,~, .,~,, + s~:,,~,. .~ ,  x,,,,~...B~,~:) , (13.5) 
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then 
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qO ~ 1 ' - -  2 V ~ S K A  Xra,A x~,KA,,i  + Qor--qK,r  
v 

+ ~ (saB,...Be BB,...Be :a + S~aB,...Be BB,...Be.A~) = 0. 
B=I 

t35 

(t3.6) 

p~=x,,ara, PiB,...Be=Xl,araB,...Bp, piB,...Be=Xi,A~aB,...B,, (13.7) 

rA=NK SKa, 

ho= ho -- Nr  qg , (13.8) 

~A B, . . .  B e = J'A B , . . .B  e - -  N K  SKA B1...B e ' 

~ ,  ~ AB , . . .Be  (Xi ,  A XmBa.. .Be - -  Xm, A XiB, . . .Ba  ) .~---0, (t3.9) 
~=1 

~. ~aB,...Be (BB,...Be:A --~Amixi,aX,nB,. . .Be)--ho=O, (t3A0) 
and a=x 

foogdro-fQo- dro +f dAo>=o (13.,t) 
V, vo Ao 

1 In (t3A0), BB,...Be:A--~A,,iX~,aX,~BI...Be transforms as a tensor of order 
fl + t under changes of rectangular cartesian axes and is also unaltered by 
superposed rigid-body motions at all times. We assume that  raB,...Be is un- 
altered by these rigid body motions and that  it transforms as a tensor of order 
fl + t.  We also assume that  ho transforms as a scalar and is unaltered by super- 
posed rigid body motions. I t  follows that  the left hand side of equation 03.t0) 
is a scalar which is unaltered when rigid body motions are superposed on the 
given motion. Since, for a given surface, rAB,...Be is a tensor and h 0 a scalar, it 
follows from (13.8) and (13.4) that  SKaB,...Be and ~ K i B , . . . B  e transform as tensors 
under changes of rectangular axes, and that  qr transforms as a vector, with 
respect to all indices including K. Also, from (t3.2), (t3.3) and (13.5) we see 
that  ~iB,...Be, ~a~, SAB,...Bp and s~K transform as tensors under changes of 
rectangular axes and that  the left hand side of (13.6) is a scalar. Moreover, 
BB,...Be'. A, BB,...Be: A K and X,~,A Xi,K A,~ i are unchanged when superposed rigid 
motions at all times are added to the given motion. We therefore assume that  
SKAB,...Be, S--aB,...Be, S'Ba, qg, U, and r are unaltered by such rigid body motions. 
I t  follows that  sBa and the left hand side of equation (t3.6) are also unaltered. 

Constitutive equations must now be postulated for s'~a, SAB,...Bp, SKABI...Be, 
qK, U, raB,...Be and h0 which will represent different material properties of the 
continuum and these equations can then be reduced to canonical form, with 
the help of the condition that  they are all unaltered when rigid body motions 
are superposed on the given motion. 

Results for elasticity have already been obtained in section t0, but we add 
here some other results derived from (10.8)--(10.20), and (t3.3) and (t3.4), 
namely 

, , OU 
SKa = SAK = 2~0 , (t3.t2) 

~ E A K  
~u 

S A B , . . . B  a = eO OEB, . . .Ba :  A , (13.13) 

~u (t3.t4) S K A B , . . . B a =  ~0 OEB . . . .  Ba:AK 

! O* 
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14. Elast ici ty:  relation to previous theory  

In a previous paper (GREEN & RIVLIN, t964) which was concerned with the 
theory of simple multipolar forces and stresses of the first kind, associated with 
monopolar displacements and velocities, explicit formulae were obtained for 
elasticity. We now show that  these elastic equations can be obtained as a 
special case of the present theory, and for this purpose we use the form of the 
theory given in section 10. 

The tensors EB,...Ba: B and EB,...Ba_I:BB ~ may  be expressed in the form 

EB,...B~ :B = E(BI...B~):B + EB,...B~ :B, (14.1) 

EB,...B#--, :BBII = E(B,...B~--I):B(Bp) ~-  E* ...BI3_a :BB#, 

for fl----2, 3 . . . . .  v + t ,  where E(B,...B#): B is the part  of EB,...Ba: 8 which is com- 
pletely summetric with respect to B x . . . . .  B~ and E(B1...BII_,):B(B#) is the part  
of EBx...Ba_x:BB # which is completely symmetric with respect to the same indices. 
The tensors E* . . .  are then defined by  (t4.1). With a similar notation we also 
have 

~iB , . . .B  a = ~i(B, . . .Ba) ~-  ~ *  i B t " ' B a '  (14.2) 
:r~B~ iBx...B~--x = ~(B~) i(B~...Bp_~) ~-  ~ B  a iBx...BB--t, 

for f l=2 ,  3 . . . . .  v + l .  Equations (t0.19) and (t0.20) may  now be written in 
the alternative forms 

a u  (14.3) ~i(Bx...B#) ~-  ~0 Xi ,B aE(B . . . .  B0):  B ' 

a u  (14.4) Sg(BB)i(Bx...B#_~) ~--- ~0 Xi ,B  OE(B~... Be--x): B (B#) ' 

~*B,...B~ = qo Xi,s aU (14.S) 
OE~ . . . .  BB : B ' 

, 8 U  
:TgBBiBt...BB__x = qOXi,B , , (t4.6) 

OEBx... B~--I : BB~ 
for f l =  2 . . . . .  v + t ,  and 

OU 
7giBx = ~0 Xi ,B OEBa:B ' (t4.7) 

, 8U 
~Ki = 2~o Xi,A ~ E A K  �9 

In  (t4.3) and (t4.5), 8U/OE(B,...Ba): B denotes the par t  of OU/SEB,...Ba: B which 
is completely symmetric with respect to B 1 ... B a and 8U/OE*.. .Ba:B denotes 
the remaining part.  Similar notations are used in (t4.4) and (t4.6). 

Next we take special values 

XiB,...B~ = Xi,B,...B~ (fl = t . . . . .  v) (t4.8) 

for the multipolar displacements. I t  follows from (4.t9) and (t4.1) tha t  

E(Bx '"Ba):B = E B  B ' ' " B ~ '  (14.9) 
E(B,.. .  B a _,) : B (B~) = EBB, . . .  B a , 

for f l = 2  . . . . .  v in 04-9h,  f l = 2  . . . . .  v + t  in (t4.9)z, and 

EB, :B = EBB, =EB,  B, (14.t0) 
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is defined in (3.6) and is completely symmetric with respect 

(14.1t) 

oU 
8EBBx ... Bv+t 

8U 
aEBBt...  BB 

for fl=- 2 . . . . .  v and 
3u 

~EBB~ 

___ ~u (14.13) 
8E(B~ ... B~): B (B~+I) ' 

_ ~ U  + 8U (t4.t4) 
OE(BI ... B~--I): B {Ba) OE(Bx ... Ba): B 

0u 0u (14.15) 
- -  8EBBI -~ 8EB~:B " 

From (14.4) and (14.t3) we have 

0U 
(14.t6) Jg(B,,+t) i(B~...B,,) = ~0 Xi, B OEBBI... B,,+I " 

Again, from (9.14), (t4.3), (t4.4), and (14.14), we obtain the formula 

- 0U (14.17) ~(B$)i(BI...Bp_,) ~- :r~Ki(B,...B~),K -~ ~0 Fi(Bt...B~) = ~0 Xi,B OEBB ... .  B~ 

f o r / 5 = 2 ,  ..., v. Next, from (9.t3), (9.14), and the formulae of this section, we 
see that  

~gAi 2V ~rgKiA,K2V OO~A 
- -  v + l  

OU oU (v>=1). (14.t8) 
= 2q0Xi,B ~--~-AB + q0 s OEAB~,...Ba Xi'B'"'Ba 

fl=2 

In  deriving (14.t6)--(t4. t8) we have assumed tha t  U takes a definite value 
when conditions (14.9), (14.t0) and (14.tt) apply, and that  the derivatives 

of U in (14.16)--(t4.18) can be evaluated. Formulae (14.5) and (14.6), however, 
contain derivatives of U with respect to the tensors EB,...Ba :B and EB,...Ba_~:BB ~ 
at the zero values of these tensors. If  U depends on elastic coefficients which 

* E* tend to zero, in such a way tend to infinity w h e n  EBt...B#: B and B,...B#--I:BBB 
that  U tends to the value (t4A2) but  the right hand sides of (t4.5) and (t4.6) 
tend to arbi trary functions, then the values of * and ~* ~B~ iBm...Bp--t i Bx...BB are 
undetermined. This situation is analogous to that  which arises when equations 
for incompressible elasticity are derived from those for compressible elasticity 
by a limiting process. Equations (t4.16)--(14.18) agree with those obtained 
previously (t964) except for a change in notat ion.* 

* The inertia terms were not included explicitly in the previous paper. 

where EBB,...B~ 
to B 1 . . . . .  B~. Also 

* = 0 ,  * EB1...B a :B E Bt...Ba_ z :B Ba = O. 

The function U in (10.t6) reduces to 

U ( S ,  EAB , EB,...B a:A, EBt...B~:A K) = U ( S ,  EAB,  EAA .... A,,) (say) (t4.t2) 

where/5 = t . . . .  , v; g = 2 . . . .  , v + 1, and 0 is expressed as a symmetric function 
of EaB and of E A A  .. . .  A,, as far as the indices A1, . . . ,  A are concerned. From 
(14.9) and (14.12) we see that  
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15. Infinitesimal elasticity 

Elasticity theory appropriate to a continuum in which the displacements 
and multipolar displacements are infinitesimal can be obtained at once from 
section t0. For simplicity we restrict our attention here to the theory in which 
only displacements and dipolar displacements, and their corresponding stresses, 
are present. Then, using the Helmholtz function A, 

A = A ( T ,  EaB, EB:a, EB:AK), (15.t) 

, 0A (t 5.2) 
~Km = 200Xm,A OEAK ' 

OA 
~iB  ~ OoXi,A ~EB:A ' (t5.3) 

OA 
9IKiB = O0 Xi,A OEB:AK ' (15.4) 

~x~,~=z4~x~,~ ,  (15.5) 

x~ ~ = ~A ~ - x ~ ,  ~ ( ~  x ~  + x ~  x~B,~) ,  (15.6) 

~ , =  eo if/, + ~g iB,X, (t 5.7) 

:~i,,~ + eo Fi = eo V! ~), (t 5.8) 

S ---- ~A OT' --qKT, K>=O' (15.9) 

eo r -- qtc,g -- eo T S = 0, (15 A0) 
and 

#i=Ng uKi, ho=N2c qK, (t5At) 

In ( t5A) ,  
EA B = XI ,A  Xi,B, 

EB:A=Xi,AXiB, (t5.t2) 

EB:AK ~- Xi,A XiB,K" 

Let Xia denote the value of xia in the reference state X a and let 

EAB = EaB -- (~AB, 

EB:A-'~EB,A --XAB, (t 5.t3) 

E B : A K = E B : A K - - X A B , K  �9 

We shall consider that  A is a polynomial in EaB, ~Ts.'a and ~Ts..A/~ and if these 
latter quantities are small enough we may approximate A by*  

Oo A = C  + x a B L B  +flBa L : a  -~-~)BAK~:AK-~-  

+ (15.14) 

�9 We assume here that the temperature T is constant. Alternatively, if we 
replace A by the internal energy U then the entropy S is constant. 
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where C and the coefficients aAB . . . .  , ~ABCDEF are constants if the body is 
initially homogeneous. We may omit the constant C without loss of generality. 
If, when the body is in its reference state, n ~ ,  ~ B  and nKiB vanish and the 
body is in equilibrium under the action of no body or surface forces, and no 
multipolar body or surface forces, then 0~aB, flAB, 7BA~ in (t 5.t4) are zero and 
A reduces to 

. . . . .  (15.15) 
"~- ~ABcDEA : B E c : D - ~ A B c D K E A  :B EG:DK2V~ABGDEFEA :BC ED:EF, 

where without loss of generality 

ZA.C~ = ;t.a c ~ =  aA..C = ~C. . a ,  

IAABCD.-'-=IABACD, VABCDK'--~VBACDK, (15.16) 

We now write 

x~=X~ + e ui, (15.17) 
Xia ~ X~a + e Uia, 

in the expressions (15.13), and neglect terms of higher degree than the first 
in e. We then obtain 

F--~ A B =  $ (C~ A,B "+ UB,A) -~- e A B, 

E~ :a = ~ (ua B + u~.~ X , . )  = / B a ,  (15.t8) 

If we introduce (15A5) into (i5.2)--(15.4) and use (15.t3), (15.t8) and retain 
only terms of order e, we have* 

~r'Kr~=Z(22KmCVeCZ)+IAKr~CD/CD+VKraCDL/CDL), (t5.19) 

~iB =iAco~ieco + 2~B~Cn/CD + ~ISICDK/CDtC, (15.20) 

~KiB =VCDBiKeCD + rtCDBiK/CD + 2~BIKCDF/CnF. (15.2t)  

Also, from (15.5) and (t5.6), we have, to order s, 

t r 
~im = 7rml , (15.22) 

~a ~----n]~ + ~r-a B X~B + ~rga BX,~,u.  (t 5.23) 

If the continuum in its undeformed state is isotropic with a center of sym- 
metry (holohedral) then the coefficients in (t 5.15) take the special forms 

42ABED -~- 2 0ABOc o 2VIA ((~A C(~B O 2V (~A D (~BC), (15.24) 

IAaBCO = aX~a Bt~CD +IA1 (~a CtSBD + ~a 3fgBC), (15.25) 

2~ABCD=~I (~AB(~CD'~-~OA COBD-~ ~aOA DOBC, (t5.26) 
* W e  can also p u t  , =  t now wi thou t  loss of genera l i ty .  A m u s t  be  wr i t t en  as 

a symmetric function of EAB before equation (15.2) is used. 



t40 A.E .  GREEN & R. S. RIVLIN: 

+ G(~A c ~s9 ~EF + ~D~ ~A E ~SC) + 

+ ~ , ( ~  ~s~C9 + ~B9 ~Ce ~A ~) + 
(15.27) 

+ r ~cF~e + ~ ~AC~Be~DF + 

-~ r dA F (~BE OCD' 

VA~CDK=rl~SCDK-=O, (15.28) 

where the coefficients 2, # . . . . .  ~1 are constants when T is constant. The ex- 
pressions (t 5.19)--(t 5.21) then become 

~Km~--2OKmecc'q- 2/ZeKm-~ 22IOKm/CC @ 2/Zl(/Km-~ /mK), (t5.29) 

~ = 2~ dis e c c + 2/Zl ein + ~1 O~n/c c + ~e /~ i + ~ ~is, (15.30) 

~ = ~ (~s//~ov + O~/~/~s) + r  + ~sKlz~v3 + 

+ G('~Hwo + '~sK/.~v) + r +h~:s) + 
(t5.3~) 

+ ~8/BiK "q- r + r + r 
We consider one simple application of these results. Suppose Xis  is con- 

stant and that we have a homogeneous deformation 

ui=-biaXa, bA4-=biA, (t5.32) 

with constant values of the dipolar displacement uas. We suppose that  the 
body is in equilibrium under the action of zero body and dipolar body forces. 
Then 

/SAK=O, 7"f'KiB=O, eA~=2ban, (t5.33) 

and, from (15.7), we must then have 

~ s  = O. (15.34) 

Equation (t 5.34) can then be satisfied if 

21(~+~) --2~1/zl OiSeDD (15.35) (~ + ~.)/~s = ( ~  + ~ ) / s ~  : - 2~1 e~s - 3 ~1+ ~ + ~ 
provided 

3 ~ : ~ + ~ + ~  + 0 ,  ~-1- ~3 4= 0. (t5.36) 

From (t5.32), (t5.35), and (t5.29) we see that  n}~ are constants and, from 
(t5-23) 

~a m = ~ra,~ (t 5.37) 

so that  the equations of equilibrium (t5.8) are satisfied. 
Equation (15.35) gives the dipolar displacements in terms of the homogene- 

ous deformation coefficients bia. Such a deformation can be maintained by 
the application of surface forces alone and no dipolar surface forces at the 
boundary of the body. 
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Since eiy,...y a 
follows that  

16. Equations of motion and variational equations 

TRUESDELL & TOUPIN (t960, sections t66, 205, 232) introduced the idea of 
a generalized velocity, which in our terminology is called a multipolar velocity 
and corresponds to (4.11), but  they did not include the restriction (4.t4) which 
describes the behavior of such a velocity when rigid-body motions are super- 
posed on the continuum. They defined generalized body and surface forces 
and stresses, called here body and surface 2a-pole forces of the (f l+ 1) th kind 
and surface 2&pole stresses of the (fl + t) th kind, and they postulated equations 
of motion and an equivalent variational equation. In this section we examine 
the relation of the ideas of TRUESDELL & TOUPIN to those presented here and 
for this purpose we use the basic equations of sections 8, 12. 

The condition (4.6) on multipolar displacements, or the equivalent condition 
(4.14) on multipolar velocities, under superposed rigid body motions implies, 
in particular, that  multipolar displacements and velocities are unaltered by  
superposed rigid body translations at any speed, and at any time. This con- 
dition, together with the other assumptions made in section 8, enabled us to 
obtain the classical equations of motion (8.5) from the energy equation (8.t). 
Without this condition the classical equations (8.5) would not have the same form. 

Because multipolar displacements and velocities are unaltered when the con- 
tinuum receives superposed rigid body translations at any speeds, it is possible 
for the quantities U, a~**, akij .... j~, aij .... i~, and Qi to depend explicitly on 
these displacements and velocities but not, of course, on the ordinary mono- 
polar displacement and velocity which are altered by rigid body translations 
at various speeds. 

We now consider the special situation in which U does not depend explicitly 
on multipolar displacements or velocities and a ~ ,  aki j .... ]~, aiy .... y~, Qi (and r) 
do not depend explicitly on multipolar velocities. We consider a second motion 
of the continuum which is such that  its position and the multipolar displace- 
ments at time t are unaltered, but  it now has multipolar velocities v i i  . . . .  Ja + v'i] . . . .  yp 

(fl = t . . . . .  v), where v~ ] .... ]a are constants (in space and time). The correspond- 
ing energy equation will differ from (12.4) only by arbitrary constant values 
v~] .... Ya added to B y  .... ]a:i so that,  by  subtraction, 

v t 

aiy~.. .  Ya v i i  . . . .  Ya ~ O. 
8=1 

is independent of v~y .... ia which can be chosen arbitrarily, it 

o r  

a iil.., ia = 0 

ak~] . . . .  Ja,~ + ~ i  . . . .  /a = 0 '  (t6.t) 

If we recall (8.2), we see that  (t6.t) are the equations of motion postulated by 
TRUESDELL & TOtlPIN (t964, section 205). It  should be emphasized that  these 
equations are not always satisfied, and, in particular, are not necessarily satis- 
fied for an elastic medium, as is seen by ( t t . t2)  when U depends on multipolar 
displacements. 
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Again, if h and //i .... ip do not depend explicitly on multipolar velocities, 
we can show, from equation (t2.8), that  

tii, . . . /p=0 
o r  

tii .... ia = n~ akii .... ia" (16.2) 

Equations (t6.2) were postulated by TROESDELL & TOUPIN (1964, section 205). 
From (12.8) it then follows that  h = 0  or 

h- - -n iQi .  (16.3) 

We have established sufficient conditions under which the equations of 
motion (t6A) and the surface conditions (t6.2), postulated by  TROESDELL & 
TOUPIN are valid. Since these equations are completely equivalent to the varia- 
tional equations studied by TRUESDELL & TOUPIN (1964, section 232), we have 
also established sufficient conditions under which the variational equations hold. 
In general, however, the variational equations are incomplete unless they in- 
clude variations of the internal energy and the heat conduction vector. 

Throughout this section we have assumed that  the multipolar displacements 
and velocities of all orders are independent and we have not considered de- 
generate or special cases. For example, if multipolar velocities have the special 
gradient form 

v~i .... i~=v~,i .... i~ (16.4) 

then equation (t6.2) would still follow if we assume that  /~ and t"ii .... ip do not 
depend explicitly on velocity gradients of all orders, as shown previously by 
GREEN & RIVLIN (t964). Even if we assume that  U does not depend explicitly 
on displacement or velocity gradients and that  a~,,,, aki i .... ip, e l i  .... ip and Q~ 
do not depend explicitly on velocity gradients we do not obtain equations (t6A). 

17. Appendix 

We suppose that  N particles with masses m IP} (P = t,  2 . . . . .  N) are situated 
at the points X !  P} at time t 0. At a subsequent time v (to_~ T<~t) we assume that  
the masses are at points x! P} (3) (P = 1 . . . . .  N) and we use the notation 

x (P) - -  x (.v) (t) (P) (v) X~ =x~ (to) (t7.0 $ - -  $ , 

The center of mass G of the N particles at time ~ is denoted by xi(z ) where 
N N 

M x i (3) -- Y. m IP) x! P) (z), M = Y, m IP) (t 7.2) 
P=I P=I 

and we write 

If 

then 

x ~ =  x~ (t), x ~ =  x~ (to). (t 7.3) 

y!PI (3) = . ! P ) ( 3 )  - .,(~), 

Y ( P )  - -  ~ f l v )  t t  ~ - -  X ( v )  X 
i - -  ] i  k O] -- ) - -  i ,  

(t7.4) 

N 
Z m (PI y!~l (~) = o ,  

P = I  

N 

Y. m I~) y!~) = 0,  
P = I  

N 

(17.5) 
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The motion of each particle and the motion of G is given by 

�9 ! P) (~) = ~!~)(% x ~ ) ) ,  

x~(~) = x~ (~, X , ) ,  
or by  

since 

�9 !~> (,)  = ~!~)( , ,  t, ,~v)), 

xi(*)  = xi(*,  t, x , ) ,  

(t7.6) 

(17.7) 

v! ~) (~) = ~!P)(r) = vi(r) + p!e)(T), (t 7.9) 

where a dot denotes derivative with respect to r holding X~ P) fixed in (t7.5) 
or t and x~ P) fixed in (17.7), and v~(z) is the velocity of G. We use the notation 

v! ~) = v! p) (t), v , =  v,(t) .  (t 7.t0)  

It  follows from (t7.2) that 
N 

/ v i ( r  ) = Y. m(V)v! P) (7:), ( t7. t t )  
P = I  

and, from (t7.5) 
N N 

Y. mW)~!P)(r) = 0 ,  Y. mW)~v)=0.  (t7.12) 
P = l  P = I  

Suppose each mass is acted on by  a force Fi(v)(r) per unit mass, where 

F~c~) (~) = ~,(~) [% ~) (~) ] .  

In view of (t 7.4), (t 7.6) and 07.7) this can be expressed in the alternative forms 

F/(v) (r) -- F~ w) (r, X, + y W)) (t 7. t 3) 
o r  

Fi (P) (r) = F~ (P) (z, t, x, + y~P)). (17.14) 

The rate of work of these forces is 

N 

W = Y. m w) F/(P) (r) v~ P) (r). (t 7.t 5) 
P = I  

Adopting the form (17A3), we define a continuous function of z and X,+Y, ,  
F*(z, X,+Y,)  say, with continuous derivatives up to order / , +  t, such that 

F~* (,) = ~*( , ,  X,), F~(~) (,) = ~ *  (,, X, +Y,(v)) 

for each value of P.  Then, 

~ x l E  * .. Fi(P)(v)=Fi*(r,X,)+ ~.f ,,B,...Ba(r,X,)Y(f). Y(~)+R,, (t7.t6) 

The velocity of the mass m (P) at time z is defined as 

xlv)- xW)/t X~V)), 
07.8) 

x~= xi (t, X,) . 
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where R i is a remainder term and 
~F~* (~) 

~%,...,~ (w, x , )  - ~ x , ~ . . .  ~ x ~  �9 

From (17.15) and 07-9) we have 
N 

W = i F  i (w) v i (w) + Y~ m (v) Fi (P) (w) ~!v)(w), 
P = I  

where 

(17.t7) 

07.~s) 

N 
MF/(w) = ~, m IPI Fi cvl (w). (17.19) 

P = I  

If we substitute (17.16) into (17.18) and use 07.t2) we see that  

p 

W =-- MF~(w) vi(w ) + M~,  Fi*B,...n~ @, X,) ViB,...B~ (W), (t7.20) 
8=1 

if the remainder term can be neglected, where 

N 
MV,B,...B~(W)= ;! ~, m(P)~!P)(-C) Y(BP) ...YCB P). (17.2t) 

"P=I 
If we define xiB,...~ (w) by 

N 
M XiB ..... 8, (7:) = ~_ ~, m CP) y!V)(7:) Y~(BP)... Y(B P), (17.22) 

r "  P = I  

then 
vie,...Bp (W) = XiB,...B~ @)" (t 7-23) 

We observe that  XiB,...B~(W ) satisfies an equation of the form (4.2), when 
all the particles receive an additional rigid body motion, for all times w. In 
particular it is unaltered when all the particles receive the same additional 
translation or translational velocity. Regarded as a function of w and Xr the 
expression XiB,...B~ (W) in (17.22) is a special case of the multipolar displacement 
defined in (4.1) and (4.2). The form (t7.22) is completely symmetric in B 1 . . . . .  B B . 

We now define a continuous function of w and X , +  Y,, x~(w, X, + Y,) say, 
with continuous derivatives up to order/z + t, such that  

x* (w) = x* (w, X,) and X! P) (T) = X~ (W, X r -~ Yr (P)) 

for all values of P. Then, 

/* 

:Y!P)(w)= y,_x~Fv*a,...A~,(w,X,)YJP)...Y(aV,'+ Ri, (17.24) 

v,(z)  = ~ ' ( w ) .  

With the help of (17.24) the rate of work (17.18) becomes 

W---- MFi(w ) vi(w ) + ~, Fi:a,...a, (w) V~, A .... A.(Z, X , )  (17.25) 

if we neglect the remainder term, where 

N 

Fi.A ' A.(W ) = 1  N-~ m(p)E(p)(.r~y(f) yj~). ( 1 7 . 2 6 )  
.... ~! f'~----I * ~i "'" 
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The tensors Fi: a .... a,(z) are 2~-pole body force tensors of the first kind. Equa- 
tions (t7.20) and (17.25) show that  the rate of work of 2~-pole body forces 
(~ = 1 . . . . .  #) of the first kind is equal to the rate of work of monopolar force 
gradients in multipolar velocity fields. 

Equations (17.2t) for f l = t ,  2 . . . . .  #, together with the first set of equa- 
tions in (t 7.t2), may, for a given value of i, be considered as ] (# + 1) (# + 2) (# + 3) 
equations for N velocities ~!PI (T) (P = 1, 2 . . . . .  N). If 

(# + t) (# + 2) (/~ + 3)>_--N (t7.27) 

we can, in general, express ~!vl (~) as a linear combination of multipolar velocities 
ViB,...Ba(7: ) (/5=~, 2 . . . . .  #). When ~ ( # + t ) ( / ~ + 2 ) ( # + 3 ) > N  there will be rela- 
tions between these multipolar velocities. Thus 

/J 

N!P) (T) = E YA(P).. A ,  V/A . . . .  A ,  ( ~ ) ,  ( t 7 . 2 8 )  

where YA CP). .A, is completely symmetric in A 1 . . . . .  A~ and depends on Y(B P) and m (P). 
Some of these coefficients may be taken to be zero when ~ (/~ + t) (/~ + 2) (# + 3) > N. 

The kinetic energy T of the N m a s s e s  m (P) is given by 

N 
2 T = ~. m IPI v! P) (~) v! P) (7:) 

P=l (17.29) N 

= M ~, (,) ~ (,) + Z ~ '~  f !~ (,) f!'~ (,) 
P = I  

and, using (t7.28), this becomes 

where 

2 T ---- M v~ (~) v i(z) + ~. Ya .... a,:R,...Be via .... a, (Z) vie, . . .8  e (~) 
r 

(t7.3o) 

where 

and 

W = M F i ( z )  v i ( z ) + M Y .  Fi* .. . . .  i e ( z , x , ) v i i  ..... je(z), (17.31) 
8=1 

N 

F.* x,) - -  ~a~* (3, x,) 
,,J .... ie (% 8zi, ... Oxj~ " 

(17.32) 

(t7.33) 

N 
Y~, a~ ~1 ~e--  Y m~p~ YZ ~ Y~P~ . . . . . . . .  A= B x . .. B e 

P = l  

YBl...Be:Ax...Ar 

The coefficients in (17.30) are also completely symmetric with respect to the 
indices A 1 . . . . .  A~ and with respect to B 1 . . . . .  B a. The expression (17.30) for 
the kinetic energy is a special case of the kinetic energy given by (7.1) and (7.7). 

Starting with the expressions (t7.15) for the rate of work we may develop 
similar results using (17.14) and (t7.7).  For given t, F* may now be regarded 
as a function of z and x, + y,. Thus 
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Also, if 

then 

N 

M x , i  . . . .  i ,  (~) = ~ ~=~ m (v) y ! V ) ( ~ ) y : V ) . . ,  y~), (t 7.34) 

v. , . . . j~  (T) = ~ .  .... j~ (r). 07 .35)  

We see from (17.34) that  x~j .... ip(x) satisfies equation (4.6) when all the 
particles receive an additional rigid body motion for all times r. In particular, 
it is unaltered when the particles receive the same additional translation or 
translational velocity. Regarded as a function of v, t and x~, the multipolar 
displacement x O. .... ip (~) in (17.34) is a special case of a multipolar displacement 
defined by (4.5) and (4.6). 

We now regard the function xi*(~) as a function of x, + y,. Then, 

V.* .  W-----MF~(r) vi(r) + E Fi:i .... i. ,,, .... i.(T, z,) (i7.36) 

apart from a remainder term, where 

N y~) Fi:, .... ~--- od ~ '  mCP)Fi(v)(~) ... y!V). 07.37) 
P = I  

Equations (t7.3t) and (17.36) show that  the rate of work of 2~-body forces 
(~ = 1 . . . . .  /~) of the first kind is equal to the rate of work of monopolar force 
gradients in multipolar velocity fields. 

Equations (t7.32) for/3----t, 2 . . . . .  /~, together with the first set of equations 
in (t 7. t 2) may, for a given value of i, be considered as ~ (# + t ) (# + 2) (/~ -t- 3) equa- 
tions for N velocities ))!P) (~) (P = t . . . . .  N ) .  If condition (t7.27) is satisfied we 
can, in general, solve for •!v)(T) in the form 

Iz 

:~!P)(~) = y ,  ~,lv) . v.. . tv~ (17.38) 
J $ l  �9 �9 �9 $~ $ $1 �9 �9 �9 Sm ~ / ,  

where ~, Iv) �9 is completely symmetric in i 1, i~ and depends on y!V), and 
J$1 �9 �9 �9 sm " ~ " ' 

m (v), and not on T. Some of these coefficients may be taken to be zero when 
~ ( # +  t)( /~+ 2)(/~ + 3 )>N.  

The kinetic energy of the N masses can now be expressed as 

2 T =  M vi(~) vi(7:) + ~ . . . .  , . : i  . . . .  i ,  v , '  . . . .  ' .  ('r v i i  . . . .  its (~) , (t7.39) 

where 
N 

Y ' . . . .  ' .:  i . . . .  i ,  = Y i . . . .  i ,  : ' . . . .  , .  = Z re(P) ~,, "~iv)...," Y ~ !  . io (t 7.40) 
P = I  

and the coefficients in (t7.39) are completely symmetric with respect to il . . . . .  i~ 
and with respect to il . . . . .  /'~. The expression (t 7.39) for the kinetic energy is 
a special case of the kinetic energy given in (7.t) and (7.4). 

The multipolar displacements defined in (t7.22) and (17.34) can be related 
to each other when we know the relation between the vector YB (P) and the 
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vector y}P), for each P = t ,  2 . . . . .  N, and such a relation will be independent 
of the t ime ~. For example, if 

y}P) = aiB Y~P), (17.41) 
then 

x~j .... ip (~) = ai,B, " " aipB, XiB,...B, (V), (1 7.42) 

where aiB depend only on the initial and final positions (at t ime t) of the particle 
P and the center of gravi ty  G. 
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