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1. In t roduc t ion  

W h e n  a l iqu id  in a vessel  ro t a t e s  as a r ig id  body ,  t he  f ree  sur face  o n  t o p  o f  the  

l iqu id  is s h a p e d  by  the  r e q u i r e m e n t s  of  a ba l ance  of  fo rces  a r i s ing  f r o m  cen t r ipe t a l  

acce le ra t ions ,  g rav i ty ,  a n d  sur face  tens ion .  I n  the  absence  of  re la t ive  i n t e rna l  

m o t i o n ,  the  c o n f i g u r a t i o n  of  such  a su r face  is i n d e p e n d e n t  o f  t he  w a y  in  w h i c h  

the  f lu id  r e s p o n d s  to  stresses. F o r  example ,  the  f ree  sur face  of  a f lu id  w i t h o u t  sur-  

face  t en s ion  has  a p a r a b o l o i d a l  shape .  

* Part I of this paper gives the basic theory for the free surface problem in general terms. 
In Part II we develop further those parts of the theory which express our most recent view of 
the principal balance of forces which shape the free surface on a simple fluid. Our most recent 
view evolves as a direct consequence of the experiments which we initiated in collaboration 
with G. S. B~WRS and which are reported in Part II. We are persuaded that our theory of 
climbing, together with the experiments reported in Part II, form the basis for a standard labora- 
tory test to determine certain characterizing constants for non-Newtonian fluids. The consider- 
able degree to which this belief can be supported by results already obtained is put into evidence 
in Part II. Apart from this note, and a note at the end of Part I, we have not incorporated into 
Part I what we learned from our experiments; this part stands as originally written. 
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The situation is different when the liquid is in relative internal motion. In this 
case there will exist a stress field which also affects the shape of the free surface. 
Thus, the actual shape which a surface assumes in the presence of a relative internal 
motion is sensitive to the manner in which different liquids respond. 

One of the most simple situations of relative internal motion which also in- 
volves a free surface is that of a liquid filling the semi-infinite space between two 
concentric cylinders which rotate at different steady speeds. When the liquid is 
non-Newtonian this situation is associated with the phenomenon of climbing; this 
phenomenon is one striking manifestation of the normal stress effect. Here, the 
shearing of the liquid induces stresses along and perpendicular to cylinder gener- 
ators on planes which are perpendicular to the planes of primary shear. These 
normal stresses are larger where the primary shear is greatest; because of the 
presence of a free surface, in the regions of greatest shear the liquid is forced up 
along the cylinder generators. 

Two previous studies of the climbing problem merit mention.* SERrUr~'S [13] 
analysis of an incompressible Reiner-Rivlin fluid relies on some simplifying as- 
sumptions; the velocity field is assumed to be independent of the coordinate 
along the axis of the cylinder, non-equilibrated shear stresses at the free surface are 
ignored, and the two material functions of the Reiner-Rivlin theory are replaced 
by constants. However, SERRIN does achieve a definite conclusion which is con- 
tained in our perturbation result at second order and which can be recovered when 
our result is specialized to the case treated by him (see Section 9). A second more 
general study, which apparently is due in principle to ERICKSEN [3], has been 
given by COLEMAN, MARKOVITZ, & NOLL [1] and TRUESDELL & NOLL [17] for a 
general simple fluid; in these studies the value of the normal stress along the axis 
is computed from the Couette flow field in an infinite cylinder. The direction of 
climbing is determined in a qualitative sense by replacing the true pressure distri- 
bution on a plane z = const, with a constant pressure as on a true free surface. The 
overthrust of the normal stress on the fictitious plane of constant pressure is the 
basis for the approximate computation of the direction of climbing. Of course, 
since gravity and surface tension are not considered, a discussion of the mechanisms 
which shape the free surface are outside of the scope of these qualitative studies. 

In the present work, we develop a systematic construction in series for the shape 
of the free surface above a simple fluid as well as for the induced secondary motion. 
Our best results are obtained from the perturbation of a state of rest. Here the 
perturbation parameter is essentially the prescribed angular velocity O of one of 
the cylinders. The perturbation analysis would be straightforward were it not for 
the fact that the free surface, and thus the fluid domain, depend on f2. 

Our analysis is based on the domain perturbation method [8] and the improved 
method [9] of JosEPI-L The general procedure used in [8] involves solving a boun- 
dary value problem in a given region of space by mapping it onto a standard region 
of simple shape. The mapped problem is then expanded in a power series in the 
parameter characterizing the domain deformation. The perturbation problems 
which arise in the expansion are then solved successively in the standard region, 
and the resulting series is mapped back into the original domain. The method of 

* See our Note Added in Proof at the end, p. 380. 
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[8] was based upon having an explicit representation of the domain mapping 
(i. e., the deformation) for all boundary and interior points of the domain. The im- 
proved method [9], which we further develop and apply in this paper, obviates 
the need for a definite characterization of the domain mapping function at interior 
points and makes essential use only of the deformation of points on the boundary. 
When this new method is applied to problems where the domain deformation is 
prescribed, as, for example, those treated in [8] and [10], it leads (as in [9] and here 
in Section 3) to a considerable simplification and operational convenience. The 
extension of the domain perturbation method to our problem, in which the shape 
of the deformed domain is unknown, constitutes a principal mathematical contri- 
bution of the present work. 

The other contributions of the paper are most easily described in a preliminary 
survey of its organization. The table of contents gives an overview of this organiza- 
tion. In Section 2, we give a general formulation of our problem. In Sections 4 
through 6, we shall develop the domain perturbation method and apply it to the 
problem of the free surface on the top of a Newtonian liquid in the absence of 
surface tension. We are not yet acclimated to the idea that this very classical 
problem seems so far to have escaped analysis. On the chance that this is in fact 
true and because the methods are more neatly exposed in this widely familiar 
context than in the intriguing simple fluid problem, we have developed in Sections 
4, 5, and 6 a full analysis of the classical problem. The analysis is terminated just 
after the point where a secondary motion first appears. 

The perturbation of the rest state is constructed as a series in powers of I2, and 
there is a neat ordering of effects with each of the powers. At zero tu order there is 
a flat surface with atmospheric pressure above and hydrostatic pressure below. 
At order f2, an azimuthal field appears without change of pressure. There is no 
deviation from a flat free surface at this order. At order 0 2, there is no velocity 
correction; but the first order azimuthal velocity field induces a pressure change 
through central forces. This pressure change produces the first deviation of the 
free surface from flatness. At order 0 3, a new z-dependent azimuthal velocity 
field is generated. This z-dependence is necessary to balance the unequilibrated 
circumferential shear stress which appears at the free surface when this surface 
deviates from flatness. The z-dependent azimuthal field appears at fourth order (f2 4) 
as a non-conservative force which generates a general circulation as well as a further 
alteration of the pressure and the shape of the free surface. 

In the case of perturbations of a state of rigid rotation with a small differential 
rotation (Section 13), all of the effects which were just mentioned pile up at first 
order. 

In the case of perturbations from a state of rest the ordering of effects into even 
and odd powers of f2 is a consequence of symmetry properties of the problem with 
respect to a change in the sign of g2. In general the changes in the azimuthal velocity 
component are associated with the odd powers of f2 and the changes in the azi- 
muthal vorticity field, pressure, and free surface height with even powers of f2. 

The perturbation problems generated at the odd orders in t2 involve inverting 
ordinary differential equations of Bessel's type and the solutions can be given 
explicitly as Fourier-Bessel series. 

22* 
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The perturbation problems generated at even orders in O involve inverting a 
fourth order linear operator of the biharmonic type defined in the annulus. 

The operators to be inverted at odd and even orders are those which appear 
first at third and fourth order; the only difference is in the inhomogeneous terms 
which are formed from the solutions of the problems at lower order. When the 
solution of the even order problems is known, the inhomogeneous terms for the odd 
order problems can be computed sequentially. The actual inversion of these odd 
order problems is trivial. It follows that the inversion of the fourth order problem 
is a key to the explicit solution of the perturbation problems at even orders and, 
therefore, at all orders. 

It is then of interest that our problem at fourth order is reduced under approxi- 
mation for small gaps (Section 6) to a biharmonic boundary value problem on a 
semi-infinite strip. This problem, which is essentially an edge problem in the theory 
of plane elasticity, is solved by a series of Papkovich-Fadel functions. We know of 
no case in elasticity theory where the convergence of these series is proved. For- 
tunately, in Section 6 we are able to demonstrate convergence of the series for 
our problem. 

In the second chapter of the paper, we turn our attention to simple fluids. It 
would be helpful if, by observing the way in which a simple fluid climbs in a Couette 
viscometer, one could obtain information about the viscometric functions. This 
possibility seems to have been largely discounted in the past; for example, COLEMAN, 
MARKOVITZ, & NOLL say (p. 48), "We do not expect any general qualitative rela- 
tion between the viscometric functions and the magnitude of the climbing" and 
further (p. 67), "... there is no quantitative theory for (climbing), and thus it 
cannot be used in the evaluation of the viscometric functions." 

The perturbation construction which we carry out in Chapter II does give a quan- 
titative theory of climbing when the cylinder speeds are small. In fact, the coef- 
ficients of our series, through the fourth order, depend on the constitutive equation 
of the simple fluid only through constants that are properties of the three visco- 
metric functions. It is not ruled out that this casting out of viscometric coefficients 
is true at all orders. 

Our equation (9.21), which gives the shape of the free surface at second order, 
depends in a simple way on the second order viscometric coefficients and has a 
certain potential as a guide for experiments. 

The analysis of the simple fluid is carried out in Sections 7-11 through order 
four; at order four, as in the Newtonian problem treated earlier, secondary motions 
first appear. The neat ordering of physical effects of slow rotation as well as the 
form of the operators which need to be inverted at each stage of the perturbation 
are unaltered by the non-Newtonian effects. 

The third chapter of the paper is mainly given over to an examination of the effects 
of surface tension. In Section 12 it is shown how the perturbation analysis of the 
preceding sections can be extended to problems involving surface tension when a 
"neutral"  wetting angle is prescribed. In Section 13 we consider the effect of per- 
turbing a state of rigid rotation with a small differential shear. Our results in 
Section 13 are largely qualitative. The zero th order problem here defines a base 
state of rigid rotation; with the inclusion of surface tension, this problem calls for 
solution of a non-linear second order ordinary differential equation for the free 
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surface profile. This fixes the domain in which all subsequent perturbation problems 
are to be solved. We derive the relevant first order problem and show that its 
solution necessarily involves a general circulation. In Section 14 we return to the 
zero th order (i. e., state of rigid rotation) and solve the free surface problem for 
small surface tension. The problem is of a singular perturbation type, and it leads 
to a boundary layer (corner layer) which scales with the square root of the capillary 
radius (this is proportional to the square root of the surface tension coefficien0. 
The boundary layer scaling is not altered in the higher order perturbation prob- 
lems of Section 13, but the boundary layer problems generated in the scaling ap- 
pear to be very difficult. 

We have not yet given the proof of convergence of the perturbation series which 
are used in the formal analysis in this paper. 

2. Statement of the Problem 

We shall consider the following problem: An incompressible fluid initially 
occupies the space ~e" o between two fixed concentric cylinders (a < r < b) and below 
the free surface z =ho (r) where it is exposed to pressure Pa of the atmosphere. The 
inner and outer cylinders are then made to rotate about their common axis with 
angular velocities f2 and 2f2. The free surface of the rotating fluid cannot retain 
its static shape and its final steady shape z=h(r;  I'd) is determined by a complex 
balance of central forces, normal stresses, surface tension, and gravity (see Fig. 1). 
We seek a mathematical description of the shape of the free surface and of the fluid 
mechanics which determine this shape. 

The following notational conventions will be employed: 

(r, O, z), (e,, e0, ez) 

T, p, It, pa, g = --e~g 

p(r, z; I2), #(r, z; t2) 

u(r, z; g2), (u, v, w) 

S(r ,z ,  f2), T = - p l + S  

h(r; f2) 

h', J 

11, t 

% 
D = �89 (grad u + (grad~u) T) 

sr 

Ar 

Polar cylindrical coordinates, coordinate base 
vectors. 

Surface tension, density, viscosity, atmospheric 
pressure, and gravity. 

Pressure, reduced pressure (see below (2.1 a)). 

Velocity, physical components of velocity. 

Extra stress, Cauchy stress tensor. 

The equation of the free surface is z - h ( r ;  f2)=0. 

dh/dr, mean curvature (see (2.2)). 

Outward unit normal to free surface, tangent vector 
in the intersection of the free surface and the plane 
0 =const. (see Fig. 1.) 

Fluid domain a < r _  b, z < h (r; f2). 

Stretching tensor. 

F th order approximation to the fading memory re- 
sponse functional (2.6). 

Rivlin-Ericksen tensors defined by (2.8). 
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Fig. 1. The free surface between rotating cylinders 

It will be assumed throughout that the problem is axisymmetric so that u and h 
are independent of 0. A picture of the physical configuration is sketched in Fig. 1. 

The problem to be treated in this paper satisfies the following field equations: 

p ( g r a d u ) u = - g r a d ~ + d i v S ,  d i v u = 0  in ~f~, (2.1a) 
where 

(grad u) u-- (u.  V) u, 

and for convenience we define 

~(r,z)-p(r,z)+pgz in "f~. 

In addition, the boundary conditions at the cylinder walls are given by 

_~eoOa at r=a, 
u (2.1 b) 

-~eo~f2b at r=b, 

and on the free surface of the fluid domain the normal components of the velocity 
as well as the shear traction vector is to vanish: 

u.n=Sno=Sn,=O at z=h(r;f2). (2.1c) 

Moreover, far from the free surface we specify that the axial velocity field and the 
shear traction field on right cross-sectional planes vanish: 

u.e~,Szo, Sz,oO as z ~ - o o .  (2.1d) 

The problem so far given could be considered fully stated if the constitutive 
relations of the fluid were given and if the free surface profile z=h(r; f2) were 
known in advance. Actually the particular surface profile which develops is the 
one which allows a balance between the normal component of the jump in stress 



Free Surfaces of Rotating Fluids 327 

across the free surface and the surface tension. Thus, at z=h(r; ~), 

n. [ - p I  +S] . n = TJ= T (r h'/]/1 -+h~-~)' (2.2a) 
F 

where J is the mean curvature written for surfaces of axial symmetry, and the 
square bracket gives the jump in stress across the free surface: 

n .  [ - p I  +S].  n = [ - p +  Sn~] = ( - p +  Snn)-( -P, )  
= - ~ + p , + S ~ , + p g h ( r ;  ~) at z=h(r;  f2). (2.2b) 

The normal traction acting on the free surface from above has been taken as 
atmospheric pressure. Equation (2.2a) is a second order inhomogeneous ordinary 
non-linear differential equation; it is to be solved subject to prescribed conditions 
for the slopes h' (a; ~) and h' (b; ~?) (i. e., the wetting angles are given). We observe 
that the scalar quantity �9 is included in (2.2a), but from (2.1) it is determined only 
up to an arbitrary additive constant. This constant, and the plane on which z = 0, 
is fixed by the condition that the total volume below the free surface is conserved: 

b 

Srh(r; O)dr=O. (2.1 e) 
a 

It will be convenient in the following to have expressions for the free surface 
conditions in terms of components appropriate to cylindrical coordinates. To this 

end, let ct denote the angle between ez and n ( - 2 < ~ < 2 ) so that sin ~ = h' /l/T-+ h' 2. 
Then 

u.  n = (cost 0 w -  (sin~) u, 

S.o = (cos~) S~ 0 -  (sin~) S,o, 

S. t = sin ~t cos ~t (Sz z - S,,) + (cos 2 ~ - sin 2 ~) S, z, 
and 

S n  n ~" S z  z CO S 2 ~ + S r r sin 2 ~ - 2 s i n .  c o s  ~ Sz,. 

Noting that S~t=0 on z=h(r; ~2), we may eliminate S,, between the last two 
equations to find that 

S, ~ = Sz ~ - Sz r tan 0~. (2.3) 

In summary, the most general mathematical problem to be considered is as 
follows: 

p(gradu) u= - g r a d  ~ + d i v S ,  d i v u = 0  

feof~a at r=a, 
U 

=(eo2Qb ~ at r = b ,  

w-h 'u=Szo -h 'S ,o=h ' (S z z -S , , )+ (1 -h ' 2 )S , z=O at 

w=S~o=S~=O at z = - o e ,  
and 

p , - - ~ + S , z - - h ' S , z + p g h = T  (rh'/V]-+-~) ' at 

in ~ ,  (2.4a, b) 

(2.4c) 

z=h(r; 12), (2.4d, e , f )  

(2.4g) 

z = h ( r ;  f2), (2.4h) 
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where h'(a; f2) and h'(b; I2) are given, and # is made definite by requiring the 
condition of constant volume (2.1 e). We are going to treat this problem both for 
Newtonian liquids and for simple fluids with fading memory. 

For an incompressible Newtonian fluid, the constitutive relation has the form 

S = 2 tt D, (2.5) 

where # is the viscosity and D is the stretching tensor. A generalization which in- 
eludes (2.5) is the concept of an incompressible simple fluid. TRuraSDELL &NOLL 
[17] define this material through the constitutive assumption 

s=,c,~=o[a(s)], a(s)---c ,( t -s)- l ,  (2.6a) 

where the response functional J satisfies the principle of frame indifference; 

Q ~ o  [ G(s)~ QT = ~ ~o [Q G(s) Qr] (2.6b) 

for all fixed orthogonal tensors Q. Here, the symmetric tensor Ct is the relative 
right Cauchy-Green strain tensor. It is calculated from the relative deformation 
gradient tensor b" t through Ct=FtTFt, where Ft=grad Xt and q=Zt(Z, z) denotes 
the point occupied at time �9 < t by the particle which at time t is at the point x. 
Since the motion of an incompressible fluid is isochorie, the determinant of F, 
(and, hence, of Ct) is constant and equal to o n e -  its value at z = t. Further, since 
incompressibility requires the introduction of the scalar functionp into the Cauchy 
stress tensor, J cannot be uniquely defined for each incompressible fluid unless 
uniqueness is forced by convention. The usual convention adopted here is that p 
is the mean normal stress and, therefore, in addition to (2.6a) and (2.6b), we 
require 

t r ~  ~o [G(s)] = 0. (2.6 c) 

The problem (2.4), even for a Newtonian fluid (2.5), is too difficult to treat 
generally. However, it is possible to construct perturbation series solutions pivoted 
about the rest state (g2 = 0) or the state of rigid rotation (2 = 1). Both of these states 
are, in fact, solutions of (2.4) for any given simple fluid. For either state, the 
relative strain history Ct(z)z < t is always equal to its present value of 1 in all past 
configurations. Thus from (2.6) it follows that the extra stress $ vanishes (see [1 ], 
p. 20). In addition, since rigid body steady rotation possesses an acceleration 
potential, in both cases ~ is determinate, and it remains only to integrate the 
reduced form of the surface tension equation (2.411). 

In our analysis of simple fluids, we shall assume that the response functional J 
is of the fading memory type. We note that since 12=0 is a rest state, the steady 
velocity u (x; f2) and the relative history 

G(s; ~)=C,(t-s;  ~ ) - 1  (2.6d) 

both vanish when 12 = 0. Then assuming that 
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where fi (x, 0) is a bounded field (as is true when u is analytic), we note further 
that the relative motion ~= Zt(x, t -s)  satisfies an autonomous differential system 

~dsc_,,t-s~_ a~Eq(t-s);Q], q(t-s)ls=o=X. 
ds 

The solution of this problem is in the form 

where 
q(t-s)= ~V[x, t - a s ;  a], 

~P'[x, t - a s ;  a]  =u[-r  a'] 

with the prime denoting differentiation with respect to the second place in $' and 

Hence 

and G has the structure 

~/'(x, t; a)=x.  

xt(x, t -s;  a ) =  ~P(x, t - a s ;  a), 

a(s; a)=H(as; a)-H,~, 

where Ha is the retardation (in the sense of COLEMAN & NOLL [2]) of H(s; a);  
H (s; a)  is defined through (2.6 d), (2.6 a) and the definition of C, (following (2.6 b)). 

Under certain technical conditions [2 ], which may be assumed here, a complete 
n th order approximation to the response functional of a general simple fluid with 
fading memory is provided by the response function of a fluid of the differential 
type of grade n. We shall need the approximations up to grade 4, which are listed 
below: 

S=S1 +$2 +$3 +$4, 
where 

$1 =gA1, 
S2 =o~l A2-I-ot2 A2, 

S3 =ill A3 -I- f12 (A2 A1 "1" A 1 A2)+fl3(trA2)A1, 

$4 =?1 A4 3t-~2 (A3 A1 '~- A 1 A 3)-~- ~)3 A2 -it- 74(A2 A2 -~-A2 A2) 

+?5(tr A2)A2 + ?6(tr A2) A~ + ?7(tr Aa)A~ + ?s(tr A2 A1) A1. 

(2.7) 

Here, #, ~1, ~2, ill, f12, fla, ?l . . . .  ,78 are material constants; and Ar (F= 1 . . . .  ,4) 
represent the first four Rivlin-Ericksen tensors, which are defined in terms of the 
relative strain Ct by 

A r = ( - 1 )  r Ct(t-s)ls=o. (2.8) 

We remark, in particular, that At = 2D, as was recorded earlier. In general, it is 
necessary to include a multiple of 1 added on the right of the first of equations 
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(2.7) in order to satisfy (2.6c). However, this multiple may be absorbed into the 
constitutively indeterminate pressure p of T. 

Not all of the material constants appearing in (2.7) are properties of the three 
viscometric functions which appear in studies on steady viscometric flows. Since 
we shall find in Chapter II that the series solution up to the highest order constructed 
(i. e., 04) depends on the material only through those constants in (2.7) which are 
characteristic of the viscometric functions, we feel a particular need to draw atten- 
tion to the viscometric constants here. 

In [17] it is shown that a complete kinematic characterization of the class of 
viscometric flows with shear rate x is that the only non-zero Rivlin-Ericksen ten- 
sors are A~ and A2; moreover, these are given by 

AI =/s + Nr), Az=2/s NT N. (2.9) 

N=bx| 2 is defined relative to an orthonormal basis (bl, b2, b3) where bl 
denotes the local direction of shear and b 2 denotes a unit normal to the local 
sheafing surface. In such flows the extra-stress for an incompressible simple fluid 
reduces to the form 

S = �9 (1r ( N  + N T) + tr 1 (/s N r N + tr 2 (~) N N T, (2.10) 

where z, tr 1 and 0" 2 denote the shear and two normal stress visometric functions, 
respectively. Thus, by substituting (2.9) into (2.7) and comparing with (2.10) it 
follows that (see page 495 of [17]) 

z (x) = # x + 2 (f12 + f13)/s + 0 (/s 

al (x) = (2cq Jr- 6t2)/s +4(~ 3 +y4q-Y5 "~ �89163163 

tr2 (x) = ct2/s +2r6/s + o (x4). 

(2.11) 

With these preliminaries aside, we are ready to consider the domain perturba- 
tion theory. Though our main concern is with free surface problems in which the 
fluid domain is sought as an unknown, it is instructive to give brief consideration 
to problems in which the deformation of the domain is prescribed. These prescribed 
domain deformation problems are considered next. 

Chapter I. A Domain Perturbation Theory 

3. Prescribed Domain Deformation; Generalization of Hadamard's Formula 

The following elementary eigenvalue problem arises in the theory of hydro- 
dynamic stability [14] and in the theory of small vibrations of incompressible 
elastic plates [11 ]: 

Au+Au+gradp=O, d ivu=0  in ~,  

u = 0  on 0~.  (3.1a, b, c) 
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Here, ~ denotes the bounded open three-dimensional configuration of the body 
and 0 ~  its boundary. One problem of interest to study in these theories is the 
dependence of the eigenvalues and eigenfunctions on the domain. In the present 
section, we shall briefly describe how this can be accomplished using a domain 
perturbation method. 

Suppose that the problem (3.1) is difficult to solve for in the domain ~ but 
that the eigenvalues and eigenfunctions can be found in another domain ~o of 
simple shape. To study (3.1) in~ ,  we imbed ~ in a one (z) parameter family of 
domains "/'~,. The problem (3.1) in ~ is then mapped onto ~0 where it may be 
studied using all the simplifying features which apply in ~o. These simplifying 
features are particularly nice when the problem is studied by perturbation theory. 
Then it is possible to construct eigenvalues and eigenfunctions by developing the 
mapped problem in ~0 into a Taylor series in ~. The advantage is that the coef- 
ficients for the Taylor series are determined as solutions of linear boundary value 
problems obtained by successively differentiating the mapped problem with respect 
to z and evaluating the resulting equations at z = 0, that is, in ~o. 

We want next to exhibit the formal procedure by which we simplify the cal- 
culation of derivatives of eigenvalues and eigenfunctions with respect to z. Our 
purpose in treating a prescribed domain deformation problem at this early stage 
is to exhibit the basic ideas unencumbered by largely extraneous free surface 
complications. It is perhaps appropriate to remark that prescribed domain defor- 
mation problems are generic in mathematical science and of considerable indepen- 
dent interest. The basic ideas which we need are found already in the procedure 
which was first developed in [9 ] and which is used below to calculate dA/dz. 

We first select an arbitrary admissible mapping of ~o+0~o--+"/~t+0"g~,: 
x=X(Xo, ~) where XoE ~o+0~o  and x~ ~ + 0 ~ ,  and introduce the associated 
substantial derivative 

d(.)  _~ ~(.) q-[grad(.)] V~, (3.2) 
d~ OT 

where V~ = d x  is the deformation rate of the mapping. The motivation for this 
d~ 

initial step lies in the observation that (3.1)}=0, since (3.1) is an identity 

in ~. Since the field equations of (3.1) are also identities in x~ ~ ,  it follows that 
0" 

0~" {(3.1 a, b)}=0 in ~ .  

Thus, for n = 1, we have 

Au~+Au~+ftu+gradp~=O, divu,=0 m ~'~, (3.3a, b) 

_ ~ u zJ- dA Since the full substantial where we have used the notation u,=--~- T and d~ " 

derivative must be used on the boundary, (3.1 c) becomes 

du =u,+(gradu)V~=O on Oq'~,. 
dz 

(3.3c) 



332 D . D .  JOSEPH & R. L. FOSDICK" 

We shall now show that for any ~, 

. ~ dn V.. nda  
A(z)= - er 

lul2dv , (3.4) 

where V,. n denotes the domain deformation rate in the outer normal direction 
to the boundary d ~ .  Before obtaining this result, however, it is convenient to 
observe that (3.4) represents a generalization of the well known Hadamard (1908) 
formula for elastic membranes. Our result implies that A (z) decreases as the domain 

is enlarged (i.e., V~>0). In fact, globally it shows that A(~2)<A(zl) whenever 
~t/~, is entirely contained in ~I/~,~. The monotonicity of A with ~ could be obtained 
directly from the variational characterization of eigenvalues A as minimum pro- 
blems, but, of course, (3.4) goes much further. 

We now turn to the derivation of (3.4). It readily follows from (3.3a, b), (3.1), 
and application of the divergence theorem that 

0=  S (Au ,+Au,+f lu+gradp , ) .  udv  
~" (3.5) 

---Jl ~ lul2dv - ~ u , .gradpdv-  j (gradu)n.u, da. 

Substituting the boundary information (3.3c) into the last integral in (3.5), we see 
that the integrand is equivalently - (grad u)n.  (grad u)V~. But on the boundary 

(3.1 c) shows that grad u =O-ff-n n, so that the integrand becomes - a n �9 n. 

Thus, to complete the proof of (3.4), we must show that in (3.5) 

u, . grad p dv=O. 

To see this we start with the observation from (3.1 b, c) and the divergence theorem 
that 

u . grad p dv=O 

is an identity in z. Thus, by use of the properties of substantial differentiation, 

d 
0 =--d-~-z J " u.gradpdv=~,S ~9~--(u.gradp)dv+o~ o~',S (u .gradp)V~.nda.  

Since the latter integral is zero due to (3.1 c), we reach 

(u~. gradpdv= - ~ u. gradp~dv. 

Clearly the fight-hand side above vanishes by application of the divergence theo- 
rem and (3.1 b, c). With this established, the result (3.4) follows. 

We emphasize that the result (3.4) allows only the normal shift of a boundary 
to affect an associated change in the eigenvalue. In attaining this result, our argu- 
ment justifies and simplifies that used by HAOAMARD for his simpler problem. 
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We expect that I"IADAMARD'S argument would also lead to (3.4), but it requires 
a somewhat less direct and partly intuitive approach.* The major advantage of 
the present method of derivation over that which could be constructed from the 
ideas of [8 ] is that here we avoid having to extend the domain mapping of the 
boundary specifically into the interior of q"~,; independence of the result on the 
interior mapping function is unquestionably clear. 

In order actually to calculate zi (-c) using (3.4), we need the eigenvalue and asso- 
ciated eigenfunctions of (3.1) in q/~. Since these are more easily established in ~o, 
we are naturally motivated to construct the series 

T 2 
A (3) = A (0) + ~ zi (0) +-~-  Ji (0) + .... (3.6) 

where now A (0) is computable. 
Calculation of d2A(z)/d, 2 is more complicated; in particular, this calculation 

will require prior computation of the field u, which solves (3.3). When A is simple, 
the unique solvability of (3.3) subject to an appropriate normalizing condition, 
say 

S lul 2dr=l ,  

is guaranteed by (3.4) which is a form of the Fredholm alternative. Of course, if we 
cannot solve (3.1) in ~ ,  we could not hope to solve (3.3) there. In the domain ~o 
of simple shape, it may be easier; this observation suggests that we construct the 
series 

az ~=o 

d u [ are determined in ~o, Of course, since the Taylor coefficients u],=o and ~ , = o  

they are naturally functions of Xo. To obtain the solution in ~ ,  we need first to 
substitute the inverse functions Xo =Xo (x, ~) in the functions on the right-hand 
side of (3.7). 

It serves no further purpose to continue the construction to higher orders in ~. 
The type of problem which is encountered at these higher orders is similar to that 
already mentioned above. 

We have intentionally deferred any specific discussion of the domain mapping 
function to the following section where we develop the analogous domain pertur- 
bation method for the free surface problem, which is the subject of this paper. 

4. Free Surface Domain Deformations. The Shape of the Free Surface 
on a Newtonian Liquid at Lowest Order 

The free surface problem for a Newtonian liquid is given by (2.4) and (2.5). 
For  the present we take T=  0, fix 2 and consider small values of 12. Associated 
with the value 12= 0 is the reference fluid domain ~o defined by the coordinates 
(to, 0o, Zo) with a < ro ~ b, 0 < 0 o < 2 re, and - oo < z o ~ h t~ (ro). We shall see that 

* GARABEDIAN [4] is a convenient reference. 
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when T = O = 0  then ht~ Associated with the value O is the domain 
with coordinates (r, 0, z). As in the prescribed domain deformation problem con- 
sidered in Section 3, we define a mapping 

r = ro, 0 = 0o, z = ~b (ro, z o ; 12) (4.1) 

carrying ~o into ~ . *  We assume that r is invertible, even in f2**, and such that 

(ro, Zo ; O) = Zo 
and 

q$(ro, O; f2)=h(r ;  f2), (4.2) 

where - o o  < r (ro, z0; f2) < h (r; f2). Here, h (r; f2) denotes the height of the free 
surface of ~ .  

There is a formal similarity between (4.1) and (4.2) and material particle 
mappings. This similarity is further accentuated by the definition of a domain de- 
formation rate field, 

d e  V~= Voez=--d~- e=, (4.3) 

and a related substantial derivative 

O(.) (4.4) d( . )  _ O(.) I-[grad(.)]V~= +V~ Oz 
d~ - Of 2 

The reader is enjoined not to confuse the mappings (4.1) and (4.2) and the as- 
sociated formulas (4.3) and (4.4) with the analogous relations which hold relative 
to material particle mappings associated with Eulerian and Lagrangian coordinates. 
The deformation (4.1) is chosen ab initio, and any mapping satisfying the condi- 
tions (4.2) will suffice. For example, we could take z =  r (ro, Zo; f2)= Zo +h  (r; f2). 
The deformation (4.1) is independent of the interior motion of material particles 
and the velocity field u which is associated with the material mapping. 

The substantial derivative (4.4) is a key operator in the algorithm for construct- 
ing the perturbation series to follow; indeed, 

u /  o~ - f u r " l /  

q~t = Z  / ~t"]/12" , (4.5) 
hi o n.[ht,] I 

where, for example, where, for example, 
l In]r,. ~ -~_ dnu ] 

v0,  ,. o)  = - - ~ -  i ( 4 . 6 )  
f$=0" 

Of course, we seek the solution in qP~ rather than in ~o, and in order to achieve 
this goal, the independent variables (ro, Zo) must be replaced by (r, z) via the in- 
verse of the particular domain mapping ~o ~ ~ introduced in (4.1), (4.2). This 
suggests that the domain mapping function r may enter the solution in ~ .  

* Since the problems considered in the paper are axisymmetric, we shall drop all further 
explicit mention of the aximuthal coordinate 0. 

** Here it is natural to consider a domain mapping function that is an even function of 
since the fluid domain is independent of the direction of rotation. 
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However, this entry can only be superficial since we know that the solution in 
is certainly independent of the domain mapping because there is no reference 

to any such thing in the statement of the problem. The concept of domain mapping 
is introduced only for convenience, and, therefore, it must follow that while the 
particular mapping function no doubt enters at various orders in the infinite 
perturbation series (4.5) when evaluated in ~ ,  it does so only to be nullified in 
the full summation when its complete dependence through all orders is taken 
into account. 

The following observation is central to our procedure for forming the per- 
turbation series (4.5) for the solution. Since each of the equations (2.4) and (2.5) 
is an identity in f2, (2.4) and (2.5) may each be substantially differentiated any 
number of times with respect to I2. For example, we may write 

and 

dn 
- -  (div u) = 0 in 
dO" 

dn 
--(Szo-h'S,o)=O at z=h( r ;O) .  (4.7) 
dO" 

A major simplification is possible because equations (2.4a, b, c) are also identities 
in z. From this fact it follows that 

(2.4a, b,c) (")= 8 (2.4a, b ,c)=0.  (4.8) 
dO" 

To prove this, consider for example (2.4b) and suppose that 

0n-1 dn-lu 
divu=div--A-~-v~_l=divu("-l)=o in ~ .  (4.9) 

Then, with the aid of (4.4), 

d divu(._l)=divu(.)+ Vaf_~divuO,_l) dO (4.10) 

=divu (")=0 in ~ .  

Thus, since (4.9) is true with n= 1, we have by induction one of the results (4.8); 
and the others follow similarly. It is perhaps useful to note that since equations 
(2.4d, e, f, g) are evaluated on the free surface z=h(r ;  f2), they are not identities 
in z and, therefore, do not share the property (4.8); substantial derivatives are 
required at the free boundary. 

It will be convenient in the remainder of this paper to utilize the superscript 
notation of (4.8) with the additional requirement that after differentiation the 
result is evaluated at f2=0. Thus, analogous to the notation established in (4.6), 
we define 

(.)~n~_ 0"(.) I dO" a=o" (4.11) 
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Also, instead of (r0, Zo), it will be convenient to write (r, z) when it is clear from 
the context that we mean points of ~o. 

At zero th order I (f/= 0), the fluid body is in its basic state of rest. Thus, in the 
absence of surface tension it follows from (2.4), (2.5), and in the notation estab- 
lished above, that 

u t~ = h t~ = S t~ = 0, ~tol = Pa. (4.12) 

This gives the leading term in the power series solution (4.5), and we now want 
to establish the first order solution and show in particular that 

htll =0. (4.13) 

At first order the following problem, which is obtained by differentiating (2.4) 
with respect to t2, must be solved: 

p [(grad u) Ill (1)= -g rad  ~(1) + #A 11(1)=0, 

where 

and 

(4.14a) 

divu(1)=0 in ~o, (4.14b) 

u(1)=~eoa at r=a, 
[eo2b at r=b (4.14c, d) 

1,v ( 1 ) - ' ~ ( 1 ) - K ' ( 1 ) - I ~  at z = 0 , - o o  (4.14e, f,g) --a~ZO -- '~rZ - - v  

This problem is a Stokes flow problem, and up to an indeterminate constant in 
~(1) it has a unique singie-valued solution in ~o given by 

u(1)=(Ar+BI co, ~(1)=constant, (4.15) 
\ r /  

A =  b 2 ~ ' - a 2  B =  a2 b2(1-2) 
b 2 _ a  2 , b 2 a  2 �9 

It follows from (4.4) and (4.12) that 

IJ[1] ~ U (1) and ~ [ 1 ]  ~ ~ (1 ) .  

The value of h[t] and the constant in ~(1) can now be determined from the 
restriction that develops by taking the first f/derivative of the condition of con- 
stant volume (2.1 e) and the equation 

(1) [1]  t - -~  +Szz-(h S,z)tl]+pght~=-~~ 

which arises as the first f/derivative of (2.4h) when T=0. Since (4.15) implies 
S(1) that , ,  =u, we must have htl]=O, and the constant in ~(1) is zero. 

Since hill=O, we have, using (4.2), (4.3), (4.4), and the notation of (4.5) and 
(4.1 I), that 

d ( ' ) l  ~( ')1 +hill  8( ')1 
( . ) t l l=  dO r~=o- ,gf~ ~=o (gz I~=o 

(4.16) 

- a~ 1~=o=(-)(" 

where 
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on the free surface where the substantial derivative is essential. This result yields 
in the notation of (4.5) and (4.11) the following useful differentiation formulae 
which are valid at the free surface:* 

+h t31 0 ( z ) (o )+  (.)t31=(.),3) { _ _ }  3 ht2, { ~ }  O' ' 

(.)t4, = (.),,) + ht,~ { O~z__~) },o) + 4htal { ~ } 0  ) (4.17) 

+ 6 h t2~ f d (.) ~.(2) + 3 (ht21) z f a2 (") ~(0) 

We now consider the boundary value problems that arise at higher orders, 
the solutions of which determine the Taylor coefficients in the series representation 
(4.5). At order n, the appropriate problem which is obtained by differentiating 
(2.4) n times with respect to 12 is summarized below: 

p[(gradu)u](")=-grad~(")+l~Au(") in ~o, (4.18a) 

divu(")=0 in ~o, ur (4.18b, c,d) 
r = b  

and at z = 0, 
(w-  u h')t"l=(Szo- h' S,0) t"l 

=(h,[S, _Sz .]_[l_(h,)2.]S,~)t,q=O. (4.18e) 

In addition, from (2.4g) we shall also require that w("), ~,z0c("), and S~, ) vanish as 
Z---~ ~ .  

An important consequence of the fact that u (~ and htll both vanish is that 
problem (4.18) is an inhomogeneous Stokes flow problem at any order n. The 
inhomogeneous terms are dependent only on the solutions at lower order than n. 
Thus, if the solutions at all orders less than n are known, then any single valued 
solution at order n is unique up to an additive constant in ~("). In order to deter- 
mine this additive constant, it is necessary to apply the free surface condition (2.4h) 
and the constant volume condition (2.1 e), which at order n are, respectively, 

( -~+S~-h 'S~z+pgh) t '~  at z=0  (4.18 0 
and 

b 

Srhtnldr=O. (4.18g) 
o 

Thus, not only is the additive constant in 4~ (") determined, but also the free sur- 
face correction coefficient h En~ at the n th order is obtained. 

Finally, in order to obtain the n th order contribution to the series solution (4.5) 
in ~ of any interior field quantity, we have still to calculate the substantial deriva- 

* These formulae also apply to the interior of ~o if, for example, the domain mapping 
z----- ~b(r 0, z o, 9)---zo+h(ro; 9) is adopted. 
23 Arch. Rational  Mech. Anal., Vol. 49 
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fives of the various fields at order n using (4.4), and then to t ransform the final 
results f rom ~o to ~ via the domain  mapping  (4.1).* 

At  second order (n = 2), we find that  

p [(grad u) • ] (2)  : - -  2p (v~ 2 er/r = - grad ~]}(2) ..[_ 1 / a  U (2),  

divu(2)=0  in ~o, 

u(2)=0 at r=a  and r=b.  (4.19a) 

The free surface conditions (4.18 e, f) at order 2 can be written with the aid of the 
results of the zero th and first order  solutions as 

w[21 ~[21 ,g[21_ [21 1:21 [21 = o z o =  = - - -qb  +S,= + p g h  =0 at z = 0 ,  

and these, in turn, by using the first of (4.17) may  be reduced to 

~ , ( 2 ) - ~ ( 2 ) - ~ ( 2 ) = 0  at z=O (4.19b) 

and 
(2)  (2)  [2]  - ~  + S ~ z + p g h  = 0  at z = 0 .  (4.19c) 

We also note that  w (2), c(1) and S~ 2) are to vanish as z-~  - o o .  The solution of LJ2 0 , 

(4.19a, h) is 
/ r B 2 \ 

u(2)=0 and ~(2)=p~A2r2+4ABlog- f f - r - -~ - )+C2,  (4.20a, b) 

where C 2 is a constant  and, by  use of (4.4), (4.12), and (4.15), 

U [2]  = U (2) ,  and ~ [ 2 ]  : ~]~(2). 

The second order  correction coefficient h r21 is found  f rom (4 .190 as 

h[21 = 1 ~(2), (4.20 c) 
Pg 

and the constant  C2 is fixed by the condit ion (4.18g): 

b 1 
t-p r A r + 4 A B l o g - z T -  0 =  5rh[21dr = dr. 

a Pg 

This completes the solution at second order. 

* Thus, the n th order contribution to the infinite perturbation series solution (4.5) in ~/a of 
any interior field quantity will, in general, depend on the particular domain mapping function ~b 
which is chosen. However, since the full series obliviates this dependence, as remarked earlier, 
it would appear that all quantities at each order n that involve this dependence may as well be 
dropped from consideration, apriori. This suggests that for any interior field u, say, the right-hand 

side of (4.5) may be replaced by the equivalent sum ~. ~ u(n)~ n, where u(n) is the solution of 
O n �9 

(4.18) in ~o, and where we simply replace the independent variables (r o, Zo) of this solution 
directly with (r, z), respectively. We shall investigate the correctness of this procedure in a later 
paper, and in light of its nature of plausibility, defer its application. 
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Before proceeding to the more involved perturbation problems at higher orders, 
we shall summarize the results obtained so far: 

u=fd (Ar +B) eo +O(f23), 

~=p,+p__f_ A 2 r 2  r B 2 2 +4AB log ~- - r--~- - ( b  2 - a 2 )  

b ( _ r B 2 \ }  
�9 Sr A2r2+4ABlog-ff-r-r~-)dr +O(.Q*), 

r 2 
h(r; ~ ) =  A2r +4ABlog-~-r--r~- (b2_a2) 

b r B 2 t �9 Sr(A2r2+4ABlog-~-r---y- ) drj -{- 0(~4). 

We remark that this solution reduces to that appropriate for the state of 
rigid rotation when B = 0  (i.e., 2= 1). Further, the symmetries of the perturbation 
from rest are such that # and h are necessarily even functions of ft. 

5. Generation of Secondary Motions 
We recall that the first order solution has associated with it a non-zero shear 

stress component ~,,0er given by 

=l~r a(v~ --Itr ~-~ (B/r 2) = -2#B/r 2. S(I) 
rO d r  

Although this stress does not act on surfaces z=constant ,  it does contribute to 
the existence of non-equilibrated shear stress on the deformed free surface h (r; f2) 
at order ~2 2, and this unequilibrated traction is corrected at third order by the 
generation of a new circumferential velocity field which depends on z. The pres- 
sure field and free surface shape are unaltered at third order. 

At third order (n = 3) the fundamental field equations are 

p[(gradu)u](a)=o=-grad~~ ~a), divu(3)=0 in ~o. 

At the cylinder walls r=a and r=b we must satisfy u(3)=0. Because of axial 
symmetry, there is no circumferential pressure gradient, so that for single valued 
4 ,(a) we have 

1 d [r dv(~)'l d~v(~) v(3) " 
r Or \ Or ] + ~ - ~ = u  in ~o. 

Using (4.18 e, f, g) when n = 3 and the second of equations (4.17), we find that 

.$(3)__~,(3)__~,(3) aht2],~,(1) 0 at z = 0  (5.1) - - ~ J r z  --~JZO - - J  *-)tO 
and 

-s=)/pg. 
23* 
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In addition, we may use (4.20b, c) to rewrite the last of (5.1) as 

0v <a) 1 2 B (  B)  2 
Oz ~ - - ~  A r + 7  =0.  (5.2) 

Thus, the solution in ~o of the third order problem, which satisfies (4.18g) with 
n = 3  and which is such that wCa), -rz'~(3), and ~,z0c(a) vanish as z - .  - o %  is given by 

u ( 3 )  w ( 3 )  _ r ~ ( 3 )  _ q ( 3 ) _ / , [ 3 ]  _ 13 

v(3)(r, z )=  ~ A.eX"*U(2.r), (5.3a) 
n=l 

where U (2, r) denotes the cylinder functions 

ff(2.r)--Jl(2.a) Yl(2.r)-Jl(2.r)  Yl(2.a), (5.3b) 

2. are the positive roots of 
U(2 ,b)=0 ,  (5.3c) 

and the .4, are Fourier-Bessel coefficients chosen so that (5.3) will satisfy (5.2). 
We observe, using (4.4) and the lower order solutions (4.12), (4.15), and (4.20), 
that in ~o 

u [a]=u (a) and ~[3]= ~(3). 

The dependence of the circumferential velocity upon z at third order appears 
at fourth order as a non-conservative body force which generates a general circula- 
tion as well as a further alteration of the pressure and the shape of the free surface. 

At fourth order (n = 4), we have 

p [(grad u) u] (4) = - 8 p v (1) v (a) er/r = - grad ~(4) + ~t A u (4), 

divu(4)=0 in ~0, (5.4a, b) 

and the boundary conditions u(4)= 0 at r = a and r =  b. In addition, using (4.18 e) 
for n = 4  and the third of equations (4.17), we find that 

W(4)=~(4)--~(4)--0 at z=O (5.4c, d ,e)  

and 
-qb(4)+S(~)+ht4]pg=O at z=0 .  (5.4f) 

Although it is clear that the solution of the fourth order problem, which is 
single valued and satisfies ,,,(4) _ ~,(4) _ c~4)_ a . . . .  z0 -~,~, - , ,  at z ~  - ~ ,  has v(4)=0 in ~o, the 
rest of the problem needs further explanation. Toward this end we note that since 
v (4) = 0 in ~o, then 

curl u (4) = ~ = eo 
and 

curl curlff = - A ~ = _ e o  -~(r  O, (5.5) 
r 

where we have defined 
02 ~2 1 O 

~q~ =-- -O-~z + -O ~r r Or 
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and 
OU (4) OW(4) 

~= Oz Or 

Now, by introducing the stream function ~ (r, z) such that 

u t 4 ) _ l  OIp w<a) = - 1  O~k 
r Oz'  ~ -  Or in ~o, 

we identically satisfy (5.4b) and further find that 

and 

1 s "l- 1 02~// 1 0 ~ k  1 =--~, 
=-7-~ -7-~V-r -~ 0," r 

curl curl ~ = - e 0  ~e 2 4. (5.6) 
r 

Thus, defining the scalar function ~ (r, z) through 

= - 8p v ~1) v ~3), (5.7) 

and forming the curl of (5.4a), we find using (5.5) and (5.6) that 

~.~2~/=  0~ in ~o. (5.8a) 
0z 

When the boundary conditions are transformed to the function ~k, we find that at 
the cylinder walls 

~k=-~-r = 0  at r = a  and r=b (5.8b, c) 

and that the free surface conditions (5.4c, e) become 

0~// ~21~ 021// 13 
Or ='-~-~-z ---~-~r =~' at z=0 .  (5.8d, e) 

In addition, the surface height coefficient h t41 is determined from (5.4f), which 
may be written as 

_ ~  2# 02d/ }-pght4~=O at z=0 ,  (5.8f) 
r OrOz 

and the condition of constant volume (4.18g) with n=4 .  Finally, to complete 
the characterization of the problem at fourth order, we add the conditions at 
infinity, 

Or = ~ - - - ~  - r -=v  as z ~ - ~ .  

Using (4.3) and the symmetry of the domain mapping function, we verify 
that Vu=0 when t2=0;  then from (4.4) we have 

(.)t4)=(.)t43. (5.9) 
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The solution ~O(r, z) to (5.8) gives rise to a cross flow in planes 0=constant; 
thus, at fourth order, the fluid begins to circulate up and down along the axial 
direction and in and out along radial lines. 

We close this section with a brief examination of the perturbation problems 
at arbitrary order. We noted in the Introduction that symmetry of the problem 
with respect to a change in the sign of f2 requires that 

D(2m) ~ p(2m+ l) ~h[2m+ l]=u(2m+ l)_~_w(2m+ l) ~O. 

To prove this, assume that it is true when m < n. Then (4.18) shows that this must 
be true when m=n. Inspection of (4.18) also shows that the operators to be invert- 
ed when n is odd are those which appear at third order, and when n is even the 
operators which are to be inverted are just those which appear first at fourth 
order. Of course the inhomogeneous terms change with index but the unique 
invertibility of the operators for arbitrary inhomogenities is easy to establish. The 
inversion in the odd order problem in Fourier-Bessel series hardly needs explana- 
tion. It follows that the inverse operator defined at the fourth order is the key to 
the explicit resolution of the problem at all orders. This fourth order problem is 
most easily solved when the gap (b-a)/(b + a) is small, and we shall consider this 
simpler problem in the next section. 

6. Secondary Flow When the Gap Is Small 

Let ~=(a+b)/2 be the mean radius, and let 2 6 = b - a  be the gap. We shall 
simplify the calculations by treating the problem when the gap size 6/-~ is sufficiently 
small*. Introducing the variable y, r=Y+y  where -6<y~_6,  when 3/Y--.0 we 
write 

0 0 0 2 9 2 
grad = ey -~y + e~ (6.1 a) O z ' A = - ~  +--~-~z , etc. 

and 

where 

and 

B 
F + G y = A r  +- - ,  (6.1b) 

r 

B 
F = A F +-:-, 

r 

G=_A-B/72. 

The solution at third order may be simplified. Replacing (5.2) and (5.3), we get 

Ov ~3) 12B "F G .2 
Oz = - - - ~ (  + y) (6.2a) 

and 
v(3)= ~ A.ek"Zcosk.y+ ~ BmeJmZsinj,.Y, 

n=O m=l 
(6.2b) 

* In many other problems in which the narrow gap approximation is used the approximation 
and  the exact solution are often in reasonable agreement when 26]7<�89 
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where for n = 0, 1, ..., and m = 1, 2 . . . .  , 

kn=(2n+l)n/2,~, jm=mn/6, 

- 9 6 B ( - 1 ) " 6  { G2 ( 8 ) }  
A,,= g~.a(2n+l)2n2 F2+~ 2 1 - ( 2 n + l ) 2 n  2 , 

and 
4 8 B ( -  1)" t52 FG 

B m -- m27~ 2 g~3 

The approximation of (5.4a) for small gaps is 

(y, z) = _ grad 4~ (4) + # A u (4) 
ey F 

where grad and A are as in (6.1 a), and 

in ~o, (6.3) 

~= -8pv(1)v(3)= - 8 p ( F + G y ) {  Z Aneknzc~ + Z Bme~mZsinjmY} �9 (6.4) 
n = 0  n l = l  

To obtain u (4) that satisfies (5.4b), we introduce the stream function if(y, z)= 
~k (r, z), where 

~u~, ) a ~ ,  ~ ~ w ~ ) =  ~ff (6.5) =-b~-z ~y" 
The following boundary value problem for ~ is obtained as in (5.8): 

OV-#A2ff  i n ~ o ,  ^ d~ 01 , dz ~ =--~-y = ,=• ~--* 01~-~_ ~o, (6.6a, b, c) 

where A 2 (.) = A A (.), and 

- 0 ,  ay---~-z--~--- ,z--o.  
Since a~/Oy=0 Iz=o is an identity in y, we may replace these latter conditions 

with the conditions (6.6d, e) below: 

~ d2~ =01~=o. (6.6d, e) dy = ~z 2 

Given $(y,  z), we may determine #(4) by integrating the z component of (6.3). 
Thus defining F (y, z) through 

aF = ~  (6.7) 
~z 

and using (6.5), we may write 

~,~ + ~_ ,t o r  = 0 (6.8) 
By " 

To determine the fourth order correction coefficient h t41, we first note that in 
the approximation for narrow gaps we must replace (5.8f) with 

F azay  ~pght4]---0lz=~ 
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This combines with (6.8) to give 

ht4J # f d a F  031-'}{ 
pgF ~-b~z-by t3y 3 z=o" (6.9) 

The problem (6.6) is at the edge of tractability. It may, however, be solved 
exactly by reducing it to a variant of an elasticity problem solved by SMITH [15] 
To do this we shall first reduce (6.6) to the semi-infinite strip problem (6.11) 
below. Setting 

~ = P ( ~ + O )  in ~o, 

where ~ is a solution of (6.6a, b, c), but not necessarily of (6.6d, e), we see that 

and 

dO =0ly= ~,, O-- '0 lz , -  (6.11a, b,c) A 2 0 = 0  in ~o, O =  dy o0, 

d 2 
d (o+ (o+ ~')=01z=o. (6.lid, e) 

The problem (6.11) has been studied by SMITH [15 ]. His results are expressed 
in the variables 

_ y z ( 6 . 1 2 )  t = ~ -  and x = 6 '  

and he gives an algorithm for calculating the "Fourier" coefficients of the Pap- 
kovich-Fadle series which formally solve the following biharmonic semi-infinite 
strip problem in the domain - 1 < t < 1, 0 < x < do : 

a n d  

d 4 0  _ d 4 0  d 4 0  _ 
0-?--+2 ~ + - ~ r = o ,  

dO 
O =  dt =01~=• O ~ 0 1 x ~ ,  

420 420 
-b-fF=f(t) ,  ~ = g ( t )  at x=0.  (6.13a, b,c ,d,e)  

In his work, the given edge data g(t) is required to satisfy the consistency condi- 
tions 

1 1 

S gdt= ~ tgdt=O, (6.14) 
- 1  - 1  

with the side wall boundary data (6.13b). The consistency conditions hold for 
our problem (6.11). SMITH also proves the convergence of his series under very 
restrictive conditions on the dataf( t )  and g(t) which do not hold for (6.11 d, e). 
However, we shall find explicit representations for the coefficients (C~ tn in (6.22) 
and (6.24)) in the series solution which allow us to prove the convergence of our 
series. 

To carry out the calculation of SMITH'S solution of our problem, we must 
first reduce the problem (6.6) to the problem (6.11). The required solution of 
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(6.6a, b, c) may be composed as follows: 

4 

~'= Z ~ A,n ~,.(y. z~, 
i = 1  n = 0  

where for n = 0, 1, 2, ..., and for Bo = 0, 

A 1 ~ = - 8 FA, k,, 

A2.= -8GB.j. ,  

A3n = - 8GA. k., 

A4. = - 8 FB. in, 

7tx. = ek" ~ Zi. (Y), 

~e2.=d-'z2.(y), 
7Ja. = ek"" Z a. (Y), 

7J4.=eJ"" Z4.(y), 

(6.15) 

0 = - ~, As. tgi.(y, z), (6.16) 
i = 1  n = 0  

where O i. (Y, z) and Z i. (Y) are to be determined. In fact, returning with ~ = ~P (~  + O) 
to (6.6), we see that # 

d.~Z~.=q~., Zi. =Z~. =0[y= +~, (6.17a, b) 
where 

d4 2 d2 4 
J.1 = J.a =-d--~+2k.  -d-7+ k., 

d4 .2 d2 
s.2 =s. .  = - ~  + 2 j. 7~y+ j.; 

qln=coskny, 

q2. = Y sin j .  y, 

q3. = Y cos k. y, 

and q4. = sin j .  y, 

A 2 0~.=0, 0~.= Oy oo, 

02 Oin 02 ~iin 02 Oin 02 Oin 
0 z ~ Z - = ~  and - - ~ - z - = ~  at z=0 .  (6.18a, b , c , d , e )  

The solution of (6.17a, b) is given by 

1 Z~.(Y, k., 6)= - - g ~ .  ( y 2 -  62) cosk.y,  

- -  1 2 6 3 2__62) cosj .  y}, Zzn(Y, Jn, 6)= 2--~n {y (y2-6 --~n) sin j .y  +-~-~ (Y 

- -  2 6 
Zan(y, kn, t~)= 2~kn f Y (Y 2-6  --~n) c~ +-~n (y2-62)sinknY}, 

1 2 2 
Z4. (Y, J., 6) = - ~  (y - 6 ) s inj .  y, 

Z2o =X4o =0. (6.17 b) 
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To complete the solution in the form 

^ p 4 

~0=-~-,~1 .=o ~ A i . ( ~ . - O , . ) ,  (6.19) 

we must find the solution of (6.18). To use SMITH'S solution, we change variables 
as in (6.12) and scale the wave numbers according to 

k.=?./5,  j . = m / 5 .  

Then, in the new variables - 1 < t <  1, 0 < x <  ~ ,  we must solve 

with 

Z I 2 0 i n = O ,  Oin = 

(~2 ~)in 
Ox 2 =fi . ,  

where 

f~ U ~ . ,  

Here we use the notation 

~l.=e-V"~21., 

~2. = e-""x ~2., 

~3n= e-~'"X ~3n, 

~4n=e-ttnX~gn, 

OOin 
Ot =0It=+1, Oi .~0l~- .~ ,  (6.20a, b, c) 

0 20in 
~ = g ~ .  at x=O, (6.20d, e) 

a 2 ~ .  
g i . = ~  at x=0 .  (6.200 

X l . -  64 Xl.(t, y., 1), 

~2n- ~s X2n( t, gn, 1), 

~3n-- t~s Xan( t, Yn, 1), 

~4.=64Z4.(t, g., 1). 

(6.21) 

With these preliminaries aside we may now form SMITH'S solution of (6.20). 
It is convenient to introduce superscripts e and o which designate functions which 
are even or odd in the variable t. In the problem (6.20) the functions with i=  1, 2 
are even in t and the ones with i=  3, 4 are odd functions of t. For even d a t a f = f  e, 
g=ge, SMITH'S solutions are in the form 

01.)  -- 1 fCtt . )  e " 

O ~ = R e ~ - ~ , ~ C  ~Ot( t )e-S 'x '  (6.22) 
2n) 1=1 1 ~ 12nJ 

where Re means real part, the St are the first quadrant complex roots of the equa- 
tion 

2St + sin 2St = 0, (6.23 a) 
and 

O~ = St sin S t cos S t t - St t cos St sin Sit. (6.23 b) 

The "Four ie r"  coefficients of the Papkovich-Fadle series (6.22) are given by 
SMITH as 

d, i .= - 4 c o s 4 S ~ C . . = ( - g t . O ~ + O ~ ( f ~ + 2 g ~ . ) >  ( i=  1, 2), (6.23 c) 
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where 1 
( ' ) - -  S ( . )dt ,  

-1 

07-- 0 7 -  2 cos St cos St t, (6.23 d) 
and 

d2 07 2 e (6.23e) 
d-TZ----St  Oz. 

For the odd data we have 

{oA= O4,J Re, =~-~l {C: : :} @~(t) e - "~ '  (6.24) 

where the Pt are the first quadrant complex roots of the equation 

2Pi - sin 2Pl = 0, (6.25 a) 
and 

O~ = Pt cos Pt sinPt t -  Ptt sin Pt cos Ptt. (6.25 b) 

Here, the "Four ier"  coefficients are given by 

d t t . -  - 4  sin" P~ C,, .= [ -  gt. ~9~ + O~ (f~, + 2 gt.)] 

O~ = O7 + 2 sin Pt sin Pz t, (6.25 d) 
where 

and 

( i=  3, 4), (6.25 c) 

d2 7 o _ _/ ,2  @ ,. (6.25 e) 

The calculation of the coefficients dz~, may be simplified in the following 
way. After (6.20 f), let g = 0 2 7j[0 t 2 and f =  3 2 71/0 x z = ~z kv at x = 0, where we have 
temporarily dropped the subscripts. Recalling that 71 =d~/d t=O at t = _  1 and 
referring to (6.23 c), we find 

/ d2~rt ~e ,2~r/+2-~ 0~) 

/ ~ d O l +  2 =\- -7/r- 

Now, using (6.23c, d, e) and (6.21) with x=0 ,  we get 

d,,, = (y2 _ S 2) (~,n O~) -- 4S 2 cos S, (~i, cos St t), (6.26) 

where i=(1, 2), and where y2=72 or #2 depending on whether i=  1 or 2. In the 
same way we find 

dr,. = (#z _ p2) (~in 0'~) + 4P 2 sin Pl (~,. sin Plt), (6.27) 

where i=(3, 4), and where #2=y2 or/~2 depending on whether i=3  or 4. The 
functions ~i. are defined by (6.21) and (6.17c). 

To shorten the writing we may suppress the subscripts l and n: dtt.=di,  
~ i = ~ t  ' p2 =p2 ,  etc. Inserting (6.23b) into (6.26) and (6.25b) in (6.27), and using 
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(6.23a) and (6.25a), we get 

dl  sin S 
S 

d2 sin S 
S 

da cosP  
P 

d+cosP  
P 

where we have defined 

_ _ = F I ( % S ,  sin2S)Ix+F2(%S)II s = dl 
�9 COS S ' 

_ _ = F l ( ~ , S ,  sin2S)i2+F2(bt, S)i2 s = d2 
' COS S ' 

- - = H a ( % P ,  cos2p)Ia+H2(7, P)Ia p-- da 
' s i n P '  

=HI(/~,  P, cos2p)I4+H2(#, P)I4 p= d, 
�9 s i n P '  

Ii-(~icosSt ) ( i = 1 , 2 ) ,  

Ii ~ (Zi sin P t )  (i = 3, 4), 

OIa 
lx, s - - ~ - - -  etc. 

In these equations we have also used the following definitions: 

(72 - S 2) sin 2 S -  4S cos S sin S = (72 - S 2) sin 2 S + 4S 2 

= F1 (7, S, sin 2 S), 

(72 _ p2) cos 2 p + 4P sin P cos P = (72 _ p2) cos 2 p + 4p2 

= H 1  (% P, cos2 P), 

(72 - S 2) cos S sin S = - S (72 - S 2) = F2 (?, S), 

- ( 7 2 -  p2) cos P sin P = - P(72 _ p2) = H :  (?, P). 

Equat ions (6.30) show that  

F~(.,., .)=H~(.,., .), F:(., . )=~:( . ,  .). 

We may fur ther  simplify (6.28) by introducing the functions 

J(~,  S) = (cos ~ t cos S t )  

20~ 2S 
= - - f ~ - - ~  sin ~ cos S--z-Z-~--j  cos ~ sin S, 

K (~, S) = ( s i n  ~ t sin S t )  

2S 2~ 
=~- - -z~_  sinc~cosS-~--r-S-~_ cos~ sinS. 

(6.28a, b, c, d) 

(6.29) 

(6.30a, b, c, d) 

(6.31 a, b) 

To  complete the calculations of the d~ given by (6.28) we must  evaluate (6.29) 
with ~ = Z i ,  defined by (6.21) and (6.17c). We find that  

8 7 2  
64 II=J~-t-J, 
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and 

24# 2 
---~-- I2 = - J, ~,t,~- (1 + ~ )  J, ~ + 3  ( J  ~ ,+  J), 

24~ 2 

-~- - Ig=K,  uz+K, (6.32 a, b, c, d) 

where a comma followed by a subscript denotes differentiation with respect to 
the first argument in J and K. In addition, (6.32a, c) are evaluated at ~ =V =? ,  = 
(2n+ 1)n/2, and (6.32b, d) are evaluated at ~ = # = # , = n r c .  Thus, It ( i= 1, 2, 3, 4) 
are determined by differentiation of (6.31) as prescribed by (6.32); the constants 
di = art t, may be found from (6.28), and Cz i, follow from the definitions (6.23c) 
and (6.25c). A straightforward but tedious calculations yields the following: 

and 

( - 1 ) " y ,  S26 g 
c t , .  = - ( r 2 -  s? )  3 cos 2 s t '  

( - 1 ) " s ? # . ~  ~ 
Ct 2. = (#2 _ Stz)g cos g St {(#2 _ S~) cos 2 S t -  4S~}, 

( -  1)"P? 7. 55 ((T2_pE)sin2pt_4p2}, 
Ct a. = (?2 - p2)g sin g Pt 

( -  1)" # .  Pt 2 6 4 
Ct 4. = - (#2 _ p12)3 sin 2 Pl" 

(6.33a) 

(6.33b) 

(6.33 c) 

(6.33d) 

With the expressions (6.33) we have completed the solutions of (6.19) in the form 
of Papkovich-Fadle series (6.22) and (6.24). We next consider the convergence of 
these series. 

The values of S l (6.23a) and Pt (6.25a) have been given by ROBBINS & SMITH 
[12] and HmLMAN & SALZER [6], respectively. Asymptotic values for large 
l (=  1, 2 . . . )  are of the forms 

2S+ = (21 - �89 rc + i log(4 l -  1) zc 
and (6.34) 

2Pt=( 2 l -~ )  n + i log(41- 3) zc. 

These asymptotic formulas are already good approximations when l>  2 and good 
to eight figures when l >  10. To leading order ( 0 < t <  1), 

�9 t t 

sin Slt = 2 [(41 -- 1 ) rc-] -Y e - io -  1/4) ~, + O (I--Y), 

t t 

sinPtt = [(41-3)n]-Ye-iO-a/g)~t+O(l--Y), 
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t t 

cosS i t  = �89 [( 4 1 - 1 )  ~r]-r e - " l -  ~/4)~t + O ( l - - r ) ,  

and (6.35) 
t t 

cos Pit = �89 [(41 - 3) rc] - r  e-i(l- a/4) ~, + O (l--r). 

Hence, we find that for large I, 
< Kin, 

IC..l 15 

where the Kin are constants independent of l. To leading order it follows from 
(6.23b) and (6.25b) that 

e~( t )  = 0 (12), e [ ( t )  = 0 (l 2) 

at large l. Therefore the series (6.22) and (6.24) may be dominated term by term 
by K/l  s for some constant K. The series (6.22) and (6.24) are therefore absolutely 
convergent, uniformly in t. 

The situation in regard to convergence of the series for the free surface cor- 
rection coefficient ht4~(y) appears less salubrious because of the three derivatives 
required in (6.9). However, these differentiated series do converge. To show 
convergence, we first define 

O~(y/6)e  ~ 

Fin-=~ Re ~ Ciin (6.36) Plz  

'=' i_~ ol(y/~)e ~ 
and 

( i= 1, 2), 

( i=3, 4), 

"41 n - - 8FA. ,  -42n- - 8GB., 

-'~3. - - 8 G A ~ ,  "44n =- - 8 F B n ,  
(6.37) 

4 oo 

F---P ,~1 ,=~0 ('~in= ~ n - A , ,  F/,). (6.38b) 

Thus, F satisfies (6.7), and with (6.9) we have 

g/~ i=l  n=O 

[ 03 03 ~ Fin} z=o" (6.39) 

( 03 
Using (6.36), we now show that the formal series for 0z---z~y Fin 

at z=0  is absolutely and uniformly convergent for -~__<y<8. Toward this end, 

where 

and observe, with the aid of (6.15), (6.22) and (6.24), that ~ in (6.19) may be written 
as 

OF (6.38a) 
~ =  t3z '  
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we observe, using (6.23 b) and (6.25 b), that 

[--~t O;(Yl6)e ~ JL=o 
�9 . y �9 Y Y Y ]  2 -- St sm S z sin S t -~-- 2 cos St sm St -~-- St -~- cos St cos St -~- 

y �9 y Y �9 . Y ~" ="~ PtcosPtcosPt_~_2smPtcosPt_~_+ pt__~_slnPtslnPt__~ - I 

(6.40) 

Thus, for each fixed y~ [ -6 ,  6] it follows from (6.34) and (6.35) that the magni- 

tude of the right-hand side of (6.40) is O ( ~ )  for sufficiently large integer l. 

Since we concluded earlier that [C t t,[ = O (l-5), it follows that the magnitude of 
/ ~3 ~3 \ 

the /tit term in either of the series for \| ~z--~-~y t,y/~-~" }Fi. at z=O as formally 

calculated from (6.36) is O . Thus, these series may be dominated byterms 
of the form K1-3, where K is independent of l and y. Whence the absolute and 

uniform convergence of the formal series for ~ ~ Fin at z=0  in 

-6=<y___6 is established. We remark in passing that while the series is rapidly 
convergent for any ye  [ - 6 ,  6], we get faster convergence when y=[6[ .  In this 
case, (6.23a) and (6.25a) show that the right-hand side of (6.40) may be replaced 
with 

2 I+Sl'~,  l:P,l y=+6. 

Thus, with (6.34), we see that at y =  [6[ the magnitude of the right-hand side of 
(6.40) is O(/), and with the earlier result that [C~i, ]= 0(l-5) we conclude with 

( a3 ~3)  
the aid of (6.36) that the formal series for -~z2by ~-~ Ft, at z=O,y=[6[, 

may be dominated by terms of the form K1-4, where K is independent of L 

We now consider the convergence of (6.39). Due to the fact that At, ,-~(- 1)" 
n 1 

from (6.15) and (6.2b), and that C t in~ n--~ from (6.33), it readily follows that the 

series involving the coefficients At, in (6.39) converges�9 Turning next to the series 

with the coefficients-gt,, we note from (6�9 and (6.2b) that Ai,'~ ( -  1)" nZ . Using 

(6.15) and (6.17c), we show that --~z ~y ~ ~t.lz=o~n. Thus, the series in 

(6.39) which involves the coefficients ~t ,  is conditionally convergent, and we have 
shown the convergence of the series representation for h E*J. 

The convergence of our series solution in the interior is very rapid; it may, in 
fact, be regarded as a solution of the "Saint Venant" type. The four decay factors 



352 D.D. JOSEPH & R. L. FOSDICK: 

for the solution are of the form 

e k"z,  k==(2n+l)n/26 (n=O, 1, 2 ...), 

e j"z, jn=nrr/t~ ( n = l , 2  .... ), 

e s'z/~ , $1 =2.106+ i2.106, $2 =5.356+ i1.1552 , 
and 

ePzZ/6, P1 = 3.749 + i 1.384, P2 = 6.950 + i 1.676. 

As z is decreased the entire solution decays exponentially. The most persistent 
part of the remaining solution is the part containing the smallest decay factor 
e k~ as a factor. It follows that the solution (6.19), or equivalently (6.38), decays 
rapidly to 

- P A  ~---~ lo ~10 

as z is decreased through a distance of order ~. 

Chapter II. The Free Surface on a Simple Fluid 

7. Characterization of the Problem for Non-Newtouian Fluids 

The general problem to be studied in this chapter of the paper is characterized 
as follows: given a simple fluid with fading memory whose constitutive assumption 
for the extra stress S satisfies (2.6), find the fields h(-), u(.) ,p( .)  and S(-) in 
such that the field equations (2.4a, b), are satisfied subject to the condition of 
constant volume (2.1 e) and the boundary conditions (2.4c, d, e, f, g). As in the 
earlier work with Newtonian liquids (Sections 4-6), we shall develop the solution 
in a perturbation series in powers of g2. In order to carry out this construction, 
we shall draw upon the approximation theorem of COLEMAN & NOEL for retarded 
motions in materials with fading memory. A discussion of this theorem and its 
relation to the present study has already been given in Section 2. 

To simplify our calculations, it is useful to introduce a notation which takes 
advantage of the axial symmetry of the problem. Thus, we define the "plane" 
gradient operator V through 

g ( . ) = ~ - |  | (7.1a) 

where | denotes the dyadic product, and let 17. denote the "plane" divergence 
operator based on this definition. The full gradient then has the form 

grad(.)=17(.)-~ 1 a(.) r a0 |176 (7.1b) 

It is also useful to decompose the velocity u(.) with physical components (u, v, w) 
as follows: 

u = v(r ,  z)  eo + q (7.2) 
and 

q ==-u(r, z) e,+w(r, z) ez. (7.3) 
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Moreover, equation (2.4b) shows that q may be found from a stream function 
~b(r, z): 

1 
q = e0 • -~- V ~k. (7.4) 

By use of the polar symmetry of n(-) and the constitutive assumption (2.6a, b), 
it follows that the physical components of the extra stress S are also independent 
of 0. It is convenient to decompose S: 

S=Seo|174174 (7.5) 

Here, t denotes a vector in a plane perpendicular to e0, and n denotes a symmetric 
tensor in this plane; the physical components of t(t,, t~) and n(n,,, rr,:=rr~,, n~) 
as well as the scalar S are all independent of 0. 

Now, using the identity 

div(v | w) = (grad v) w + v div w 

and the notation established in (7.1) gives 

div S = - l  s er + ( V" t + 2 e0+div~, (7.6) 

where div n is a vector perpendicular to e0. In a similar manner it is straightforward 
to show that the acceleration vector (grad u)u may be written as 

Substituting the results of (7.6) and (7.7) into the 0 component of the dynamic 
equation (2.4a) and employing the definition, 

given earlier we  find that 

1 ~9~ 

~=p+pgz in ~ ,  (7.8) 

r O0 4-V't+2---tr=Pr (Vv.q+-~)  in ~ .  

Thus, since �9 is to be single-valued in ~ ,  we see that ~=~(r, z), independent 
of 0, and that the dynamic equation (2.4a) may be replaced by the equivalent set 
of equations: 

(7.9) 
- v ~ - l  ( - lv2e '+(Vq)q)  in ~a. 

We take these equations as the fundamental field equations of our problem; t, S, 
and n are defined in terms of the extra stress S through (7.5) and q is related to the 
stream function ~k through (7.4). 

24 Arch. Rational  Mech. Anal. ,  Vol. 49 
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The boundary condition of the present problem are the same as those recorded 
in (2.4). In terms of the variables introduced above, we may write these in the ab- 
sence of surface tension as follows: 

{t2a at r=a, 
v= ~ =  = 0  at r=a,b, (7.10a, b , c ,d )  

20  b at r = b, 

~r , a r  , 

8r ~-h --~Z--z =tz-h tr=h'[~rzz-~Zr,]+[1-(h')2]n,z (7.10e, f , g ,h )  

=pa-~+TZzz-h' n,z+pgh=O at z=h, 

d f f = t z = n z , =  0 at z = - ~ ,  (7.100 
8r  

and 
b 

S rh dr =0. (7.10j) 
a 

Finally, we note that the constitutive assumption for the extra stress S from 
which S, t and n are to be calculated is given by the complete fourth order approxi- 
mation formula of COLEMAN & NOLL which is recorded in Section 2; 

4 

S= ~ St, (7.11) 
F = I  

where Sr are defined in terms of the Rivlin-Ericksen tensors Ar through equations 
(2.7). For  later reference we shall need the recursion formula for the Rivlin- 
Ericksen tensors for steady motion: 

Ar+l=(gradAr) u+Argradu+(Argradu) r, F>O 

A o = l .  
(7.12) 

8. First Order Solution 

It will turn out, not unexpectedly, that the first order solution for simple 
fluids is exactly the same as that given earlier in Section 4 for the Newtonian 
fluid at first order. However, since with the present scheme of analysis the mechanics 
of developing a solution as well as certain formulae that are derivable at the first 
order recur at all higher orders, economy is achieved by developing the first order 
problem in detail. 

Using the notation established in Section 4 and recalling that the rest state 
solution (4.12) also applies for simple fluids, we have again 

h r~ = u t~ = S r~ = 0, 
(8.1) 

4 [ 0 ]  = Pa- 

According to the general scheme outlined in Section 4, here the first order 
problem is derived by evaluating the first f2 derivatives of (7.9) and (7.10) at t2 =0.  
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Using the zero th order solution (8.1), we obtain 

V.t(1)+2t~l)=p gv.q+ =0, 
r 

(8.2a, b) 
- V ~ ( x ) - l  s(') e'+divn(a)=P (-~f-er+(lZq)q) ( ' ) = O r  i n ~ o ,  

v(X)_~" ~O(*)=O~k(')=0 at r=a,b, (8.2c, d ,e , f )  
a a t  r ~ a ,  

- ~ 2 b  at r=b, Or 

0 q / ( a ) - t ( x ) - - ( 1 ) -  - ( 1 )+~(1 ) -pgh t* ]=0  at z=0 ,  (8.2g, h,i , j)  
O r  - - - z  - - I ~ r z  - -  - - l t ' z z  

o ~ t l ) - / 1 ) - - ( 1 ) - ' ~  at z = - o o ,  (8.2k) 
O r  ~ -z - - r  - - v  

b 

Srh [1] dr=O. (8.2/) 
a 

In these equations, t (~), S (1) and n o) are related to the extra stress derivative S (x) 
through (7.5), 

S (~) = S (x) eo | e0 + t (l) | eo + e0 | t (1) q- n(1), (8.3) 

and S ~ is related to the motion through the constitutive assumption (7.11), 

S(1)_r162 • r • r (8.4) - - L s  1 W ~ J  2 T t - ~  3 TAra' 4 

where Sr is defined in (2.7). With the view toward calculating S ~ we first observe 
from (7.12) and (8.1) that 

AW)l=0 (F__>0), A(1) _ a  r+ ,1r+1- , -  ( F > I )  (8.5a, b) 
and that 

A (x ~) = grad u (a) + (grad u (1)) r. (8.6) 

These results in combination with (8.4) and (2.7) show that 

S(1) _ ~(1) _~(1) _~  
2 - - L ' 3  - - L s 4  - - v  

and that 
S(1) = S~ ~) =pAta ~). (8.7) 

Now, by use of the notation established in (7.1) it readily follows that since 
u~ eo+q (a), qO)=-uO) er+ W(~) ez, then 

v (1 )  u (1) 

gradu~174176174 eo| (8.8) 
r r 

and with (8.6), (8.7) and (8.3) we find 

S(1)=/~ 2u~l)r ' t(')=# (17v(1) v(') er ' 

n(1)=/~[Vq(~)+ ~7q(~)r]. 

24*  

(8.9 a, b, c) 
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In addition, (7.4) yields 

= eo x + V~ ~ (8.10) q(1) 

Returning now with (8.9) to (8.2a), we obtain the field equation for the determina- 
tion of D (1), 

17. Vv(X) 4 1 Ov ~ v ~ 
r Or rT-=O in ~o; (8.11) 

the boundary conditions, 

b at r=a 
v(l)= 2 at r=b' 

and the condition that t~ 1) ~ 0 as z-~ -oo .  
It follows that 

v(t)=Ar+ B 
r 

where 

t ~ x ) = # ~ z ~ = O  at z=O; 

in ~o, 

a 2 b2(1-2) 
b 2_a  2 �9 

(8.12a, b, e) 

b2 ~,_a 2 
A= B= b2 a 2 , 

It is clear from the field equation that a solution for O (1) will not exist unless 

We now transform (8.13) into a differential equation for the determination of the 
stream function ~,o). As a first step toward this end, we observe that with the aid 
of (7.1 a) we may write 

Fq (I) = er @ Fu O) + ez @ Fw (1). (8.14) 

Thus, using the notation of (7.1 b), we calculate 

1 Ou (~) u ( t)  \ 
div(Vq(1)+Vq(1)r)=e, V. Vu(l)4 r ar 4" r-TZ-} 

+e~( V 'vw(1)41 r Ow(/))" (8.15) 

Further, with the aid of (8.9 a, c) it follows that 

d i v n ( 1 ) - l s ( 1 ) e ' = # { e ' (  V'Vu(1)41r 0u(t)0r u(')'r -z- ,  

( 1 0 w ( ' )  )}  (8.16) 
+ez V. Vw(1)-~ r Or ' 

and this result in combination with (8.10) and (8.13) after some elementary cal- 
culation yields 

f I dive(1 ) 1 S(1) e '~]__#.Lp2 (1)_ 0 V. leox ~ ---~ , , f -  -~- ~ - in ~o. (8.17) 
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Here we have made use of the definition given earlier in Section 5 for the opera- 
tor La: 

.~ ( . ) - (g .g  1 D) (.)= |~-w~ D2 02 1 O) 
----r- D---r- \vr +vz r Dr 

(.). (8.18) 

The boundary conditions which ~(') is subject to are contained in (8.2e, f, g, i, k), 
and with the aid of (8.9) and (8.10) these reduce to 

~(1)=D~b(')=O at r=a,b, 
Dr 

D ~//(1) ~2 ~/(1) D2 ~/(1) 0 
-~r -- ~ - - ~ =  at z=O and 

(8.19) Z = - - ~ .  

Thus, the solution of (8.17) and (8.19) for ~k <1) is 

~b(1)=0 in ~0, (8.20) 

and from (8.2b) we see that ~(1) is constant: 

r176 1 in ~o. (8.21) 

To complete the solution we must determine the constant C, and the height 
correction coefficient h t11. According to (8.2) we may set rt~)= 0 in (8.2j) and find 
that 

pghtll=C~ at z=0.  

Moreover, application of (8.2/) now shows that 

h t~J= C1 =0. (8.22) 

9. Second Order Solution: The Free Surface Shape at Lowest Significant Order 

Proceeding in a manner established in Chapter I and continued in the preceding 
section, we may obtain the problem at second order by twice differentiating the 
general problem (7.9) and (7.10) with respect to t2 (using the substantial derivative 
on the free surface conditions), and evaluating all resulting equations at [2=0. 
Thus, using the zero th order solution (8.1), and taking account of the first order 
solution (8.12), (8.20), (8.21), (8.22), we obtain the following second order problem: 

-t--7 , =p  (9.1a, b) 

-- 17~bt2)-l s<2)er+div~(2)=p (-~er-t-(17q)q) (2)-- -2p~e,- 1)(1)2 in ~0, 

t~,b( 2 ) 
O(2 ) - -~  ( 2 ) -  'P' = 0  at r=a,b, (9.1c, d,e) 

D ~  (2) = t(z2) = _ ( 2 )  (2) _t_ Dr ~rz=-TZzz.Ot2)-pgh[2]=O at z=0,  (9.1f, g,h,i)  
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From (7.11), 

0~/(2)- I (2)- - (2)-N at z = - - o o ,  (9.1j) 
~ r  --'z - - I~zr  --%2 

b 

~rh[2ldr=O. (9.1k) 
a 

S ( 2 )  __ ~ ( 2 )  _t_ ~y(2) ~. ~ ( 2 )  • ~,(2) (9.2) 
--t"Dl Tt"~2 ~ ' 3  Tk'r ' 

where the derivatives S~ 2) ( F =  1, 2, 3, 4) are to be calculated using (7.12) and the 
definitions given in (2.7). In addition, the quantities t (2), S (2) and ~(2) occurring 
in (9.1) are related to S (2) through (7.5): 

S (2) = S (2) eo | e0 + t (2) | e0 + e0 | t (2) + ~(2). (9.3) 

We now wish to calculate S (2) and to identify S (2), t (2) and n (2). Toward this 
end, using (7.12), (8.1) and (8.5), we observe that 

and that 

and 

A ( 2 )  =0  (F=>2) F + l  

A~ 2) = grad u (2) + (grad u(2)) r 

(9.4) 

(9.5) 

and that 
S ( 2 )  __ ~,(2) • ~,(2) 

--~Ji T~J2 ' 

where 

S ( 2 ) _  ~ ( 2 ) _  f% 
3 - - ~ ' 4  - - v  

S?':,A?), 

S < 2 ) _ .  A<2) A(ll)2=8r~B2[(2~i+~2)er|174 
Following along the path laid out in deriving (8.8), (8.9) and (8.10), we note 

that since u (2) = v (2) e 0 + q(2), q(2)_ u(2) er + W(2) ez where 

1 (2) q(2)=e 0 • ~- Vr , (9.10) 

(9.9) 

a(22)-_2{(gradA~t))u(t)+A(lt)gradu(1)+(a~1)gradu(1))r}. (9.6) 

Now, from the first order solution, u(t)--v~ it follows by use of (8.6) and 
(8.8) that 

grad u (1) = dr(l) /3(1) dr eo|174 
(9.7a, b) 

a~t)=( dv~ v(1))(e'|176176174 

and these results in combination with (9.6) give 

A(22'=4(. dvO) U ' I ' )  2 e 16BU \ dr r e,| r=r-- ~ -  er|  r. (9.8) 

Thus, from (2.7) and (9.4)-(9.8) we see that 
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then 

grad//(2) = eo | Vv(2) _ _ _  
v (2) u(2) 

e~ | e o + Vq (2) + 
r r 

eo | eo, (9.11) 

and using (9.3), (9.5) and (9.9), we obtain 

and 

2u (2) -J-(Z2 8 
S~2)=# r 7 B2, 

~(2) = ~(Vq(2) + Vq(2) T) + (2 ~ + (X2) ~ B 2 e r @ e r. 

(9.12a, b, c) 

The boundary value problem which characterizes v (2) is now readily extracted 
from (9.12b) and (9.1). We obtain 

V. Vv(2)4 1 0 v  (2) v (2) 
r-Z- = 0 in ~o, 

r Or ~..(2) (9.13) 

v(2)=0 at r = a , b ,  t~2)=#~--~-=0 at z = 0 , - ~ ,  

and therefore conclude that 
0(2)=0 in ~o. (9.14) 

The problem that ultimately characterizes ~(2) and q(2) is initiated with the 
observation from (9.1b) that ~(2) will not exist unless 

V . { e o x ( d i w r ( 2 ) _ l  (2)_ .~ v(')~ e,)}=O in S ~ , .  z p --~---- %. (9.15) 

Since v ~ depends only on r, it easily follows from (9.12a, c) and in a manner 
equivalent to (8.14)-(8.17) that (9.15) reduces to 

~/ ~02 ~(2) = 0  in ~o, (9.16) 
r 

where the operator .~e is defined in (8.18). The boundary conditions for the func- 
tion $(2) are contained in (9.1d, e, f, h,j) and with the aid of (9.10) and (9.12) 
they become 

Or = 0  at r = a , b ,  

(9.17) ~ ~/(2) ~2 r 02 ~J(2) 0 
ar = ~ - ~ =  at z = O , - o o .  

Thus, we find that ~b (2) must identically vanish, 

~,(2)=0 in ~o, (9.18) 
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and this along with (9.1 b), (9.10) and (9.12) shows that ~(2) must satisfy 

/)(1) 2 
17~(2)-~ - 16B2(3~1 q- 2 ~2) ~ e r =2p r er in~o ,  

where v ~ is given by (8.12). Thus, 

1 ~(2)=p(Aer2+4ABlogr- l~r B2)+4B2(3~l+2~t2)~r +C2 (9.19) 

in ~o, and the constant C2 is fixed by the condition 

b 
S r~(2) d r = O ,  (9.20) 
a 

which arises from (9. li, k). 
It is now possible to give a formula for the second order surface height coef- 

ficient; 
1 1 {  [ a 2 ] -F 

ht2]= ~(2)= A 2 r 2 2 b2- 
Pg 

1 b210gb-a210ga 
+4AB [logr_~ 2 b 2 a  2 -  ]_.2 F 21~ 1~ (9.21) 

4 It_ 1 ] + Be(3el +2e2) - a - - r ~  �9 
Pg 

Collecting all the results achieved so far, we have 

and 

U = ~/)[1] s + O (93) ,  

= Pa + �89 f22 ~t21 + 0 (f24), 

h = �89 h[2] + 0 (~24). 

(9.22a, b, c) 

h =- hN-- hs (9.23) 

be the discrepancy in the height of the free surface on a Newtonian liquid (hN) 
and a simple fluid (hs). From (9.21) and (9.22c) we see that the height discrepancy 

Here, in the order terms, we have used the symmetry properties which are implied 
by sign reversal of f2. In Section 8 we showed that vtl]= v ~ and a short calculation 
starting from (4.4) shows that ~tz]= r 

We have shown that the shape of the free surface at lowest significant order 
depends on the material only through the viscometric constants ~1 and ~z which 
are characteristic of the normal stress viscometric functions al and a2 of (2.11). 
Since these constants can be obtained from viscometric experiments, it follows 
that the "climbing effect" may be predicted quantitatively when f2 is small and 
~1 and ~2 are given by viscometry. 

Definite conclusions can be drawn at second order with respect to climbing 
of simple fluids. In stating these conclusions we shall compare Newtonian fluids, 
for which ~1 =~2 = 0, to simple fluids with fading memory. Let 
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is given by  

~ h =  2 1 2 2 B 2 ( 3 ~ l + 2 0 t 2 ) [ 1  1 ] - p----~- r- z -  ~ + O (I24) (9.24) 

and  thus changes sign once as r varies f rom a to b. I f  3 ~ q + 2 ~ 2 > 0 ,  the height 
discrepancy is negative at the inner cylinder and positive at the outer cylinder. Thus,  
the tendency for  a simple fluid to cl imb the inner cylinder is established when 
3~1 + 2 ~ 2 > 0 . *  

Some of the conclusions which one can draw f rom (9.21)** are more  conven- 
iently obta ined f rom the slope fo rmula***  

where 

" "2~ I 1 dr = ~  pr2 1 +  r 2 - 8 ( 3 ~ 1 + 2 c t 2 )  , 

A b2}t -a  2 B =  a2 b2 (1 -~ ' )  
- i f =  b 2 a 2 ( 1 _ 2 ) ,  b 2 - a  2 

(9.25) 

This remarkable  fo rmula  has a mos t  interesting consequence when the inner 
cylinder radius a is small. In  the limit as a ~ 0, the slope of the free surface has a 
singularity at  the inner radius;  in fact,  (9.25) has the representat ion 

dh [ 8~']2 (1 --'~)2 
dr ,=a = pga (3~1+2ct2) at  a ~ 0 .  (9.26) 

Thus,  for  sufficiently small a, and  for  3~ 1 + 2 ~ 2 > 0 ,  the fluid surface will slope 
sharply up  the inner cylinder. The  height to which the fluid will rise at  r = a in the 
limit as a -~  0 can be computed  with the aid of (9.21). We obtain  

,~2 b 2 ~-~2 2 ~  2 (1 --  2) 2 
l im h(a; f2)= ~ (3~1 + 2ct2). (9.27) 
a-.o 4 g  p g  

The  first te rm represents the s tandard  parabolo ida l  depression at  the center of the 
fluid surface due to rigid body  ro ta t ion  of the fluid domain  r____ b of angular  velo- 
city 2f2. The  second te rm is purely a non-Newton ian  effect, and with 3~ 1 q-2~t 2 > 0  
it represents a rise or  cl imb of the free surface a t  the small inner cylinder. If  the 
outer  cylinder is held fixed, then 2 = 0  and (9.27) is total ly of a non-Newton ian  
origin. I t  would be of interest to observe the climbing p h e n o m e n o n  for  var ious 
cylinders of small radii in a large s ta t ionary vat  of non-Newton ian  fluid. 

* This inequality is in good accord with the experiments of MARKOVITZ & BROWN (1963) 
on polyisobutylene-cetane solutions. This inequality is also substantiated by the experiments of 
TANNER [16] for polyisobutylene-cetane and polyethylene-oxide-water solutions. Several other 
experimental investigations by various authors are summarized in Table I of TANN~R'S paper. 
These results are also in agreement with this inequality. 

** See our Note Added in Proof at the end, page 380. 
*** S~*aN [13], in a paper which appears to have been largely overlooked in the literature, 

calculates the slope formula for a Reiner-Rivlin fluid by a procedure which relies on several ap- 
proximations (cf. Section 1 of this paper) which, in retrospect, now appear valid. His slope 
formula is the same as our (9.25) if we set ~t 1= 0, as would be required for a Reiner-Rivlin fluid. 
There are two criteria which may be used to discuss the tendency to climb. The first criterion 
is associated with the sign of the height discrepancy, as in (9.24). A second criterion, used by 
SERaIN, is to interpret a negative slope at r=a as a tendency to climb and a negative slope at 
r=b>a as a tendency to fall. These two criteria need not be the same. 
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10. Third Order Solution 

At third order there is a correction of the azimuthal component of velocity 
without further alteration of the free surface. The correction in the azimuthal com- 
ponent of velocity depends exclusively on the constants/~, 3 ~1 + 2 a2, t2 + t3 which 
are properties of the three viscometric functions given in (2.11). The results just 
summarized are derived below. 

Differentiating the general problem (7.9) and (7.10) three times with respect 
to f2 and evaluating all resulting equations at t2 = 0 (using the substantial derivative 
on the free surface), we obtain the following problem at third order: 

, +  

-V~(3)-ls(3)e'+divn(3)=pr ----~-e,+(Vq)q =0  in ~ ,  

/ ) ( 3 ) = 0 ( 3 ) =  0 0 ( 3 )  -----0 at r=a, b, (10.1c, d, e) 
Or 

00(3) 

Or 
_,(3) r _rC(3z) +4)(3)_p g ht3]=O 

@(3) 

0r  

From (7.11) we have 

at z=0 ,  (10.1f, g ,h , i )  

b 
~rht31dr=O. (lO.lk) 
a 

S ( 3 ) _  ~(3)•177 r (10.2) 

where the derivatives S(r s) (F=  l, 2, 3, 4) are obtained from (7.12) and the defini- 
tions (2.7). Also, the quantities t (3), S (3) and n (3) in (10.1) are related to S (3) through 
(7.5) according to 

S (3) = S (3) eo | e0 + t (3) | eo + eo | t (3) + ~(3). (10.3) 

It is now necessary to relate the above three quantities to the fluid motion, and we 
do so by calculating S (3) and identifying the members of the decomposition (10.3). 
First, it follows from (7.12), (8.1), (8.5) and (9.4) that 

A(3) =0  (F__> 3), (10.4) F+.t  
and that 

A (3) = grad U (3) -~ (grad u(3)) r, (10.5) 

and using, in addition, the result u<2)=0 and (9.5), (9.7a) and (9.8), we also obtain 

A(3) _a(3)__13 (10.6a, b) 2 - - z~3  - - v .  

Now, from (2.7) and the previously observed zero tensors in (8.5), (9.4) and (10.4), 
we see that 

si3)=0 

- ' (3)-  ~r(3)--0 at z=--oO, (10.1j) 
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and conclude, using u(2)=0, (10.6), S~3)=0, (9.7b) and (9.8), that 

S ( 3 ) _  Kff3) • c,(3) --LI 1 T O  3 , 
where 

S ( 3 ) _  , , a (3 )  
1 - - ; ~ 1  , 

s~ 3 ) -  3 [~2 (a~ ~) J " )  ~- ~(1) ~(~)~ • R . ~  ~(~)~ A - ) I  - -  Zal T Z a l  ~ 2  ]TP'3~? ' tzx2 /Zal  J 
(10.7) 

96 
= -- ~ B3 (f12 + f13) (e, | eo + eo | e,). 

Finally, since u (3) = v (3) eo + q(3), q(3) _ u(3) er + W(3) ez ' we may write, analogous 
to (9.10) and (9.11), 

q(3)--e o -  x I Vd'~. (3), 
r 

grad u (3) = eo | V/)(3) - -  o(3) U(3) (10.8 a, b) 
er| eo| o, 

r r 

and with (10.3), (10.5) and (10.7) conclude that 

S ( 3 ) = / 2  2u(3)  ( v(3) ) 96  3 
- - ' r  t(a)=# Vv(3)- r e, - r-~-B (fl2+fl3)e,, 

n(3) =//(Vq(3) + Vq(3)T). (10.9a, b, c) 

The boundary value problem which characterizes v (3) is now easily extracted from 
(10.9b), (10.1a, c, g,j) and (9.22c), (9.23) and (8.9b), (8.12a). We obtain 

1 Ov (3) v (3) 384 B3 (f12+f13) in ~o, 
V" Vv(3)-{ - r Or r - z - = - 7  ~- " # 

v(3)=0 at r = a ,  b, 

t(~a)-3h t, r 2] r 2 

(10.10a, b, c, d) 

8 (3~1+2~2) ]}  = 0 p  

at z=0 ,  

t ~ 3 ) = / ~ = 0  at z = - ~ .  

The solution to problem (10.10) may be written as 

/(3) ,,(3)_t.. ,,(3) =~v r ~ n  in ~0. (10.11a) 
Here 

16B3(f12+f13) I 1 b2+a  2 a4+b4+a2b 2 ] V(3)~ 
P [ r--5 + a--a-w~ r -  a4b4 r ] , (lO.11b) 

and v~ ) satisfies the homogeneous field equation (10. l Oa) and the boundary con- 
ditions (10.10b, c, d). We find that 

v~)= ~ B,e~"Z~(A,r), (10.11c) 
n=l  
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where ~(2nr) are the cylinder functions defined in (5.3b), 2n are the positive roots 
of (5.3c), and B~ are Fourier-Bessel coefficients chosen so that (10.11) will satisfy 
(10.10c). We note, using (4.4), that vtaJ=v (3) in ~o. 

The boundary value problem that characterizes ~(a) and g(a) is observed from 
(10.9a, c) and (10.1) to be exactly the same as that problem encountered in Sec- 
tion 8 for ~(1) and q(1). Moreover, the final problem of calculating h tal is also 
precisely the same as that treated in Section 8 for h ~ Thus, by analogy the results 
(8.20), (8.21) and (8.22) yield 

~b(3) = ~(3) = ht3~ = 0. (10.12)  

We close this section with an examination of the differences between the third 
order solution for Newtonian fluids given in Section 5 and the results just ob- 
tained. The non-Newtonian effects enter the third order solution at two points. 
The constant 3a  1-1-2~ 2 appears in the solution through the Fourier-Bessel coef- 
ficients B, which are chosen so that (10.1 l) will satisfy ( 10.10 c). When 3 a ~ + 2 a 2 = 0, 
the function v(~ ) is exactly the third order correction of the azimuthal velocity 
component of a Newtonian fluid which was given in Section 5. 

The constant//2 +f13 enters the solution at third order through v(e3)(r). This 
function depends on r alone and does not arise as an effect of the free surface. In- 
deed, this same correction v(p 3) would appear as a third order correction in a power 
series solution of the problem of Couette flow of a simple fluid filling the whole 
annular space ( -  oo < z <  oo) between rotating cylinders. 

We have found that the material constants #, 3 a~ + 2~2, and t2 + t3 enter the 
solution at third order; these constants belong to the set of constants (2.1 l) which 
characterize the three fundamental viscometric functions. 

11.  The Problem at Fourth Order 

At fourth order the fluid motion departs from that of Couette type and, in 
addition to circulating around the axis of rotation, begins to move in the axial 
and radial directions as well. Thus, a cross flow in the planes 0 = constant will be 
discernible. Moreover, the free surface profile will again be altered. The new 
circulation and consequent correction of the height of the free surfaces depends 
exclusively on characterizing constants of the viscometric functions; in addition 
to the viscometric constants/~, al, a2, and flz+fl3 already present in the first, 
second and third order solutions, we now also find dependence on the two addi- 
tional viscometric constants ~76 and ~3 +~a+Ys +�89 (cf. (2.11)). The results just 
summarized are derived below. 

In order to obtain the problem at fourth order, we differentiate the general 
problem (7.9), (7.10) four times with respect to t2 (using the substantial derivative 
on the free surface) and evaluate all resulting equations at t2= 0. By use of the 
results at previous orders, this procedure yields 

(11.1 a, b) 

-V~(4)-ls(4)e,+div~(4)=O - e,+(Vq)q = - 8 p  e, in ~ ,  
r r 
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vt4)= if(4) = dg '(4) Or = 0  at r=a,b, 

0~//(4) (4)___(4).K/~[2]'(_(2) _(2)X__ _(*) . ,~(4)  . g h t , ] = O  
= t  z --I(~rz - I - o f t  ~,J~'zz - - I [ ' r r  ] - -  - - I ~ z z  -1-'i" - - [ J  dr (11.15 g, h, i) 

at z=O, 

365 

(11.1c, d, e) 

b 

Srh[4ldr=O. ( l l . l k )  
a 

As in the earlier order problems, we have from (7.11) that 

S(4) _ r _ r • r • r (11.2) 
- - ~ 1  T t ' ! 2  T t ' J 3  T k ~ 4  , 

where the derivatives S (4) ( F =  1, 2, 3, 4) are obtained f rom (7.12) and (2.7), and 
we utilize the decomposition (7.5) to reach 

S (4) = S (4) e0 | e0 + t (4) | e0 + e0 | t (4) + n (4). (11.3) 

In order to obtain formulae for S (4), t (4) and n (4) in terms of the motion, we need 
to calculate various Rivlin-Ericksen tensor derivatives A~. 4), use (2.7) to calculate 
S(*), and identify the terms occuring in (11.3). Following this procedure, we 
observe directly from (7.12) that 

A (4) = grad u (*) + (grad u(4)) r, (11.4) 

and by a lengthy but straightforward calculation based upon (7.12) and the results 
at lower order, we find 

B (  v ( 3 ) )  
A(24) = - 16 r--2 e,~Vv(3)+Vv(3)~e,-2 e , |  (11.5) 

r 

Further use of (7.12) together with the results (8.1), (8.5), u(2)=0, and (10.6a) 
readily shows that 

A(3") = 0, (11.6) 

while (7.12) with the results (8.1), (8.5b), (9.4) and (10.6b) yields 

A ?  ) =0.  (11.7) 

Now, using (2.7) and the previously established results of (8.5), u(2)=0, (10.6a) 
and (11.6), we find that 

S(3 4) =0,  

and with the additional aid of (9.4), (10.6b) and (11.7), we find 

S ( 4 )  = Si 4) T~,2 • r T~-4 • r (11.8 a) 
where 

S(4)_,  ~(4) ( l l .8b)  

d~h(4) = t  ( 4 ) - - ( 4 ) - ~  at z = - o o ,  ( l l . l j )  dr  -z - ~ z r - V  
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S ( 4 ) _ ~  ~(4)•  rA(~)~(a)• (II .8c) 2 - -~ ' lZa2 ~ " r ~ 2 \ ' 1 1  Zal T Z l l  z l l  ],  

S(4)__~ , A(2)2 a_l. 9 , t 'A(2)A(1)2_t_A(1)2 A(2)" ~ 4 --vu rx~u "ntl T 'n t l  "12 ) 

+ 6y5 (tr A(2 2)) A~ 2) + 12 Y6 (tr A ?  )) A~ 1)2 (11.8 d) 

+ 1278 (tr A (2) A(, *)) A O> . 

With the aid of (9.7b), (10.5), (10.8b) and (11.5) we reduce the right-hand side 
of (11.8c) and obtain 

/)(3) 
S(24)=-- 8~r B(2~176 (er|174 r er| 

(11.9) 

\ Or r e~174176 

Also, using (9.7b) and (9.8), we reduce S~ 4) in ( l l .8d)  to 

(4) 1536 4 768 4 
S4 = ~ B  (73+74+75+�89 r---~-B 76eo@eo . (11.10) 

Finally, since u (4) = v (4) e0 + q(4), q(4) ~ u(4) er + w(4) ez ' we may write, analogous to 
(10.8), that 

• q(4) = eo V~(4), 
r 

v(4) u(4) (11.11) 
grad u(4)= eo | Vv ( 4 ) - -  e,| eo+ Vq(4)+ eo | ee 

r r 

and thus conclude by reference to (11.3), (11.4), (11.8)-(11.11) that 

S(4)=# 2u(4) 16 (Or(3) V(3)) 768 4 
r --r-~ BO~2 Or r + r ~ g - B  ~6, 

t(4) = /Z  ([7V (4) V(; ) e , ) ,  ( l l . 1 2 a ,  b ,  c)  

1536 4 
+ r---~-B (73 +74+~5 +�89 | e,. 

The boundary value problem which determines v (4) is readily seen from 
(l l .12b)  and ( l l . l a ,  c, g,j)  to be exactly the same as that given in (9.13) for the 
determination of v (2). Thus, 

v(4)=0 in ~o. (11.13) 

As in all earlier cases, to obtain the problem which characterizes ~(4) and q(4), 
we observe from (11.1 b) that in order for ~(4) to exist, the following integrability 
condition must be satisfied: 

V" e~ d ive(4) -  S(4)e'+8P r e, = 0  in ~ .  (11.14) 
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The terms involving q(4) in this equation lead to the operator LP 2 just as in the 
calculation leading to (8.17). Thus, using (l l .12a,  c), we simplify (11.14) to the 
following equivalent form: 

2 (4) a ~ 4  /Or  'a) v 0)) +pv(1)v 'a)} in 
#LP ~k = - 8 - ~ f z [ r - ~ B ( ~ l + ~ 2 )  ~o, (11.15) ~,~ r 

where v (1) is given in (8.12) and v Ca) is given in (10.11). The boundary conditions 
which restrict ~(4) are contained in ( l l . l d ,  e, f, h,j). Using (10.10c) and (9.12c) 
with u(:)=0,  we may considerably simplify these boundary conditions so that 
with (ll .12c) we obtain 

- #r  --0 at r=a,b, ( l l .16a,  b , c , d )  

ar = ~ F - ~  "i-=v at z = 0 , - o o .  

Aside from the presence of the first term on the right-hand side of (11.15), the 
above boundary value problem for ~,(4) is the same as that encountered at fourth 
order for the Newtonian fluid (see (5.8)). All of the work of Section 6 directed to- 
ward the solution for a "na r row"  gap also applies to the present situation; we 
need only take for the function 7 appearing in Section 6 the form 

~ = - - 8  B ( a l  q-~2) O r  r + P  v(1)v(3) (11.17) 

rather than that given earlier in (5.7). An explicit solution of the narrow gap approx- 
imation to the fourth order problem can now be set down merely by changing the 
definition of appropriate constants. It is easy to establish, as remarked at the end 
of Section 5, that in ~o 

qt4]=q(4) and <~t4]=~(4). 

It remains for us to verify our claim that the solution at fourth order depends 
solely on characterizing constants of the three viscometric functions. To see this, 
note that the solution ~b (4) of (11.15), (11.16) depends on the material through 
constants already appearing in v Ca) and in addition upon ~ + ~2. Since ~k ~4) is the 
stream function for the circulatory motion q(4), the whole motion at fourth order 
thus depends only on characteristic viscometric constants. 

To show that h t4] also depends solely on constants which are related to the 
three viscometric functions, we observe from (11.1 i), (11.12 c) and (11.11) that h t4] 
is determined from 

2# t~ 2 I//(4) g ht4]_0 
/" t~/'t~Z ~-t~(4)--P -- at z = 0  (11.18) 

once ~b ~4) is known and ~(4) is obtained from integration of (11.1 b). The arbitrary 
additive constant in q~(4) is fixed by ( l l . lk ) .  Upon integrating (11.18), using 
(ll .16a),  we find 

~r~ (4) dr=O. (11.19) 
2:=0 
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It is clear from (11.18) that h t43 depends only on those material constants that are 
present in ~,c4) and ~4),  the former of which has already been discussed. With 
regard to ~<4), it follows from (11.1 b) and the structure of S (4) and ~4) in (11.12) 
that the dependent material constants in addition to those on which ~b ~4) depends 
are u2, T6, and T3 +~4+75 +�89 That these constants are preperties only of the 
viscometric functions can be seen by reference to the formulae (2.11). 

We close our analysis of Chapter II with a summary of the perturbation series 
through order four. We have found that 

v(r, z; f~) = a �9 eo=fzv<~)+~ 3 v~3)+ O(fP), 

q (r, z; I2) -- u -- e 0 v = ~ s q(4) -t- O (I26), 

(r, z; f2) = po + �89 0 2 ~(2) + ~ f24 ~(4) + 0 (f26), (11.20) 

and 
h(r; I2)=�89 ~22 ht21 +~-~ [24 ht41 + O(I26), 

where the fields v(1)(ro), v(3)(ro, Zo), r and ht21(ro) are known exactly and 
explicitly. The fields q<4)(ro, zo) and ~(4)(r0, zo) are known explicitly and approxi- 
mately when the gap between the cylinders ( 1 -  a/b) is sufficiently small. We note 
that the left side of (11.20) is defined in "fa and the right in ~o. To evaluate the 
right side of (11.20), we must invert the transformation ~f~ ~ ~o (cf the discussion 
following (4.4)). 

Chapter III. Surface Tension 

12. The Effects of Surface Tension on the Free Surface 

In the remainder of this paper we shall extend our work to include a variety 
of effects due to surface tension. The present section is mainly devoted to the special 
case of "neutral wetting", and the effect of including surface tension in the previ- 
ous perturbation analysis of the free surface profile. The governing equation 
which is used to determine the shape of the free surface was derived in (2.2) by 
balancing the normal component of the jump in stress across the free surface with 
the surface tension T in the surface film. For the present purposes it is most 
convenient to work with this fundamental balance law in the form (2.4h); 

T (rh ' / [ / l+h '2) ' -pgh-pa+~-S~+h'Sr~=O at z=h. (12.1) 

In this second order differential equation the quantities ~, S~z and S,z are sup- 
posed to be determined as part of the solution to the complete boundary value 
problem (2.4) for either a Newtonian fluid (2.5) or for some other simple fluid 
within the framework of (2.6). 

Given the fields Sz~, S,~ and �9 and provided that suitable boundary conditions 
for h are prescribed, equation (12.1) determines the shape of the free surface.* 

�9 The solution of (12.1) is clearly coupled to the fluid motion; the fields S and 4i cannot, 
in general, be given separately, and (12.1) and the fluid motion problem must be solved simul- 
taneously. 
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Boundary conditions are usually prescribed in the form of contact angles (these are 
called wetting angles) at the junctions of the free surface and the container walls.* 
For the present case of rotational symmetry, in order to define the wetting angle 
at a point of contact between the fluid surface film and the wall, consider a tan- 
gent vector and a normal vector to the surface profile at the point of contact; 
the tangent vector is directed outward with respect to the adjacent wall and the 
normal vector is directed outward with respect to the fluid. The angle ~b is the 
angle between this tangent vector and the wall and is measured in the direction of 
the normal, 0 < ~b ~ r~. With the above definition, we may regard the conditions 

h'(a; t2)=cot ~b a, h'(b; f2)= - c o t  ~b b (12.2) 

as prescribed, where t~a and q~b are the wetting angles at the inner and outer cylinder 

When the wetting angle q~ is in the interval (-~-, n/ the fluid walls, respectively. 

is said to wet the wall, and when it is in the interval [0, 2 )  the fluid does not wet \,~ d 
7~ 

the wall. The situation ~b =~-  is defined as neutral wetting. 

When the fluid is in the rest state (t2 = 0), then, as mentioned in Section 2, the 
extra stress S vanishes, and from (2.4a) we see that �9 is constant. The particular 
constant can be determined in terms of the boundary conditions (12.2) by multi- 
plying (12.1) by r, integrating the result, and applying the condition of constant 
volume (2.1 e). Thus, the boundary value problem for the free surface profile in 
the rest state is rendered explicit. If we multiply rh into the appropriate form of 
(12.1) for the rest state and integrate, we find with the aid of (2.1 e) that 

b b rh,2dr [ rhh, 1:=0" 
pgSrh2dr+TS~ ~ ]// l+h'2 T V ~  (12.3) 

Thus we conclude that the rest state has h (r; 0 ) -  0 in a <_ r < b when either (a) T= 0 
or (b) h' (a; 0) = h' (b; 0) = 0. 

In both the rest state and, in fact, when I2 4=0, one physical effect of the sur- 
face tension is to diminish the mean square deflection of the free surface from its 
average value by an amount equal to the value of the second integral in (12.3). 
The coefficient of surface tension also enters into the boundary term in (12.3), but 
the physics of the situation at the boundary is as much associated with the pro- 
perty of adhesion and its relation to the appropriate wetting angles as it is of sur- 
face tension 

It is natural to expect that the adhesion conditions at the boundary are of 
minor importance in the general problem (2.4) when the shape of the free surface 
is influenced by strong forces associated with the interior fluid motion. In such 
circumstances surface tension still can be important and, in fact, even crucial. One 
striking example of such a case is exhibited in Figure 1.3 of the monograph of 
COLEMAN, MARKOVITZ • NOLL [1]. This figure, demonstrating the climbing effect 

�9 The contact angles which actually develop in a given physical situation appear to depend 
on the history of the wetting [7]. These angles should be regarded as "prescribed",  a posteriori, 
from experiment. 

25 Arch. Rational Mech. Anal., Vol. 49 
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of non-Newtonian fluids between a rotating inner and fixed outer cylinder, shows 
a balloon or " h u b "  of fluid which surrounds the inner rotating cylinder and gradu- 
ally merges through a necked down annular column with the main body of liquid 
below. The fluid balloon, being sheared at its free surface only by the frictional 
air drag, is probably in a nearly rigid body rotation. The whole configuration 
appears to be supported by normal stresses operating at the bottom of the necked 
down column, and, in fact, would come apart because of the action of the centri- 
fugal forces if it were not contained by the action of tensile forces in the surface 
film. 

The perturbation analysis which we constructed earlier is not convenient when 
surface tension is acting and the wetting angles at the cylinder walls are left 
arbitrary. Moreover, even if it were possible to carry out that analysis, we could 
not expect it to apply to phenomena like the one just described which is very far 
removed from the state of rest. 

A main simplifying feature of the earlier perturbation work was that 
ht~ While the first condition implied that all subsequent perturbation 
problems at higher order were set in a domain with a flat top, -oo  <z__<ht~ 
an important consequence of ht11-0 resulted from the formula (4.16). These 
simplifications were exploited in our analysis with T=0, and they also hold for 
neutral wetting films, to which we now turn. 

The boundary conditions for neutral wetting, 

h'(a; t2)=h'(b; f2)=0 ~b,=~b~=-~- , (12.4) 

are representative on the allowed range (0 < q~ < n). They are also mathematically 
convenient because they lead us to the results 

ht~ (12.5a, b) 

(12.5a) is implied by (12.4) and property (b) of the remark following (12.3), and 
(12.5b) can be derived by developing the first order problem, either as in Section 4 
or as in Section 8. The development leads to exactly the same equations as given 
previously except now we must satisfy also the surface tension equation and the 
related boundary conditions. To find the first order perturbation, we apply the 
substantial derivative to (12.1) and (12.4) and evaluate the result at 12=0; whence 

T---{rhtll'}'-pghtl]+r at z=0,  
r 

h t q ' = 0  at r=a,b. (12.6a, b) 

As previously demonstrated, it again follows here that S ~ = 0 ,  and ~(~=C1 
(constant). Using (8.2/), we have C1 =0, and (12.6a, b) then implies that ht~=0. 

The effect of the boundary conditions for neutral wetting makes itself felt in 
the boundary conditions for the higher order problems. However, it can be shown 
that this effect appears in the boundary conditions for the determination of u (o 
and ~(o at order l only through quantities which are known from the solutions of 
the lower order problems, and thus u (o and ~(o can be obtained (up to an additive 
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constant in ~(z)) without knowing h v]. The additive constant in ~(z) is determined 
by application of the constant volume condition (2.1 e) in combination with the 
surface tension equation (12.1) and the boundary conditions (12.4), all derived 
at order L This resulting set of equations has the following structure: 

__T {rhEZ~,},_pg h [t] +q~ tt) --Szztl) 
T 

+ {known function of r from lower order solutions} =0 

b 
hV]'=O at r=a,b, [rhEtldr-O 

Because h=O in a<_r<_b is the only solution of the problem 

at z=0,  

(12.7a, b, c) 

( r h ' ) ' - - P ~  rh=0,  h '=0  at r=a, b, (12.8) 

it follows that the problem (12.7) is uniquely invertible. 

The first and possibly most interesting non-trivial effect of the surface tension 
in the case of neutral wetting arises at second order (l=2). Here the problem, 
which determines the correction coefficient h t2] for the profile of the free surface 
of a simple fluid, is 

T [rh[2],}, pgh[2]+~(2)= 0 in a<r<b, 
r 

b (12.9 a, b, c) 
h [ 2 ] ' = 0  at r=a,b, Srh[2]dr=O, 

a 

where from (9.19) ~2) is given by 

2 2 B2 4B2 
~'2)=p(Ar +4ABlogr-r---,r-)+--r~(3~l+2oc2)+C 2 (12.9d) 

and C2 is a constant. Application of (2.9c) gives the same value of the constant 
Cz as was obtained in the case of zero surface tension in Section 9. Thus, the second 
of equations (9.21) represents the correct function ~2) which should be substituted 
into the differential equation (12.9a). 

We write the solution of (12.9) in the form 

ht2] = 1 t~(2)+H, (12.10) 
Pg 

where the first term on the right-hand side represents the free surface profile as 
calculated in (9.21) when surface tension effects are neglected, and where H(r) 
denotes the alteration of the free surface profile due to the action of surface 
tension�9 It follows from (12.9) that H(r) must satisfy the following boundary 
value problem: 

-r- pg r-~ A2r2-- + ~ ( 3 ~ 1 + 2 ~ 2 )  =0  (12.11a) 

25* 
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in a<r<b, with 

H'+gr2 Ar+--;- -pgr (3~1+2~2)=0 at r=a,b. (12.11b) 

The unique solution of (12.11) has the form 

H=~tlo ( V ~  r) + fl Ko ( V ~  r) + H ,, (12.12) 

where H v is a particular solution of (12.11 a) and may be represented in terms of 
modified Struve functions, where Io (') and Ko (') denote modified Bessel functions 
and where the constants �9 and ~ must be chosen to satisfy (12.lib). It would 
now be possible to determine the magnitude of H at the inner and outer cylinder 
walls and to assess the importance of surface tension and the assumptions of 
neutral wetting with respect to the climbing phenomenon of non-Newtonian 
fluids; we shall not consider this question further here, however.* 

Each higher order perturbation also generates a problem of the form (12.9); at 
order I the problem is the same, except #~o is a different known function of r. 
Thus, it follows that the correction coefficient h t~l can be also written in the form 
given in (12.10) and (12.12). 

An extension of the foregoing analysis to problems which do not satisfy the 
boundary conditions of neutral wetting can be achieved by a perturbation method. 
This would require replacing the single power series solution in f2 by a three para- 
meter power series in O, ~ba-n/2 and dpb--n/2. The calculation of the various 
corrections due to the deviation of the wetting angles from neutral is straightfor- 
ward and will not be given here.* 

We shall complete our discussion of the effects of surface tension with consid- 
erations which arise in the limit when T is considered small. These considerations 
are easily exposed but have more generality when the basic fluid motion is nearly 
a state of rigid rotation. Thus, in the following section we outline a perturbation 
analysis which is valid near the state of rigid rotation. In Section 14 we shall return 
to the surface tension problem for the limiting case T-o 0 and obtain boundary 
layer results based on a singular perturbation argument. 

13. Perturbation from the State of Rigid Axial Rotation 

We now consider the free surface problem as a perturbation problem from the 
base state of rigid body axial rotation. In the earlier perturbation analysis from the 
state of rest we found the following: at the z e r o  tu order, a hydrostatic pressure 
and a flat surface (for either T= 0 or for neutral wetting); at first order, a purely 
circumferential velocity field without change of pressure; at second order, a pres- 
sure change and free surface deflection without change of velocity; at third order, a 
z dependent correction of the circumferential velocity to balance the unequilibrated 
shear stress on the deflected free surface as well as to account for the non-Newtonian 
fluid behavior, without change of pressure; and, at fourth order, a general over- 
turning of the fluid induced by a non-conservative central force associated with 
the third order correction. At the fourth order, an additional correction to the 
pressure and the free surface profile was predicted though not derived in detail. 

* See Par t  II. 
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For the perturbation from the state of rigid axial rotation, we shall show now 
that all the effects which were just mentioned pile up at first order. 

Mathematically, the general problem is again governed by the system (2.1), 
(2.2), except that here we consider f2 as arbitrary but fixed and 2 as a parameter 
that is supposed to be close to the value 1; when 2= 1, the fluid body is in the 
state of rigid axial rotation and it occupies the domain ~o which is contained 
between the two cylinders and is below the non-flat free surface. When 2 . 1 ,  then 
the two boundary cylinders rotate at different angular speeds and the fluid domain 
~o takes on a new form ~ej_ 1 ( ~ -  1 is equivalent to the domain ~ which was 
introduced in earlier sections of this paper). In the present section we give a brief 
account of the associated domain perturbation problem. To do this, we introduce 
a domain mapping ~o ~ ~eJ-1 just as in (4.1), (4.2) and (4.3), and define a sub- 

d(.) such that on the free surface stantial derivative operator 

d(.) _ ~(.) dh 0(.) 
-~ (13.1) 

d2 a2 d2 ~z " 

Here, h=h(r; 2 - 1 )  denotes the height of the free surface and is analogous to 
h(r; g2) of the previous sections. This differential operator is crucial to the pertur- 
bation analysis since we seek a solution of (2.1) for a simple fluid in the form 

where, for example, 

= 

[ hE ,! 

I n ]  _ dn U 

U -- "d~- i=l' 

(13.2) 

the evaluation at 2 = 1 implying that the resulting independent variables are those 
of the reference domain ~o (i. e., the state of rigid axial rotation). 

For a simple fluid (2.0, the characterization of the problem given in Section 7 
is equally valid here; we need to solve the field equations (7.9) in ~ _  ~ subject 
to the conditions (7.10). The only change is that here we shall consider the effects 
of surface tension, so that in place of (7.10h) we have to satisfy 

rh ) 
pa-C)+rr**-h' n,z+pgh= ~/1---~-~ at z=h, (13.3a) 

subject to the wetting conditions (analogous to (12.2)) 

h'(a; 2 - 1 )  =cot q~,, h'(b; 2 - 1 ) =  -cot~b b. (13.3b) 

For ;t close to 1 it is appropriate to apply the approximate constitutive equation 
(7.11) of COLEMAN & NOLL. As was remarked in Section 2 this formula requires 
that the fluid be of the fading memory type and, in addition, that the motion be 
slow in the sense of retardation. Here we may interpret (2-1)  as the retardation 
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parameter, since when 2 = 1 there is no internal relative fluid motion, and in that 
case the extra stress S vanishes.* 

We turn now to the problem at the zero th order (2 = 1), when the fluid body 
is rotating rigidly about the common axis of the two cylindrical containers. Here, 
as noted in Section 2, we have, in the notation of (13.2), StOj= 0, so that from (7.5) 

s t~176176 in ~o; 

since the motion is rigid, we have 

~kt~ vt~ in 3w o. 

(13.4a, b, c) 

(13.4d, e) 

Now, all relevant conditions of (7.9) and (7.10) are satisfied except for the second 
of (7.9), which becomes 

v~t~ in ~o, 

and the condition of constant volume (7.10j). Thus, we have 

~[0]_ P ~'22 r2+Co, (13.5a) 
2 

where the constant c o is determined by application of (7.10j) to (13.3) after being 
reduced by (13.4); we obtain 

p~'~2 2 2" 2T 
co=pa----4--(b +a )+--ff~(bcos~pb+acos~Pa ). (13.5b) 

Finally at zero th order, the residual problem that governs the free surface profile 
in the state of rigid axial rotation is given by the non-linear second order differen- 
tial equation 

2 2T Pf224 ( b 2 + a ) - - b Z - Z - ~  (bc~176 

(13.6a) 
_ pO____~2 r 2 + P g h t~ = . ( a  < r < b) ,  

2 V]-~ htO1,2 

subject to the boundary conditions 

( cot~b, at r=a, htO~ t 
= ( - c o t ~ b  b ~  at r=b. (13.6b, c) 

The solution to this problem fixes the domain ~o in which all subsequent pertur- 
bation problems are solved. It turns out that the general structure of these sub- 
sequent problems is already revealed at the first order to which we now turn. 

At first order the relevant problem is obtained by differentiating the general 
problem (7.9), (7.10), (13.3) with respect to 2 and evaluating all resulting equations 

at 2=  1. In general the substantial derivative d( . )  must be employed for both the 
d2 

* The qualifying remarks made in Section 2 regarding the retarded motion associated with 
the parameter ~2 can also be carried over here without modification for the parameter ,~-- 1. 
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field equations and the boundary conditions since the domain qr~_ 1 is dependent 
on 2. However, since the field equations interior to ~ _  1 are identities in their spa- 
tial dependence, partial differentiation of these with respect to 2 will suffice.* 
Using the zero th order solution (13.4), we derive the following first order problem 
from (7.9), (7.10) and (13.3): 

/ v2 \(1) 
- g ~ ( 1 ) - l  s(1) e'+divn(t)=P [---r -e '+(gq)q (13.7a, b) 

=-2pf2v(Z)e, in ~o, 

{ ~ at r = a , a t  r=b, O(l)-O~k(l)or v(1)= f2 - =0 at r=a,b, (13.7c, d ,e , f )  

d~ (~) q_htOa, ~Vi (1) =t~l)_htO~,t~l) 
Or dz (13.7g, h, i)** 

htO], _(11 _(1)'~. [ I  _(I)__A ('~zz --'~,, )-r~ 1-ht~ at z = h  t~ 

a ~ k ( i ) - t ( 1 ) - j l ) - n  at z = - o o ,  (13.7j) 

- r  + , ~ z , - -  ,= + v ~ -  =--r- (l+ht~ a/2 at z = h  E~ (13.7k) 

hr11'=O at r=a,b, (13.7/) 

b 
I rh t l Jdr=O.  (13.7m) 

a 

In these equations r S(1), and ~(1) are related to the extra stress derivative S (t) 

through an expression equivalent to (8.3), and just as in Section 8, we also have 
here 

S(1)_e(1)_, ~(t) (13.8) 
- - ~ ' 1  - - ~ I  , 

where At1 l) is given analogous to (8.6). Thus t (1), S (1), ~(1), and q(1) have the struc- 
ture of (8.9a, b, c) and (8.10). 

Now, from (13.7a, b) it follows as in Section 8 that the two (mixed) field 
equations that govern the functions v (1) and ~b (~) are 

# ( V .  Vv(1)_{. 1 00 (1) 0 (1)) 10~h  (1) 
r Or r- z- =2pf2 r Oz in ~o, (13.9a) 

0" 
* In the spirit of the notation established in (13.2), we shall also use (,)in) to denote 0n (")  

ar  o) 
** These three boundary conditions are equivalent " _ _ = . ( 1 ) _ _ _ O ) = n  at z = h  [~ IO ~ t tn J~n t 

where n and t denote the unit normal and tangent vectors to the free surface of ~o. 
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and 
~v(1) 

/z "~ 0-----~ in ~o, (13.9b) 

where the operator La is defined in (8.18). The boundary conditions for these 
equations are contained in (13.7c-j) and can easily be cast solely in terms of v (*) 
and ~b (*) by use of (8.9), though we shall not do so here. The solution for v C~) and 
~,(*) guarantees the existence of ~(~) from (13.7b) up to an additive constant 
which is fixed by the requirement (13.7m). Finally, to complete the solution at 
first order, the inhomogeneous linear system (13.7k, 1) must be solved, where the 
inhomogenieties are known from previous calculations; this solution provides the 
first correction to the free surface profile. 

If there is to be a general circulation present at first order, then ~b(*)=0 in ~o 
cannot be a solution of the problem. To see this, observe from (13.9b) that if 
~b(~)=0, then v (1) would be independent of z in ~0, and (13.9a) has the general 
solution v~ where cr and fl are constants. In this case (13.7c, d) shows 
that f1.0, and (13.7h) becomes flht~ 0 at z= h t~ This contradicts the require- 
ments of (13.6) for the free surface profile at zero m order. 

An explicit general solution to the problem at first order seems beyond hope, 
but it may, in fact, prove tractable to boundary layer analysis in the limit f2 ~ 
(i.e., large Ekman number). Eventually deep in the interior we would expect 
the solution to tend to the potential flow ~k~ u(*)=v~ with v(*)=l/r. 
This assumption of potential flow could not satisfy the free surface conditions, and 
a region of transition would be expected. In any region of gentle variation, large 
values of f2 will imply a very weak z-dependence for ~b ~ and the additional terms 
which make v ~ exact; also, a very weak z-dependence is not compatible with the 
conditions at the free surface. Hence, a boundary layer of the Ekman type would 
be natural to expect at the free surface. 

Another type of boundary layer which is of interest in the free surface problem 
can be defined in the limit of small surface film tension T ~  0. This, of course, is 
a most important limit since nearly all of the work in the field of fluid dynamics 
with free surfaces sets T= 0 from the outset. In the next section we shall briefly 
consider a singular perturbation analysis associated with this limit. 

14. Surface Tension Boundary Layers 

Situations in which the surface tension coefficient T is small are pervasive; 
even fluids which have a large surface tension coefficient in their pure state can 
have a drastically reduced value for T when contaminated with small amounts of 
soap or other wetting agents. 

The mathematical problem associated with the limit as T ~  0 involves a singular 
perturbation, and it is natural to expect that T= 0 approximates the situation in 
which T is small. The road to a regular perturbation analysis for small Tis blocked 
by the fact that when T= 0, it is not possible to satisfy the boundary conditions of 
prescribed wetting angle. Therefore, when T is small, the actual solution should 
be close to the one appropriate for T= 0 except in narrow regions where the fluid 
surface is adjacent to its container; it is here that the wetting conditions will force 
rapid variations in the free surface height h. 
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The singular nature of the limit T ~  0 appears at each order in the perturbation 
series (13.2) but is most conveniently discussed at the zero Ih order. At zero th order 
an explicit formal boundary layer solution can be found. The analysis shows that 
the corner region in which surface tension is important is roughly the thickness of 
the capillary radius VT-f]pg, and thus this constant serves as a convenient scaling 
parameter. 

The problem at zero th order is stated in (13.6), and we shall be interested here 
in its solution for small T. Since we expect that the solution of (13.6) for T = 0  is a 
valid approximation to the exact solution everywhere except near the cylinder 
wails r = a and r = b, it will be convenient to introduce the difference between the 
exact solution and the solution for T =  0 which is given by 

f22 hto~ (r  2 a2+ 2 be)  . (14.1) 

In fact, since our interest is concerned with a boundary layer analysis near either 
r = a or r = b, we shall henceforth choose the point r= b, to be specific, and work 
with the discrepancy function H(r) defined according to 

H(r)-ht~176176 - (bZ-aZ). (14.2) 

This defines the actual free surface height as compared to the height that would 
be found at the wall r= b in the absence of surface tension. Defining the non- 
negative constant ~ through 

T 
5 = , (14.3) 

Pg 

it follows from (13.6) and (14.2) that H is governed by the problem 

f22 2 2 25 
n +-~-g-g (b - r  ) - ~ ( b c o s ~ b - t - a c O S ~ a  ) 

(14.4a) _ _ (  r.' 
\V]__~_~_ ~ ] = 0  in a < r < b ,  

n,=f ~ cot~o at r = a ,  
( - c o t t k b  at r=b. (14.4b, e) 

To study (14.4) in a neighborhood of r=b, we introduce the boundary layer 
coordinate x through 

emx= b -  r. (14.5) 

Here, m is a positive real number that will be chosen so as to retain the (second) 
order of the boundary layer equation that approximates (14.4a) near x = 0  for 
small e. One overlying requirement of any analysis near r=b O.e., x = 0 )  is that 
the boundary condition (14.4c) should retain its importance. This requirement 
motivates the scaling of H(r) to y(x) of the form 

g"y=H, (14.6) 
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and yields for (14.4c) the condition 

y '=cotCb at x=0.  (14.7) 

With this established, the differential equation (14.4a) may be written as 

emy+ ~-~Zg ~mX(2b-xd~)- b~_ (bcos~bb+acosqba) 

el-m y,r e y' 
=0 (O<x<e-m(b-a)). 

( l+y '2 )  ~ (b-xe')]/ / l~-~ 

Thus, with the choice m = �89 the most significant term for this equation at any fixed 
x and sufficiently small e produces the following boundary layer equation: 

Y" =0  0 < x < ~ ,  (14.8) Y+FRx (1 +y,2)~r 

where we have introduced a Froude number 

O2b 
FR = (14.9) 

g 

We seek a solution of (14.8) and (14.7) which will match the boundary layer 
to the interior. The interior is defined by the asymptotic limit e ~ 0, r~eb fixed. 
In this limit ht~176 which in combination with (4.1) yields 

H+~-~g(b2-r2)=O for 0 < ~ 1 .  (14.10) 

In terms of y(x), this condition has for its most significant contribution in powers 
of e the approximation 

y+FRx=O as x~oo ,  (14.11) 

and this together with (14.7) and (14.8) completes the derivation of the boundary 
layer problem. 

We now the obtain two characterizing properties of the solution to the boundary 
layer problem and describe their physical implications: 

(i) y(X)~--FRx monotonically as x ~  co, 

/ 1,(o)>0 / 
(ii) if cot~b b+FR=0 ~, then ~y(0)=0~. (14.12) 

/ / /  

cot~bb+FR> 0 / (y(0)<0]  

In the absence of surface tension, the slope of the surface y = - - F R x  near the 
wall x = 0  is determined by the ratio of centrifugal to gravitational forces 
(FR=f22b/g). Physically we regard (14.12) as characterizing the relative rise at 
the boundary due to prescribing a wetting angle for the film relative to the surface 
y= --FRx which is formed near x = 0  when T=0. 

The result (i) shows that the magnitude of the discrepancy is largest at the wall 
and decreases monotonically with distance from the wall. To prove (i), introduce 

~=y+FRx (14.13) 



Free Surfaces of Rotating Fluids 379 

into (4.7), (4.8) and (4.11); we find that 

~,, 
~-  =0 (0<x<oo), 

{1 + ( ~ ' -  F,)2} ~ 

~'=cot~bb+FR at x=0 ,  

~ = 0  as x ~ .  (14.14a, b, c) 

Thus, ~"/~ is of positive sign for all x, so that )7 cannot have a positive maximum 
or a negative minimum. Three alternatives are now possible: either ~ has a positive 
minimum, a negative maximum, or is a monotone function. The first and second 
of these alternatives is excluded by the fact that in either case, the condition at 
x ~  ~ in (14.14c) could not be satisfied. The result (i) follows. 

To obtain (ii), first suppose that ~bb satisfies cot ~bb+FR<0. Then (14.14b) 
shows that ~' (0)< 0 and the conclusion )7(0)> 0 follows from monotonicity and 
the co ndition (14.14 c) as x --* oo. Using (14.13), we see that y (0) > 0. If cot ~b b = - F~, 
then (14.14b) shows that ~ ' = 0  at x = 0 ,  and again, (i) and (14.14c) shows that 
~ (x)=0  for all x so that with (14.13) we reach y(0)=0.  Finally, if cot ~bb> --FR, 
a similar argument shows that y(0)< 0. This completes the proof of (ii). 

A study of the boundary layer problem in the form (14.14) shows that the ex- 
plicit solution can be found in the form of elliptic functions. This solution has a 
simple asymptotic limit which may be obtained directly by linearizing (14.14) for 
large x. In this way we find that 

~v=kexp{-x(l+F2) ~} as x ~ o o ,  

where k is a constant. While there is little profit in exhibiting the full solution 
since its most interesting features are fairly well described in the remarks given 
above, it is relatively easy to obtain a first integral in the form 

1-2 FR(y'--FR)--l =constant=, ,~---~ + l ~ 
-2- Y -- 1//1 + (~;-- FR) 2 

(14.15) 

where the constant has been evaluated from the conditions ~ = ) '  =0  as x ~ oo. 
Thus, at the wall x = 0 ;  using (14.2), (14.6), (14.13) and (14.14b), we find that 

[htOl(b)_htoOl(b)12=2e2(]//FR-~+ FR c~ 1 t 1/1 + ~ q ~ b  >0, (14.16) 

which gives the magnitude at r =  b of the height discrepancy between the actual 
height and the height that would exist without surface tension. An entirely analo- 
gous analysis of the boundary layer problem at r = a will yield a similar result for 
the height discrepancy due to wetting at the cylinder wall r =  a. 

This completes the boundary layer analysis of the problem of wetting at the 
free surface and the adjacent cylinder wall when the fluid rotates as a rigid body 
and the surface tension T or, more exactly, the capillary radius 5= T/pg is small. 
We found that the effects of the small surface tension are confined to a narrow 
layer of size e ~r near the cylinder wall, and that this same e~ also scales the height 
discrepancy. 
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The interest of one of us (JOSEPH) in nonlinearly viscous fluids stems, in part, from a stimu- 
lating lecture of C. TRLrESDELL on the meaning of viscometry delivered to meeting of the fluid 
mechanics division of the American Physical Society in 1971. TRU~SDELL'S lecture will be published 
in the 1973 volume of the Annual Reviews of Fluid Mechanics. 

Our work was supported in part by U. S. National Science Foundation grants GK-12500 
(7). D. J) and GK-25139 (R. L. F). We are indebted to Mr. JtrNG YUL YOO for checking the 
calculation of Section 6 and for his very valuable assistance with the numerical calculations of 
Part II. 

Note Added in Proof. Equa t ion  (9.21) has been recent ly ob ta ined  by  Dr.  ALAN 
KAY~ ( " T h e  shape of a l iquid surface between ro ta t ing  concentr ic  cy l inde r s"  
presented  at  6 c Congr~s In te rna t iona l  de Rhro log ie ,  Lyons ,  Septembre ,  1972). 
KAYE'S s tudy of the c l imbing of second o rde r  f luids is carr ied out  only  to second 
order.  His  theoret ica l  resul t  (our  9.21) is no t  in agreement  with his (or  our)  ex- 
per iments  because he has neglected surface tension (see Par t  II) .  
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