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In the present paper we shall be concerned with eigenfunction expansions

associated with the Schroedinger operator —A4-¢(*), where 4 denotes the
3-dimensional Laplacian and ¢{x) is a real-valued potential function-defined on
the whole 3-dimensional Euclidean space E=E3, which tends to 0 at infinity:
Solving the expansion problem, we go forward to apply the results obtained to
clarify some properties of the spectrum of the Schroedinger operator and to
show the unitary character of the S-matrix that plays an important part in
describing the scattering process in quantum mechanics.
Arch'. Rational Mech. Anal., Vol. § )



2 TeERUO IKEBE:

So far as ordinary differential equations are concerned, the eigenfunction
expansion theory that originated from a study of WEYL [36] has been developed
to a satisfactory extent by the efforts of STo~NE [37], TiTcHMARSH [34], KODAIRA
[19], Yosipa [38], KREIN, LEVITAN and others 1.

As for partial differential equations, however, it seems that no complete
theory, comparable with the one for ordinary differential equations, has been
presented. One of the main difficulties appears to consist in the presence of
infinite multiplicities of the spectrum, which is not the case with ordinary differ-
ential equations.

In 1934 CARLEMAN [6] studied the Schroedinger operator in E under the
assumption that g(x) is locally square integrable, and obtained the following
result: If the unique self-adjoint extension of the operator —A+g(x) exists,
then there exist functions & (x, y; u), called spectral functions, such that for any
f(x) € Ly(E) the expansion formula

0 1) = [, 805,53 1) dy

holds, where the formal derivatives with respect to u of & (x, y; u) satisfy the
Schroedinger equation

(2) —de+ex)p=pe

as functions of x and also of y. The same problem was investigated also by
TrrcHMARSH, mainly in the 2-dimensional case®. POVZNER [28] extended CARLE-
MAN’s result to every self-adjoint extension of the operator —A-4-¢(x) and,
moreover, using the Radon-Nikodym theorem, proved the existence of the
spectral density ¢ (n), by which & (x, y; u) can be represented as

4,000y ) =yp(x, i) de(u)..
Thus (1) reduces to

6) 109 =L de(u) [yl yi ) ()4,

where y(x, y; u) serve as eigenfunctions, 7.e. they satisfy (2) as functions of x
and also of y. But these eigenfunctions are not separated in the form of linear
combinations of the products of the eigenfunctions of one space-variable, whereas
this is the case with the ordinary differential equations. Such a separation of
wix, v; u) was effected by MAUTNER [2]] and GARDING [9] in the form

oo Nu

(4) fx=[ Zwv(x w) do(p) f%(y w () ady,

where yp, (», 1) are eigenfunctions (Z\L < o).

Other approaches to eigenfunction expansions connected with more general
partial differential operators were made by MAUTNER [21], GARDING [9], BROW-
DER [2, 3, 4], GEL'’FAND and KosTYUCHENKO [10], BEREZANSKI [I], FLEKSER [§]
and Ito [13]. Their results can be summed up in the form (4) in the case of
the Schroedinger operator in E.

1 See TiTCHMARSH [34, 35], NaAIMARK [27] and the references cited in these books.
2 See [35]. It is also abundant in references 1p to about 1956.
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We should remark here that these authors have not specified the eigen-
functions needed for expansion. In other words, a prescription is wanting for
the conditions under which we should solve (2) in order to obtain the eigenfunctions
, (%, p) in question. Another point to be noted is that in (4) a countable number
of eigenfunctions associated with a given spectral point are used, while a con-
tinuous family of such functions is also known to exist in simple examples.

We shall consider the case where ¢(x) tends to 0 at infinity. More precisely,
we assume that ¢(x) is Hoelder continuous except for a finite number of singu-
larities, is square . integrable and behaves like O(|x|~%"") (A>0) as |x|—> oo.
Many an important problem of potential scattering is included in this case.
Now we can find bounded solutions-@(x, #) of the Schroedinger equation (2)
for >0, where & denotes a 3-dimensional wave vector such that |k|2=p, as
unique solutions of the integral equation,

5) plnhy == b [ ET g el by,

47 Tr=w
E

% - x denoting the scalar product of % and x. ¢(x, k) represents the distorted
plane wave, i.e. the plane wave plus the outgoing scattered wave. On the other
hand, in case of negative u, (2) is solvable only for particular values of 4, called
eigenvalues, which we denote by u, (n=1,2,...). The associated solutions
@, (x) €L, (E) are called eigenvectors, to be distinguished from the eigenfunctions
@(x, k)3. Here we agree to count y, as many times as its multiplicity if g, is
degenerate. The ¢, (x) can be regarded as forming an orthonormal system. In
terms of the eigenfunctions ¢(x, k) and the eigenvectors ¢, (x) our expansion
formula“ reads: .

P

©) J(x)=@n) 3 [ (v, k) f(k dk+an @ (%),

M =
where

= el hi(mdx, f.=] o4

and M is the 3-dimensional space formed by vectors £, which is not essentially
different from E. Formula (6) is a natural generalization of the ordinary Fourier
expansion, whereas (4) is not. (6) shows that the system of functions ¢(x, %)
and @, (x) is complete, but it will also be shown that these functions form an
orthonormal set (in 2 sense to be specified later).

Now we shall turn to the problem concerning the S-matrix that is known
as a physical guantity which governs a scattering process®. The existence of
the S-matris, however, is not self-evident from the mathematical point of view.
In order to study the S-matrix S, it is convienent to introduce the isometric opera-
tors W, , called wave operators, by W, -—=t_1)i1'inoo &t ¢=itH where H and H, are, in

our case, —A+¢(x) and — A respectively. S can be defined in terms of W,
as S =W W_ aud is generally believed to be unitary.

3 We agree to call @(x, k) an eigenfunction belonging to the eigemninnber |k|.
Cf. also SuNoL' [30].

4 For more precisc expression see Theorem 5 (§ 8).

5 Sce e.g. MoLLER |26).

1%
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A mathematical formulation of the S-matrix theory has been proposed by
JaucH [14] and Kuropa [20]. According to their results, the existence and the
unitary character of S will be cleared up if we prove the existence of W, and
that W, have one and the same range. The existence problem of the wave opera-
tors has been investigated by Cooxk [7], JaucH & ZINNES [15] and Hack [77].
Cook assumed that g (x) €L, (E). JAUCH & ZINNES treated a spherically symmetric
potential: ¢ (x)={x|"° (1 <¢< $). Hack considered the case where g¢(x) is locally
square integrable and ¢(x)=0(]x|~°) (c>1) at infinity. No results, however,
have been reported by them on the unitary property of S. Recently Kuropa [20]
has solved both the problems under the- assumption that g(x) €L, (E)~L,(E).
We shall give a proof that S is unitary under the conditions stated above; these
conditions are weaker than KUroDA’S assumption in one respect. Our proof
depends partly on the so-called #ime-dependent theory and partly on the eigen-
function expansion.

We shall outline here the contents of the present paper. In I (§§1,2,3,4
and 5) we give some relations between the resolvent of H and its kernel function,
whose conjugate Fourier transform is deeply connected with the eigenfunction
@(x, k), and introduce the kernel equations and investigate their properties.
IT (§§6—9) deals with the eigenfunction expansion. §6 is of a preparatory
character, where the eigenfunctions ¢ (x, %), tools for expansion, will be intro-
duced. In §7 we shall comment on some properties of the spectrum of the
Schroedinger operator and prove that the negative part of the spectrum consists
only of discrete eigenvalues. In §§ 8 and 9 we shall state the expansion theorem
with a partial proof thereof and show the absolute continuity of the positive
part of the spectrum. In IIT (§§10 and 11) we shall show that S-matrix is
unitary and at- the same time complete the proof of the expansion theorem
given in §8. IV is reserved for remarks on the 2-dimensional and higher-
dimensional cases.

I. Resolvent kernel

§ 1. Assumptions. The resolvent kernel. We shall consider the Schroedinger
operator — A +¢(x) with the potential function ¢(x) defined on E=E3, where
x denotes a position vector in E, its length being |x|. Throughout the present
paper g(x) is assumed to satisfy the following conditions:

(A) g(x) is a real-valued function which is locally Hoelder continuous except
at a finite number of singularities. Furthermore, q(x) is square integrable (g(x)ELy(E))
and behaves like O (|x|~2~") (h>>0) at infinity, i.e. there exist positive numbers h,

Co and R, such that lq(x)lécolxl_z_h for Ix[gRo.

Let us first define the operator 4 by Af(x)=—Af(x)+q(x)f(x) for } € CO(E),
where C3°(E) consists of all functions which are infinitely differentiable and
have compact carriers. Cg°(E) is contained and dense in the Hilbert space L,(E)
in the sense of the Ly-norm || || (|| || will be used exclusively for the L,-norm).
Then it is known® that, under the conditions (A4) imposed on ¢(x), A is lower
semi-bounded and essentially self-adjoint in L,(E). Moreover, if we denote by

¢ See Karo [16], StumMEL [32] and WIENHOLTs [37]. Our conditions (A4) are
more stringent than required for essential self-adjointness.
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H the unique self-adjoint extension of A and by H, the corresponding operator
for the case ¢(x) =0, then it is known? that D{H)=D (H,).

We shall study the resolvent R,=(H — A)~! of H and its kernel G(x, y; A)
for non-real A; later this kernel will be extended to real A outside the point
spectrum of H. The main results are summarized in

Theorem 18, Let ImA==0° i) R; is an integral operator of the Carleman
typel and its kernel G(x,v; ), called the resolvent kermel, satisfies the infegral
equation

¢ = eil/).lx-y| 1 1Vl|x —1z G A dzh
(1.1) (%, ; )—jﬂ;l}jw—ﬁf ETIEETl 9(2)G(z,y, N dz
E
as a function of x a.e® in E for ae. fixed ycE. ii) If F(x, y; 1) is a solution
of (1.1) such that F(-, y; A) € Ly(E) for each fixed v, then F(x, y; }.) 15 the resolvent
kernel of Ry: F(x,v; A=G(x, y; A) for a.e. %, y in EXE.
We shall call (1.1) the kernel equation.

Now let B be the Banach space of all continuous functions #(x) defined
on E, tending uniformly to 0 as [x| -+ oo, with the norm

ol = maxu (]2
We also put for Imx=0 €

ix]x——z[ .
Ay == % [ ey 10 A vz,
(1.2) =
o eix[x—y[ .
A()(x,y;%)Zz;T;?yT ((=1,2,3.4).

Then we have the following
Theorem 2. AY(x, y; %) are continuous tn x for x=y and AY(, y;%)€B -

(Imx=0). Further, let Im»>0 and Imx2=0. Then there exists a uwigue solution

H® (x, y; %) in B of the modified kernel equation

(1.3) HY (x, y;%) = AW (x, y; %)

tn|x -~z

g(2)H® (2, y; %) dz

47: |x z[

7 See KaTo [16]. We denote by D(T) the domam of the operator T :
8 For the proof of Theorem 1, i) it suffices to assume only that g(x)€L,(E).
? Im A means the imaginary part of 4.
1 An integral operator T as well as its kernel T'(x, ¥) is said to be of the Carleman
type if T(x, y) satisfies the conditions f| T(x,y)|?dy < oo fora.e. ¥ and f[T 2, y)|2dr < oo

for a.e. y. See also StonE [31]. POVZNER [28] showed that if q( x) is continuous
on E, then the resolvent R, of every self-adjoint extension of 4 is of the Carleman
type. This result was extended by BURNAT [§] so as to include the case where ¢ (%)
has a countable number of singularities x,, in the neighbourhoods of which

g(#)=0(lx —x,17%)  (ca<}).

11 Here 'and in the sequel by }i is meant the branch of the square root of 1 with
ImVi>o.

12 “a.e.” means ‘‘almost every’’ or “almost everywhere”’.

13 Our Banach space is somewhat different from the one introduced by PovzNER
[28]. He used the Banach space B, (y being fixed) of all functions u(x) = a|x — v+
v (x), where a is a constant and v (x) 15 continuous and tends uniformly to 0 as |#| — oo,
with the norm [u|z, =|a| + max |v(»)]. Cf. also BURNAT [5].
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for each fixed y€ E. If we put

3
(1.4) H(x,y;%) =2 A9 (x, y; %) + HY (x, y; %), -

i=0

then H(x, v;0)=G(x,y; %% for a.e. %,y in EXE and, moreover,
(1.5) lH(, y;0)||=C,

where C is a constant dependent on » but not on y€E.

As a consequence of Theorem 2, we can regard the resolvent kernel G (x, y; 4) =

H(x, y; ]/Z) as a function of x defined everywhere in E except at x=y for each
fixed v.

§ 2. Proof of Theorem 1. The kernel equation. Let us first show that R;
is an integral operator of the Carleman type. Denoting by R,, the resolvent
of H, and by V the operator of multiplication by g¢(x), we have the following
operator equations (the so-called second resolvent equations !4) in virtue of the
relation D (H)y=D(H,):

(2.1) R,—Ry;=—Ry,;VR, and R,—R,;=—R,VR,,.

Ry, is known to be an integral operator of the Carleman type with the kernel
(4m|x—y])"LeiVilx=s1. Let us put ]/l.—-a—f—i.b (6>0). Then we have

EfE/ ’q(x) 4%2;%*

here and henceforth we denote by C.any constant, not necessarily the same
(C in the second member of the above equality is a pure constant and C in the
third depends on b). This implies that V R, is a completely continuous operator
of the Hilbert-Schmidt type. R, being a bounded operator, R,V R,, is also of
the Hilbert-Schmidt type and should be an integral operator with a Hilbert-
Schmidt kernel 1, say K(x, y; 4). Thus we have

Ry VR, (%) =Ef K(x,y; M 1{y)dy ae,

-2l

“lZ‘W’dyZC”‘Z”Z;

2
dxdy= Cf|q(x)]2dx
E E

where
J1K(x, y; Dpdxdy < oo
EE

Since R,, and R;VR,,, a fortiori by the above argument, aré of the Carleman
type, we see from (2.1) that R; is of the same type, too, and is representable as

(22) R/ (%) =Ef G(x,y; Nf(y)dy ae.
by means of the resolvent kernel G (x, y; A), where

J|G(x, y; YPdy<oo forae x,  [|G(x,y;Mfdx<oco forae. y.
E

E

i See HiLLE & PHILLIPS [12], p. 126.
15.Sec e.g. RiESz & NaGy [29), Chapter VI.
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Let us proceed to the-deduction of (1.1). For any f(x)€L,(E) we obtain
from (2.1) and (2.2) the equation

g ) 4 ZVAE—yl
Jemyinitay=- [ Lo fdy —
(2.3) E E

gHAla—yl

[G(x BN g@)dz [ Lo fndy ae
E
By repeated use of SCHWARZ'S mequahty we have

G(x,z; %) ¢ |d
J

gt Alz=yl

REE

for a.e. x. We can, therefore, interchange the order of integration in the last
term of (2.3) by FuBINI'S theorem. In view of the arbitrariness of f€L,(E),
it follows that

10|y = €G- lllgl 1] < o

Cla v i) €M U et D el £
(x’ ¥ )——Gl;:{," - _—;{ (x:z: ) q<2 ‘_{';_yl -4z
E .

for a.e. ¥ with a.e. fixed x. By use of Lemma 1.1 just below we can replace
G(x,v;A) by G(y, x;A) and G(x, z; 1) by-G(z, »; 1) and, on interchanging x
and y, we obtain (1.1). Thus we have proved i) of Theorem 1.

Lemma 2.1. G{x, v; A) is symmetricin x and y:
(2.4 Glx,y; ) =G(y,x;A) jorae x vy in EXE.

Proof. Let us introduce an indefinite “‘inner product” {, ) in L,(E) by
{fe>=[f(x)g(x)=(f, ). Then what we have to show is that R, is symmetric
E

with respect to this inner product, t.e. (R, f, g> ={f, R,g>. For this purpose it
suffices to show that (Hf, g> ={f, Hg). But this is obvious, since we have
CHY, g =<Hot, g>+<V i 8> = (Hof, B+, V> = (f, Ho 8)+ <, V> = <f, Hogd
+<{LVey =<, Hp, notmg that H, is a real operator and that V is an operator
of multiplying by ¢(x).

Let us now prove ii) of Theorem 1. To this end consider the difference
J(x}=F(x, y; ) —G(x, v; 1) which is by assumption in L,(E) (for a.e. fixed y)
and satisfies the equation

(2.5) Fx)=— ’[_4 L@ ds ae
F

The kernel (47|x —z|)™! eif4ls~2l g(2) is of the Hilbert-Schmidt type (see above)
and hence defines a completely continuous operator T, which is an extension
of Ry, V. Therefore, we can rewrite (2.5) in the form

(2.6) J==Tj or f=(—T)f (n=4,2,..),

where 7" are also integral operators of the Hilbert-Schmidt type.. Consequently
we have, noting (1.2),

@) == [A9(x. 2 V2 g(a) () 4
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The function A® (x, z; ]/i) is bounded in ¥ and z, as will be shown in Lemma 2.2
that follows. This fact together with SCHWARZ's inequality gives

x)lécpf!q(Z)f(Z)ldzé Cligll -

Thus f(x) is bounded and hence V€ L,(E), which permits us to rewrite (2.6)
as

(2.7) f=—Ry,VIED(H,).

Application of Hy— 4 to both sides of (2.7) yields

(2.8) Hy—Nf=—V} or Hf=1f.

Since H is self-adjoint and A is non-real, we have f=0, which proves ii) of

Theorem 1. '

Lemma 2.2, If Imx=0, then A® (x, y; %) and AW (x, y; x) are bounded in
x, y and x.

Proof. Let us show first that AW (x, y;%)=0(x— y[}). By means of
ScHwARZ’s inequality we have for |x —y|=0>0

fAle“l<Cf“‘x—_;T‘7—y‘2HQH Clo

in consideration of homogeneity of the above integral in x —y. Thus we have
‘2.9) |[AD (x, y; )| < Clx — y| 4,

where C depends neither on x, y nor on .

Next we show that A®(x, y; %)=0(|log|x — y||). We have

40yl C( [ v yialaz+ [ =T+ T
K (R) l i K (R
Here and in the sequal K{(x, R) denotes the sphere of radius R with its centre
at x(K(R)=K(0, R)) and K(x, R)’=E — K(x, R) the exterior of K. (For R,
see (A) of §1). We also denote by K(R)~K(R,) the intersection of K(R) and
K(R,). We shall now estimate J’ as follows: By (2.9) and (A) we get

J'_s_C( [ a + )=II+/’£-
—K(y 1)

24k, .3
xrykw LAY =

An estimation of Ji is

K[ S { f"’ X f“—zl]—

l/\
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For J, we have, introducing spherical coordinates,

f ff rzslnﬁdrdrﬁwv"ﬂ
K(R)! [ZM 2+h 12472 —2|x] vcos )}

=C |x|‘1f r = (x Fr — x| —r|) dr
Ry

If |x| £ R, and x40, we obtain
(=]
Ji<Cfritdr<c;
R,

the case x=0 can be dealt with separately, and a similar result follows.

'xl>R0 %]

Iz <C|x|“1fr"'dr+Clx|‘1f[xlr'1 dr<C.

Thus J; is always bounded; hence so is J'.

Now we have to estimate J:

__Cflx zlly zlflq W2dz

dz
———C - = = —
( F=aely=s + f ) A+l G=lx—y],
K(R) N K(=x, §/2) K(R,) —Kl(x, 8/2)
- dz
h=Co f‘mx_széc'

K(z, 6/2}

If =1, we have for [,

Jo= Cf|x——z] Ty 7] vcf|x z|z+cf|ydz +¢ [dz=c.

If

K(Ry)
If <1, we first assume that |x|=Ry+1. Then
1
L=< Cf-l;-:;»[~dzg c
K(Rq)
For |x|<R,-+1, on translating the origin, we have
Ry+1
hs f 21::;»* " =Co [+ 0 —r - 8)dr = Cllog 9.
CK(E@R,41)~ I\(o/Z) 52
Thus we get /
[A2(x, v;)| < C if |x—yl=1
(2.10) ( | | vz

<= Clloglx —yi| if |r—y[<}

where C is independent ot %, y and .
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Now we shall show that A®(x, y;x) is bounded. We have from (2.10)

|A® (x, y; x|<Cf l() f - ftog = — yl]dz+Cffq(Z‘ di=L+L
Ky, §) Ky,
L and L’ can be estimated as follows:
4
L_S_C[ Hoglz—yi|* 4, f[q(z)[zdz] <cC,

[ —e[?
K@) K(,4)

L'<cf rq<z| iz ( fllqi_L z+f):L{+Lé,

K(Rq)
= fmznm}
K(R,) K(Ry)

L,<C f‘ i“h“ <C. (See J; above.)

K(R,)

L<C

These estimates show that
(2.11) [A® (%, y;%)|=C,
where C is independent of x, ¥ and x.

From (2.11) and the estimation performed for L’ we get
(2.12) AW (x, y; #)| = C,
C being independent of x, y"and ». (2.11) and (2.12) prove the assertion of
Lemma 2.2.

The following lemma will be needed for the proof of Theorem 2 that we
shall give in § 5.

Lemma 2.3. If Imx>>0, then |[A¥ (., y;%)||<C (1=0,1,2,3,4), where C
depends on x but not on y.

Proof. It is easily seen that [|A©@(, y;x)||<C, where C does not depend
on y. We assume that this is the case for A® (-, y; %) and prove that the assertion
is true for ACTD(, y; ).

Using the operator T defined before (see (2.8) and (2.9)), we have AW (., y; %)
=TA%(-, y; %), whence follows

(2.13) [|ACHU () y; )

in view of the boundedness of T.

|=ClAY (v 0= C

ix|x—y|
§ 3. Asymptotic behavior of the function —4—11{ %—gl—v(y) dy. In
E
order to solve the kernel and modified kernel equations, we shall study some
asymptotic properties of functions of the form

g)=- fﬂf“ J‘U(y)d.v (Imx = 0).

4n ) |x—y|
K
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Lemma 3.1. Let Im x>0, let v (%) be locally integrable and v(x)=0 (x| ~27%
(jx] > o) (e>0). Then as |x|— oo

(3.1) p(x)=0(2]7) +0(x|79.
Proof. Let R be such that |v(x)| < C|x|2~¢ for |x| ZR. If |x| >R we have

1 rxlx y) 7 I%
qj(x)”_—"‘__nf I"' y["v(y)"y— [—' + I,
K(R) K(RY

= Cf { y)l dy<cff y2sin 9 dy d &

2+e 2 42 ]
KRy r2te(|x|24y2—2 (x| ¥rcos )

= C[x[‘lRf r (x| 47 —|[x] —2|)dr=C|x[1+ C|x| "

In order to give an estimate for I, it suffices to note that v(x) is integrable over
K(R) and that |x — y|=|x|—R. Then we have I=0(x[")). By putting 7 and
I’ together, (3.1) follows. '

Lemma 3.218, Let v(x)=0(x|73"% (|x|>o0) (¢>>0), v(x)EL,(E) and let
x=a be real. Then we have '

eia[v )
0.2 g =— oy [T v dy 00K 0 (1),
E

«

where w, denotes the unit vector with the direction of x and w, - y denotes the scalar
product of o, and y.

Proof. Let R, be fixed so that lv(x)| < C|x|"®"* for |x| =R, and let | x| be
so large that |x|* =R>R,. Then we have
za =yl

(%) wm:—ﬁi ‘
K(‘R)

7=

~v(y)dy + f)—l+1’
KRy’

An argument similar to the one used in proving Lemma 3.1 gives
]S Clxfi R x|t = Cla]= # 4 C|x| 2
We proceed to estimate I. Considering |v| <R we have
T L S (m=01yl/1x)?),

|« —y[ = x|

tfon- ) | Gr=00y 1519,

and hence
ia|x—y!
e ' 1 Pavj—tamg vy el Ne Liajay -y 1 taje—
. p—— e | izt Y1 i +, gheit, y + -, ye YI_
[xr—x] | [+ |x]* "

18 Cf. PovzNERr [28). He obtained the result in which the last two terms in (3.2)

e

are replaced by O ([xl e ) Our result enables us to proceed along his line without
assuming that the potential has the asymptotic form ¢ (¥) =0 (]x] 367}, which was
assumed in [28]-together with the continuous differentiability of ¢ (x).
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Thus we have

— eia[x] —ifawgy elall[ —tawg ¥y oy
I_—W".[e ”()d}’+ lxl € U(}’)dy—*—
E K(R)
ia|x|
€ _ —taw,y — gialxln —
P fe (1 —eem)v(y)dy
K(R)
— ialr—yl — ialx—yl
4ﬂlxl fne v(y)dy 4nlxlz fw ye v(y)dy
K(R)
taly|
__ €& —tawy-y
== i fe v(y)dy + I+ I+ I+ 1I,.
E

I, i=1, 2, 3, 4) are estimated as follows:

L= Clxl‘;(f']v(y)]dyg C|%|1R~* = C|x| 1},

Ll Clal [ 20 1oy tdy:Clxw( [ skboldy+ | )

K(R) K(R) K(R)—~K(R,)
SClx| 2+ Clx| 2R == Clx| 2+ Clx| ',
s Clal [ PleloOldy=cls2( [ b+ [ )

[#]
K(R) K(R)) K(R)=KI(R))

§C}xl—3+C‘x|—3R2—5=C|xl—3+Clxl—z«e/zl
lfl<Clx12f|yH v dy=Cla*( [+ [ ]

K(Ry) K(R}—K(R,)
SC|x[ 2+ Clx| 2R =Clx| 24 C|x|7 B2

In these estimates the constants C may or may not depend on a, ¢ and v ().

(3.2) now follows from (3.3) and the estimates for I and I'.

Lemma 3.3. Let v(x) and @(x) be as in Lemma 3.2. Then ¢(x) satisfies the
radiation condition 1, i.e.

4 lim |x [-ﬁf’vﬂ— ta ]:0.
For, the proof see PovzNgR [28], Chapter II, Lemma 2.
Lemma 3.4. Let @(x)€ B be a solution of the integral equation

. 1 einu ¥
(3-5) e ==, | poip i eldy,
E
where a ts veal. Then
(3.6) fe e g(x)p{x)dx=0,
E

wheve o is an arbitrary unit vector.
17 Thcrc arce definitions of the radiation condition other than the one adoptcd
here. See e.g. MiRaNKER [22] and MueLLir [24]. Herc we follow Povzner [28].
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For the proof see Povzner [28], Chapter 11, Lemma §. But it seems necessary
to add some remarks. The proof relies on Lemmas 3.2 and 3.3 and on GREEN'S
formula. We maintain that if ¢ (x)€ B satisfies (3.5), then ¢ (x) =0 (|x}73) (|x] —o0),
so that Lemmas 3.2 and 3.3 may be applied. In fact ¢(x)=0(x|)+0(|x|™*
by Lemma 3.1 because ¢(¥) =0 (x|~ **). Hence repeated application of Lemma
3.1 to (3.5) furnishes us with the result ¢ (x)=0(|x|™).

Another remark applies to the use of GREEX’s formula. An explicit use of
the Hoelder continuity of ¢(x) and ¢(x) is made to obtain from (3.5) the dif-
ferential equation

(3.7) —Ag(x) +9(x) p(x) =a*g(x),

which holds for x different from the singularities of ¢(x) (Hoelder continuity
of @(x) follows from (3.5) and the proof of Lemma 4.1 given below). . We apply
GREEN’S formula to ¢ and @, which also satisfies (3.7), and get

(3.8) 0= [(p-F—g-Ap)dz=[(p 55 —g 3T )ds
K(R) s(R)

where S(R) is the surface of K(R) and » is the outer normal. (3.8) is valid if
K(R) contains no singularity of g(x), but even if singularities of ¢(x) exist in
K(R), it is seen to be true. For we first exclude from K(R) theé singularities
which are finite in number, and then by a limiting process we obtain (3 8) valid for
K(R), when we note that 8¢/0n as well as 8g/an is O (|x — x,,| %) (x (x,: singularities -
of ¢(x)),.as is seen from differentiation of (3.5) under the mtegral sign, so that
the surface integrals taken around the singularities are arbitrarily small.

The above remarks are enough to get to (3.6), following the proof by Povz-
NER [2§]. :

§ 4. Solution of the kernel equation. Let us define an operator T, for func-
tions in B by

@) T@=—7r [ o

injx—y|

[q(y) ydy  (Imxzo0, {€B).

Lemma 4.1. T, is a bounded linear operator on B to B (Imx=0).

Proof. Let f€ B. Then g(x)f(x)=0(|x]~2~*% (||~ o), so Lemma 3.1 shows
that 7, f(x) -0 uniformly as |x|— oco. )

T.f(x) is bounded in x. In fact we obtain from (4.1)

REEE R {22 ay.

The boundedness in x of the right member follows from the estimation carried
out for L’ in the proof of Lemma 2.2, .

Next we have to show the contmu?ty in x .of T f(x), and for this purpose
we consider the difference

T;f(x) . Y;f(x') —_ _4'1}?f eix]x—yl _gik}X'—yI q(y)f(y)dy .

r—y|
—
47
E

(4.2) . L
[x=y] 7 1#"—y]

|e=# () 1) dy =T+ .
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Considering the inequalities |¢/** =% —¢/*]¥ 31| < |%| |x — 1’| and

B C it
[#—y]||¥ ~—y]’

IR ‘<
[r—yl =yl —

we can give estimates for J; and J,:

(= Cla— x| [UOI0 ay < clpflyx — ],
E

<Clx—« el gy < o
|]2|:C|x xi“/”B. lx_ny/_y‘ dy:C”f”b’]x xl:
E
as is seen from the estimations worked out for L’ and AW (x, y; ») in the proof
of Lemma 2.2. Hence it follows that

(43) T.f(x) — Lf(x)=0(x — x'[}) for |x— x'|>0.

(4.3) shows that T/(x) is not merely continuous, but also Hoelder continuous
in x..Consequently T.f turns out to be an element of B.- This completes the
proof of the lemma.

Remark. The proof given above uses only the boundedness of f{x). Thus
T.f belongs to B and is even Hoelder continuous if { is only bounded.

Lemma 4.2. T is completely continuous 5.

Proof. Let f, (=1, 2, ...) be any sequence in B such that ||/,|lz =<1. We
have to show that we can take out of the sequence «,= 17 f, a subsequence
convergent in the norm of B.

Re-examining the proof of Lemma 4.1, we find out firstly that [|u,|z are
‘uniformly bounded with respect to #, because ||f,|[z =1, and secondly that on
the same account the continuity of #, (x) is uniform with respect to n. Moreover,
we see that #, (x)—0 uniformly in # as |¥|— co. Thus u,(x) are equi-bounded
and uniformly equi-continuous with respect to # in any compact domain of E.
On applying the Ascoli-Arzela theorem to w,(x), we can choose a subsequence
u,.(x) converging uniformly to a continuous function #(x) in any compact
domain. Since %, (x) 0 uniformly in #’ as [x|— oo, u(x) also tends to 0 at
infinity, and hence we have ||u,, — u|[z—0, which was to be proved.

We are now in a position to make use of the Riesz-Schauder theory of com-
pletely continuous operators in a Banach space 1%. If T is a completely continuous
operator in B, the equation f=g+ Tf is solvable for any given g£&B, if and
only if f==T/ implies that f/=0. Thus we have the following

Lemma 4.3. Let g€ B. Then the integral equation

ix|xr—y)
1 e
= — 2 >
(4.4) =g — 35 [, 10/ 0dy  (mx=z0)
o E

18 Cf. also PovzNER (28], Chapter II, Lemma 3.

19 See e.g. Riesz & Nacy [29], Chapter VI or Yosipa [39], §41.
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has a unique solution in B if and only if the homogeneous equation

8in|x—y|

(4.5) f(x) = gy f»ay

4n. [x—yl*
has the unique solution f(x) =

Lemma 4.4. If x2 is real and positive, then (4.5) has the unigue solution f(x) = 0.

Proof. f f(x) satisfies (4.5), (3.7) follows from the assumed Hoelder continutiy
of g(x) and that of f(x), remarked in the proof of Lemma 4.1 (see also the remarks
to Lemma 3.4). On the other hand, Lemmas 3.2 and 3.4 give the asymptotic
order '

4.7) f@=o(x1) (%] -> ).

According to KATo [18], however, any solution of (3.7) subject to the condition
(4.7) vanishes indentically at least outside a sufficiently large sphere containing
all the singularities of ¢ (). Hence the unique continuation theorem for solution
of an elliptic differential equation?0 is applied to obtain the result that f(x)=0
everywhere.

Lemma 4.5. Let Imx>0. Then (4.5) has non-trivial solutions in B if and
only if #% is an eigenvalue of H. I n particular, if Ima?==0 in addition, (4.5) has
only the trivial solution f(x)=0.

Proof. Let f(x)C B satisfy (4.5). Since g(x) € Ly(E), g(x)f(x) € L,(E). Then
from (4.5) we have j=— R,,:V{, which is nothing but (2.8) with A=#2, and
hence we get f=0 if »?is non-real, in exactly the same way as in § 2. This proves
the second assertion.

Let f(x) be a non-trivial solution of (4.5) (Im#>0). Then, as we have seen
before (the proof of Theorem 1, ii) in § 2), it follows that f, V/€ L, (E) and H f=2?2f.
This proves the necessity of the first assertion.

Conversely let »? be an eigenvalue of H with an eigenvector f € D (H)= D (H,).
Then V{<€L,(E) and {4.5) readily follows. Accordingly, by use of SCHWARZ'S
inequality, we have

lf(xlsC([ - dy[lq(y (pas) € o=Inx),

from which and (4.5) we see that f€ B, as in the proof of Lemma 4.1. This
proves the sufficiency.

Lemma 4.6. T,(Imx=0) depends continuously on x; i.e. given any &£>0,
there exists a 0=0(e) such that ||T, — T, ||p <& 2 if |2, —2%,| <.

For the proof see PovzNERr [28], Chapter II, Lemma 8. We have adopted a
norm different from the one used by PovzNER (see footnote 13), but this makes
the proof of the present lemma rather simpler, for we have avoided inclusien
of singular functions in B. ‘

20 See e.g. MUELLER [25].
21 The norm of an operator T in B is defined by |Tllg= sup | T/}l
iMs—1
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All the bounded operators on B form a Banach algebra B, in which | T, — T'l|z—0
(n— o) and the existence of I, and T-'€B imply || ;" — T7||;—0 22. Thus
from Lemma 4.6 follows

Lemma 4.7. If »® is not a non-positive eigenvalue of H, (I — T )1 € B exists
and depends continuonsly on x in the sense of the norm || ||5.

Lemma 4.8. Let D be a compact domain of the upper x-plane (Imx=0) such
that D does not contain the square roots of the non-positive eigenvalues. Let f,€B
be a unique solution of

(4-9) fo=8+ Lt
where g,€ B 1s strongly continuous in xCD. Then f€ B is strongly continuous
n x€ D.'

Proof. Since f,=(I — T)™*g, and (I — T)'is uniformly continuous in %€ D
(Lemma 4.7) and also g, is by assumption strongly continuous in %, the assertion
follows immediately.

§ 5. Proof of Theorem 2. We shall show first that A*(x, y; x) are continuous
in x unless x=7y. By definition we have for 1=0,1, 2,3

AT (5, y;00) — ATV (', ;%)

i%|x—2] ixix" 7|

— (e el iy v —_

= 47!‘/ s q2) A% (2, y; %) dz
E

i
B
=L+ /]

Proceeding as in the proof of Lemma 4.1, we arrive at the following inequalities
for J; and J,:

t 1 eV g(2) AW (2, y; %) dz

=2 ~ 7=

()
‘jllgclx_x,lf |g(2)AY (2, 9; x |dz

[x—z]

()
1121<cux—x1f“’ 2o e rinl g,

[x—a] [~

Since A% (z, v; %) are bounded in z outside some sphere with its centre at y,
as is seen in the proof of Lemma 2.2, we get

lLléClx—x'|f{;@%dwqx—x'[f|q(z)A<i)(z,y;x)|dz,

Ki{x,06) K(x,8Y
<Clx—x f __le(@) dz4+Clx—«' f__.—l__dz
\RI=Cle=#| | ey @+ S = | o 42 +
K(x, 8) K+, n)
+Clx— ] f l9(z) A9 (z, y; %)| dz,
' K(x,0) ~K(x'. )"

22 See any book on Banach algebras, e.g. HILLE & PuiLrips [72] and Yosipa [39].
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where we have chosen 6 and % so that K(x, ) and K(«’, ) do not centain the
point y. Then from the estimations in the proofs of Lemmas 2.3 and 4.4 we
obtain by SCHWARZ’S inequality

|hl= Clx —a"[+ Cle — [ [igl |49, v; %],
|Ll=Clr =+ Cla— 2|t Clr— 2| [lg[| 149, y; 4l

which prove the asserted continuity of A% (x, v; %) (i =1, 2,3, 4), while A© (%, v; %)
is obviously continuous in x for x==y.

That A@(., y; x) € B follows from (2.11) and the remark after Lemma 4.1.

The above facts together with Lemmas 4.3 and 4.5 show that a unique solution
H®(x, y; %) of the modified kernel equation exists for fixed y. If we prove that
|H® (-, ¥; %)|| < C, where C depends only on %, we can complete the proof of the
theorem in view of Theorem 1, ii).

From (1.4) we see that HW(x, y;x) is the sum of AW (x, y; %) and f(x)=
— Ry« VH® (x,y ;%) for fixed y. It is easily seen that || f|| < | Ro, || |lg]| | HO(, v:%)|s
is independent of v, for‘ we have

[ECCy; 0lls < (T — L) s A9 y; #))s-

Now in virtue of (2.12) we have proved the desired result,

II. Eigehfunction expansions

§ 6. Existence of the eigenfunctions. In quantum-mechanical problems of
potential scattering, the distoried plane wave plays an important role. It is
generally assumed to be a bounded solution of the Schroedinger equation

(6.1) —A@(x)+q(x) @(x) = |k[2p(x)

with the asymptotic conditions v (x) =@ (x) — ¢'***=0(|x|?) and |»| (3v (x)/2|*| —
i|k|v (%)} — 0 (radiation condition) for |x|—> co. Here & is a 3-dimensional vector
called the wave vector and | k| denotes its length. We shall denote by M the
totality of the wave vectors %, which is, of course, isomorphic to E. @(x) has
the form (plane wave) + (outgoing wave). It is also possible to consider the
distorted plane wave which has the form (plane wave) 4 (incoming wave) in
quite a similar way. As is described in most of the physical literature 23, the
distorted plane wave ¢ (x) is obtained as a solution of the integral -equation
ol 1x—9]

(6.2) plrB =t - [ L) el Ry,

4r m[x-:;/
E

which is more convenient for mathematically rigorous treatment than (6.1), for

(6.1) is not vyalid at singularities of ¢(x). Let us introduce the function

RIS .
(63) p(x,k)=——£;f7:__yi_q(y)em.ydy.
E

2 See e.g. MoTT & Massey [23].
Arch. Rational Mech. Anal., Vol. 5 2
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Then, if we put v(x, &) =g@(x, k) —e'*'*, (6.2) becomes

(0.4 B =pB— L[ gl k.

¥ [x—y]

Since p(-, k) € B as is easily seen from the remark after Lemma 4.1, (6.4) has
a unique solution v (-, k) € B for each fixed % (|#]{>>0) in virtue of Lemmas 4.}
and 4.4. Moreover, we see from Lemma 4.1 and the remark thereafter that
v(x, k) as well as p (x, k) is Hoelder continuous in x. Since ¢(x) is Hoelder con-
tinuous, @ (x, k) is then seen to satisfy (6.1). Thus we arrive at the following

Theorem 3. There exists a unique solution v(x, k) € B of (6.4) for |k|>0 and
@ (x, Ry=e"**tv(x, k) is a solution of (6.1) and (6.2). Moreover, ¢ (x, k) as well
as v(x, k) is bounded and wuniformly continuous in x and k for xCE and kRED,
where D is any compact domain of M not containing the origin.

@(x, k) is called an eigenfunction associated with the eigennumber |k|%, and
we can speak of an oo’-continuous family of eigenfunctions in conformity with
various magnitudes and directions of the wave vectors k. Howewver, we should
remark here that under our assumptions (A) on ¢(x), v(x, #) does not always
satisfy the asymptotic conditions mentioned above 2.

Proof of Theorem 3. We have only to prove the last statement. From the
remark after Lemma 4.1 it follows that |p(x, k)| < C, where C is independent
of x and %. Since (6.4) can be written as v{-, k)= (I —T,) ' p(, k), we see from
Lemma 4.7 that v(x, k) is bounded in x¢ E and k€ D. Similarly it follows from
Lemma 4.8 that v (x, %) is uniformly continuous in x and % in the same domain,
if we show that # (-, &) is strongly continuous in A< D.

Given any 6>0, we have for a sufficiently large R=2R(4) and for |[x| =R
(6.5) lpukt<6/ Wl ay <o

by Lemma 3.1. For |x| <R we have

Pk b u}\h 1,

i) = pls sl 1 g+

ESSIN

C Iq 1)} 1k4y_ Thyvy
+ f[x y[ ety dy

=C [ [l 7] = [ Roll g (3)[dy + C f ’;-]g)"i e

K(R) K(R,)
+C f]Al—/e2[(y| 7 ‘”{ dy ch fj__"" dy
K(ky) R(R,)
=L+ttt

Here we can choose an R;=R;(d) sufficiently large so that each of J, and J,
may be bounded by 6/4 (see the estimation of J; in the proof of Lemma 2.2).
On the other hand, J;, and J; can be made rbitrarily small (< &4, J,--4'4)

2 Tho‘:( con(lmons are satisfied if we assume that g(x) = O(Le] 37 (jxf > ~).
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by taking [k, —ky| = || k| — | k|| small. Together with (6.5) we See that
bt k) —plr k)| <6 (xCE, by, kyEM)

if |k —k,| is sufficiently small. This proves the desired continuity of p(., k)
and completes the proof of Theorem 3.

§ 7. The spectrum of H. It is generally believed that the positive real line
is occupied by what are called the continuous eigenvalues of H which are, in.
our terminology, eigennumbers, while in the negative half there exist possibly
discrete eigenvalues but no continuous spectrum. This is certainly the case
under our assumptions (A) on g(x). But from the mathematical standpoint the
non-existence of positive eigenvalues is not self-evident. This problem has been
raised by Povzner [28], though he only commented on its plausibility and
proved it for the case where ¢(x) is a function of | x| at least for large | x|. Recently,
however, Kato [18] has proved a theorem? which implies the non-existence of
positive eigenvalues in our case. We shall give a proof of this fact later (Theorem 6).
Concerning the features of the negative part of the spectrum of H, we have

Theorem 4. On the negative real line the continuous spectrum of H is absent?8,
The negative eigenvalues, if they exist, are of finite multiplicity and ave discrete
tn the sense that they form an isolated set having no limit point othey than the origin 0.

Proof. Let a be sufficiently large so that we may have H +a=Hy+V +a>a’
>0 (Note that H is bounded from below; see §1.) Since the spectrum of H,
octupies the full interval [0, o), that of (Hy+4)! is the interval [0, 1/a]. Now
the second resolvent equation gives (H+a) = (Hy+a) 1 — (H+a)*V(Hy+a)™,
where (H-+a)'V(H,+4)™? is a completely continuous operator, for —a lies
in the resolvent sets of both H and H, and, as we have seen in § 2, V(Hy+a)!
is of the Hilbert-Schmidt type. According to a well-known theorem of WEYL?
that asserts the invariance of the set of limit points® of the spectrum of a self-
adjoint operator by the addition of a completely continuous operator, the spectrum
of (H 4 a)™ consists of the whole interval [0, 1/a] and, possibly, of isolated points
outside [0, 1/a] (which may have limit point 1/a). This means that, on the
negative real axis, H may have only discrete eigenvalues of finite multiplicity
having, possibly, limit peint at 0. This completes the proof of Theorem 6.

Hereafter we shall denote by u, the discrete negative eigenvalues counted
according to their multiplicity and by ¢, the orthonormalized eigenvectors (see
footnote 3) associated with y,,.

§ 8. Exglansion theorem. As we have pointed out in Introduction, we can
use the distorted plane waves ¢(x, k) constructed in § 6 as the eigenfunctions
for expanding an arbitrary function.

Theorem 5. Let f(x) be an arbitrary Ly-function. i) Then the generalized
Fourier transform

(8.1) Fk) = (zn)—ﬂ.i.m.Efqa(x, %) f(x)dx

25 Cf. Lemma 4.4.

28 Cf. also PovzNER [28], Chapter II, Theorem 6.

27 See Riesz & Nacy (29], p. 367.

% Eigenvalues of infinite multiplicity are included among the.‘limit points’.

2%
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of f(x) exists and belongs to Lo(M), where Lim. [...dx means the limit in the
B

mean of the function [ ...dx as N->oo. Also the generalized Fourier coefficient
KN

8.2 [ ) a3 = ()
of 1(%) exists, and > |1, < oo
ii) We have then7c:llowing expansion formulas:
83) 1) = ayHLim. [p(s, B /(1) 2k + Lim. 3, g,(),

(8.4) |l/|Ip= f \f®)2dk + § A [ (PARSEVAL’S eguality),

8.5) (¢, f f(k)E dk+2 &, "(gencralized PARSEVAL'S equality) .
In (8.5) g€ Ly(E), and in (8.3) Lim. f .dk means Nl.i.m. J ...dk.

O, E—> 00 K(N) K(f)
1i1) Conversely let F(R) ¢ L (M ) be given. Then we can construct an Ly-function

[(x) through formula (8.3) with f(k) F(k), / =0 such that (8.1), (8.2), (8.4) and
(8.5) hold good.

iv) Let E,, be the resolution of the identity associated with H, and let P=1 —E,.
Then the part in PLy(E) of H is unitarily equivalent to Hy.

v) €D (H)=D(Hy) if and only if |k|? /(K €L, (M) and Z,u” ]/,,]2<oo We
lmve the following representation of H :

(8.6) Hf(x)=(nm) tLim. [|k[Pg(x, k) f(R) dk + Li.m. ﬁﬂn 1@ (%)
M >0 py

The proof of i), ii) and v) except for the complete domain characterization
of H will be given in the following section; it seems appropriate to remark here
that the proof depends on some properties of the spectrum of H (Theorem 4)
but not on the absolute continuity of the positive part of the spectrum (Theorem 6),
which will be established in the course of the proof of ii). We shall also make
use of Lemma 4.4, which is almost equivalent to the non-existence of the positive
cigenvalues of H, but not in the strict sense, for we have not shown that every
eigenvector associated with any positive eigenvalues should satisfy the homo-
geneous integral equation (4.7) and that it should be a B-function. Pertaining
to the positive part of the spectrum of H, we have

Theorem 6. There exists no positive eigenvalue of H. Moreover, the spectrum
on the positive real line is absolutely continuous.

The proof of Theorem §, iii}, iv) and the domain characterization of H will
be given in connection with the proof, by the aid of the time-dependent theory,
that the S-matrix is unitary.

It is implied by (8.6) that the Schroedinger operator H= —A-+V admits
of a diagonal representation, or H is diagonalizable, in terms of the eigenvectors
9, {x} and the eigenfunctions g{x, k).



Expansions for the Theory of Scattering 21

§ 9. Proof of the completeness of {¢p,(x)} and {¢p(a, k)}. We shall divide
the discussions that follow into two parts. One concerns the projection P and
the other E,. So to speak, we shall first take up the expansion problem for
the function Pjf(x) and then extend our research to the function E,f(x).

Let us consider the conjugate Fourier transform g(x, k; ) of H(x, y; x) with
the defining equation
(9-1) g(x, ks ) = (2m)~% [ H(x, y; ) &F 7 dy
E

for each x and Imx»>0, Im»?==0, noting that H(x, -; %) € L,(E) (see Theorem 2
and Lemma 2.1). Actually, however, “Li.m.” in the above definition is un-
necessary. This will be made clear by the following

Lemma 9.1. If Imx>0 and Imx2=£0, then H(x, v, ») is absolutely integrable
in x or vy and g(x, k; %) is a bounded function of x and k for xCE and k¢ M.

Proof. According to the kernel equation (1.1) for H(x, v; x)=G(x, v; x?) we
have (x=a-+b) :
—b|x—z!

. PRdEaat . .
JIH(X’y",‘):kixécEf“p;:;l—dx'*‘C![‘Z(Z)H(Z,y:%)ldzf~—_wdx.

[#—z]
E
A further esfimation is possible by (1.5) and ScHWARz’s inequality, which gives
JIH v dx< C+ CliglllHE, y; 9= C,

where C depends on » but not on y and is finite if Im»x>0 and Imx25=0 (see
Theorem 2). By the symmetry stated in Lemma 24 H(x, y; %) is absolutely
integrable in y, too, and hence it follows from (9.1) that g(x, %; %) is bounded
in x and k2 for x€E and k¢ M.

Set
(9.1)’ (2, kyn) = (2a) (| k|2 — 2?) g(x, k; o) = ¢®F®) L pD (x, k; %)
Then we have

Lemma 9.2. A0 (x, k; ») is a B-function of x for k€ M, Imx>0 and Imx»*==0
and satisfies the integral equation

5 (D) . ;_ oo 1 _‘i‘;":x—y| ‘ ]
(9.2) ha (x,k,x)_——p(x,k,u) 47"[ ];—_y-]—q(y)h“)(y,k,n)dy,
g E
where
. _ 1 Pldiitd ikey
(9.3) p(x, k;n)= ﬂ'[ T g(y) et dy

E

s a B-function of x for k€ M and Im x=0. Muoreover, we can extend the definition
of h(x, k;x) to the case where Imx=0 and Rex>0. h(x, k; ») is bounded and uni-
formiy continuous in x, kand x for xCE, ke M and Imx =0, 0<a<Rex< f<Co0.
In particular, h(x, k; | R])) =@ (x, k).
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Proof. Let us first show that g(x, k; ») satisfies the equation

thex

s & 1 e“tlx“yl
94  g(x k%) =(2n)" ", R[i—d ~7[;f‘l—xjﬂ‘7(y)g(y:kix)d%

From the kernel equation (1.1) we have for any f€ L, (E)

A |
foy" dy"4ﬂfwf(Y)dy“
E

ixly—z

— [ e ey f0) d,

where we have performed interchange of the order of integrations, which is
permitted since the last integral is absolutely convergent because [||dz [||dy<C
E E

[lghl |2z, -; 2)|l Il = Cligll /7l (by Theorem 2). Introducing the Fourier trans-
form of f(x) by

9.5) fo(k) = (2m)~4Lim. [ e~ % *f(x) dx
E
and making use of PARSEVAL’s equality, we get therefore

[etn, k) oll) ake = (2) f T (B ke —
(9.6) l ’
i [ | [ e el fuw s
E

{x
M

where we have used the fact that the conjugate Eourier transform of (47 {x—y|)™ X
¢'*1*=%! as function of y is (27) ¥ (|£|2—22) ! ¢** and have interchanged the order
of integrations in the last integral, noting that |x—z[e™* 4 ¢(z)€L; and
that f lg(z, &; =) | [fo Ak Cl|HG, 52| I/ll=Clf|| (by Theorem 2). Since

fOELz( M) is arbitrary, (9.6) yields {9.4). Then the equation {9.2) for A\V(x, k; x)
follows at once from (9.1)" and (9.4).

From the remark after Lemma 4.1 we can see that (-, 2; %) € B and that
p(x, k; ) is bounded for x€ E, k€M and Imx=0. Similarly, the second term
on the right of (9.2) is also in B if Imx >0 and Im»23=0 (see Lemma 9.1). Thus
BV (. k; %) € B for Imx>0, Imx?==0, so that we can rewrite (9.2) as AV (-, k; %)=
{—T)2p(, k; ). Noting that p(-, k; |k)=2(:, k) € B, this proves the lemma
in view of Lemma 4.8 and Theorem 3, if we show that p (-, 2; ») € B is strongly
continuous uniformly in 2€M and » for Im»=0. The uniform continuity in
% can be proved by an argument similar to, but simpler than, the one used for
proving the uniform continuity in x and % of ¢(x, £) in §6. Thus it remains
to prove the uniform continuity in x of p (-, £; x). -

Given any 6>>0, we can choose an R=R () so that for |x|=R we have

9.7) 1p(x, k)| < C [ l“”‘ ' dy <2
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v virtue of Lemma 3.1. For |x|<R

160 k) —p(x ki m)| < C [ L
E

il gile—l)

[x—] lg(y|dy

imla—yl _ iule—yl

<C |e —¢ | d CfJ?(y)[ d

=¢ =] lg()|dy + =T 2
(Ry) K(R;)

=T+T.

Again we can choose an R;=R, () so iarge that /' may be bounded by d/2 (see
the estimation of J; in the proof of Lemma 2.2). In order to estimate J, we
first note that

et ort = x| = [d] 2 =y [ 1| S = ]l = 91,

where L denotes a straight line which starts from %, and ends in »,. Application
of this inequality to J gives

J=Cley— x| [ |g(3)|dy.
. K(R)) .

Taking »; and x», so near to each other that J<<d/2, we are led, noting (9.7) and
the above estimates for J and J’, to the result that for any given §>0 we have

(9.8) [P (% k%) —p(x, k;n)| < O (*€E, kEM),
if [#, —,]| is sufficiently small. (9.8) proves the required uniform continuity in
wof p(-, k; ).

Now we shall enter into the expansion problem for (Pf)(x), where we first

assume that f(x) ECF(E). As the first step we prove PARSEVAL's equality.

Since g(x, &; %) is the conjugate Fourier transform of H(x, y; x), it follows
from PARSEVAL'S equality that for Imsx >0 and Imx2<=0

JH@z x;0)H(z,y;%)dz= [g(x, k; %) g(v, k; %) dk
E M

- r IS S
(9:9) T (2a)P (e — ) Mf[|k|2—x2 | k|2—o2 x

Xh(x, k%) h(y, k;x)dk.

Let us multiply both sides of (9:9) by f(x) and f(y) and integrate over E with

respect to x and y. Then the left-hand side gives, on multiplying by (2 — 2,
010) (2 — ) (R}, Ruf) = (2 — ) (RuRzf, ) = (Re — R . 1),

where we have made use of the first resolvent equation® R, — R, = (A — A1) R; R,
and freely interchanged the order of integrations in the integral considered,
noting that it is absolutely convergent:

ST, x5l [ v 0] () )| dy dx <o,

2 See HiLLe & PuirLips [12], p. 126.
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Here let us introduce the function
(9-11) D(k; %) = (2n)*f'f5f h(x,k; %) f(x)dx  (f(x) €C(E)).

Before proceeding further we note that @(k; ]/,u—i—is) is bounded for k€ M,
WE e, f12° (0<a<f) and 0=ex<g, (g>0), as is easily seen from Lemma 9.2
and that @(%, ) —>fA(k) as x| k|, as isseen from (8.1) and the fact that f(x) € Cy(E),
and hence the integral is well defined.

Let us put »®=p-+7de. Since f(x) ¢ Cg°(E) and the integrand of the right
side of (9.9)

) -
B ie +82h(x E; ]/,u—i—zs h(y, k; ]/y—f—ze

is absolutely integrable in 2 and bounded in x and y, we can freely interchange
the order of integration in forming the above-mentioned multiple integral on
the right-hand side of (9.9). This enables us to obtain in view of (9.10), for £¢>0,

012)  (Ruvie— Rueid 1) = [ (rsseee |90 Vit i) ak.
M

Now we can avail ourselves of the fundamental relation

%[((Eﬁ+Eﬁ‘0) f’ f)——(E +E lof( ptie /A—ie) f: f) d,u' 311
which, incorporated with (9.12), yields for « and 8 such that 0<a<<f
2 [(By+ Ep_o f~f)— (Eat Euo) 1,1)]

=— ewf /‘f (1L Ig€,¢(k;V#+i£)}2dk

Hhmf f ””2 +Ezl (k’ llu'+7é)|2dlu'

T elo

where we have used the above-mentioned boundedness of @(k, ») and FuBiNI's

8
theorem. Let us consider the inner integral f...du. In view of the equation

/ ﬁﬁ’k‘rz:"s;;)uzz‘ dp= tan P — a2
we have for 8“6 [0, &) (€,>0)
f..dﬂ‘gF(k):C it |k|<YB+1,
- '(Tlﬁ'zciﬁjfz' it k> )B+1,

30 [, f] denotes the closed interval a < u <f.
31 See ¢.g. STONE [31], p. 183.
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where the C’s do not depend on e. F() is integrable, and hence by the bounded
convergence theorem we can interchange lif% and the k-integration. Since @(k; x)

tends to fA(k) for x—|k| as has been seen above, we obtain for f(x) € Cg°(E)

913)  A[(Es+Es_o b ) —(Eu+ Ean D)= [ |f(B)EdE;

ye<ikl<yg
here we have made use of the well-known relation 32

! 0 if a<a or f<a

1. € - R
F?ff)’f(a—u’)’*iﬁf(”’s)d””{f(a,o) if a<a<$B,

o

in which f(u, ¢) is a continuous function of x and & for u€{a, #] and €€ [0, &)
(£4>>0). Lettinga—fBin (9.13), we see that {(E; —Es_) f, f) =0 forany f(x) ECS(E),
which is dense in L, (E) in the L;-norm. This shows that E;=F,;_, and § is not
an eigenvalue of H, and since § is positive and otherwise arbitrary, we conclude
that no positive eigenvalues exist. This“proves the first half of Theorem 6.

Hence we have from (9.13)
(9.14) (Es—ENff)= [ [tHR)]dE
ya<|k|<yp
for f(x) €CT(E). Letting «—0 and §— oo, we arrive at PARSEVAL’S equality

(9.15) 1P =Mf|f(k)|2dk

for f(x) €CP(E). We have so far assumed that f(x) € C3°(E). But the extension
to the general case f(x) € L,(E) can be made in a standard manner3. Namely;

we can show that /(&) exists and lies in L, (M) if we take the limit in the mean,
as specified in Theorem 35, in forming ]‘A(k). Thus (9.14) and (9.15) hold true for
f(x) € Ly (E).

Now let us step forward to the second problem, i.e., the expansion of (E,f) (¥).
According to Theorem 4 the subspace E L, (E) is spanned by the eigenvectors
{@,(x)} belonging to the eigenvalues u, <0, or {p,(x)} form a complete ortho-

normal system in E,L,(E). Consequently we have

(9.46) NS

In view of (9.15) and (9.16) we are led to the required relation

(54 1l =Bt + [P = f 1R R+ 5 1,1

- Derivation of (8.5) from (8.4) is almost obvious3.

Now let us prove (8.3). It is obvious from the completeness in E, L,(E) of
{p. (%)} that

N A~
9-47) (Bof) () =Lim. 3 [, 9,(2).

32 See e.g. TircuMARsH [33], p. 31.
33 See e.g. TITCHMARSH [34], pp. 55— 56.
38 See any books on Fourier integrals, ¢.g. TrrcuMARrsH [33], Chapter III.
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It remains to show that
(9.18) (Pf) (x) = (Zn)—n.i.m.Mj(p(x, B)F(R) dk.

We can obtain from (9.15), if g (x) ECP(E),

(Es—Ed )= [ [®edr

Yo ki<

:(2)% ff(kdk[(p(xk 'd

ya<lkl<yp

:@m%f{‘[¢wﬂﬂ@M§@d%

ya<|k|<yp

since @ (%, k) is bounded and fA(k) is integrable for ]/; <|k|< ]/B and x€E. CP(E)
being dense in L, (E) in the Ly-norm, we have

(9-19) (Es—E)) (1) =02m)~t [ ok [k dk

ya<lkl<yg
If we let «—0 and f— oo, then the left side of (§19) converges strongly to
(Pf)(x), and hence the limit in the mean of the right also exists and is equal
to (Pf)(x). This is nothing but the desired relation (9.18). We have proved
i) and ii) of Theorem 5.

Now we show the diagonal representation (8.6) of H without complete
characterization of the domain. For this purpose it suffices to show

(9.20) (Hig) = flkl f(k) & dk+2unfngn

for f(x) €D (H)=D(H,) and g(x) & L,(E). We see from (9.14) that

(B 8) =2 Iuka (u<0)
(‘9'21) ,“nSM
_Z«fngn’{{;’fyf(k g (,ug()),

hence (9.20) holds if the relation

(Hf,g)= [ pd(E,l. ¢
is taken into account.

Finally let us prove the last half of Theorem 6. Taking g={ in (9.21), we
can see that g,(u)= (E,f, f) is absolutely continuous in p for u>0. This implies
nothing but the absolute continuity of the spectrum of H on the positive real
line.

III. S-matrices

§ 10. Wave operators W,.. As has been mentioned in the Introduction, we find
it convenient to introduce the wave operators W, not only for the mathematical
treatment of the S-matrix S, but also for the proof of Theorem 35, iii).
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It is known?3 from the time-dependent theory of the S‘matrices that, under
the assumption that ¢ (x) ¢ L,(E), the wave operators W, exist:

(10.1) W, =slimU@)®, UE=e'" et

W, are isometric operators satisfying
(10.2) PW, =W,,

which implies that the ranges of W, are subsets of PL,(E). The S-matrix is
defined by

(10.3) S=Wfw_,

and it is generally believed to be unitary, which is, however, not self-evident.
S is unitary if and only if the ranges of W, are identical. We shall prove that
S is unitary by showing that the ranges of W, are jdentical and coincide with
PL,(E).

To this end we introduce the operators U, by

10.4) (U_f (x) = (Zn)—%l.i.m.Mf @ (%, &) fo (k) dk.

(10.5) Upf=U_1,
where fo (k) is the Fourier transform of f(x) € L,(E) (see (9.5)), and prove

Theorem 7. U, formally defined by (10.4) and (10.5), are isometric operators
with domains L,(E) and ranges PL,(E), and we have U, =W,_. S defined by
(10.3) 1s unstary.

We shall prove the above theorem in the next section and then complete
the proof of Theorem 5. Here we note that the statement iii) of Theorem 5 is
equivalent to the following: Let Z be an isometric operator from PL,(E) to
L,(M) defined by Zf(k)=f(k) (f€ PL, (E)). Then Z is unitary. (The isometry
of Z is already shown in (8.4).)

§11. Proof of Theorem 7. We first show that U, are well defined operators.
To this end we need only to show that this is the case with U_, since U, is related
to U_ through (10.5).

Let us consider the integral

W1) L) =[fo®) ER dk=m) [fo(&) | [ p(x, ) g(x) dx]dt,
M M E

where g(x) € CP(E), ;‘:,(k) €CP(M) and the carrier of Z,(k)' does not contain the
origin of M. The totality of such functions of % will be denoted by C{*(M)".
In (11.1) the x- and %-integrations are, actually, extended over compact domains
and ¢ (¥, k) is bounded in % in a compact domain from which the origin is ex-
cluded (see Theorem 3). This fact allows us to interchange the order of inte-
gration, yielding
(11.2) Lye)= @)= [ | [ o(x k) fo (k) dk|g(2) dx.

35 See Cook [7], KaTto {17] and Kurobpa [20].

36 ““s-lim’’ denotes strong limit.
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On the other hand it follows from (11.1) that

IL@I=( [ In@Edr]iz@ede)=/[Pell < /] gl

Thus L,(g) is a densely defined, bounded linear functional of g€ C°(E). But
such a functional can be extended to the whole L, (F), and we shall also denote
the extension by L,(g). Then by means of Riksz’s theorem3’ there exists a
unique element f* of L,(E) such that L,(g)=(f*, g), which defines an operator
U by Uf=f* and ||Uf|| < || /|| Now in view of (11.2), again restricting g(x)
to C(E), we have

(11.3) (Uf)(x)=(2ﬂ)*3Mf¢(x,/»’)/;(k)‘d/€ ae. (fo(k) €CT(M)).

A standard argument shows that (11.3) can be extended to every f¢ L,(E) by
writing 1.i.m. f...d% instead of [...dk. Comparison of (11.3) with (10.4) gives
M

the result that U is nothing but the required operator U_. Thus we have proved
that U_ is an everywhere defined, bounded operator (D (U_)=L,(E)) and its
norm ||U_ || does not exceed 1.

Next let us determine the adjoint U* of U_. This can be done most con-
veniently by using the relation (U*f, g)=(f, U_ g); the result is easily seen to be

(11.4) (U*f) (x) = 2~ Lim. [ e* [ (k) dk.
M

In the derivation of (11.4) we have used reasoning quite analogous to that for
getting (11.3). .
U_ has the property that
(11.5) U_.U*="r,
which follows immediately from the defining equations (10.4), (11.4) of U_, U*
and {8.3). Also we have
(11.6) U*HCH,U_.
This can be seen from the following equations: For f(x) ¢ D(H) =D (H,)

(U*H f) (x) = (2n)_’31.i.m.Mf dx T (Hp) (k) dk

= 2a)~tLim. [ et tk[Pf k) dR;
M
(H,U*f) (x) = (27) J.i.ln.‘}f S R (U%f) fo (k) d R
= @@~ Elim! [e* o | kP f (k) dF,
M

where we have made use of the diagonal representation of H (8.6) and the fact
that Hy is a special case of H with V=0 and has no eigenvalues.

Now we can complete the proof of Theorem 7. Application of U* from the
left to-both sides of (10.1) gives

(1., U*W_= lim U*U() (lim = s-lim),
{ > =00

o7 See eg. Rizsz & NAGY [29] and Yosiva [39].
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since U* is a bounded operator andt lim U} exists. On the other hand, we see.
— — 00

by differentiating and again integrating, that

¢
(UXU f,8) — (U2 f,g) =i [ (UX &*H Ve itHe f g) at
(11.8) ’,
=i [ (o U*VeitHf o) dt
0

where t(x) €D (Hy))=D (H) and g(x) €L,(E) and we have made use of the fact
that U* ¢''H=¢"H U* which is a consequence of (11.6). In view of (11.7) and
(11.8), we obtain : ‘

(119 UFW_[g)= (U2 1.9+ lim i f @ U Vg g
The integrand of (11.9) is calculated as follows:
(¢tH UXVe=ithef, o) - 1.{ e”fk!'(Uj Ve itHo 1) (k) 8o (k) d
= o Vet He )" (k) go () Ak
=J (Ve ETE (k) g (k) dr
= @A) L[ BT gta) 40 () 3] o b,

(11.10)

where 1.i.m. is not needed before [, because q:’(x k) is bounded in x, g{ )GLz(E)
and (¢~ f) (x) €Ly (E). M

Returning to (11.9), the limit for £— — oo of the #-integral can be replaced
by the Abelian limit, 7.e.

im f (ettH., U* Ve—th.,f g) dt = hm f et ttH,, U* Ve"“”"f g)

{—-—00g

since the existence of the ordinary limit is known. Then (11.9) and {11.10) give

* — ([T* T
(UZW_f g = (UZ f»g)+72n—)glelf%6[3 dtX

X [ | [ T g(x) e 1 (3) x| BT .
M LE

If we assume here that g, (k) € C3°(M)’, then we can interéhangé the - and k-
integrations, for ¢(x, k) is bounded for x€E and k¢ D=carrier of ,(&) (see

Theorem 3) while .
J1a@le (] < g ).

(UXW_1,6) = (U2 },0) + 55 im [ ZoB dk [ (o= CHio f F, b)) at
M °
where we have put

Fx, /)= (x, k) q‘(x) € Zz (E) (for each %ixed REM).
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Hence
(U*W_ (0= U2 fg)— L dim [ 2B dkx
(2m)t £lo,
M
% lim ([e—it(H.w(lk:z_ie)) _ 1} Rorlkl*ﬂ'f 7, F(., k)) ,
(11.11) o

=g+ 0 [ ) (Ro sl FCB)
a7} A./I

=g+t [ R e B g0) B k.
M

Here we further assume that f{x) € C(E) (D (H,). Now the function

(Ro s ie ¢ (1 R) g () (%) = 41n' -T;:x%,yi—qu(y)w(y, kydy
=— (LolR) ()  (e=VkE+ie)

converges to
ikjlx—y]
e e R dy = — (Tye( ) (1

4an | [x—y|
E

as €40 uniformly with respect to x€E and % contained in the compact carrier
of g,(k) by virtue of Theorem 3 and Lemma 4.6. Thus the convergence of the
integrand of (11.11) for &} 0 is uniform, and we can interchange lim and f .dk
so as to obtain elo

¥ i1k} {2 —y|
TEWT8) =070+ fgo dkf/ flx a0l d

-—~-fgo<k dkff(x

=i f 2o (k) dk f et fmdx  (by (6.2))

ﬂk.ix 9
xk+ flx ST gy ey, k) dy|dx

(11.12)

—ffo ) go(R) Ak =7,0).-

CP(M)’ is dense in L, (M), and hence the totality of such g(x) that g, (%) € Cg°(M)’
is dense in L,(E). C{(E) is of course dense in L,(E). We can, therefore, obtain
from (11.12) the following relation:

(11.13) U*W_=1.

If we operate with U_ on both sides of (11.13) and take account of (10.2) and
(11.5), we get

11.14) U =U_U*W_=PW_=W_
and, on substituting this relation into (11.13),

(11.15) S UrU. =W*W._ =1
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The relations (11.5) and (11.15) show that the operator U_ is an isometric operator
with domain D (U_)=L,(E) and range R (U_)= P L,(E)%. Quite a similar result
follows for U, and W, . Thus we can see that S=W¥ W_=U¥ U_ and S is unitary.
Now the proof of Theorem 7 is complete.

In connection with eigenfunction expansion it remains to prove that the
isometric operator Z is unitary, to characterize the domain of H, and to establish
the unitary equivalence between the part of H in PL,(E) and H,. To these
ends we shall define the operators Y and Z’ by

(Y1) (k) = fo () (from Ly(E) onto Ly(M));
(Z']) (%) = (2m) ¥ Lim. [ @(x, k) f(R)dk  (from L,(M) into L,(E)).
M

Then we have U_=2'Y and U*=Y1Z, and we have

(11.16) I=U*U_=Y2Z2'Y, ZZ'=YYi=IW,
On the other hand (8.3), (8.4) and (8.5) imply that-
(11.17) P=22Z

(11.16) and (11.17) show that Z is a unitary operator from PL,(E) onto L, (M),
and that Z’'=2Z*, the adjoint operator of Z (Z* is a unitary operator from L, (M)
onto PL,(E)).

Now it follows from (8.6} that
(ZPH{) (k)= |k} f(

and it is known that H, represents the operation of multiplying by |k[2 in L, (M).
Thus we have proved iv) of Theorem 5.

Finally let us prove the first assertion of Theorem 5, v). Since the necessity
is obvious from the diagonal representation (8.6) of H, it remains to show the
sufficiency. We see from the unitarity of Z and (8.6} that if F(k) € L,(M) and
JR|2F (k) €L, (M) then Z*F(x) € PD(H) (D (H). Thus we need only to prove that
for any sequence F, such that X} |F,[2<< oo and } ui|F,[*< oo, Lim. 3 F, ¢,€
E,D(H)CD(H). But this follows easily from (8.6) and the fact that the corre-
spondence between E(L,(E) and /,%, which assigns every f€E,L,(E) to f;Elz,
is one-to-one and isometric, where /, denotes the Hilbert space of all sequences
{F,} such that } |F,[2<< co.

IV. Concluding remarks

§12. ngher-d:mensmnal and two-dimensional cases. Our theory, which has
so far been developed for the 3-dimensional Schroedinger operator, cannot be
extended directly to the case of higher dimension. One of the main difficulties
is that Theorems 1 and 2, which serve as a bridge between the resolvent R, and
. the kernel G(x, y; 4), fail to hold, because the kernel G(x, ¥; 4), even though
it exists, is not of the Carleman type in the case of more than three dimensions.

3 R(A) means the range of 4.

8 ]’ denotes the identity operator in L, (M). :

4 If the dimension m of E,L,(E) is finite then /, is the totality of finite sequences
of length mz.
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A remedy for it has been suggested by GARDING [9]; it is to consider the operator
(H'—2)7, where ¢ is a certain positive integer, instead of R,=(H — A)1. The
operator (H‘— )71 is, in fact, known to have a kernel of the Carleman type.
Of course, this will require many an alteration in the details of our theory.

On the contrary, in the 2-dimensional case our theory suffers no essential
madification, for then the resolvent kernels can be shown to be of the Carleman
type. But it should be remarked that results for the 2-dimensional case do not
follow as special cases from the 3-dimensional treatment, because the potential
function ¢(x), which diminishes at infinity in the 2-dimensional Euclidian space
E?, does not always diminishes at infinity in E= E3, which is an extension of
E. The conditions imposed upon g (x) are to be replaced by

(A') q(x) is a real-valued function which is locally Hoelder continuous except
at a finite number of singularities. Furthermove, q(x) is square integrable
(¢(x) EL,(E?)) and behaves like O (x|~ (h>0) at infinity, i.e. there exist
positive numbers h, Cy and Ry such that

lg(2)| < Colx| 72" for |x|=R,.

Not all the details of the theory need be modified if we replace the function
(47|x — y|)Le'*1*=9, which is the resolvent kernel of Ry,s, by® 2iH® (x[x — y),
where H{!) denotes the Hankel function of first kind of order 0.

In concluding we remark that if we had assumed in addition to (A) that
g(x) € L, (E) or more explicitly ¢(#) =0 (|x|~>~*) at infinity (in the 3-dimensional
case), our arguments could have been much simplified.

Acknowledgement. The writer wishes to express his sincere thanks to Professor
T. KaTo for his unceasing encouragement and valuable instruction.
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