Multipolar Continuum Mechanics
A.E. GREEN & R. S. R1vLIN

Abstract

A general theory of multipolar displacement and velocity fields with cor-
responding multipolar body and surface forces and multipolar stresses is de-
veloped using an energy principle, an entropy production inequality and in-
variance conditions under superposed rigid body motions. Constitutive equations
for the multipolar stresses are discussed and explicit results are given for an
elastic medium. Work in a previous paper by the present authors (1964) is
shown to be a special case of that given here.
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1. Introduction

In a previous paper GREEN & RIVLIN (1964) have developed a general theory
of simple force and stress multipoles which were defined with the help of velocity
components and their spatial derivatives. In that paper we indicated direc-
tions in which the theory could be generalized. Here we lay the foundations
of a theory of considerable generality which includes the work of the previous
paper as a special case.

The starting point of the present investigation rests on some ideas of TRUES-
DELL & TouPIN (1960, sections 166, 205, 232). These authors introduced gen-
eralized velocities, body and surface forces, and generalized stresses.* They

* Special types of generalized displacement and velocity fields have been used
by ERICKSEN (1960a, 1960b, 1960c, 1961).
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postulated equations of motion in terms of generalized stresses and body forces,
and they postulated surface conditions. TRUESDELL & TouPIN also discussed
a general type of virtual work theorem and showed that it was equivalent to
their equations of motion and surface conditions. In the present paper we use,
essentially, the same definitions of generalized body and surface forces and
stresses as those of TRUESDELL & TouPIN, but a new condition is imposed on
our definition of generalized displacement and velocity. We find that the equa-
tions of motion and surface conditions given by TRUESDELL & TOUPIN are not
necessarily always satisfied. Sufficient conditions under which these equations
are valid are discussed in section 16. The same conditions are then sufficient
for the validity of the virtual work equation.

Kinematics of ordinary displacement and velocity fields, now called mono-
polar kinematics, is briefly reviewed in sections 2, 3. The theory of multipolar
displacements and velocities is developed in section 4. Multipolar body forces
are defined in section 5, and multipolar surface forces and stresses in section 6.
Appropriate expressions for kinetic energy corresponding to multipolar velocities
are given in section 7. The fundamental dynamical theory of multipolar forces
and stresses is considered in section 8 using only an energy equation, an entropy
production inequality, and invariance conditions under superposed rigid body
motions. An alternative form for this theory is given in section 9. A general
theory of elasticity for multipolar stresses and forces is developed in section 10,
with an alternative form in section 11.

Questions concerning constitutive equations for materials which are not
elastic are considered in sections 12, 13. In section 14 we show that the elas-
ticity theory given previously (1964} is a special case of the theory of elasticity
given in section 10. In section 15 we derive the approximate theory of infin-
itesimal elasticity appropriate to elastic materials acted on by monopolar and
dipolar stresses.*

2. Monopolar kinematics

We refer the motion of the continuum to a fixed system of rectangular
cartesian axes. The position of a typical particle of the continuum at time ¢
is denoted by x;(t) where

%, () =2%,(Xy, Xy, X5,7)  (—o0<T=Y), (21)
and X, is a reference position of the particle. We also use the notation
x;=x,;(). (2.2)
If this deformation is to be possible in a real material then

0x;(7)

det %,

] > 0. (2.3)

* After completing the present paper the authors saw a report by R. D. MINDLIN
on ‘‘Microstructure in Linear Elasticity” in which he develops a theory which is
essentially the same as that contained in § 15 of our paper. MINDLIN has applied
his theory to wave propagation and this application has not been studied here. —
This paper has now been published in Arch. Rational Mech. Anal. 16, 51—78 (1964).
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For some purposes it is convenient to express x;(7) in terms of the current
position of the particle at time £ so that

x‘-(f =xi(x1’ xz» xs, tv T) (2.4)
and
2%(1)
det | —=\2L . .
et | o |>o0 (2.5)

Displacement gradients taken with respect to the position X, are denoted by

B (v
xi,AxA....Ap(T)z aXAl 3XA:() aXAﬂ (ﬂ=1)2;"')r (26)

and we use the notation
Xidy.dg=%i4,...8,(8). (2.7)

Displacement gradients taken with respect to the current position x; at time £ are

xi,i,i....i,(‘r)_‘*—‘aﬁm'— B=1,2,..). (2.8)

T 0xi, 0%, ... 0%,
We observe that
%5 (6)=0;4,,
Zii.ipB)=0  (8>1),

and that the gradients in (2.7) and (2.8) are symmetric with respect to 4,, 4,,
..., 45 and 4y, 4y, ..., 15 Tespectively.

The components of velocity at the point x,(z) are denoted by o{ (z) =v,(z)
so that

(2.9)

v (v)=Dx;(v)/D, o () =v;(H)=v;,

where D/D 1 denotes differentiation with respect to t holding X, fixed in (2.1},
or x;(¢) and ¢ fixed in (2.4). More generally, n® velocity components may be

defined as
v () = D" %,(t)/D 1", o () = o™, o0 (7) = x;(7). (2.10)

From (2.8) and (2.10) we have

D%,y ...ig (T e (z)
’151"”3( L~ oxi, 6x:....axi, =5 (), (2.11)

and we use the notation
" =" (2.12)

Hi...88 Yt 8

for gradients of the #™ velocity components at time ¢ with respect to coordinates
at time . Also

‘U,(',oz....i,("f'):xi,il...i,('f)» 7’5%...;,:0 (B>1). (2.13)
In view of (2.3) we may write x; 4(7) in the polar form
%;,4(7)=R;p(r) Mg, (1), (2.14)

where Mg ,(7) is a positive definite symmetric tensor and R;z(7) is a rotation
tensor, so that

R;p(v)R;4(v) =045, R, ()R 4(v) =0y, detR,;,(7) =1. (2.15)
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Also
RiB=R1:B(t)r MABZMAB(t)' (2-16)

In general, throughout the paper, lower case Latin indices 7, 7, ... are as-
sociated with coordinates x;(7) or x; and take the values 1, 2, 3; upper case
Latin indices 4, 4,, ... are associated with coordinates X, and take the values
1, 2, 3. The usual cartesian summation convention is used, and commas denote
partial differentiation.

3. Superposed rigid-body motions

We consider motions of the continuum which differ from those given by
(2.1) only by superposed rigid-body motions, at different times. Thus

xf (T =} (v*) + Qu;(v) [%;(v) — ¢;(7)], (3-1)

where ¢;(7), ¢f(7*) are vector functions of v and 7*(=7--a) respectively, a is
an arbitrary constant and Q,;(7) is a proper orthogonal tensor which depends
on 7. In section 2 vectors and tensors are defined in terms of the motion (2.1)
and we denote corresponding quantities defined from (3.1) by the same letter
to which we add an asterisk. From (3.1) we have

of () =X (%) + 0(7) [v;(2) — 6;(M] + 24, (v) [%° (z%) — e (7%)],  (3:2)

where a dot denotes differentiation with respect to 7 or 7* and

0:i(0=2,(10,;(0),  2;;(0)=-2;.0), 5:3)
Q:i= 0,00, 0;,=8,0).
Also
7 e 40 () = O () o, (), (34
and
SR Q@) Qi iase T (), 3-5)
for a=1,2,....

We summarize some results obtained in a previous paper (GREEN & RIVLIN
1964). If

E g a,(0)=%, 4(T) % 4,...4, (1), (3.6)
Eii,...i,(T)zxm,i(r) xm,i,...i,(f)»
for ¢ =1, 2, ..., then
E:Al...A,(T*)=EAA1...A,(T): (3.7)
Efil,..i,(f*)=Q¢fQi,7-, Qi,i,Eff,...i, (7).
Also, if
B
W S (=B )
AR =2 (G ol 3.8)
for «=2,3,...; p=1,2,..., then
Afil(f‘.).i,zQﬁQi,f, ia;',,A}?.)...j.~ (3.9)

In addition, if
Aji=v; i+, 4 0;;=0; j— i (3.10)
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th
en Zvi,j—‘:A”“*‘wij; (311)

and
A?f=QiinnAMn’ w?izgimginwmn-i‘zgif' (312)

4. Multipolar kinematics

The displacement function x,;(z) can be regarded either as a function of X,
7 as in (2.1) or as a function of x;, £, T as in (2.4). The form (2.1) is appropriate
to continua in which a reference position is required and (2.4) is convenient
when there is no preferred reference state. We now define a simple 2%-pole
displacement field in two forms.* Let

%:p,...8s (V) ="%;p, .5, (X1, X3, X3, 7) (—oo<T=d), (4.1)

be a tensor function under changes of rectangular cartesian axes for §=1, 2, ... .
The set of tensors (4.1) is a set of kinematic variables which may be changed
independently of the motion (2.1), but when the motion (2.1) is changed these
tensors will, in general, be altered. When the motion is altered from (2.1) to
(3.1) we denote the corresponding tensor (4.1) by xfy . B, (v¥)- If, in addition
to the above assumptions about the tensor (4.1),

x:tBl. ..Bg (T*) = an (1) anl...Bp (1) (ﬂ g 1) ) (42)
then we may say that x5 p5,(7) is a simple 2P-pole displacement field. For
example, if

%ig,...8y (V) =7%;5,...5,(T), (4.3)
then the tensor (4.3) satisfies the postulated conditions. Returning to the general
tensor (4.1) we use the notation

%i8,..B,=%B,...B, (!) (4.4)
and we observe that the tensor in (4.1) does not necessarily have symmetries
in any of its indices.
Again let
Bijeooip (D) =2%05 55 (%1, %3, %3, 2, T) (— oo <T=d) (4.5)
be a tensor function for §=1, 2, ... which is such that

o 7o ig(T)=0pa (1) Qj s, - - Q,‘, ig¥niy ... ig (7). (4.6)

Then we say that x,; ;. (7) is also a simple 2P-pole displacement field and we
use the notation

Tijyois=%ijs.ip () (4.7)
An example of such a displacement field is
Zijr s (D) =% 5. s (7). (4.8)

A 2P-pole displacement field of the type (4.5) can be obtained from the field
(4.1) in many different ways, and conversely, as indicated in the appendix.

* A possible motivation for the definitions given here is indicated in the Appendix.
Arch. Rational Mech. Anal., Vol. 17 9
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One simple method of relating the two fields is by the equation

Xijy...78 (t)=x;,B, - Xig,Bg¥iB,...Bg (1), (4.9)

but this may not always be the relevant relation to use. In most of this paper
we assume that (4.1) and (4.5) are independent descriptions of multipolar dis-
placement fields.
We define 2%-pole velocity fields from the 28-pole displacements (4.1) or (4.5)
by the equations
Vip,...8, (V) =%;,...8,(7), (4.10)

viix-..iﬂ(r)':kii;...jp(‘r)1 (411)

for §=1,2,..., where a dot denotes material time differentiation with respect
to 7 holding X, fixed in (4.10) and ¢ and x; fixed in (4.11). We use the notation

v, =y, ),
1B1...Bp 1B:...Bﬁ() (4'12)
v

id1eis="Vij.ig ()
where we put t=¢ after differentiation. It follows from (4.2) and (4.6) that

v:tB, ...Bg (T*) = an (T) VB, ...Bg (T) +an(7) x:B, ...Bg (T*) ’ (413)

and
Univ oo ip (T = Qoun () Qi - Qigip Uniyonip (O + 20 (0 535, 5, (1) . (414)
Similarly, 2°-pole n™ velocity fields may be defined as*

()
vsnB)l...Bﬂ (T)=§i31...3p (T)’ (4 15)
o) () )
Vssy. ...ip (v)= Xijr. ip (),

where (n) over a symbol denotes #™ material time differentiation with respect
to 7, and we use the notation

v&’g,...an-vg’gl...Bp (t)’ (4 16)
o = () ‘
2f1... 78 th-.. 18 :

For convenience we call 2°-pole displacement and #* velocity fields (n=1,2,...)
multipolar displacement and n'™ velocities. We define gradients of multipolar
displacements by the equations

% xiB,...Bs(T
%iB,...Bg, 4s...44(T) =_85{Alf—..6ﬁ)<%’

(4.17)
XiBy...Bg,As...Ag = %iB,..By 4y ... 4 (1),
and
& ¥ij; ...ig (T)
xij,...ip,i,...i,,( )=W’
%y o o0 OXig (418)

Bijynipyivenin=Fifyorip, inoeia (D)

fOI' /321:2: cens (X='1, 2, tee e

* u=0 corresponds to a 2f-pole displacement and #==1 to a 28-pole velocity;
in this latter case the superscript () is often omitted.
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The behaviour of the multipolar displacement gradients (4.17) and (4.18)
when the motion is changed by superposed rigid-body motions can be found
at once from (4.2) and (4.6). If

Ep,..Bg:a4,. g (T) =%y A(T)xmB....B, a,...4,(7), (4.19)
E7 p £4; .. 1,(‘5)_ 1(‘{) xmh p 4. 1.,(‘5) (420)

then
E} . Bpian..a,(V)=Ep, Byiaa,..4.(7), (4.21)

and

E;l:...ipcii, ...1},(7*) = Qi,m, Qipmp QiiQi,nl Qi.n,Em,...mp:fn;...n,(r): (4'22)

where
0xm (T*)  ami .. g (T%)

¥ . (T =
Eh“.jp:u,...t,(-c ) ax: 3x1_t ox*
L OFG,

From (4.19), (4.20) and (3.6) we see that

E:AAl...A,(T)=EAA,...A,(T)r
E:u,...i,(T)'——Eul...i,(T)-
Multipolar #»™ velocities were defined in (4.15) and from the second form
we define multipolar #™ velocity gradients
(L]
(1) = Z i) (4.24)

o%i, ... Oxiy

(4.23)

()
R AT I

for f=1,2,...; «=1, 2, ... and we use the notation

W inie = Wip it O w2s)
vi?l geineia (D =%ig g i ia (7).

If we differentiate both sides of equation (4.22) u-times with respect to 7
and then put t*=7=¢ we have

B* 1,«; 4. th:' Qypm, QwQun,' . Qi,n, B%)...mp:jn,...n.’ (426)
where
B(“) jpridn. '—2-1 ( )1)(” A 7’%1 It ta” (427)

In particular we see from (3.8) and (4.27) that
BY, =AY (4.28)

R

From (4.27) we have
u—1
Bi(f‘)--iﬂiiix...i _vg‘x) ?ﬁ,ixw-ia +l§o( )Ug:,l) v%;)_..y};,il...i, (429)
for u =1, 2, ... and given «, 8, and hence, by repeated application of this formula,

.,)S;:) P B(u) .igiii...ie T @ POlynomial (4.30)

(1) (Q)
in vmnle...fp:ii,...i, and x”, 7

for A=1,2,...,u; 0=1,2,...,u—1.
9*
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Again, if we differentiate both sides of (4.21) u-times with respect to 7 we
see that

B%.(f‘.).Bp:AA....A,(T*)=B(B’?...B,:AA,...A,(7) (4.31)

where
“

Byttt =2 (3 D @ oy aa D (432)

and
A &*olf) (7)
vSn)B,...B;,,A,...A,,‘('r 2%' (433)

for A=0,1,...; =1,2,...; «a=1,2,.... Also,

vin)Bl BB,A,...A,(T)=xmBl...Bp,A,...A.(r) » (4.34)

1
oD, B,,,A,...A,:‘vgn)B,...Bp,A....A,(t) .

5. Multipolar body forces

Multipolar body forces of the first kind associated with velocity components
v; at time ¢ and their spatial derivatives were defined previously (GREEN &
RivLiN 1964). Here we define multipolar body forces of the (84-1)® kind
associated with multipolar velocities and their spatial derivatives, evaluated
at time ¢.

If F; .., is a tensor* and v;;,

and if the scalar

an arbitrary 2%-pole velocity at time ¢,

E

S5 eip (5.1)
is a rate of work per unit mass, then the tensor F; , is called a body force
2P-pole of the (B41)™ kind, per unit mass. The total rate of work of a body
force 2°-pole of the (B-+1)" kind, per unit mass, distributed throughout a

volume V at time ¢, is

Yij...jg

f@ . t],...ip dV! (52)
where g is density. When §=0 we recover the rate of work of a classical body
force vector F; in a vector velocity field. If F; ., .; ., is a tensor of order

«+pB-+1 and v ., 4.5 15 an arbitrary 2'3—pole veloc1ty gradient, and if,

Fijiptineia Vidooip,inonia (5-3)
is a rate of work per unit mass, then the tensor F;; .., .., is called a body
force 2%P-pole of the (B+-1)™ kind, per unit mass. The total rate of work of

such a body force distributed throughout a volume V is

f@ it eerigticeeia Vidaondp, s onin BV (5-4)
Without loss of generality the tensor F; ., .., may be taken to be com-
pletely symmetric in the indices 4, ...,%,. When 8=0 we recover a body

force 2*pole of the first kind,** F,,,

* Owing to the greater generality of the present work we have not always been
able to follow the notation which we used previously (GREEN & RIVLIN, 1964).

** This was denoted by E, .. ;i in the previous paper but this notation is now
abandoned.

PRTTE
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The multipolar forces have been defined with the help of v;; ;. ; . ;, which
is regarded as a function of #; and ¢ and so the body forces may also be regarded
as functions of these variables, and distributed throughout a material volume
V at time ¢. For some purposes it is more convenient to define multipolar body
forces associated with a volume ¥V but measured as functions of X, and ¢,
where X, are coordinates of points in a material volume ¥, at time #,, which
correspond to points of V. If Fp < Bpidi...As is a tensor function of X, £, of
order w+f+1, and v;5 . g, 4,..4, IS an arbitrary 28-pole velocity gradient,
also a function of X, ¢, and if

Fp, ..Bg:dr... 4 ViB, ... By, Ay ... Aq (5.5)

is a rate of work per unit mass, then the tensor Fgz  p,.4,...4, IS @ body force
2+6-pole of the (8-1)™ kind, per unit mass. The total rate of work of such
a body force multipole distributed throughout V is

J 00 Ep,...Bg:4,...4, ViB,...Bs, 4,...4, % V5, (5.6)
where g, is the density of the volume ¥,. The multipolar body force is com-
pletely symmetric in the indices 4,4, ..., 4.

Since the multipolar velocity gradlents Viji...ig,ir...i, CaN De regarded as a
special case of a 2**%pole velocity it follows that a body force 2*™-pole of
the (8+1)™ kind can be regarded as a special case of a body force 2**-pole
of the (a8 +1)™ kind.

6. Multipolar surface forces and stresses

Consider a surface A whose unit normal at the point x; at time ¢, in a
specified direction, is n;. If #;; ., ..., 18 @ tensor function of %, ¢ of order
a+pf+1 and if, for a.]l arbitrary zﬂ—pole velocity gradients v;;, ;. ;. .., the
scalar

6-1)

is a rate of work per unit area of A, then the tensor #;; .., ., is called a
surface force 2°*P-pole of the (B4-1)" kind, per unit area. " Without Toss of gen-
erahty the tensor may be taken to be completely symmetric in the indices
%y, ..., 5. When /3 0 we have a surface force 2*pole of the first kind* ¢,,; .
When a=0, t;;, ...;, is called a surface force 2P-pole of the (B+1)™ kind, per umt
area, with §=0 correspondlng to the classical surface force vector ;. The total
rate of work of the surface force 2**-pole of the (84 1)™ kind, per unit area,
over the surface A4, is

bideovipiineeia Vidiooitip, s onia

A, (6.2)

Aftijl...jp:i,..‘i, Vidyoetp, brenin

The tensor #;; . ;,.i,...i, at %; is associated with a surface whose unit normal
at the point is #,. When #, is a unit normal to the x,-plane through the point
we denote the corresponding tensor by

Obify.ccipiiy eeia’ (6.3)
* Denoted previously (GREEN & RIVLIN, 1964) by #,. i i
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These are the components of a surface stress tensor 2°FP-pole of the (B-+1)™ kind
on an element of area at the point normal to the x;-axis. The rate of work of
this tensor is

Ohifytpiinmnia Vifaooip, isoein (6.4)

per unit area of the surface normal to the x,-axis. The first index % is not
necessarily a tensor index under change of axes, but indicates the surface on
which the stress tensor acts, the surface being fixed. When a=pf=0 we recover
the classical stress tensor ¢,; which we shall see later is a tensor with respect
to both indices.

Suppose now that the surface 4, containing an arbitrary material volume
V at time ¢, was a surface 4, at time £, containing a corresponding volume Vj.
The coordinates of corresponding points in ¥, and V are X; and x; respectively
and Ny is the unit outward normal at the surface 4,. Let $,p . 5,.4,..4, D€
a tensor function of X, ¢, associated with the surface 4 but measured per unit
area of Ay. If, for all arbitrary 2°-pole velocity gradients v, Bp. Ay ...4,» the
scalar

PiB,...Bg:As... A, ViB,... By, 4;... Ay (6.5)

is a rate of work per unit area of 4,, then the tensor p;p  p,.4,...4, is called
a surface force* 2**#_pole of the (§--1)™ kind, per unit area of 4,. The total
rate of work of this surface force over 4 is

AfibiBl...B,,;Al...A, YiB,...Bg,A;... Ay a4,. (6.6)

The surface force multipole p;p . p,.4,...4, Is associated with a surface 4
but measured per unit area of 4, whose unit normal is N,. When Ny is a unit
normal at X, to the Xy-plane through this point we denote the corresponding
stress multipole by

MK iB,...Bp:ds.. . Ag" (6.7)

These are the components of a stress tensor 2**/-pole of the (84 1)% kind
associated with an element of area at the point x; in V, which in ¥, was per-
pendicutar to the Xy-axis, measured per unit area of this surface in V;. The
rate of work of this stress tensor is

TR iB,...Bg:dy... Ay ViBy...Bg,4:... 4 (6.8)

per unit area of surface in ¥, normal to the Xg-axis. The first index K is not
necessarily a tensor index under change of axes, but indicates the surface on
which the stress tensor acts, the surface being fixed. The classical stress tensor
7tg; corresponds to a=pf=0 and we shall see that this is a tensor with respect
to both indices.

A surface 2*™2-pole of the (8-+1)" kind may be regarded as a special case
of a surface force 2**f-pole of the (x-+p+1)® kind.

* A simple surface force 2%-pole of the first kind is denoted by p;. 4, ... 4, instead
of P4, ...4.: used previously (GREEN & RivLIN, 1964). When a=0, p;B,... B, is called
a surface force 26-pole of the (8--1) kind, per unit area of 4,.
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7. Kinetic energy
Kinetic energy per unit mass at time 7, corresponding to velocity v;(t) is

3 2:(7) v;(7) (7-1)
and its material rate of change is
v,(7) o (7). (7:2)
In particular, its rate of change at time £, per unit mass, is
Vg vgz). (7.3)

When we have, in addition, 2°-pole velocity fields v, . (@ (B=1,...,9)
we postulate that the corresponding kinetic energy, per unit mass, is*

. ﬂz_ ytl 1, ]1 ]p 'U p (T) vifl 7p (T) 2 (74)
where ¥; . .,:j,...;,» independent of 7, is a tensor function of %, and ¢, and we
can put

yz Y yh JBti .t (75)
without loss of generality. The rate of change of thlS kinetic energy at time ¢,
per unit mass, is found by differentiating (7.4) with respect to 7 and then
putting T=4¢, to give

Z y,, 72 ¥ P vgz.,.i, viil...ip' (76)
o, f=1

Similarly, when the 2f-pole velocity field is v, . Bs(7) (B=1,...,v), the
corresponding kinetic energy, per unit mass, is

3 ﬂZ IYAI...A,:B,...B, Via,...44(T) Vin,. .8,y (T), (7.7)
a, =
where Y, 4,.5,...5,» independent of 7, is a tensor function of X,, and

Y4, 44808, =B, .By:ay... A4 (7.8)

The material rate of change of (7.7) at time £ is

v
;_IYA....A,:Bl ..Bg U, de UiB,...By (7.9)

8. The energy equation and entropy production inequality

We consider an arbitrary material volume V of the continuum bounded by
a surface 4 at time £. We assume** that body force 2°-poles of the (84 1)®
kind F; ,, (=0,1, ¥), per unit mass, act throughout V' and that surface
force zﬂ-poles of the (ﬂ —I—1)th kind ¢;;  ;, (8=0,1,...,%), per unit area, act
across 4. We also assume that there i 1s an internal energy function U per unit
mass, an entropy function S, per unit mass, a heat supply function » per unit
mass and unit time, a local temperature 7', which is assumed to be always

* See the Appendix for a motivation for this definition.

** The remarks at the ends of sections 5, 6 indicate that there is no essential
loss of generality in restricting our discussion to body and surface force 2f-poles of
the (f+1)% kind.
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positive, a heat flux % across 4 per unit area, per unit time, and a heat flux
Q;, where @, is the flux of heat across a plane at x; perpendicular to the x;-axis,
per unit area, per unit time. All these functions depend on x,, %,, x5, ¢ or,
alternatively, on X,, X,, X5, £ when a preferred position for the continuum
exists.

We postulate an energy balance at time ¢ in the form

fQ”iv?)dV’*'fQUdV:f@[”'i‘Fivrl“ZE;‘...; vi;‘,...j,]dV"f‘
v v v P

, (8.1)
+Af [ti v; +ﬁ§1tijl g Yifi 7',,] a4 —AfhdA ,
where a dot denotes the material time derivative and where
E;‘, wis=Fij.gp— Zlyi, bty i o® i (8.2)
o=

The second term in (8.2) arises from the contribution (7.6) to the energy equation
from the kinetic energy. We also postulate an entropy production inequality

f@SdV—f@%dV—f—f%dAgO. (8.3)
14 14 A

We suppose that the continuum has arrived at the given state at time ¢
through some prescribed motion. We consider a second motion which differs
from the given motion only by a constant superposed rigid body translational
velocity*, the continuum occupying the same position at time ¢ We assume

that U, tiv By i gps Ejl._.,-p (8=1,...,v), & and » are unaltered by such
superposed rigid body velocity; and we observe from section 4 that v;;
(B=1,2,...,v) and o ; (8=0,1,...,v) are also unaltered but that v, is
changed to v;+a,, where a; is constant. Thus equation (8.1) is also true when
v; is replaced by v;+a,;, all other terms being unaltered, so that, by sub-

traction
[ng,.dV—{—ft,-dA—fgv?’dV]a,-:O (8.4)
v A |4

for all arbitrary constant a;. Since the quantity in the square brackets in
(8.4) is independent of a; it follows that

JQEdV—I"AfhdA =Vfgv$2)dV. (8.5)

If the components of stress across the coordinate planes are g;; it follows from
(8.5) that
giii+0 F,—:g'u?), (8.6)

In view of (8.7), 0}, is a tensor with respect to both indices 7, ¢ under changes
of rectangular cartesian axes, where the stresses in each coordinate system are
associated with the three coordinate planes in that system.

* The independent thermodynamic variable, which can be taken to be S, is
unaltered.
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With the help of (8.6) and (8.7), equation (8.1) becomes
fe (}dV—’:f [Q" +2 E,’l...f,, Vijy.ip T 05i%i 5 av +
14 vV p=1
+Afﬂ§1"¢/, coig Vid...ip @4 —‘AfhdA .
We apply this equation to an arbitrary tetrahedron bounded by coordinate

planes through the point x; and by a plane whose unit normal is #,, to obtain
the result

(8.8)

fg‘l(tm in =M Okijy..ip) Vijy...jg— B+ 1;0;=0. (8.9)

Then, using (8.9) in (8.8) and applying the resulting equation to an arbitrary
volume, gives

er—Q;;—e U+Uji”£,j+ﬁ§1(9 E; vdp T Ohigi g k) Viju s T

N (8.10)
+ﬁ§10kiil...i, Vi ip kb =0-
From (4.27) we have
viil...j,q:le...ip:i'_vm,ixmjl...ip’ (8.11)
vij....iﬁ,szi,...i,:ik_1'm,ixmil...7'p,kt
where
Bj,...j,,:izB;(,l.)..i,:ix
Bj....i,:.'k:B;(,l.)..i,,:ik,
and with the help of (3.11) equations (8.11) become
Vit ods™ Bivcccipri =7 (Ami + Oped) Fnji (8.12)

_ 1
Vijeip b B, fpiik 2 (A i+ O i) B j, fp Bt

If we substitute the first of equations (8.12) into equation (8.9), we see that

ﬂé:l'?‘i""i”(Bi‘"'i“i—%Am‘x”‘f""fﬁ)—Z—%wmiﬂgfih.--ipxmi,...1‘,=0» (813)
where -
h=h—n;Q;, (8.14)
t_ih...iﬂ=tif1...fp_nkokifl...jﬂ'
Also, with the help of (8.12) and (3.11) equation (8.10) becomes
or— Qi,i—QU+%Am¢0£m+;‘_’ii....i, B ..igit
- (8.15)
+ﬁ§1¢7kiil...i,, B . ig:it +10,,0,=0,
where
d aiil..-iﬁ=e ifl---ip_}_olki]'l...fp,k’ (8-16)
an

¥ v
’
Oim = O%m *ﬂg Oifreipg®mis . ip _'ﬁ;lokii, vin Bmis.ip b (8.17)
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We now consider a motion of the continuum which is such that the velocities
differ from those of the given motion only by a superposed uniform rigid body
angular veloc1ty, the contlnuum occupymg the same position at time {, and we
assume that %, Qir tijijpr 1 U, Oim» Oij...j, aDnd Oy;j ;. are unaltered by
such motions. Equatlons (8.13) and (8.15) hold for all velocity and multipolar
velocity fields, so the equations hold when w,,; is replaced by w,,;+ 28, ; with
all other kinematic quantities unaltered, in view of results in section 4, where
£,; is a constant arbitrary skew symmetric tensor. Hence

; wig¥mpr.jg=0,
‘Qmio';mzo:
and therefore
; i, mh ig me;...fpxijl...fﬂ):oi (8‘18)
O';m:GMt (819)
Equations (8.13) and (8.15) then reduce to
Z t-ijl...fp(Bfl...ip:i_%Amixmf,...jﬁ)_Z'__O: (8.20)
and
0r— Qi i—0U+34,,0im+ 205, Bir it
=1 (8.21)
+ﬁ§10kii,...fﬂBi,...j,q;ik:0
respectively.

9. Energy and entropy production: alternative form

The work of the previous section is sufficiently general to be applied to
any continuum, whether solid or fluid. When the continuum has a reference
configuration X, through which it passes at time J, it is convenient to have
an alternative form of the theory in which multipolar forces and stresses are
measured with respect to this configuration.

We consider an arbitrary volume ¥ at time ¢ bounded by a surface 4 and
we suppose that ¥ is the corresponding volume at time #,, bounded by a surface
A,. Points of ¥, have coordinates X,. Recalling the definitions in sections 57,
the energy equation (8.1) is replaced by

Jeov; v aVy+ [ 0, Uav, =/ 0o [" + Fv;+ Y Fp, ...Bg ViB, ...Bﬁ] aV+
Vo Vo Ve f=1 (91)
+f [?i‘vi + 2 Pin, .8, Vin, ...B,,] ddo— [ hydA,,

Ay P 4,

where %, is the flux of heat across A, measured per unit area of 4,, and

Fp, .5, =Fip, ... ZYAl AuiBreBy Wiy ot (9:2)
B
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The entropy production inequality (8.3} becomes
s h
feostl%—feo%d%JrfT“dAogo. (9.3)
Ve Y Ao

If we follow an argument similar to that used at the beginning of section 8,
we may deduce the classical equation of motion

JeoFidVy+ ] psddo = 0gof? d¥;. (94

Hence ) ' )
Tk s,k F 0o F=p, vgz)’ 9-5)
pi=Ng 7y, (9-6)

where Ny is the unit outward normal vector to the surface 4,. In view of (9.6),
7tg ; 1 a tensor with respect to both indices, under changes of rectangular car-
tesian axes, where the stresses in each coordinate system are associated with
the three surfaces in that system in V which correspond to coordinate planes
in V.

Using (9.5) and (9.6), equation (9.1) can be reduced to

Vf AN =Vf {Qo’ + QOﬂZIEB,...Bp V;B,...By T Mpi vi,BJ avy -+

+/ 2 PiB,...Bs ViB,...Bs ddo— [ hydd,.
A, p=1 A,

We apply this equation to a volume V which in the reference state 1 was a
tetrahedron bounded by coordinate planes through the point X, and by a
plane whose unit normal is N, to obtain the result

v

2 (Bis,...8, — Nk Mg ip,...B,) Vin,...B, — Mo + Ng gx = 0. (9.8)

f=1

9.7)

Then, using (9.8) in (9.7) and applying the equation to an arbitrary volume,
gives

Q¥ — 9k, k — Qo U + 7k V5, +ﬂ21(90 E’B,...Bﬁ + nKiB....B,,,K) U;B,...Bs T
= (9.9)

+ﬂzan£Bl...Bp VB,...85,k =0,

where g is the flux of heat across surfaces in ¥V which were originally coordinate
planes perpendicular to the Xy-axes through the point X, measured per unit
area of these planes, per unit time.

From (4.32) and (3.11) we have
viBl...szXA,iBBl...Bp:A_%(Ami_*_wmi) XmB,...Bg
Uin,...Bg, K =X4,iBp,.. 5548 — 5 (Ami T Omi) ¥mp,...B k-
With the help of (9.10) equations (9.8) and (9.9) become

(9-10)

2 5;31...3, (XA,iBB,...B,,:A - %AmixmB,...Bp) —hy—
=1 ) (9.11)

1 - _—
- ?wmiﬁzlﬁiBl...B, ¥mB,...8s =0,
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and

T L1 ’ 1 ’
0o — Ik, k — QU +34miTkmXi k + 5Omi Tk m Xk +

- y (9.12)
+ XA,%ZlniBl...Bp Bg,..Bg:at+ XA,%ZlﬂKiB,...Bp Bg, . By:ax=0,
where
v
Tgm=Tgm— XA,iﬂZl(ﬁiB,..,Bp ¥mB,...Bs T K iB,...Bs xmBl...B,q,K) , (913)
%ip,...B, =00 Fip,.. B, + Fx i,...By K> (9-14)
and

’_"ozho”“NKQK, (9.15)

Pib,...B,=Pip,..5, — Ng Tk ip,...B5-

We consider a motion of the continuum which is such that the velocities
differ from those of the given motion only by a superposed rigid body angular
velocity, the continuum occupying the same position at time £, and we assume

that %y, 9%, fis,...5,0 » U, gms %ip,...n, a0d 7z, p, aT€ unaltered by such
motions. Equations (9.11) and (9.12) hold for all velocity and multipolar velocity
fields, so the equations hold when w,,; is replaced by w,,; 4 24,,; with all other
kinematic quantities unaltered in view of results in section 4, where Q,,; is a
constant arbitrary skew-symmetric tensor. Hence

v
Qmiﬂzlﬁwl...aﬂ ¥mB,...B; =0,

[
'Qmi nKmxi,KZO’
and therefore

ﬂgl(fml...zzﬂ %pB,...By— PmB...Bp¥iBy...B,) =0, (9.16)

Tk m X, k= TR i K - (9-17)

Equations (9.11) and (9.12) then reduce to

Z iB,...By(X4,iBb,...85:4 _%AmixmB,...B;)—z():O’ (9-18)
and
00" — i,k — 00 U + 3 4, i Tt m % x -+

(9-19)
+ X4 ;Zl( iBi...Bs Bbi...Bg:a + Tk iB,..By Bp,..Bs:ak) =0.

10. Elasticity
We use the work of section 9 and suppose that S, x;and %;5 . 5, (=1, 2,...,7)
are functions of X,, ¢. Inspection of equations (9 5), (9.6), (9. 18) and (9.19)
suggests that constitutive equatlons are required for T, %y, gx, U, 7x;, Rk ip,.. 5 »
Z;p,..5, and p;p, .5, (B=1,2,...,%). We define an elastic body as one for
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which the following constitutive equations* hold at each material point X,
and for all time #:

U=U(S, Xi,4>%iB,...B,> xiB,...B,,,A) , (10.1)

i =g (S, %5, 4, %iB,...Bys %iBy...By, A) s (10.2)

TR iB,...By = WKiB,...Bs (O ¥i, 4 %iB,...B,» ¥iB,...By,4)» (10.3)
7.B,...Bs =g, .8,(S) %i 4 %ip,...B,» %iB,...B,,4)» (10.4)
T=T(S,%; 4, %:p,...B,» %iB,...By, 4) (10.5)
Bib,..By = Pini...5,(S) %i, 4, %iB,..B,» %iB,...B,, 4, Nk) (10.6)
o ="0o(S, %; 4, %ip,...B,» %iB,...B,, 4> Ne)» (10.7)

Ik =9x (S, %; 4, %ip,..B, %ip,..By, 40 L, ar L, a4+ T a4,..4,), (10.8)

for $=1,2,...,v; y=1,2,...,4; u=v+1, and all functions are assumed to
be single-valued and sufficiently smooth.

For a given deformation and entropy the 2%-pole velocities ;5 . . B, May be
chosen arbitrarily and independently of each other so that, from (9.8) or (9.18),

hy=0,  pip,...5,=0,
or
ko= Ny g,

Pib,...s, =Nk kip,..5, (B=1,2...,7).

The second equation in (10.9) shows that 7k ;p, . p, transforms as a tensor with
respect to all indices, including K, under changes of rectangular cartesian axes,
where the multipolar stresses in each coordinate system are associated with
the three surfaces in that system which were coordinate planes Xy = constant
before deformation. The first equation in (10.9) shows that g, transforms as
a vector. Equations (9.13) and (9.14) then show that ng,,, #;5 . B, are tensors
with respect to all indices.

If we use (10.9); in (9.3) and apply the equation to an arbitrary volume
we have

(10.9)

=0, (10.10)

QogT—Qo"i‘QK,K——qIS%’—I—{-ZO

with the usual smoothness assumptions, recalling also that T>0. If we then
substitute for v from (9.19) into (10.10) we obtain the inequality

o : T ’
0o(T S —U) — KK T’K + % Tkm ¥i, g Ami+
(10.11)

14

+ XA,iﬂZl(ﬁiBl...Bp Bp,...By:a t 7kip,...By Bs,...Bs:4x) 2 0.

* The independent variables are all unchanged by superposed rigid body trans-
lations at all times. The form of equation (9.9) suggests that multipolar displace-
ments and their gradients, as well as displacement gradients, should appear as in-
dependent variables. By a method similar to that used in this section and in a
previous paper (GREEN & RIVLIN, 1964) it can be shown that gradients of multi-
polar displacements of an order higher than the first cannot occur in the constitutive
equations (10.1)—(10.6).
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We assume that the internal energy function U is unaltered when the con-
tinuum undergoes a deformation which differs from the given deformation only
by superposed rigid body motions at all times. This assumption includes those

already made about U. With the help of section 4 it follows that

U(s, Xi, 4+ %iB,...B,> xiB,...By,A) =U(S, Qi %, 4, QiixiB(...B.,’ Qs‘fxiB,...By,A)

for all proper orthogonal values of Q,;. It follows* that U must be expressible
in the different functional form

U=U(S,E. 45, Ep,..5,:4> Ep,...5,.4%) (10.12)
where
E 4 p=E p=E 5(t),
and (10.13)
Ep, . .5,:4,..4,=Ep, B, :a,.4,0),

are defined in (4.19). Recalling the results (4.31) and (4.32), it follows that

w U &, aU

U=7cS+ BE,p YA %584+
(10.14)

"
oU oUu
- B \ . .
+y§1( 0EB,...By:d DiBrid + 0EB,...By: AK BB""B"'AK)

where U is written as a symmetric function of E,; in the indices 4, B and
E,p is understood to mean }(E,z+ Ep,) in 8U/OE,;. The inequality (10.11)
can now be written in the form

U\ & T 1 oU
(T = 55) S =20 5 Fokhem = 2007, g ) Amit
v

_ oU
-+ XA,iZ (ﬂiBl...Bp — 0 xi,Bm) Bg,..Bg:at

A=t (10.45)
4 ouU
+ XA,;%(“Km...B, —Qo%;,B —m) Bg,..By:ax—

M
ou oU
_ SN PRy S—"C— A - )
9°ﬁ§1( 0B, 54 PB4 GEg prax B‘"-Bﬂ-’”‘) =0

For a given state of deformation and entropy this inequality is to be valid for
all arbitrary values of S, A,;, Bg,. p,:ar Bp,. .ppax (B=1,2,...,u) which
can be chosen independently of each other. It follows that

W _, __ U —o
OFB,...Bg: 4 ! OEB,...Bs: AK ’

for f=v-+4+1,v+2, ..., u so that U in (10.12) reduces to
U=U(S, Eyp, EB,...BB:A: EB,...Bp:AK) (10.16)

* This is analogous to a result obtained by GREeN & RivLIN (1964) and may
be obtained by the methods of that paper.
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with § =1, 2, ..., ». In addition,

oU
T=55, (10.17)
’ oUu
Tk m =200 %m, 4 oE4x’ (10.18)
= oU
;8,...Bg = Qo xi,Bm, (10.19)
oUu
K iB,...Bg = Qo xi,Bm ) (10.20)
the last two results holding for §=1, 2, ...,». Also
—gxT k=0 (10.21)
and with the help of (10.17)—(10.20) equation (9.19) reduces to
0o —qx, k — Qo1 S=0. (10.22)

Because of (10.9), and (10.18) equations (9.16) and (9.17) are satisfied identi-
cally.

If we introduce the Helmholtz free energy function

A=U—-TS (10.23)
and express A in the form
A=A(T,Eqp, Ep, . py.a, Ep,.. By ax) (10.24)
then
04
S=— BT’ ('10.25)
’ 04
A m =200 YA G (10.26)
— 04
”iB....B,=90xi,Bm, (10.27)
04
giB,...Bs — Qo xi,Bm- {(10.28)

Equations (9.14) and (10.27), together with (9.5), form a basic set of equa-
tions of motion for the stresses mg; and multipolar stresses 7,5, . p,, the con-
stitutive equations for these stresses being given by (10.26), (10.28) where,
from (9.13)

v

Tym=Tgm+ XA,%Zl(ﬁiBl...Bg XmB,...Bs + WKiB,...By ¥mB....Bs,k) - (10.29)

11. Elasticity: alternative form

Before considering constitutive equations of a more general type, based on
the work of section 8, we obtain results for elasticity in the notation of section 8.
We suppose that the continuum is in a reference state X, at time #, and we
assume that the internal energy U at some time 7 (f{,=<7=<{) has the form*

U@)=U[S, %; 4 (), %ij,..jp (O %ifo g (D) %, 4 Kigi g (o) Figo o (B0)]  (11.1)

* Although U(7) is expressed in terms of the variables in (11.1) for convenience
in this section it must essentially be such that it is a function of kinematic variables
at times 7 and 4,.



132 A. E. GrReeN & R. S. RIvLIN:

for $=1,2,...,u. We consider a motion (3.1) which differs from the given
motion by superposed rigid body translations and rotation and we assume that
U is unaltered by such rigid body motions. Then
ULS, %, a (D) Fmjiig (O Fmiy oo ip (T i s Zmj g o)y By .. g, (F0)]
=U[S, Qi;(7) %}, 4 (%), Qpn(?) Qjpiy - Qf, ig Xniy...ig (v),

Omn (D) Qjiy -+ ij ig Qs xnil...iﬂ,s(‘c)» Qs %5, 4»

Qiviso igis Fmiy.vip o) Qi -+ Digin Qs Fmsy...i, s (o)1
for all proper orthogonal values of Q;;(7).

It follows that

U(r) = U[S, E45(7), E_Bl...B,,;A (v), EB,...B,:AK(T): E g,

" (11.2)
Ep,..By:a(to) Ep,.. By ax (bo)],
where
Ep .. 5p:a(®)=Ej  ;5.i(T) % 4 %}, B, - %y, By> (11.3)
Ep. Byax(t)=E; _js:ir(7) X 4 Xp k %, B, -+ Xj5 By (11.4)

Using a dot to denote material time differentiation with respect to 7, and
recalling (4.27), we have

[EB,...Bp:A (Oe=s=DBj, ...ip:i %i, 4 %},,B, -+ %jg,By» (11.5)
i [Ep,...Bp: 4R (D) o=t =By, ...jg: it %i, 4 %5, K %;,,B, -+~ ¥jg, By (11.6)
an
. oU & oU
[UV@)]—e=—5 S+ [mL:‘Aii"i.A %8+
2 oU
| B i X 4% g e X 11.7
+)§1[ OEB,...Bg:A(T) lr=t froefpii i, 4 T, By “'B‘-l_ ( )

u
oU

+2, [ 9EB,...Bg: 4K (7) L:tle“'iﬁ:ik %i, 4 %,k gy By % By
= 1eo. Bt

The development of elasticity equations from (8.20) and (8.21) is similar
to that given in section 10, so we omit the details and we quote the final results.
Thus

h_——ni Qi’ (1'18)
Lijeooiip =M Okijy...ip (11.9)
ou
T_K’ (11.10)
ou
O'im—ZQx",A xm’B[m eet’ ('1'1.1'1)

- oU i
44, 7 Qxi,A xil,Bl e xiﬁ,Bﬁ [ aEBl...Bp:A (‘L') L=t’ (11'12)
oU
Ohijijo =0%i a4 ¥a,k%j,,B, -+ ¥ig,By [m]mt» (11.13)
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where U is given by (11.2) and 8 in (11.2), (11.12), (11.13) takes the values
1,2,...,v. Also
—Q:T ;=0 (11.14)
and
or—Q;,;—eT S=0. (11.15)

The expression for U is symmetrized with respect to the indices 4, B in E,z(7)
and E,p(7) is understood to mean }[E,y(7) + Ep, ()] before (11.11) is used,
and then the symmetry condition (8.19) is satisfied. In view of (14.9) the con-
dition (8.18) is satisfied identically.

12. Constitutive equations®

For convenience we collect here all the fundamental equations of section 8,
namely (8.6), (8.16), (8.17), (8.19), and (8.21), together with (8.7), (8.14), (8.18),
and (8.20), and the entropy production inequality (8.3). Thus

b
oji;i+oF=pv®, (12.1)
Oijroip=0Fj istOrifi g nr (12.2)
v v
Oim ™= Omi=Ojp, —ﬂzlaifl...f,, Emiy...ig _ﬁglﬂkiil...ip Tmjyoipkr (12:3)

07— Qi i—oU+54,,00n +ﬂ§16if,...i,, B it

, (12.4)
+ 2 Guijiis Biriprin=20,
6=1
s =M;0;4, (12‘5)
h=h—n0,,
- i0s (12.6)
Citnedp=Cidip — PR Okify...ig>
ﬂgl(tiil...ipxmjl...7',,_tmi....f,qxij,,..jp):()» (12.7)
-
6§1tiil...j,q(Bi,...fp:i_%Amixmil...fg)_hzo’ (12.8)
and
f@édV—f@%dV+f%dAgO. (12.9)
v v a
In equation (12.8) B, ;,.i— %4 mi%m;, ..., transforms as a tensor of order

p+1 under changes of rectangular cartesian axes. We assume that Z,-il_“ is
also transforms as a tensor of order f+1 and that % is a scalar, under change
of axes, so that the left hand side of equation (12.8) is then a scalar. Since,
for a given surface, ¢;; ,, is a tensor and % a scalar, it follows from (12.6)
that @, transforms as a vector and oy, . ;, as a tensor under change of rectan-
gular axes, where the appropriate quantities in each system of axes refer to the

* See also section 16.
Arch. Rational Mech. Anal., Vol. 17 10
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coordinate surfaces in that system. Thus, if Q; is the flux of heat across #;-planes
at x;, and QF is the flux across x¥-planes at the same point, then

ox}
QF = 5 -0, (12.10)

the transformation from x¥ to x; being orthogonal. A similar result holds for
the multipolar stress tensor. It follows from (12.2) and (12.3) that 5, ; and
0, transform as tensors under changes of rectangular cartesian axes and that
the left-hand side of (12.4) is a scalar under such transformations.

We now suppose that o;;, 04,5, 4, 0; ‘; i, Q, correspond to

.jg? Vifr...ig7 Yifr...7g?
- . : %
a deformation of the continuum given by (2.1) and that o, O s Oijuiips

t—,";l ins h*, Q¥ correspond to the motion (3.1), the entropy S being unaltered.

If the superposed rigid body motions for all time do not change the values of
Gji» -+, Q;, except for orientation at time ¢, then

611 Q;mQut mns (12.11)

Rty rip=Prm Qin Qi+ QigigOmnis...igs (12.12)

U:;l 8= Qi QiginOia...ips (12.13)

5 is=0ii Qi pri,gzji....ip: (12.14)

h*=h, (12.15)

Qf=QﬁQ;'~ (12.16)

It follows from (12.3) and (4.6) that o, satisfies an equation of the form (12.11).
Also, recalling (4.6) and (4.26) we see that the left-hand sides of equations
(12.4) and (12.8) are then unaltered by superposed rigid body motions, if 7
and U are unchanged by such motions.

In order to make any further progress, constitutive equations must be ob-
tained for U, 0;;, 0pij, ...j55 Tijy ... 750 t,h ip %, and Q; which will represent different
material properties of the continuum, and these equations can then be reduced
to canonical forms with the help of the invariance conditions (12.11)—(12.16).
Results for an elastic material have already been obtained in section 11, and,
in a different notation, in section 10. Other aspects of this problem are dis-
cussed in section 16.

13. Constitutive equations: alternative form

We first collect together the fundamental formulae of section 9, and intro-
duce some further notation. Thus

Ttk ikt Qo F:':Qo'”?); (13.1)

7ip,.. B, =0 EB....B,, + g ip,.. By K (13.2)

g i=%; k Sak, MWai="%; g Sk, (13.3)
TKiB,...Bs=%i, ASKAB,...Bg»  TUiB,...By=%i ASAB,...Bs> (13.4)

4 U f—
Spa =S4B =S4 — XB,mﬂzl(sAB,...B, %mB,...B3 + SKAB,...Bp *mB,...Bs,K)» (13-5)
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00" — x,xk — 0o U + ¥ Ska %, 4 %i c Ami +

(13.6)
+ﬂZ S4B....Bs Bp,...Bg:4 + Sk 45,...8, Bb,...B,: 48) = 0.
Also, if
Pi=7%; 474, Dip,...By=7%i a"4B,...By» PiB,..By=%i a745,..8, (13.7)
then
74=Ng Sg 4,
ho=ho— Ny gk, (13.8)
7AB,...Bp="AB....B,,“NK SKAB,...Bg»
Z 7AB....B,, (%i, 4 %mB,...By — %m,4%iB,...5,) =0, (13.9)
2. 74s,...8,(Bp,...5,: A—%Amixi,AxmB,...B,)—7‘0=0: (13.10)
and =1 , A
feoSd%—feon%+fT°dAozo. (13.41)
Vo Vo 4o

In (13.10), Bg,. p,:a—3A4mi%: 4%mp,..5, transforms as a tensor of order
f-+1 under changes of rectangular cartesian axes and is also unaltered by
superposed rigid-body motions at all times. We assume that 7,5, 5, is un-
altered by these rigid body motions and that it transforms as a tensor of order
B+1. We also assume that %, transforms as a scalar and is unaltered by super-
posed rigid body motions. It follows that the left hand side of equation (13.10)
is a scalar which is unaltered when rigid body motions are superposed on the
given motion. Since, for a given surface, 7,5 . g, is a tensor and %, a scalar, it
follows from (13.8) and (13.4) that sg 4p,...5, and 7mg;g, . p, transform as tensors
under changes of rectangular axes, and that g, transforms as a vector, with
respect to all indices including K. Also, from (13.2), (13.3) and (13.5) we see
that @5 g,, %asi» Sap,...B, and syx transform as tensors under changes of
rectangular axes and that the left hand side of (13.6) is a scalar. Moreover,
Bg,..Bs:4> Bp,.. py.ax and %, 4%; KA,,”- are unchanged when superposed rigid
motions at all times are added to the given motion. We therefore assume that
SKAB,...Bg» SABy...Bg> Ssa> 9k, U, and 7 are unaltered by such rigid body motions.
It follows that sz, and the left hand side of equation (13 6) are also unaltered.

Constitutive equatlons must now be postulated for s, s4p,.. .Bp» SKAB...Bg>
9x» U, 745,...8, and h, which will represent different material properties of the
continuum and these equations can then be reduced to canonical form, with
the help of the condition that they are all unaltered when rigid body motions
are superposed on the given motion.

Results for elasticity have already been obtained in section 10, but we add
here some other results derived from (10.8)—(10.20), and (13.3) and (13.4),

namely , o
Ska = SaKx =200 55 (13.12)
= oU
S4B,...Bg = Qom: (13.13)
B oU
SKAB,...Bg™ Qom. (13.14)

10*
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14, Elasticity: relation to previous theory

In a previous paper (GREEN & RIVLIN, 1964) which was concerned with the
theory of simple multipolar forces and stresses of the first kind, associated with
monopolar displacements and velocities, explicit formulae were obtained for
elasticity. We now show that these elastic equations can be obtained as a
special case of the present theory, and for this purpose we use the form of the
theory given in section 10.

The tensors Ep,  p,.p and Eg,...Bs_,:pp, Mmay be expressed in the form

Ep,..By:e=Ew,. py:+ES 5,5 (14.1)
EBl...B,,_, :BBg = E(B,...B,;_l):B(Bp) + EE...B,_,:BB, B
for =2,3,...,v+1, where E _ p,.p is the part of Eg _p, .5 which is com-
pletely summetric with respect to B, ..., By and E, . p, .55, is the part
of Eg . p,_..pp, Whichis completely symmetric with respect to the same indices.
The tensors E*... are then defined by (14.1). With a similar notation we also
have
TiB,..By =Ti(s,...Bs) T i B,...Bp (14.2)
B iBy...Bgr = TUBp) i(By...Bg—s) T WhgiBr...By—ys

for $=2,3,...,v+1. Equations (10.19) and (10.20) may now be written in
the alternative forms

7;(B,...Bg) = Qo xi,BTEﬁm, (14.3)
T(Bg)i(B,...Bg_p) = Q0 %i, B 3E(B1...(Zq]_,):B(B,;) ) (14.4)
ﬁfB,...BgZQOxi,B?EEa'%ﬁ:—B: (14.5)

”Tap iBi...Bg—, — Qo ¥ B 2 (14.6)

* ]
OFER,...Bp—: BBy

for f=2,...,v+1, and
_ oU
”im:@oxi,B-—aEB 5’

’ oU
s =200 %4, 4 PEaxk "

In (14.3) and (14.5), OU/OE 4, . p,).p denotes the part of OU/OEy  p,.p which
is completely symmetric with respect to B;... By and U/OEY,  g,.p denotes
the remaining part. Similar notations are used in (14.4) and (14.6).

(14.7)

Next we take special values
%iB,...By = %i,B,...Bs B=1,...,v) (14.8)
for the multipolar displacements. It follows from (4.19) and (14.1) that
E(Bl...Bp):BzEBB,...Bp: (14.9)
E(Bl...B,,_l):B(B,)=EBB....B,,:
for f=2,...,v in (14.9);, f=2,...,v+1 in (14.9),, and
EB;:BzEBB,zEB,B: (14.10)
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where Egp g, is defined in (3.6) and is completely symmetric with respect
to By, ..., Bg. Also

E},. B,:5=0, E}, By_.:BB;=0- (14.11)
The function U in (10.16) reduces to

U(S,Eqp,Ep,.. p:a Ep,..5p:ax) =U(S, Eqp, Ega,..4,) (say) (14.12)

where f=1,...,v; «=2,...,v-+1, and U is expressed as a symmetric function
of E4p and of E, 4, as far as the indices 4,,..., 4, are concerned. From
(14.9) and (14.12) we see that
ol au
— 14.1
0EBB, ... By, OE(B, ... By): B (Byty) (14.13)
au au au
= 141
O0EBB,...Bp OE(B, ... Bg_,): B(Bp) + OE(B,...Bg):B ( 4)
for f=2,...,» and
&u au au
oEps,  OEBB, + 8EB,:B ' (14.15)
From (14.4) and (14.13) we have
aU
; =00%; g ———. 14.16
Byt iCBr...B) = Q0 Wi, B g — (14.16)

Again, from (9.14), (14.3), (14.4), and (14.14), we obtain the formula

= oU
) iB,...Bp) T WK i(B,...Bp, K + Qo Fis, .5 = Q0 %i,p 55— 5 (14.17)
o

for f=2,...,». Next, from (9.13), (9.14), and the formulae of this section, we
see that

Ta; + Tgia,k+ 00 Fia

aU BT (14.18)
=290"i,3m+90’;mxi,3,...35 v=1).

In deriving (14.16)—(14.18) we have assumed that U takes a definite value U
when conditions (14.9), (14.10) and (14.11) apply, and that the derivatives
of U in (14.16)—(14.18) can be evaluated. Formulae (14.5) and (14.6), however,
contain derivatives of U with respect to the tensors E3 g:p and E 3.8 s—1:BBp
at the zero values of these tensors. If U depends on elastic coefficients which
tend to infinity when E} Bp:p and EE 5—.:85, tend to zero, in such a way
that U tends to the value (14.12) but the right hand sides of (14.5) and (14.6)
tend to arbitrary functions, then the values of #} ;5 g,  and &y g5, are
undetermined. This situation is analogous to that which arises when equations
for incompressible elasticity are derived from those for compressible elasticity
by a limiting process. Equations (14.416)—(14.18) agree with those obtained
previously (1964) except for a change in notation.*

* The inertia terms were not included explicitly in the previous paper.
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15. Infinitesimal elasticity

Elasticity theory appropriate to a continuum in which the displacements
and multipolar displacements are infinitesimal can be obtained at once from
section 10. For simplicity we restrict our attention here to the theory in which
only displacements and dipolar displacements, and their corresponding stresses,
are present. Then, using the Helmholtz function 4,

A=A(T’ EAB’EB:A:EB:AK)’ (151)
oA
7 m=290xm,Aa—EAj;: (15.2)
— oA
Tip= Q¥4 55, (15.3)
04
i B = Q0%i, A G5E, (15.4)
Tiem®i k=% i % K » (15.5)
nAm_nAm—XA 1( 1meB+nK1meB K) (156)
7:3=00 'FiB—}_nKiB,Kr (15.7)
g,k + 0o F=gyvf, (15.8)
oA
S:—“a—f, ——qKT,KgO’ (15'9)
0 —qg x — 0 T $=0, (15.10)
and

pi= Ny 7g ;, ho= Nk gx, (15.11)

Pis=Nx g;p.

n (15.1),

E p=%;4%; 5,

Ep.a=%; 4%;p, (15.12)

Eg.ax=%i, 4% k-
Let X,, denote the value of x;, in the reference state X, and let
EABZEAB_aAB:
EB:A=EB:A — X5, (15.13)
EB:AKzEB:AK—XAB,K'
We shall consider that 4 is a polynomial in E 4B EB, 4 and E 5:4x and if these
latter quantities are small enough we may approximate 4 by*
00A=C+045E 5+ Prabn.a+ypaxEpax+
+ )'ABCDEABECD +MABCDEABEC .o+ vancoxBasEc.ox+ (15.14)
+§ABCDEA BEC D+77ABCDKEA BEC DK+CABCDEFEA BCED :EFs

* We assume here that the temperature T is constant. Alternatively, if we
replace 4 by the internal energy U then the entropy S is constant.
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where C and the coefficients osp, ..., {ipcprr are constants if the body is
initially homogeneous. We may omit the constant C without loss of generality.
If, when the body is in its reference state, az}(;,,,, 7,5 and ;g ;5 vanish and the
body is in equilibrium under the action of no body or surface forces, and no
multipolar body or surface forces, then wyp, B45. Yaax in (15.14) are zero and
A reduces to

QoA AABCDEABECD'{‘/"ABCDEABEC D+7’ABCDKEABEC pk + (15.15)

+§ABCDEA BEC D+7?ABCDKEA BEC DK+CABCDEFEA BCED EF,

where without loss of generality

AABCD::}'BA CD:AABDCZ}‘CDBA ’
HaBcD=MBACD> V4BCDK=VBACDK) (15.16)

‘SABCDz’ECDAB’ (:ABCDEF:CDEFABC'
We now write
y=X, %,
=T e (15.17)
Ha=X;4t+et;y4,

in the expressions (15.13), and neglect terms of higher degree than the first
in &. We then obtain
E p=¢Ws 5+%p 4)=¢as,
Ep.a=¢eWap+u; 4 X:p)=Ipa, (15.18)
Eg.ax=8Wap g +4; aXip x)=Ipax-

If we introduce (15.45) into (15.2)—(45.4) and use (15.13), {15.18) and retain
only terms of order g, we have*

Tgm =22 g mcplcp+ Prmeplcp +Yemeprfent) (15.19)
Z;p=Mcppitcp T 28picnfep +Msicpxfcpks (15.20)
7k ip =Ycppikecp T Ncppixfcp + 2lpixcprfenr- (15.24)

Also, from (15.5} and {15.6), we have, to order ¢,
m;;m:n:m;, (15.22)
Ham="Tgm+FapXpp+ 7 apXmp x- (15.23)

If the continunum in its undeformed state is isotropic with a center of sym-
metry (holohedral) then the coefficients in (15.15) take the special forms

424pcp=A04p0cp+1(04c08p+04pd5c), (15.24)
tacp=n10480cp+ 1104055+ 04p050), (15.25)
28,8cp=8.0480cp+8:04c08p+8304p08c, (15.26)

* We can also put =1 now without loss of generality. 4 must be written as
a symmetric function of E,p before equation (15.2) is used.
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2845¢per="C1(048%cp0rr+ Oppd4rdnc) +
+82(0450cE0pr + OpEOardac) +
+83(04c 050055+ 0prbardsc) +
+84(04£0r0cp + OpOcrdar) +

(15.27)
+850450cr0pE +L604cOpr0pr +
+8204p08c0pr +Ls04p0prdcr +
+8604p0pr0ce+ L1004 508p0cr +
+81104r0850¢p,
Yascpk=Napcpk=0, (15.28)
where the coefficients 4, y, ..., {;; are constants when T is constant. The ex-

pressions (15.19)—(15.21) then become
Tgm=AOkmce + 20 exm+ 221 Oxmlcc + 201 (fxm + i) » (15.29)
Tig=M0pecct2mep+&0ipfcc+&alpitEstin (15.30)
g i ="C1(0;8fkpp+ OixfppB) + L2(0infoR D + 8K DDA +
+ 830k fopp + Opxfinp) + Calfkpi+ fixn) +
+850:5fppx + 8608k fpip + e bixfapp +
+8alpix + loforit Crofing + Culkin-

We consider one simple application of these results. Suppose X,z is con-
stant and that we have a homogeneous deformation

u;i=b; 4 X4, bai=bi4, (15.32)

with constant values of the dipolar displacement #,5;. We suppose that the

body is in equilibrium under the action of zero body and dipolar body forces.
Then

(15.31)

fpag=90,  Tg;p=0,  e4p=2b,p, (15.33)
and, from (15.7), we must then have
7;p=0. (15.34)

Equation (15.34) can then be satisfied if

(6a+ &) fip= &+ &) fpi=—2u16i5— 4 (izgfé::él M 5,pepp  (15.35)

provided
386+ &+ &0, S+ &5=F0. (15.36)

From (15.32), (15.35), and (15.29) we see that sy, are constants and, from
15.23) ,
( T4 m=Tam (1537)
so that the equations of equilibrium (15.8) are satisfied.

Equation (15.35) gives the dipolar displacements in terms of the homogene-
ous deformation coefficients b,,. Such a deformation can be maintained by
the application of surface forces alone and no dipolar surface forces at the
boundary of the body.



Multipolar Continuum Mechanics 141

16. Equations of motion and variational equations

TrUESDELL & TOUPIN (1960, sections 166, 205, 232) introduced the idea of
a generalized velocity, which in our terminology is called a multipolar velocity
and corresponds to (4.11), but they did not include the restriction (4.14) which
describes the behavior of such a velocity when rigid-body motions are super-
posed on the continuum. They defined generalized body and surface forces
and stresses, called here body and surface 2%-pole forces of the (8--1)® kind
and surface 2°-pole stresses of the (8- 1)® kind, and they postulated equations
of motion and an equivalent variational equation. In this section we examine
the relation of the ideas of TRUESDELL & ToUPIN to those presented here and
for this purpose we use the basic equations of sections 8, 12.

The condition (4.6) on multipolar displacements, or the equivalent condition
(4.14) on multipolar velocities, under superposed rigid body motions implies,
in particular, that multipolar displacements and velocities are unaltered by
superposed rigid body translations at any speed, and at any time. This con-
dition, together with the other assumptions made in section 8, enabled us to
obtain the classical equations of motion (8.5) from the energy equation (8.1).
Without this condition the classical equations (8.5) would not have the same form.

Because multipolar displacements and velocities are unaltered when the con-
tinuum receives superposed rigid body translations at any speeds, it is possible
for the quantities U, o},,, 04, ... js» Oij...7p» and Q; to depend explicitly on
these displacements and velocities but not, of course, on the ordinary mono-
polar displacement and velocity which are altered by rigid body translations
at various speeds.

We now consider the special situation in which U does not depend explicitly
on multipolar displacements or velocities and d},,, 6;;;, g Oijioigr 94 (and 7)
do not depend explicitly on multipolar velocities. We consider a second motion
of the continuum which is such that its position and the multipolar displace-
ments at time ¢ are unaltered but it now has multipolar velocities v;;, . ;. +v;;, .. j,
(B=1,...,7), where v}, j, are constants (in space and time). The correspond-
ing energy equation will differ from (12.4) only by arbitrary constant values
Vi, ...;, added to By, so that, by subtraction,

7 Lipgd
D8 g Vijy.jp=0-
f=1 i
Since §,;,. ;, is independent of v; ir...ss Which can be chosen arbitrarily, it
follows that
Cijy...ijg=0
or
Okiji ... 48, k+ if1. m:O' (16.1)

If we recall (8.2), we see that (16.1) are the equations of motion postulated by
TRUESDELL & ToUPIN (1964, section 205). It should be emphasized that these
equations are not always satisfied, and, in particular, are not necessarily satis-
fied for an elastic medium, as is seen by (11.12) when U depends on multipolar
displacements.
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Again, if % and t-,-,-l__‘,-ﬂ do not depend explicitly on multipolar velocities,
we can show, from equation (12.8), that
tije.ig=0
or
bijioipg =Mk Okify...ip- (16.2)
Equations (16.2) were postulated by TRUESDELL & ToUPIN (1964, section 205).
From (12.8) it then follows that =0 or

h=n,0,. (16.3)
We have established sufficient conditions under which the equations of
motion (16.1) and the surface conditions (16.2), postulated by TRUESDELL &
TovuPIN are valid. Since these equations are completely equivalent to the varia-
tional equations studied by TrRUESDELL & TouPIN (1964, section 232), we have
also established sufficient conditions under which the variational equations hold.
In general, however, the variational equations are incomplete unless they in-
clude variations of the internal energy and the heat conduction vector.
Throughout this section we have assumed that the multipolar displacements
and velocities of all orders are independent and we have not considered de-
generate or special cases. For example, if multipolar velocities have the special
gradient form

270 P P A (16.4)
then equation (16.2) would still follow if we assume that % and t;]-lm,-ﬂ do not
depend explicitly on velocity gradients of all orders, as shown previously by
GREEN & RIVLIN (1964). Even if we assume that U does not depend explicitly
on displacement or velocity gradients and that ¢, Okij...ig» Oijr...5p and Q;
do not depend explicitly on velocity gradients we do not obtain equations (16.1).

17. Appendix

We suppose that N particles with masses m'P) (P =1, 2, ..., N) are situated
at the points X! at time £,. At a subsequent time 7 ({,<7=<1) we assume that
the masses are at points ") (r) (P=1, ..., N) and we use the notation

w0=xP0),  XP=xP(). (17.1)

The center of mass G of the N particles at time 7 is denoted by x;(z) where

N N
Mz, (t)=2mP P (), M=>m?D (17.2)
P=1 P=1
and we write
x=x,(), X;=x;(t). (17.3)
If
Y (1) =P (1) — %;(7),
(7= 57 )= A7 — x, (17.4
Y= i) =X - X,,
then

N N N
2mPyP(r)=0, FmPyP =0, FmP¥P=0. (17.)
P=1 P=1 Pl
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The motion of each particle and the motion of G is given by

A7 (1) =P (v, XI7),

(17.6)
xi(T) =zx,(7, X,),
or by
P (1) = 2P (2, ¢, 21D)),
=) ( ) (17.7)
xi(T)=xi(Tn tr xy) »
since
2P = x{P) (¢, XDy,
¢ %7 (17.8)
x,=x;(, X,).
The velocity of the mass m'P) at time 7 is defined as
P (1) = &P (1) =v,(x) + 97 (z), (17.9)

where a dot denotes derivative with respect to 7 holding X! fixed in (17.6)
or ¢ and P fixed in (17.7), and v;(7) is the velocity of G. We use the notation

P =P,  v;=v,(0). (17.10)
It follows from (17.2) that
N
My, (7) = 2 mP 4P (1), (17.11)
P=1
and, from (17.5)
N N
2mPyP (=0,  FmPyP=o0. (17.12)
P=1 Po1

Suppdse each mass is acted on by a force E¥)(7) per unit mass, where
EP (1) =FP [z, P (7)].

In view of {17.4), (17.6) and (17.7) this can be expressed in the alternative forms

EP () =EP (1, X, + Y7 (17.13)
or
EP ()=EFP(1, ¢, x,+y). (17.14)
The rate of work of these forces is
N
W =3 m® B (7)o (z). (17.15)
P=1

Adopting the form (17.13), we define a continuous function of v and X,+Y,,
F*(z, X,-+Y,) say, with continuous derivatives up to order u-+1, such that

E*()=FE*(,X,), FEP()=F*(z, X,+Y")
for each value of P. Then,

g1 om0 X)YED YD+ R, (17.16)
. 7

M=

-Fi(P) (T) =E* (T: Xr) +

B
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where R; is a remainder term and

. BF* (7)
Bl (7 X)) = 9X5,...0XB, (17.17)
From (17.15) and (17.9) we have
W—=MF(x) v; +Zm“” EP (03P (1), (17.18)
where
ME,(z Z m!P) B P (1) (17.19)
If we substitute (17.16) into (17.18) and use (17.12) we see that
W =M F(7) v +MZ 5,85 (T X)) vip, 5, (7), (17.20)
if the remainder term can be neglected, where
N
1 .
M;p,..5, (1) = gy Zlm”” YO () YD Y. (17.21)
If we define x;5, g, (%) by
N
1 P
M %ip,...5,(7) =7 2O A" OVED YD, (17.22)
then
;B,...8,(T) = %;,...5, (7). (17.23)

We observe that x;5  p,(7) satisfies an equation of the form (4.2), when
all the particles receive an additional rigid body motion, for all times 7. In
particular it is unaltered when all the particles receive the same additional
translation or translational velocity. Regarded as a function of v and X the
expression %,p, . p,(7) in (17.22) is a special case of the multipolar displacement
defined in (4.1) and (4.2). The form (17.22) is completely symmetricin By, ..., B,.

We now define a continuous function of 7 and X,+Y,, x¥(z, X, +7Y,) say,
with continuous derivatives up to order u -1, such that

¥ ()=xF(r, X,) and #P(1)=x¥(z, X,+ YD)
for all values of P. Then,

Hn
98 (v v} (T X,) YD YD +R,
; A, Ay ) Ay Ay i (1724)
vi(v) =4} (7).
With the help of (17.24) the rate of work (17.18) becomes
W =M F,(7) +ZF 4,4, (7) vF4,..4.(0. X)) (17.25)

if we neglect the remainder term, where

1
Figya (W) =3 Z mP EP () YD .. YD, (17.26)
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The tensors F. 4, . 4, (7) are 2*pole body force tensors of the first kind. Equa-
tions (17.20) and (17.25) show that the rate of work of 2*-pole body forces
(e=1, ..., u} of the first kind is equal to the rate of work of monopolar force
gradients in multipolar velocity fields.

Equations (17.21) for §=1, 2, ..., u, together with the first set of equa-
tions in (17.12), may, for a given value of ¢, be considered as % (1 + 1) (4 4 2) (4 + 3)
equations for N velocities 7" (7) (P =1, 2, ..., N). If

Fu+1)(w+2)(u+3)=N (17.27)

we can, in general, express 7' (z) as a linear combination of multipolar velocities
Vi,...5, (%) (B=1, 2, ..., ). When } (1) (u+2) (1 +3)> N there will be rela-
tions between these multipolar velocmes Thus

70 (@ Z o Vidy.. 4, (7)) (17.28)

where Y{? , is completely symmetricin 4y, ..., 4, and depends on 4" and (P,
Some of these coefficients may be taken to be zero when £ (1 +1) (1 -+ 2) (# +3) > N.
The kinetic energy T of the N masses " is given by

N
2T =3 m'P P (7) o) (7)
p=t N (17.29)
=Mv,;(7) v;(z) + X mPp{ (7) 3P (7)
P=1

and, using (17.28), this becomes

2T =Mou;(z) vi(7) + ; Y, 4B By Vidy...4,(T) Vi, B, (T) (17.30)
wfe
where

N
P P) P
Yi,...40:B,..B5 = Zm( Vyih . YD

YB Bp:Ax...Aa‘

The coefficients in (17.30) are also completely symmetric with respect to the
indices 4,, ..., 4, and with respect to B, ..., Bs. The expression (17.30) for
the kinetic energy is a special case of the kinetic energy given by (7.1) and (7.7).

Starting with the expressions (17.15) for the rate of work we may develop
similar results using (17.14) and (17.7). For given ¢, F* may now be regarded
as a function of 7 and x,+v,. Thus

u
W =M F,(7) v;(7) —I—Mﬂ;lﬁf"h“_.,-ﬁ (T, %) vij ., (D), (17.31)
where
N
My, (@) =55 > P90 (@) oD P, (17.32)
P=1
and

aBE* (Tr xf)
0%, ... 0%jg '

(17.33)
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Also, if

N
Mxih Z m(P) (P) y,(,, ’ (1 734)

then
'”ii:...ip(") ="‘¢f1...i, (7). (17.35)

We see from (17.34) that x;; , (7) satisfies equation (4.6) when all the
particles receive an additional rigid body motion for all times 7. In particular,
it is unaltered when the particles receive the same additional translation or
translational velocity. Regarded as a function of 7, ¢ and x,;, the multipolar
displacement #,; ., (%) in (17.34) is a special case of a multipolar displacement
defined by (4.5) and (4.6). '

We now regard the function x¥(r) as a function of x,4-y,. Then,

W =M F,(7) +ZF,,. V(T (17.36)

apart from a remainder term, where

N
Foiyoig=—r > mP EP (3) P oD, (17.37)

oot
ol o1

Equations (17.31) and (17.36) show that the rate of work of 2*%body forces
(w=1, ..., u) of the first kind is equal to the rate of work of monopolar force
gradients in multipolar velocity fields.

Equations (17.32) for $=1, 2, ..., u, together with the first set of equations
in (17.12) may, for a given value of 7, be considered as §(u+1) (» + 2) (4 +3) equa-
tions for N velocities y{¥) (z) (P =1, ..., N). If condition (17.27) is satisfied we
can, in general, solve for y{¥)(7) in the form

Zy iy Vi 1(1:)» (1738)

where ¥ , is completely symmetric in 4, ..., 4, and depends on ¥{), and
m'P) and not on 7. Some of these coefficients may be taken to be zero when
tp+)@+2)(p+3)>N.

The kinetic energy of the N masses can now be expressed as

2T =My, (1) v,(1) + i Yi,.

£, ..i,:i,...;,”;il...i,(f)'Uii....f,("): (17.39)
o, f=

where

(P)

N
Yiiiinisne =Y¥i.. fpth i =P§1m(P) Vi ta y;r(, ip (1 740)

and the coefficients in (17.39) are completely symmetric with respect to 4,, ..., ¢,
and with respect to 7;, ..., fz. The expression (17.39) for the kinetic energy is
a special case of the kinetic energy given in (7.1) and (7.4).

The multipolar displacements defined in (17.22) and (17.34) can be related
to each other when we know the relation between the vector YA" and the
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vector 9P, for each P=1,2,..., N, and such a relation will be independent
of the time 7. For example, if

)’;(P) =a,5 YD, (17.41)
then
Xijyig(T)V =85, - 4, %:p,.. .5, (T), (17.42)
where a,5; depend only on the initial and final positions (at time #) of the particle
P and the center of gravity G.
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