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I n t r o d u c t i o n  

I n  t h e  p r e s e n t  p a p e r  we sha l l  be  concerner  w i t h  e i g e n f u n c t i o n  e x p a n s i o n s  
a s soc ia t ed  w i t h  t h e  Sch roed inge r  o p e r a t o r  - - A + q ( x ) ,  whe re  ~] d e n o t e s  t h e  
3 -d imens iona l  L a p l a c i a n  a n d  q (z) is a r e a l - v a l u e d  p o t e n t i a l  f u n c t i o n - d e f i n e d  on 
t h e  whole  3 -d imens iona l  E u c l i d e a n  space  E = E  s, which  t ends  to  0 a t  i n f i n i t y :  
So lv ing  t h e  e x p a n s i o n  p rob lem,  we  go fo.rward to  a p p l y  t h e  r e su l t s  o b t a i n e d  to  
c la r i fy  s o m e  p rope r t i e s  of t he  s p e c t r u m  of t he  S c h r o e d i n g e r  o p e r a t o r  a n d  to  
s h o w  t h e  u n i t a r y  c h a r a c t e r  o f  t he  S - m a t r i x  t h a t  p l a y s  a n  i m p o r t a n t  p a r t  in 
desc r ib ing  t h e  s c a t t e r i n g  process  in q u a n t u m  mechan i c s .  
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2 T E R U O  I K F . B F .  : 

So far as ordinary differential equations are concerned, the eigenfunction 
expansion theory that originated from a study of WEYL [361 has been developed 
to a satisfactory extent by the efforts of STONE [8I!, TITCUMAI~SH [3g~, KOD:IRA 
[193, YOSIDA I381, }{REIN, LEVITAN and others 1 

As for partial differential equations, however, it seems that no complete 
theory, comparable with the one for ordinary differential equations, has been 
presented. One of the main difficulties appears to consist in the presence of 
infinite multiplicities of the spectrum, which is not the case with ordinary differ- 
ential equations. 

In t934 CARLEMAN [63 studied the Schroedinger operator in E under the 
assumption that  q(x) is locally square integrable, and obtained the following 
result : If  the unique self-adjoint extension of the operator --zl  +q(x)  exists, 
then there exist functions #(x, Y;t*), called spectral/unctions, such that for any 
/ (x) C L2 (E) the expansion formula 

oo 

(t) /(x) = f d,,f tg(x, y; ~) l(y) dy 
- - 0 0  E 

holds, where the formal derivatives with respect to /x of O(x, y; ~) satisfy the 
Schroedinger equation 

(2) - A q~ + q ( x ) q~ - -  ~, q~ 

as functions of x and also of y. The same problem was investigated also by  
TITCHMARSH, mainly in the 2-dimensional case ~. POVZNER [98] extended CARLE- 
MAX'S result to every self-adjoint extension of the operator - -A+q(x)  and, 
moreover, using the Radon-Nikodym theorem, proved the existence of the 
spectral density ~ (/x), b.y which ~9 (x, y; ix) can be represented as 

d . e (x ,  y; ~,) = ~o(x, y; ~) d~(e) . .  
Thus (t) reduces to 

oo 

(3) /(x) = f de(l~ ) f vd(x, y" l~) l(y) dy, 
~ 0 o  E 

where ~o(x, y;t~) serve as eigenfunctions, i.e. they satisfy (2) as functions of x 
and also of y. But these eigenfunctions are not separated in the form of linear 
combinations of the products of the eigenfunctions of one space-variable, whereas 
this is the case with the ordinary differential equations. Such a separation of 
~o(x, y;/~) was effected by  MAUTNER [91] and G•RDING [9] in the form 

oo2vu 
(4) /(x) = f s %(x,/~) do(/~ ) f yJ,(y,l~) [(y) dy, 

- - o o  v = l  E 

where ~o, (x, i~) are eigenfunctions (N~ N ~) .  

Other approaches to eigenfunction expansions connected with more general 
partial  differential operators were made by MAtJTNER [21], GARDING [9], BROW- 
DER [2, 3, g], GEL'FAND and KOSTYOCHENKO [10], BEREZANSKI [1], FLEKSER [8; 
and ITO [13]. :Their results can be summed up in the form (4) in the case of 
the Schroedinger operator in E. 

1 See TITCHMARStt [34, aa],  NAIMARK [27] and the references cited in these books. 
See [85]. I t  is also abundant in references Up to about 1956. 
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We should remark  here tha t  these authors  have  not specified the eigen- 
functions needed for expansion.  In  other  words, a prescript ion is want ing for 
the conditions under  which we should solve (2) in order to obta in  the eigenfunctions 
~o v (x, if) in question. Another  point  to be noted is tha t  in (4) a countable  number  
of eigenfunctions associated with a given spec-tval point  are used, while a con- 
t inuous family  of such functions is also known to exist in simple examples.  

We shall consider the case where q(x) tends to 0 at  infinity. More precisely, 
we assume tha t  q(x) is Hoelder  cont inuous except  for a finite n u m b e r  of singu- 
larities, is square . in tegrab le  and behaves  like 0([x1-2-h)  (h>0)  as [x[-+o~.  
Many an impor t an t  problem of potent ia l  sca~'tering is included in this case. 
Now we can find bounded  solutions .9 (x, k) o"f the Schroedinger equat ion (2) 
for i f > 0 ,  where k denotes a 3-dimensional wave vector such tha t  lk l~=ff ,  as 
unique solutions of the integral  equation,  

.~. 1 f e i IkE I-~-yl 
(5) 9(x ,  k) : eik" --  -4n J - ] ~ - •  {,]- q(x) ~(y,  k ) d y ,  

E 

k .  x denoting the scalar product  of k and x. ~(x,  k) represents  the distorted 
pla**e wave, i.e. the plane wave  plus the outgoing scat tered wave. On the other  
hand,  in case of negat ive  #, (2) is solvable only for par t icular  values of if, called 
eigenvalues, which we denote b y  p,, ( n = t ,  2 . . . .  ). The associated solutions 
9,, (x )CL 2 (E) are called eigenvectors, to be dist inguished from the eigenfunctions 

(x, k)a. Here we agree to count  if,, as m a n y  t imes as its mul t ip l ic i ty  if if,, is 
degenerate.  The 9,,(x) can be regarded as forming an or thonormal  system.  In  
te rms of the eigenfunctions ~(x,  k) and the eigenvectors 9 , (x)  our expansion 
formula  4 reads:  

(6) I (x) = ( ~ ) ,  ~ --~ f ,~  (.,-, k) [(k) d k + E L, q*,, (x), 
M n ~ 1 

where 

/(k)=(2~)-~f ~(x,t,.)t(x)dx, [ ,= f  ,f,,(~)l(x)dx 
E E 

and M is the 3-dimensional space formed by  vectors  k, which is not  essentially 
different from E. Formula  (6) is a na tura l  generalization of the ordinary  Fourier  
expansion, whereas (4) is not. (6) shows  tha t  the sys tem of functions 9 (x, k) 
and 9,, (x) is complete, but  it will also be shown tha t  these functions form an 
or thonormal  set (in a sense to be specified later). 

Now we ,~hall turn to the problem concerning the S-matrix t ha t  is known 
as a physical  quan t i t y  which governs a scat ter ing process 5. The existence of 
the S-matr ix ,  however,  is not self-evident f rom the ma themat i ca l  point  of view. 
In  order to s tudy  the S-mat r lx  S, it is convienent  to introduce the isometric opera-  
tors W~, called wave operators, b y  W •  lim eitne -itH~ where H and H 0 are, in 

t---~ • oo 

our case, - - ~ + q ( x )  and - - A  respectively.  S can be defined in terms of W~ 
as S = W *  VV al~d is general ly believed to be uni tary.  

~Ve agree to call ~0(x, k) an eigen/unction belonging to the eigennumber I],.I. 
C/. also SHNOL' [30]. 

4 For more precise expression see Theorem 5 (w 8). 
5 See e.g. MOI.LEa !26]. 

1 "  
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A mathematical formulation of the S-matrix theory has been proposed by 
JAUCH [14] and KURODA E20~. According to their results, the existence and the 
unitary character of S will be cleared up if we prove the existence ofW• and 
that  W~ have one and the same range. The existence problem of the wave opera- 
tors has been investigated by COOK [7], JAUCH & ZINNES [15] and HACK [71]. 
COOK assumed that q (x) E L, (E). JAUCH & ZINNES treated a spherically symmetric 
potential: q (x) = ix [-c (t < c < ~). HACK considered the case where q (x) is locally 
square integrable and q(x)=O(ix l  -c) ( c> t )  at infinity. No results, however, 
have been reported by them on the unitary property of S. Recently KURODA [201 
has solved both the problems under the. assumption that q(x)ELI(E)~L2(E ). 
We shall give a proof that S is unitary under the conditions stated above; these 
conditions are weaker than KURODA'S assumption in one respect. Our proof 
depends partly on the so-called time-dependent theory and partly on the eigen- 
function expansion. 

We shall outline here the contents of the present paper. In I (w167 1, 2, 3, 4 
and 5) we give some relations between the resolvent of H and its kernel function, 
whose conjugate Fourier transform is deeply connected with the eigenfunction 
q~(x, k), and introduce the kernel equations and investigate their properties. 
II (w167 6--9) deals with the eigenfunction expansion. w 6 is of a preparatory 
character, where the eigenfunctions q~(x, k), tools for expansion, will be intro- 
duced. In w 7 we shall comment on some properties of the spectrum of the 
Schroedinger operator and prove that the negative part of the spectrum consists 
only of discrete eigenvalues. In w167 8 and 9 we shall state the expansion theorem 
with a partial proof thereof and show the absolute continuity of the positive 
part of the spectrum. In I I I  (w167 t0 and 11) we shall show that S-matrix is 
ani tary and a t  the same time complete the proof of the expansion theorem 
given in w 8. IV is reserved for remarks on the 2-dimensional and higher- 
dimensional cases. 

I. Reso lvent  kernel  

w 1. Assumptions. The resolvent kernel. We shall consider the Schroedinger 
operator - -A +q(x)  with the potential function q (x) defined on E = E  3, where 
x denotes a position vector in E, its length being Ix/. Throughout the present 
paper q (x) is assumed to satisfy the following conditions: 

(A) q(x) is a real-valued /unction which is locally Hoelder continuous except 
at a finite number o/ singularities. Furthermore, q( x) is square integrable (q( x) E L2(E) ) 
and behaves like 0 (Ix/-2-h) (h>0)  at infinity, i.e. there exist positive numbers h, 
C o and R o such that 

lq(x)l~_eolxl -~-~ /or Ixl_>_Ro. 

Let us first define the operator A by A / (x) = -- A / (x) + q (x) / (x) for ! E C~~ 
where C~~ consists of all functions which are infinitely differentiable and 
have compact carriers. C~(E) is contained and dense in the Hilbert space L~ (E) 
in-the sense~of the Lz-norm I] ]] (]] ]] will be used exclusively for the L2-norm ). 
Then it is known 6 that, under the conditions (A) imposed on q(x), A is lower 
semi-bounded and essentially self-adjoint in L~(E). Moreover, if we denote by 

6 See KATO E16], STUMMEL [3Z] and WIENHOLTS [37]. Our conditions (A) are 
more stringent than requirod for essential self-adjointness. 



Expansions  for the Theory  of Scat ter ing 5 

H the  u n i q u e  se l f -ad jo in t  ex t ens ion  of A a n d  b y  H 0 t he  co r r e spond ing  ope ra to r  
for the  case q ( x ) ~  0, t h e n  i t  is k n o w n  ~ t h a t  D ( H ) =  D (H0). 

W e  shal l  s t u d y  the  re so lven t  R a =  ( H - - 2 )  -1 of H a n d  i ts  ke rne l  G (X, y ;  2) 
for non - r ea l  2; l a te r  th is  ke rne l  will  be  e x t e n d e d  to  real  2 ou t s ide  t he  po in t  
s p e c t r u m  of H.  The  m a i n  resu l t s  are s u m m a r i z e d  in  

T h e o r e m  lS. Let I m 2 = ~ : 0 L  i) Ra is an integral operator o[ the Carleman 
type 1~ and its kernel G(x, y; 2), called the resolvent kernel, satisfies the integral 
equation 

e iv~t~-yl 1 [ e ~wl~-'L (!.t) G ( x , y ; 2 )  - -  4 ~ l x - y  ] 4~  a 4 ~ [ x - z [  q(z )G(z 'Y ;2 )dzn  
E 

as a ]unction o] x a.e. 1. in E /or a.e. fixed yEE.  ii) I[ F(x, y; 2) is a solution 
o/ (1..t) such that F(., y; 2.)EL,(E) [or each fixed y, then F(x, y; 4) is the resolvent 
kernel o] Ra: F(x,. y; 2 ) = G ( x ,  y;  2) /or a.e. x~ y in E • 

W e  shal l  call  (t. t)  the  kernel, equation. 
Now let  B be  the  B a n a c h  space of all  c o n t i n u o u s  func t ions  u(x) def ined  

on  E,  t e n d i n g  u n i f o r m l y  to 0 as ] x] -+  ~ ,  w i t h  the  n o r m  

]]u lie = m a x  ]u (x)]. 18 
xEE W e  also p u t  for I m n > O  

- i ~ l x - * [  

A")(x, y; , ) = - -  4~- j ~x--T[ -q(z) A'i-l,(z' y; n) dz, 

(I.2) 
eiX[x-y[ 

A~~ 4 ~ [ x - - y ]  (i---- 1, 2, 3, 4).  

T h e n  we have  the  fol lowing 

T h e o r e m  2. A(O(x, y ; n )  are continuous in x [or x & y  and A(*)(., y ; n ) E B  
(Ira n-->__ 0). Further, let I m  n > 0 and I m  ~* ~= 0. Then there exists a unique solution 
H 14) (x, y; n) in B o] the modified kernel equation 

| ei"lx-zl 
0.3)  H"~(x, y;  u) =A~')(x, y;  u) --  ~f]-_~l-q(z)H<'>(z,~ y;u)dz 

E 

v See KATO U6]. We denote  by  D(T) the  domain  of the operator  T. 
8 For  the proof of Theorem 1, i) it  suffices to assume only  t h a t  q(x)EL2(E ). 
9 Im ;t means  the imaginary  pa r t  of 2. 

a0 An integral  operator  T as well as its kernel  T(x, y) is said to be of the Carleman 
type  if T(x, y) satisfies the condit ions f l Z(x, y) l*dy < oo for a.e. x and  f[ T(x, y) l*dx < oo 

E E 

(or a . e . y .  See also STONE [31]. POVZNER [28] showed tha t  if q (x) is cont inuous  
on E,  then  the resolvent  R a of every self-adjoint  extension of A is of the Car leman 
type. This result  was extended b y  BURNAT [8] SO as to include the case where q (x) 
has a countable  n u m b e r  of singularit ies xn, in the  neighbourhoods of which 

q(x)=O(lx--  x,l -c") (cn<{). 
n Here a n d  in the sequel by  ]/2 is m e a n t  the b ranch  of the square root  of ;t with 

I m  ]/-;t > O. 
2 ,,a.e.,,. means  "almost every"  or "almost everywhere".  

is Our Banach  space is somewhat- different  from the  one in t roduced b y  POVZN~R 
[28]. He tlsed the Ban~tch space By (y being fixed) of all functions u (x) ---- a Ix --  y 1-1 + 
v (x), where a is a cons t an t  and  v (x) as cont inuous  and  tends  un i formly  to 0 as Ix[ -~ oo, 
with the norm IlullB, = l al + m a x  Iv (x)[. C[. also BURNAT [a]. 

xEE 



6 TERUO I K E B E :  

/or each fixed y E E. I[ we put 

3 

(1.4) H(x, y; ~) -= ~, A(O (x, y; x) + H (a) (x, y; ~), 
i=0  

the*~ H(x, y; ~r -~ G (x, y; x 2) /or a.e. x, y in E • E and, moreover, 

0.5) lie(-, y; c ,  

where C is a constant dependent on ~ but not on y C E. 

As a consequence of Theorem 2, we can regard the resolvent kernel G (x, y; ;t) = 
H(x, y; V ~) as a function of x defined everywhere in E except at x = y  for each 
fixed y. 

w Proof  of Theorem 1. The kernel  equation.  Let us first show that  Rx 
is an integral operator of the Carleman type. Denoting by  R0~ the resolvent 
of H o and by  V the operator of multiplication by  q (x), we have the following 
operator equations (the so-called second resolvent equations 14) in virtue of the 
relation D (H) ---- D (H0) : 

(2A) Ra -- Rox = -- Roa V Rx and R~ -- Rox---- -- Rx V Ro~. 

Rod is known to be an integral operator of the Carleman type with the kernel 
(4z~fx--y]) -1 eiV~rx-yl. Let us put V ~ = a + i b  (b>0).  Then we have 

2 e-2blx-yl c f lq(x)12dx f dy=Cllqll2; .._ff ,(x) 4 l,-yl dxdy= I , - y l  ~ 
E E  E E 

here and henceforth we denote by C ,any  constant, not necessarily the same 
(C in the second member of the above equality is a pure constant and C in the 
third depends on b). This implies that  VRoa is a completely continuous operator 
of the Hilbert-Schmidt type. Ra being a bounded operator, R~VRoa is also of 
the Hilbert-Schmidt type and should be an integral operator with a Hilbert- 
Schmidt kernel 15, say K(x, y; ~). Thus we have 

R~ VRo ~ / (x) = f K(x, y; 4) / (y) d y a.e., 
E 

where 
f . f  IK(x, y; ~) t~d~dy  < oo. 

E E  

Since R0a and R~ VRo~, a/ortiori by the above argument, are of the Carleman 
type, we see from (2A) that  R~ is of the same type, too, and is representable as 

(2.2) Ra / (x) = f G (x, y; ,~) / (y) d y a.e. 
E 

by means of the resolvent kernel G (x, y; ~), where 

f ] G ( x , y ; i ) ] 2 d y < o o  f o r a . e . x ,  f i G ( x , y ; ~ ) ] 2 d x < o o  f o r a . e . y .  
E E 

14 See HILLE & PHILLIPS ~J2J, p. 126. 
~s-See e.g. RIESZ & NAGY [29], Chapter VI. 
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Let  us proceed to the ,deduc t ion  of (t . t) .  For  any / (x)CL,(E)  we obtain 
from (2.t) and (2.2) the equation 

ei~2lx-yl /(y)ay - 

(2.3) E E 

f f :"-" 1 G(x,z;a)q(z)dz  / ( y )dy  a.e. 
- -  - ~  . ] z - y l  

E E 

By repeated use. of SCHWARZ'S inequali ty we have 

eilZj*-Yl /(y) dy<= CIlG(x, 2) l t ] l q [ ] ] l / [ ]<  ~ flc(x,.;z)q(z)ldzf[ .. 

1:2 E 

for a . e . x .  We can, therefore, interchange the order of integrat ion in the last 
term of (2.3) b y  FUBINI'S theorem. In  view of the arbitrariness of /EL2(E), 
it follows tha t  

ei}:']x-Y] f G(x, y; 2)= 1 G(x,z; a) q(z] eil:)':z-Y] dz 
4 ~ z [ x - - y  I 4~r [a--y I 

E 

for a.e. y with a.e. .f ixed x. By  use of Lemma 1.t just  below we can replace 
G(x, y; a) by  G(y, x; ),) and g(x, z; 2) by-G(z,  x; 2) and, on interchanging x 
and y, we obtain (t.1). Thus we have proved i) of Theorem t. 

L e m m a  2.1. G(x, y; a) is symmetric in x and y: 

(2.4) G ( x , y ; ) , ) = G ( y , x ; a )  /ora.e. x, y in E x E .  

Proo/. Let  us introduce an indefinite " inner  p roduc t "  ( , )  !n L,(E) by  
(/, g ) =  f / ( x )g (x )=( / ,  ~). Then what  we have to show is tha t  R a is symmetr ic  

E 
with respect to this inner product ,  i.e. (R  a/, g) = ([, Rag). For  this purpose it 
suffices to show tha t  (HI,  g ) = ( / ,  Hg).  But this is obvious, since we nave 

(HI,  g) = (Hot, g) + (V t ,  g) = (Hol, ~) + </, Vg)  = (1, H o g) + (1, Vg)  --,= (/, Hog > 
+ (/, Vg)  = (1, Hg),  noting that  Ho is a real operator  and tha t  V is an operator  
of mult iplying by  q (x). 

Let  us now prove ii) of Theorem I. To this end consider the difference 
/ ( x )=F(x ,  y; a)--G(x,  y; 2) which is by  assumption in L~(E) (for a.e. fixed y) 
and satisfies the equation 

1 f eil::'[x7~l 
(2.5) / ( x ) = - -  4 = .  ix_z  ] q(z)/(z)dz a.e. 

v 

The kernel (4 az I x --  z I)-1 e il:a I*-*t q (z) is of t h e  Hilbert- Schmidt  type  (see above) 
and hence defines a comPletely continuous operator  T, which is an extension 
of Ro~.V. Therefore, we can rewrite (2.5) in the form 

(2.6) I = --  T t or / = (-- T)'~/ (n = t, 2 . . . .  ), 

where T" are also integral Operators of the Hilber t -Schmidt  type. .  Consequently 
we have, noting (t.2), 

/ ( x )  = - (., l / a )  q t d a .  
E 
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The function Ai~>(x, z, V:t) is bounded in x and z, as will be shown in Lemma 2.2 
tha t  follows. This fact together with SCHWARZ'S inequali ty gives 

Thus /(x) 
a s  

(2.7) 

[ / (x) [ <= C f Iq (z) / (z) l dz <= C Ilqll II/ll. 
E 

is bounded and hence V/CL2(E), which permits us to rewrite (2.6) 

/ = - -  Roa V/ED(Ho). 

Application of H o --  3  ̀to both sides of (2.7) yields 

(2.8) (H o - 3 ` ) / = - v /  or HI=3`/ .  

Since H is self-adjoint and 3  ̀ is non-real, we have /=0, which proves ii) of 
Theorem I. 

L e m m a  2.2. I/  Iron=>0, then A(31(x, y;  x) and AC41(x, y; n) are bounded in 
x, y and n. 

Pro@ Let  us show first tha t  A f Z ) ( x , y ; n ) = 0 ( I x - - y [ 4 ) .  By  means of 
SCHWARZ'S inequali ty we have for [ x - -  y I =  ~ :> 0 

dz 
IA,(x ' y; g)[2<= c f It qr: = c/o 

E 

in consideration of homogenei ty  of the above integral in x -  y. Thus we have 

12.9) ]AI1)(x, y; z)[ N C Ix --  y [ - ' ,  

where C depends neither on x, y nor on z. 

Next  we show tha t  A (2/(x, y; ~) =9 (I log Ix --  y][). We have 

[A~2)(x, y; ~)[ <C [ f-!q(z)i lAin(z, + f ) = J y ; x ) l d z  = j + j ' .  
\ K (Ro) ( ' 

Here and in the sequal K(x, R) denotes the sphere of radius R with its centre 
at  x(K~R)=K(o, R)) and K(x, R) '=E--K(x ,  R) the exterior of K R. (For R o 
see (A) of w We also denote by  K(R)~K(R1) the intersection of K(R) and 
K(RI). We shall now estimate J' as follows: B y  (2.9) and (A) we get 

( /  f ) , ,  ]'~ C [zla+,lx_zl[y_~l~ + =Jl+J;.. 
' j K(Ro) , ~ K ( y  1) K(Ro)'--K(y, 1) 

An estimation .of J~ is 
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For  J~ we have,  introducing spherical coordinates, 
oo  75 

J~ < C f . . . .  dz- . . . . . .  C f f . . . . . . . .  r=sin-O--df-d-O~ . . . . . .  
= d Id=+hl,_~ :J ,=+h(l,l=+:_21,]~cos @ 

K(Ro }, i Ro 0 

oo 

= c ix l -~:,-~-,,(t~1 + ~-}1~1 - , I )  d~. 
R,  

If ] x I ~ Ro and x @ 0, we obtain 
oo  

]~ <-- C f r-X-hdr~ C; 
Ro 

the case x = 0  can be dealt  with separately,  and a similar result follows. 
Ixl > R o  t,t = 

]6 <= C Ixl-l f r-hd, + C Ixl-a flxlr-'-hdr<= C. 
Ro Ixl 

Thus ]~ is always bounded;  hence so is J ' .  

Now we have to est imate J :  

j , ~ c f  dr Iq(z) l'd~ 
I*-,1~ ly - r l  j 

K(Ro} K(Ro) 

= c  i . _ r l = l y _ ,  1 + =J,+J~ (d--- I x -  yf}, 
K(R.)  t% K(x ,  ~312) K(Ro) - -K(x ,  r 

I f  

f dz <C. 

If 0 > k ,  we have for f~ 

dr 
L_<- cf_l._.l=I,_rl 

K(Ro) 
 _cf f i x _ z l ~  + C  - -  + C  d z < C .  - -  b y _ r l  = 

K(., t) K(y, D K(Ro) 

If 6 <  } ,  we first assume that  l x] >_-- R 0 +  I. Then 

L < c ~ f i~v-!~i dz < C. 
K(Ro) 

For I x l <  Ro+  t, on translating the origin, we have 

R o + l  

d z L=<c f !.[,I._,_:l 
' K(ORo+I)--K(O/Z) 

Thus we get 
IA~(x,y;x)l~C if I x - - y l ~ - ~ -  

(2.1o) 
<=_C[log[x-y[I if Ix- -y l<�89 

=C& 1 f r-l(r+6--1r--61)dr<=CIlogb I. 
~1"~ 

where C is independent  ot x, y and • 
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Now we shall show tha t  A(3)(x, y; • is bounded.  We have from (2.t0) 

]A(~)(x,y;~)[<--C_ f -ix~[q(z)i log ]z- -  y !]'az~t~--'~ Jfx-~lflq(z)l dz--L+L'.-- 
K(y, ~) K(y, ~)' 

L and L' can be, es t imated as follows: 

_ < r~_4 , dz Iq(z)l~d~ C, 
K(y, ~) K(y, ,~) 

f fl : '-;  +"--, L ' ~  c _  ix_~ I t a 1--~1 
E K(R0) K(Ro) " 

La<~C ix_st ,  q(z)l'dz <=C, 
K(Ro) K(Ro) 

L~ =< C f - -  d~ ___  < C. (See J2' above.) 

These es t imates  show tha t  

(2.1t) IA(8)( x, Y; u)l--< C, 

where C is independent  of x, y and ~r 

F rom (2.t t) and the es t imat ion performed for L '  we get 

(2.i2) IA(4)( x, Y; z)]--< C, 

C being independent  of x, y - a n d  n, (2.11) and (2.t2) prove the assertion of 
L e m m a  2.2. 

The  following l emma will be needed for the proof of Theorem 2 tha t  we 
shall give in w 5. 

L e m m a  2.3. I /  I m p > 0 ,  then IIA(')( ., y; x)]] <_C (i=o, t, 2, 3, 4), where C 
depends on ~r but not on y. 

Proot. I t  is easily seen tha t  IIA(0)(., y; ~)11 __<c, where C does not depend 
on y. We assume tha t  this is the case for A(') (., y; x) and prove tha t  the assertion 
is t rue for A(i+l)( ., y;  ~). 

Using the opera tor  T defined before (see (2.8) and (2,9)), we have A (i+ a)(., y ;u )  
= TA (il (., y; x), whence follows 

(2.t3) ]] A('~ ')( ,  y; ,:)ll < CllA")(-, Y; ~)11 =< c 

in view of the boundedness  of T. 

, f e i ' ~ l ' ~ - u l  w Asymptot i c  behavior  of tho func t ion  - -~-~-  I~-y------7-I,(y)dy. In 
F~ 

order to solve the kernel and modified kernel equations,  we shall s tudy  some 
asympto t i c  propert ies  of functions of the form 

1 f e i'l~-yl 
g,(x) = -  4 z r  i;-yl v(y)dy ( I m u > 0 ) .  

E 
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L e m m a  3.1. Let I m  ~ 0 ,  let v (x) be locally integrable and v (x)=O(Ix1-2-") 
( ix]-+oo) ( e > 0 ) .  Then as I x l -+oo  

(3 . t )  ~ (x) = o (I x I-~) + o (I x I - ~). 

Pro@ Let  R be  such t ha t  Iv(~)l--<--Clxl -~-~ for I~1 >__R, I f  [x} > R  we have  

1 F e i~lx-yl f 
q)(x)-- 4z~ i ~ - v ( y ) ~ . y - -  ! = I + I "  

K ( R )  K(R)"  

f -jv{y)l ~ f  r~sin*gdrdO l I , l ~ C  = .1 ~-~yy[ d y d C ~  ~ r2+*(Ixl2+r2-21xlrc~ , 
K(R)"  R 0 

oo 

= C [x[-l f r - l - ~ (  txl + r --  i lxl --  r l )  d r =  C l xl-x + C l xl -~. 
R 

In  order to give an es t imate  for I ,  it suffices to note  tha t  v (x) is i t i tegrable over  
K(R) and tha t  I x - - Y l  >= I x l - - R .  Then  we have  I=O(lxl-X).  By  pu t t ing  I and  
I '  together,  (3.1) follows. 

L e m m a  3.2 le. Let v(x)=O(lx[  -3-*) (Ix[-+ oo) (e>O),  v(x) CL2(E ) and let 
~ =  a be real. Then we have 

e~ ~ I'~1 f (}.2) 9(x) =- ---4~-I~ 1 e - ~ " ~ " v ( y ) d y + O ( I x I  -~-~/z) +O(lxl-m), 
E 

where oJ, denotes the unit vector with the direction o[ x and m,.  y denotes the scalar 
product o[ (,~ and y. 

Proof. L e t  R 1 be fixed so tha t  lv(x)i <Clx l  -~--~ for Ixl __>R~ and let Ixl be 
so large tha t  [x[~ = R > R  a. Then we have  

' ( !  ...... ' r) (~f3) q~(x) -- 4n [x~_-),l-v(y)dy + . = I + I'. 
K K(R)"  

An a rgumen t  similar to the one used in proving L e m m a  3.t gives 

Iz']=<Cix]-'R-~-i Clx l - '  . . . .  cl~l-' ~J~+clxl - '- '- 

We proceed to es t imate  I .  Considering l y ] <  R we have 

y~.  ! 
e~,E~-yl = e'"!*:[ t -  (,,,~. L~i) ~,,,! (~l=O(lYl/lx[)2),  

I x .  Y[-I = Ix]- l ] l - ,~  (~ " I ~ 1 ) +  'h  ('~2=O(lYl/Ixl)~), 

and hence 

- -  ~12 e i , , l a . - y l @  | ' e ialx-yllx~_yl _ ]xIl ei,l,i ........ .ys,,,l~i,i,.~_ Ixl ixl~O,x.ye,,Ix-rl 

1, C[. POVZNER [28]. He obtained the result in which the last two terms in (3.2) 

are replaced by O (lxl z+~ ). Our result enables us to proceed along his line without 
assuming that  the potential has the asymptotic  form q (x )=  O (1xl-3.6-% which was 
assumed in [28],together with the continuous differentiability of q (x). 
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T h u s  we h a v e  
e i a Ix I 

I - -  4~1*I 

eiabd 
. f  e-i'~ d y +  4~r]x~- 

E K(R)" 

e i a Ix I 
+ 4 r ~ ] x ~ -  .fe-ia'*'Y(t_ -- e i<~l~) v(y)dy -- 

K(R) 

, f  , f  4r~lx] rl2ei~l*-ylv(y) dy 4~lx t' c%'Ye~<*'-Ylv(y)dy 
K(R) K(R) 

ei"P4 f . . . . . . . .  e-i~"~ d y + I x + I , + I a + I 4 .  
4 ~ l x l  

E 

I i ( i =  1, 2, 3, 4) are e s t i m a t e d  as  follows: 

I I ,  I < C lxl -a  f Iv(y)l  dr < C I x l - a R - ' -  - CJxl-~-'/~, 
K(R)" 

I&l<Clx l  - ' =  ;:-lzlL'x'lv(Y)laY=clxP~(1,,i~, , f IYJ'lv(Y)ldY+ ) 
K(R) K(Rt) (R)-- (R,) 

< c lxt-~ + c I,~I-,R'.-. = 

I&l  < Clx l - ' f  ly l '  iv (y) ldy = 

K(R) 

c >i -~ + c I~I-~R~-~ = 

I& l  < Clxl -~ f lyl lv(y)J dy---- 
K(R) 

<cl~l-o.+Clxl-~R~-~= 

c 1.1 -~ + c Ixl - '- ' :~, 

= -a + f C lx, ( r l f  ' , y , ' , v (y) ,dy  K(~,-lq~.)) 

c Ixl-= + c Ixl -=-*:=, 

Cl,l -= f + f ) 
(K(R1) K(R}--K(Rt) 

c lxl -~ + c Ixl -<~/~ 

I n  these  e s t ima te s  the  c o n s t a n t s  C m a y  or m a y  no t  d e p e n d  on  a, e a n d  v(.).  
(3.2) now follows f rom (3-3) and  the  e s t ima tes  for I a n d  I ' .  

L e m m a  3.3. Let v(x) and rp(x) be as in Lemma 3.2. Then 9(x) satisfies the 
radiation condition m, i.e. 

0~o iaqo] (3.4) lira Ix] , -a , : , -  - -  = O. 
tVl~l  

Fo~ the  proof see POVZNE R [28], Chap te r  I I ,  L e m m a  2. 

L e m m a  3.4. Let rp(x) C B be a solution o/ the integral equation 
/* i a f x - - y ]  

' ! ~-~ -q(yl,(yldy (3.5) ~ ( x )  = -  4 . ~ .  - - :~;] ' 
E 

where a is real. Then 

0.6)  f e .......... q(x) 9 (x )dx=O,  
E 

where t.~ is an arbitrary unit vector. 

x7 There are definit ions of the radiat ion condit ion other  than  the one adopted 
here. See e.g. Mtr~ANKER [22] and Mb>:LLI~R [24]. Here we follow POVZNER [28]. 



Expansions for the Theory of Scattering t 3 

For  the  proof see POVZNER [28], Chapter  I I ,  L e m m a  5. But  it seems necessary 
to add some remarks.  The  proof  relies on L e m m a s  3.2 and 3.3 and on GREEN'S 
formula.  We ma in ta in  t h a t  if 9 (x)CB satisfies (3.5), then  ~ (x) = O ([ x [-1) (] x~[ -+ oo), 
so t ha t  L e m m a s  3.2 and 3.3 m a y  be applied. In  fact q~(x)=O(ixl-1)+O(Ix] -h) 
b y  L e m m a  3-i because q ( x ) =  O (1 x I -  ~- h). Hence repeated  appl icat ion of L e m m a  
%1 to (3-5) furnishes us with the  result  9(x)=O(]x]-l). 

Another  r emark  applies to the use of GREEN'S formula.  An explicit use of 
the  Hoelder  cont inui ty  of q(x) and 9(x)  is made  to obtain  from (3.5) the dif- 
fe ren t ia l ' equa t ion  

(3.7) - -  A 9 (x) + q (x) ~0 (x) = a 2 ~0 (x ) ,  

which holds for x different f rom the singularities of q(x) (Hoelder  cont inui ty  
of 9 (x) follows f rom (3.5) and  the proof  of L e m m a  4.t given b e l o w ) . . W e  app ly  
GREEN'S formula  to 9 and  ~, which also satisfies (3.7), and get 

f (3.8) o =  ( A q ) . ~ - - 9 . A ~ ) d x =  - ~ - - 9 ~  ds 
K(R) S(R) 

where S (R) is the surf'ace of K(R) and n is the outer  normal.  (3.8) is va l id  if 
K(R) con ta ins  no s ingular i ty  of q(x), but  e v e n  if singularities of q(x) exist in 
K(R), it i~ seen to be true. For  we first exclude f rom K(R) the singularities 
which are finite in number ,  and  then  b y  a t imi t ingprocess  we obta in  (3.8) valid for 
K(R), when we note  tha t  ~9/~n as well as ~ / ~ n  is O ([ x - -  x ,  1-�89 (x n : singularit ies " 
of q(x~),.as is' seen f rom differentiat ion of (3.5) under  the integral  sign, so tha t  
the  surface integrals  t aken  around the  s ingulari t ies  are arbi t rar i ly  small. 

The  above  remarks  are enough to get to (3.6), following the proof b y  Povz-  
~ER [28]. 

w 4. Solution of the kernel equation. Let us define an operator T~ for func- 
tions in B by 

4 ~1 f e i~[x-y[ (4.t) T~/(x)-- l~_vl q(y)/(y)~ ~ ( I m n > _ 0 ,  /CB). 
E 

L e m m a  4,1. T, is a bounded linear operator on B to B (Imp>=0).  

Proo/. Let  [C B. Then  q(x)/(x)----O([xl • ( ix]-+ oo), so L e m m a  3.1 shows 
tha t  T~ [(x) -+0 uniformly  as Ix ]-+ oo. 

T,[(x) is bounded  in x. In  fact  we obtain  f rom (4A) 

C [q(Y)t d ITA( )I<- - ll/ll, fTE _y F y. 
E 

The boundedness  i n ' x  of the r ight  m e m b e r  follows f rom the es t imat ion  carried 
out  for L' in the proof of L e m m a  2.2> . . . .  

:~ .'.~ 
Next  we have  to show the c o n t m u ~ y  in x o f  TJ(x), and for this purpose 

we consider the difference 
/ -  B~xlx_y ] "  ei~lx'-yl 1 

T~I (x ) -- TJ (x') = -- -4~ J i ~ ~ q ( y )  l (y )dy - 
(4.2) F. 

' f [  ' ' ] = + :, 4~z ix--y[ " lx ' -y l  
E 
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Considering the inequalities le i~ I.~-Y,_ ei~h~'-yT I <= I~1 Ix- .~ ' f  and 

1 1 Ix- .~ ' f  
--  I x - y ] l * ' - y l  ' 

we can give estimates for J1 and J,2: 

f Iq(y)/(y)l d , IJ, l <  c i x -  x'l . . . .  i~Z~,l Y < - - - - C I I Z l I B X - - x ' I  
I "  

IJ.~l < C l x  - x ' i  I1,% f Iq (3 , ) l  . . . .  d r <  c l l / l l , , I x  - x'l"-', 
= . ! I ~ - y l i * " - y l  " =  

E 

as is seen from the estimations worked out for L '  and A(1)(x, y; ~) in the proof 
of Lemma 2.2. Hence it follows that  

(4.3) T~/(x)--T~/(x ')=O(lx--x ' l  ~) for I x - x ' l - ~ o .  

(4.3) shows tha t  TJ(x) is not  merely continuous, but  also Hoelder continuous 
in x . .  Consequently 1~,] turns out to be an element of B .  This completes the 
proof of the lemma. 

Remark. The proof given above uses only the boundedness of /(x). Thus  
T J  belongs to B and is even Hoelder continuous if / is only bounded. 

Lemrna  4.2. T~ is completely continuous is. 

Pro@ Let In ( n = l ,  2 . . . .  ) be any  sequence in B such that  II/,,]l,_-<l. We 
have to show tha t  we can take out of the se~tuence u,~= 7~/,, a subsequence 
convergent  in the norm of B. 

Re-examining the proof of Lemma 4.1, we find out firstly tha t  [Iu~l[~ are 
u n i f o r m l y  bounded with respect to n, because I[/nll~ < a, and secondly tha t  on 
the same account  the cont inui ty  of u,, (x) is uniform with respect to n. Moreover, 
we see tha t  u,,(x)---~O uniformly in n as Ix]--> oo. Thus u,,(x) are equi-bounded 
and uniformly equi-continuous with respect to n in any  compact  "domain of E. 
On applying the Ascoli-ArzelA theorem to u,(x),  we can choose a subsequence 
u~.(x) conve rg ing  uniformly to a continuous function u(x) in any  compact  
domain. Since u,~.(x)--~O uniformly in n' as [x[-+oo,  u(x) also tends to 0 at 
infiflity, and hence we have ][u,,,--u]]B-+0, which was to be proved. 

We are now in a position to make use of t he  Riesz-Schauder theory of com- 
pletely continuous operators in a Banach space 19. If  T is a completely continuous 
operator  in B, the equation / = g +  T/ is solvable for any .g iven  g•B, if and 
only i f / =  T/ implies tha t  / = 0 .  Thus we have the following 

L e m m a  4.3. Let gCB. Then the integral equation 

1 f eiU[x-YI (Ira > (4.4) / ( x ) = g ( x ) - ~  J-I.--~'l q(y)/(y)dy u= o) 
E 

x8 C[. also POVZNER [28], C h a p t e r  H, L e m m a  3. 
~ See e.g. RtEsz  & NAG'," [2.q], C h a p t e r  VI or YOSIDA [39], w 41. 
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has a unique solution in B i[ and only i] the homogeneous equation 

eiulx--Y] 
(4.5) / (x)- -  I f 4 , ~  i x _ y l ~  q(y)/(y)dy 

E 
has the unique solution ] ( x) ~ O. 

Lemma 4.4. I / u  2 is real and positive, then (4.5) has the unique solution [ (x) = O. 

Proo/. i f  /(x) satisfies (4.5), (3.7) follows from the assumed Hoelder continutiy 
of q (x) and that of [(x), remarked in the proof of Lemma 4.1 (see also the remarks �9 
to Lemma 3.4). On the other hand, Lemmas 3.2 and 3.4 give the asymptotic 
order 

(4.7) l (x) = o (I x 1-1) (I x I ~ oo).  

According to KATO [18], however, any solution of (3.7) subject to the condition 
(4.7) vanishes indentically at least outside a sufficiently large sphere containing 
all the singularities of q (x). Hence the unique continuation theorem for solution 
of an elliptic differential equation 2~ is applied to obtain the result that  / ( x ) =  0 
everywhere. 

Lemma 4.5. Let I m x > 0 .  Then (4.5) has non-trivial solutions in B i~ and 
only i /~2 is an eigenvalue o /H .  In  particular, i/ Im~24:0 in addition, (4.5) has 
only the trivial solution /(x) ~ O. 

Proo/. Let ](x) CB satisfy (4.5). Since q(x) EL~(E), q(x)/(x)  EL2(E ). Then 
from (4.5) we have / =  -- Ro~, V /, which is nothing but  (2.8) with ~.=~2, and 
hence we g e t / =  0 if ~ i s  non-real, in exactly the same way as in w 2. This proves 
the second assertion. 

L e t / ( x )  be a non-trivial solution of (4.5) ( Imp>0) .  Then, as we have seen 
before (the proof of Theorem 1, ii) in w 2), it follows tha t / ,  V/E L~ (E) and H I =  v,~[. 
This proves the necessity of the first assertion. 

Conversely let u 2 be an eigenvalue of H with an eigenvector [ E D (H) ----- D (H0). 
Then V / E L 2 ( E  ) and (4.5) readily follows. Accordingly, by  use of SCHWARZ'S 
inequality, we have 

II(x)l<c l x - y I '  dy .  Iq(y)/(y)12dy ~ C  ( b - - I m p ) ,  
E 

from which and (4.5) we see that  /CB ,  as in the proof of Lemma4. t .  This 
proves the sufficiency. 

Lemma 4.6. T , ( Imu~0)  depends continuously on u; i.e. given any e > 0 ,  
there e ists a a - - a ( , )  such that i!  < a .  

For the proof see POVZNER [~81, Chapter II, Lemma 8. We have adopted a 
norm different from the one used by POVZNER (see footnote t3), but  this makes 
the proof of the present lemma rather simpler, for we have avoided inclusion 
of singular functions in B. 

20 See e.g. MUELLER [2,5].  

21 The norm of an operator T in B is defined by IITlln = sup IITIIIB- 
I I / l ls-1 
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All the bounded operators  on B form a Banach  algebra B,  in which H T,, --  T I[a--> 0 
(n-~-oo) and the existence of T, -t  and T-X~B imply  ][T, - ~ -  T-1][c-+0 22. Tlms 
f rom L e m m a  4.6 follows 

L e m m a  4.7. 1/ • is not a non-positive eigenvalue o/ H, (I -- T~)-I ~ B exists 
and depends continuously on u in the sense o/the norm II II~ 

L e r n m a  4.8. Let D be a compact domain o/the upper x-plane (Imu>=0) such 
that D does not contain the square roots o/the non-positive eigenvalues. Let/~ C B 
be a unique solution o/ 

(4.9) /~-- g~ + T~[~, 

where g~C B is strongly continuous in u C D. 7"hen /~  B is strongly continuous 
in uCD. 

Pro@ Since  /~=  ( I :  T~)-lg, and ( I - -  T~) -1 is uni formly continuous in n E D  
(Lemma 4.7) and also g~ is b y  assumpt ion  s t rongly continuous in u, the assertion 
follows immedia te ly .  

w 5. P roo f  of T h e o r e m  2. We shall show fii-st tha t  A(i)(x, y; u) are continuous 
in x unless x =  y. B y  definit ion we have for i = 0 ,  I, 2, 3 

AIi+ll(x, y" u) -- AI~-ll(x', y; u) 

__ 1 f e i ~ l x - Z I - - e  i'~Ix'-zl 
- - 4~ a I'~--~1 -q(z)AIi; fz 'Y;•)dz--  

E 

_ t f [  I , ]ei~b.,_Zlq(z)A(i)(z, y . ~ ) d z  

E 

=Z+J2" 

Proceeding as in the proof of L e m m a  4A, we arr ive at  the following inequalities 
for J1 and J2: 

x, l f Iq(z)A (') (z, y; '~)l I j l l < C l x -  dz, 
J lx-~l 

E 

IJ~l<cl~_~,l f Iq(z)AI"(z,y; ~11 dz. 
= , I  I~ -~ i  I~'-~1 

E 

Since A(O(z, y; ~) are bounded  in z outside .some sphere with its centre  at  y, 
as is seen in the proof  of L e m m a  2.2, we get 

f Iq(z)l dz C lx -  u)ldz, IZl<-_Clx-~'l j T ~  + x'l f lq(~)A("(z,y; 
K(x, ~5) K(x, ~5)' 

lq(z)[ dz + I1,l_-<cj -x'l f ixJ 1'(2!-zr f I-- tix'- J 
K(x, ~5) K(x', rl) 

+clx-x,i f Iq(z) A(il(z,y;~)ldz, 
K(x, 6)" C7 K(x', ~l)" 

~2 See any book on Banach algebras, e.g. HILLE & PHILLIPS [12] and YOSlDA [39]. 
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where we have chosen 8 and ~ so that  K(x,  6) and K(x' ,  ~) do not contain the 
point y. Then from the estimations in the proofs of Lemmas 2.3 and 4,t we 
obtain by SCHWARZ'S inequality 

I]11 < Clx-  x'l + CIx- x'l Ilqll IIA(')(., y; ")11, 

I Jil  <= c I x -  x'l~ + c I x -  x'l~+ CIx- x'l l lqll  I!A('I(', y; n)ll ' 

which prove the asserted continuity of A I~l (x, y; ~) (i = t, 2, 3,4), while A (~ (x, y; k) 
is obviously continuous in x for x =4= y. 

That  A(4)(., y; x ) E B  follows from (2.tt) and the remark after Lemma 4.t. 

The above facts together with Lemmas 4.3 and 4.5 show that  a unique solution 
H (4) (x, y; ~) of the modified kernel equation exists for fixed y. If we prove that  
Iin<')(-, y;~)ll--< c, where C depends only on ~, we can complete the proof of the 
theorem in view of Theorem 1, ii). 

From (1.4) we see that H(4)(x, y; x) is the sum of A(4)(x, y; ~) and / ( x ) =  
- -  R o ~,VH(4)(x, y ; ~) for fixed y. I t is easily seen that  II/11 =< I I Ro,. I lll q I Ill H(4)( ", Y: ~)IIB 
is independent of y, for we hav.e 

liH(~)(., y; ~)11~- I1(I- T~)" II, IlAa)( ., y; ~)l[,- 

Now in virtue of (2.12) we have proved the desired result. 

II. Eigenfunct ion e x p a n s i o n s  

w 6. Existence of the eigenfunctions. In quantum-mechanical problems of 
potential scattering, the distorted plane wave plays an important role. I t  is 
generally assumed to be a bounded solution of the Schroedinger equation 

(6.1) - • ~ (x) + q (x) ~ (x) = I k ? ~ (x) 

with the asymptotic conditions v (x) = ~ (x) -- e' k .~_ 0 (I x i-i) and Ix I (0 v (x)/O Ix I -- 
i I k Iv (x)) --~ 0 (radiation condition) for Ix [--> oo. Here k is a 3-dimensional vector 
called the wave vector and ]k[ denotes its length. We shall denote by  M the 
totality of the wave vectors k, which is, of course, isomorphic to E. 9 (x) has 
the form (plane wave) + (outgoing wave). I t  is also possible to consider the 
distorted plane wave which has the form (plane wave) + (incoming wave) ili 
quite a similar way. As is described in most of the physical literature za, the 
distorted plane wave 9(x) is obtained as a solution of the integral.equation 

ei[k]Ix--Y] 
(6.2) q ( x , k ) = e i k . ~  t f 4 ~ .  i x _ y  [ q(y) q ) (y ,k )dy ,  

E 

which is more convenient for mathematically rigorous treatment than (6A), for 
(6.t) is not yalid at singularities of q(xl. Let us introduce the function 

' f eilkllx-Y[ (6.3) p(x,k)  = 4z~. Jx--y I q(y) e~k'YdY" 
E 

aa See e.g. MOTT & MASSEY [23]. 
Arch. Rational Mech. Anal., Vol. 5 2 
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Then, if we put  v(x, k ) = f ( x ,  k) --e r (6.2) becomes 

gt [kf l,v - yl 
(6.4) v ( x , k ) = p ( x , k ) -  I [ 4~_  Ix--yl qU~,)v(y,k)dy. 

E 

Since p(., k )CB  as is easily seen from the remark after Lemma 4.1, (6.4) has 
a unique solution v (., k):2 B for each fixed k (t k 1>0) in virtue of Lemmas 4.3 
and 4.4. Moreover, we see from Lemma 4.t and the remark thereafter that  
v (x, k) as well as p (x, k) is Hoelder continuous in x. Since q(x) is Hoelder con- 
tinuous, ~(x, k) is then seen to satisfy (6.1). Thus we arrive at  the following 

T h e o r e m  3. There exists a unique solution v (x, k)C B o/ (6.4) /or l k l >  0 and 
9(x, k )=eik '*+v(x ,  k) is a solution o/ (6.1) and (6.2). Moreover, ~v(x, k) as well 
as v (x, k) is bounded and uni]ormly continuous in x and k /or x CE and k ~D. 
where D is any compact domain o/ M not containing the origin. 

~v(x, k) is called an eigen/unction associated with the eigennumber ]k[ 2, and 
we can speak of an o~3-continuous family of eigenfunctions in conformity  with 
various magni tudes  and directions of the wave vectors k. Howex~er, we should 
remark here tha t  under  our assumptions (A) on q(x), v(x, k) does not always 
satisfy the asymptot ic  conditions mentioned above 2a. 

Proo[ o['Theorem 8. We have only to prove the last s tatement.  From the 
remark after L e m m a 4 . l  it follows that  Ip(x, k)l<=C, where C is independent 
of x and k. Since (6.4) can be written as v(., k ) = ( I - - T k f t p (  ., k), we see from 
Lemma 4.7 that  v (x, k) is hounded in x C E and k C D. Similarly it follows from 
L e m m a  4.8 that  v (x, k) is uniformly continuous in x and k in the same domain, 
if we show that  p (., k) is s t rongly continuous in k ~ D. 

Given any  6 >  0, we have for a sufficiently l~trge R =  R (b) and for [ x [ ~  R 

(6.s) Ip(x,k)[< c j" lq(~')l ay<a/2 
= Ix- v( 

F. 

by  Lemma 3.1. For I x l < R  we have 

f l eii/q!: .... ! - -  e* ]k"l I" - Y'I [p(x, kx ) - -p(x ,  k2) l~C ]xZy I [q(y)[dy+ 
F 

+ c f  Iq(y)l I*-yl  le'k""- ~"~:"I ay 
E 

~ C  f Ilk, l--[k,alllq(~,){dy+C f Iq(Y)l d y +  
- Ix - y i  

K(R~) K(R, )"  

f - u , ,  f Iv/,' l a , ,  +6"  . ]lq /ez]ly[[  . . j[v__~, I . 
K(RI)  1,2r 

= L + L + L + L .  
Here we can choose an R , = R  1 (h) sufficiently large so that  each of f ,  and Jl 
m a y  be bounded by  6/4 (see the estimation of J2' in the proof of Lemma 2.2). 
On the other  hand, J ,  and Ja can be made ~,rbitrarily small (]1" h/4, ]a-.,~ 4) 

24 T h e s e  c o n d i t i o n s  a r e  s a t i s f i e d  if  w e  ; t s s u l n c  t h a l  q ( x ) -  O ( l x  I a /,) ( t . r [ - ~ , ~ ) .  
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by taking i kl--  k 2[ >_ I I kll - I k2II small. Together with (6.5) we gee that  

I P (x, kl) -- P (x, k2) ] < 6 (x C E, kl, k2 C M) 

if i kl--k21 is sufficiently small. This proves the desired continuity of p(., k) 
and completes the proof of Theorem 3. 

w 7. The spectrum of H. It  is generally believed that the positive real line 
is occupied by what are called the continuous eigenvalues of H which are, in. 
our terminology, eigennumbers, while in the negative half there exist possibly 
discrete eigenvalues but  no continuous spectrum. This is certainly the case 
under our assumptions (A) on q (x). But from the mathematical standpoint the 
non-existence of positive eigenvalues is not self-evident. This problem has been 
raised by POVZNER [281, though he only commented on its plausibility and 
proved it for the case where q (x) is a function of Ix ] at least for large [x I" Recently, 
however, KATO [181 has proved a theorem ~5 which implies the non-existence of 
positive eigenvalues in our case. We shall give a proof of this fact later (Theorem 6). 
Concerning the features of the negative part of the spectrum of H, we have 

Theorem 4. On the negative real line the continuous spectrum o / H  is absent 28. 
The negative eigenvalues, i/ they exist, are o/ /inite multiplicity and are discrete 
in the sense that they [orm an isolated set having no limit point other than the origin O. 

Proo[. Let a be sufficiently large so that we may have H + a = H o +  V + a >  a' 
> 0  (Note that H is bounded from below; see w t.) Since the spectrum of H o 
occupies the full interval [0, oo), that  of (He+a)  -1 is the interval E0, t/a~. Now 
the second resolvent equation gives (H + a)-I = (H ~ + a)-I _ (H + a)-I V (Ho + a)-l, 
where (H+a)- lV(Ho+a) -1 is a completely continuous operator, for - - a  lies 
in the resolvent sets of both H and H o and, as we have seen in w 2, V(Ho+a) -1 
is of the Hilbert-Schmidt type. According to a well-known theorem of WEYL 27 
that  asserts the invariance of the set of limit points 2s of the spectrum of a self- 
adjoint operator by the addition of a completely continuous operator, the spectrum 
of ( H +  a) -1 consists of the whole ilaterval [0, t/a] and, possibly, of isolated points 
outside [0, t/a~ (which may have limit point 1/a). This means that,  on the 
negative real axis, H may have only discrete eigenvalues of finite multiplicity 
having, possibly, limit point at 0. This completes the proof of Theorem 6. 

Hereafter we shall denote by # ,  the discrete negative eigenvalues counted 
according to their multiplicity and by 9,  the orthonormalized eigenvectors (see 
footnote 3) associated with/~,.  

w 8. Exizfansion theorem. As we have pointed out in Introduction, we can 
use the distorted plane waves ~ (x, k) constructed in w 6 as the eigenfunctions 
for expanding an arbitrary function. 

Theorem 5. Let /(x) be an arbitrary L2-/unction. !) Then the generalized 
Fourier trans/orm 

(8.1) ](k) = (2~z)-~ 1. i .m.f  ~(x, k)/(X) dx  
E 

*5 C/. Lemma 4.4. 
26 C/. also POVZNER E28~, Chapter I,I, Theorem 6. 
*v See RIESZ &.NAGY [29~, p. 367. 
28. Eigenvalues of infinite multiplicity are included among the ."limit points". 

2* 
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ol [(x) exists and belongs to L2(M), where 1 . i .m . f . . . dx  mean's the limit in the 
E 

mean o/ the /unction f . . . dx  as N--> oo. Also the generalized Fourier coe//icient 
K (N} 

^ 

(8.2) i~ = f ~ ( ~ ) 1 ( ~ )  dx = (1, ~ )  
E 

ol l(x) exists, and ~ 17.12<oo. 
ii) We have the [ollowing expansion/ormulas: 

N 

(8.3) l ( x ) = ( 2 n ) - a l . i . m ,  f q ~ ( x , k ) i ( k ) d k + l . i . m . Y , / , ~ % ( x ) ,  
M N --+ oa n - - I  

(8.4) II111: = f l[(k)l ~dk + z~ I[.I 2 (PARsEVAL'S equality), 
M n ~ l  

(8.5) (1, g) ----- S / (k) ~ (k) d k + ~ 1~ 2-7 :~generalized PAI~SEVAL'S equality). 
M t i = l  

In  (8.5) gC L~(E), and in (8.3) 1.i.m. f . . .dk  means 1.i.m. f ,..dk. 
M N---,..oo, e-->oo K(N)--K{~) 

i/i) Conversely let F(k) (: L~ (M) be given. Then we can construct an L2-iunction 
/(x) through /ormula (8.3) with [(k)=F(k) ,  s  such that (8.1), (8.2), (8.4) and 
(8.5) hold good. 

iv) Let E , be the resolution o/the identity associate.d with H, and let P = I -- E o. 
Then the part in P L 2 (E) oi H is unitarily equivalent to H o. 

v) / C D ( H ) = D ( H o )  il and only il I.kI,[(K)~L~(M) and ~, I*~ We 
have the/ollowing representation o/H." ~=1 

N 

(8.6) H/(x)=(2~z)-~-l . i .m.  f i k [2 ,qo (x , k ) [ ( k )dk+l . i .m .~#~ /~%, (x ) .  
M N-+~ 

The proof of i), ii) and v) except for the complete domain characterization 
of H will be given in the following section; it seems appropriate to remark here 
that the proof depends on some properties of the spectrum of H (Theorem 4) 
but not on the absolute continuity of the positive part of the slSectrum (Theorem 6), 
which will be established in the course of the proof of ii). We shall also make 
use of Lemma 4.4, which is almost equivalent to the non-existence of the positive 
eigenvalues of H, but not in the strict sense, for we have not shown that every 
eigenvector associated with any positive eigenvalues should satisfy the homo- 
geneous integral equation (4.7) and that it should be a B-fuI~ction. Pertaining 
to the positive part of the spectrum of H, we have 

Theorem 6. There exists no positive eigenvalue o/ H. Moreover, the spectrum 
on the positive real line is absolutely continuous. 

The proof of Theorem 5, i/i), iv) and the domain characterization of H will 
be given in connection with the proof, by the aid of the time-dependent theory, 
that  the S-matrix is unitary. 

I t  is implied by (8.6) that the Schroedinger operator H = - - A  + V admits 
of a diagonal representation, or H is diagonalizable, in terms of the eigenvectors 
%, (x) and the eigenfunctions ~ (x, k). 
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w 9. Proof of the completeness of {r and {r k)}. We shall divide 
the discussions that  follow into two parts. One concerns the proiection P and 
the other E o. So to speak, we shall first take up the expansion problem for 
the function P/(x)  and then extend our research to the function Eo/(X ). 

Let us consider the conjugate Fourier transform g (x, k; ~) of H(x, y;~)  with 
the defining equation 

(9.1) g (x, k; • ----- (2n)-~ f H(x, y; ~) #k 'Ydy  
E 

for each x and I m n >  0, Imn24: 0, noting that H(x , .  ;n)C L2 (E) (see Theorem 2 
and Lemma 2.1). Actually, however, " l . i .m."  in the above definition is un- 
necessary. This will be made clear by the following 

Lemma 9.1. I / I m x > 0  and Imn2=~0, then H(x, y; n) is absolutely integrable 
in x or y and g(x, k; ~) is a bounded/unction o/ x and k /or x ~ E  and k ~ M .  

Pro@ According to the kernel equation (1.1) for H(x, y; • y; n *) we 
have (~ = a + i b) 

f f e-bl*-'I f f e-bl*-*t In(x'Y;~.)ldx<C I*-yl dx+C [q(z)n(z,y;~)ldz I~-~1 dx, 
E ~"~ E E E 

A further estimation is possible by (t.5) and SCHWARZ'S inequality, which gives 

f i l l (  x, Y; c + c Ilqll liB(., y;  )II- C, 
E 

where C depends on n but  not on y and is finite if I m n > 0  and Imn*:~0 (see 
Theorem 2). By the symmetry stated ih Lemma 2.t H(x, y; ~) is absolutely 
integrable in y, too, and hence it follows from (9.t) that  g(x, k; g) is bounded 
i n x a n d k f o r x C E a n d k E M .  

Set 

(9.1)' h(x, k; n) = (2~) 1 (I kl ~ -- ~2) g(x, k; ~) = e (ik'*l -~h(1)(x, k; n). 

Then we have 

Lemma 9.2. h(1)(x, k; ~) is a B-/unction o/ x /or kE M, I m x > 0  and Img24:0  
and satisfies the~integral equation 

1 [ e ix~x-yl  
h ( l ~ ( x , k ; ~ ) = f l ( x , k ; ~ ) - -  ~ . ] x _ y  ] q(y)h( l~(y ,k;~)dY , 

E 

(9.2) 

where 

(9.3) 1 f e i x l x -y !  p ( x , k ; ~ ) =  4 ~ ,  [x--yl q(y) eik'YdY 
E 

is a B-/unction o / x / o r  kE M and Im z ~  0. Moreover, we can extend the definition 
o /h(x ,  k;~) to the case where I m p = 0  and R e ~ > 0 .  h(x, k; ~) is bounded and uni- 
/ormly continuous in x, k and ~ /or x • E, k C M and Im x >= 0, 0 < ~--< Re ~ ~ fl < o o .  

In  particular, h(x, k; I k l ) = 9 ( x ,  k). 
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Pro@ Let  us first show that  g(x, k; ~) satisfies the equatio.n 

e i k ' x  1 f e ix[x-y[  
(9.4) g(x,k;n)=(2n)- '~ ik[~_~ 2 4~ j Ix-yl  q(y)g(y, kzu)dy,  

e 
From the kernel equat ion (t.1) we have for a n y / C L  2 (E) 

eiX~x-yJ 

f mx, y f I,-,t /(yldy-- 
E E 

, f 4= J I x - z l  q(z) dz It(z, y; ~)/(y) dy, 
E E 

where we have performed interchange of the order of integrations, which is 
permi t ted  since the last integral  is absolute ly  convergent  because f[[dz f [ [dy~ C  

E E 

lid! Jill(z, �9 ;x)l[ Iltll =< c Ildl II/Jl (by Theorem 2). In t roducing the Fourier  trans- 
form o f / ( x )  by  

(9.5) /o(k) = (2n)-~l . i .m. fe-ik'*/(x) dx 
E 

and making use of PARSEVAL'S equality, we get therefore 

e i k .  x f io(k)dk-- 
(9 .6 )  M M 

1 4 ~ ~ q(z) g(z, k; ~) dz [o (k) ~k 

where we have used the fact tha t  the conjugate Eourier transform of (4 az I x - -  Yl) -1 X 
e ~*I~-yl as function of y is (2~)-~ (Ikl2--u2) -1 eik'* and have interchanged the order 
of integrations in the last integral, noting that  [x--z[-ld*l*-'lq(z)EL1 and 

tha t  f Ig (z, k; u)[ If0 (k)[dk ~ C IIH(z," ; u)1[ [I/it =< C Illll Coy Theorem 2). Since 
M 

[oCL2(M ) is arbi t rary,  (9.6) yields (9.4). Then the equation (9.2) for htl)(x, k; u) 
follows at  once from (9.t) '  and (9.4). 

F rom the remark after  Lemma 4.t we can see that  p (., k; ~)~ B and that  
p(x, k; x) is bounded for xCE, k E M  and I m •  Similarly, the second term 
on the right of (9.2) is also in B if I m p > 0  and Imu~4=0 (see Lemma 9.t). Thus 
h (1) (., k; ~)C B for I m x  > 0, Imu~ =t = 0, so that  we can rewrite (9.2) as hm (., k; •  
( I  - -  T~) -~ p (., k; u). Noting tha t  p (., k; I k [) = p (., k) E B, this proves the lemma 
in view of Lemma 4.8 and Theorem 3, if we show that  p (., k" ~) E B is s trongly 
continuous uniformly in k CM and u for Imu=>0. The uniform cont inui ty  in 
k can be proved by  an argument  similar to, but  simpler than, the one used for 
proving the uniform cont inui ty  in x and k of 9~ (x, k) in w 6. Thus it remains 
to prove the uniform cont inui ty  in ~ of p (., k; ~). 

Given any  ~ > 0 ,  we can choose an R = R ( ~ )  so tha t  for ] x l > R  we have 

(9.7) Ip(x, k;z)l  < c f  {q(.v)[ . = ] x 2 y  I a y <  a/2 
E 
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,V virtue of Lemma 3.1. For Ixl<R 

[p(x, k; nl) --p(x, k; n2)] < c f - -  I - - y l  l/(y)ldy 
E 

--<_ C .  Ix-Yl Iq(y)ldy+C J ] ~ y ( r  Iq(y)l dy  
K(Rt) K(R~)" 

= j + j ' .  

Again we can choose an R 1 = R 1(8) so large that  J '  may be bounded by 8/2 (see 
the es.timation of J~ in the proof of Lemma 2.2). In order to estimate J ,  we 
first note that  

te '',1~-~: e '' , '~-~l - -  i l e"i~-Yrdvt =< - [ x - -  - I - I  x-y[f  [ ~, ~,] yl, 
L 

where L denotes a straight line which starts from ~a and ends in ~r Application 
of this inequality to J gives 

J <= Clg 1 -  z~[ f [q(y)ldy. 
K(R~} 

Taking ~1 and us so near to each other that ] < 6 / 2 ,  we are led, noting (9.7) and 
the above estimates for J and J ' ,  to the result that  for any given ~ > 0 we have 

(9.8) Jp(x,k;~,) --p(x,k;~2)]< 6 (xCE, kCM), 

if [~--x~[  is sufficiently small. (9.8) proves the required uniform continuity in 
of  p( . ,  k; g). 

Now we shall enter into the expansion problem for (P/)(x), where we first 
assume that /(x)CC~~ As the first step we prove PARSEVAL'S equality. 

Since g(x, k; ~) is the conjugate Fourier transform of H(x, y; ~), it follows 
from PARSEVAI.'S equality that for I m z >  0 and I m p : 4 : 0  

f H(z, x; g) H(z, y ; z) d z ---- f g (x, k; ~) g (y, k ; ~r d k 
E M 

_ , , ]  
(9.9) - -  (2~}~(~-~,--) Ik l ' -~  ' l k l - _ ~  x 

M 

xh(x, k; ~) h(y, k; ~)dk. 

Let us multiply both sides of (9:9) by /_(x) and /(y) and integrate over E with 
respect to x and y. Then the left-hand side gives, on multiplying by  (u~-  x2--), 

(9. t 0) (n' -- n') (R~/, R.,/) = (~* -- x ~) (R., R~/ , / )  = ((R., -- R~) 1,1), 

where we have made use of the first resolvent equation .9 R a -  R . =  (2--2')R~Ra. 
and freely interchanged the order of integrations in the integral considered, 
noting that  it is absolutely convergent: 

f f  [[H(., x; g)[[ [IH(., y; g)[] [/(x)l [/(Y)I dydx <oo. 
E E  

2~ See HILLE ~: PHILLIPS E12J, p. 126. 
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Here  let us introduce the function 

(9.1t) ~ ( k ;  ~) ---- (2~1-~ f h(x, k; ~1/(x) dx ([(x) E C~~ 
E 

Before proceeding fur ther  we note  t ha t  q~(k; V-if+ie) is bounded for kEM, 
ff E [0c,/3] 30 (0 < e </3) and 0 N e N e, (e 0 > 0), as is easily seen from L e m m a  9.2 

and tha t  ~(h, u) -->/(k) as u - +  J k I, as is seen from (8. t) and the fact t ha i  / (x) E C~(E), 
and hence the integral  is well defined. 

Let  us put  ~ 2 = f f + i e .  Since ](x) EC~(E) and the in tegrand of the right 
side of (9.9) 

2ie h(x,k;V#+ie)  h(y,k;Vff+ie ) 
(Ikl2--,u)*+ e ~ 

is absolute ly  integrable in k and bounded in x and y, we can freely interchange 
the order  of in tegra t ion in forming the above-ment ioned  mult iple  integral  on 
the  r igh t -hand  side of (9.9). This enables us to obtain in view of (9.t0), for e > 0 ,  

M 

Now we can avail  ourselves of the fundamenta l  relation 

) -  [((E~ + Et3_o)/,/) - -  ((E~ + E~_0) / , / ) ]  = t . l im f ~,, 
2 2 ~ z  *40 

which, incorpora ted  with (9.12), yields for ~ and/3  such tha t  0<0~</3 

L [((E8 + Ep_o) 1,4) - ((E~ + E~_o)/, 1)] 2 

I l i m  f d #  f ' 

M 

t l im f d k  f e lq~(k; 
= ~~,o J J(Ikl'--~)'+~' 

M 

where we have  used the above-ment ioned  boundedness  of #(k,  u) and FUBINI'S 

theorem.  Let  us consider the inner integral  f . . .  dff. In  view of the equat ion 

_k.l_22@)2+_e2dp,=tan-a /3-]k]  2 ~  tan-1 ~ - - I k l  ~ ' 

ot 

we have  for eE [0, eo] (Co>0) 

g/3 f . . .  <=F(k)=C if Ikl_  + ~ ,  

= c . if Ikl>V~-§ 
(IklZ--fl) 2 

ao [~,/3] denotes the closed inter.val e N/~ =</3. 
�9 ~a See e.g. STONE [81], p. t83. 
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where the C's do not  depend on ~. F(k) is integrable,  and  hence b y  the bounded  
convergence theorem we can interchange l im and the k-integrat ion.  Since ~b(k; u) 

,$0 
tends to [(k) for n - ~ l k  I as has been seen above,  we obta in  f o r / ( x )  CC~~ 

(9.t3) �89247 -- ((E~+Er = f Ihk)l~ak; 
#<lkr<v/~ 

here we have  made  use of the well-known relat ion ~* 

1__1i m /" ( a _  ~_ + e z / ( # ,  e) d # =  I f f ) (  0 if a < r 1 6 2  or f l<a  
~ o d  /(a,O) if o~<a<fl, 

in which [ (/2, e) is a cont inuous funct ion of ff and  8 for ff C [a,/5] and  e 6 [0, eo] 
(e0 > 0). Le t t ing  x --->/5 in (9. t 3), we see t h a t  ( (E a - -  E~_ 0)/, D = 0 for any  1 (x) C C~ ~ (E), 
which is dense in L2(E ) in the L~-norm. This  shows tha t  Ep=Ea_ o and/5  is not  
an eigenvalue of H,  and since/5 is posi t ive and  otherwise a rb i t ra ry ,  we conclude 
t ha t  no posi t ive eigenvalues exist. This*proves  the first half  of Theorem 6. 
Hence  we have  f rom (9.t3) 

(9.14) ((E O-  E~,)/,/) = f [[(k)12dk 

for [(x)CC~~ Let t ing  *r and  /5---> 0% we arr ive  a t  PARSEVAL'S equal i ty  

(9A5) I IPl l l  * - - f  Ihk)l* ak 
M 

for [ (x) C C~~ �9 We have  so far  .assumed tha t  / (x) E C~~ �9 But  the extension 
to the general  c a s e / ( x )  C L2(E ) can be made  in a s t andard  manner  38. Namely ,  

we can show tha t  [(k) exists and  lies in L,  (M) if we take  the  l imit  in the  mean,  

as specified in Theorem 5, in forming [(k). Thus  (9A4) and (9.t5) hold true, for 

I (~) c z~ (E). 
Now let us step forward to the second problem,  i.e., the expansion of' (Eo[) (x). 

According to Theorem 4 the subspace EoL,(E ) is spanned b y  the eigenvectors  
{9~(x)} belonging to the eigenvalues ff~<--0, or {9,(x)} fprm a complete  or tho-  
normal  sys tem in EoL 2 (E). Consequent ly  we have  

(9A6) IIE0/II ~ = Z IL, I ~- 

In  view of (9.t5) and (9.t6) we are led to the required relation 

(8.4) II/11 ~ = IlEo/]l ~ § I IP/l l  ~ = f  l i (k) l~dk § ~ IL, I*. 
M n = l  

Derivat ion  of (8.5) f rom (8.4) is a lmost  obvious3s 

Now let us prove (8.3). I t  is obvious f rom the completeness  in E o L,,(E) of 
{9o,, (x)} tha t  

N 
(9A7) (Eo/) (x) =: 1.i.m. ~ /,,q~,,(x). 

N - . ~ o o  n =  1 

82 See e.g. TITCHMARSH [33], p. 3 1. 
3s See e.g. TITCHMARSH [J4],  pp. 55--56. 
34 See any .books on Fourier integrals, e.g. T1TCHMARSH [33], Chapter I I I .  
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It  remains to show that 

(9.18) (P/) (x) = (2~z)-~ I. i. m. f qJ (x, k) i(k) elk. 
M 

We can obtain from (9.15), if g(x) EC~~ 

= f ](k) $-(k)dk 

1 f /(kldk.f ,(x, klg(,Idx 
Fe<N<u 

f ~(x,k)/(k)dk]g(x)dx, 
E LVe<N< N 

since ~ (x, k) is bounded and [(k) is integrable for V ~ < ]k[< Vfl and x C E. C~(E) 
being dense in L~ (E) in the L~-norm, we have 

(9.t9) ((Efl--E~) [) (x) = (2x)-~ f q)(x, k)[(k)dk. 

If we let cr and fl--> oo, then the left side of (~.t9) converges strongly to 
(P/) (x), and hence the limit in the mean of the right also exists and is equal 
to (P/)(x). This is nothing but  the desired relation (9.t8). We have proved 
i) and ii) of Theorem 5. 

Now we show the diagonal representation (8.6) of H without complete 
characterization of the domain. For this purpose it suffices to show 

(9.20) (H[, g) = f Ikl2/(k)$(k)dk + E~/~$,,  
31 r n = l  

for /(x) ~D(H)=D(Ho) and g(x) CL~(E). We see from (9.t4) that 

(Eft, g) = X ] .~  (/~ < o) 
(9.21) t,~_, 

= ~  L~, ,+ f ](k) g(kidk (#=> 0); 
n=l  N<VI, 

hence (9.20) holds if the relation 
~o 

(H 1, g) = f/~ d (E,/ ,  g) 
- - o o  

is taken into account. 

Finally let us prove the last half of Theorem 6. Taking g=/ in (9.21), we 
can see that Qt(P')= (Eft,/) is absolutely continuous in/~ for /~>0.  This implies 
nothing but the absolute continuity of the spectrum of H on the positive real 
line. 

III .  S - m a t r i c e s  

w 10. Wave operators H~. As has been mentioned in the Introduction, we find 
it convenient to introduce the wave operators IV. not only for the mathematical 
t reatment of the S-matrix S, but also for the proof of Theorem 5, iii). 
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I t  is known 35 from the time-dependent theory of the S'-matrices that, under 
the assumption that  q(x)E L, (E), the wave operators W i exist: 

(10.t) W+ = s-lira U(t) 3~, U(t) = eitn e-itno; 
t --r • oo 

W• are isometric operators satisfying 

(10.2) PW• = W• 

which implies that the ranges of W• are subsets of PL2(E). The S-matrix is 
defined by 

(to.3) s =  w~ w_ , 

and it is generally believed to be unitary, which is, however, not self-evident. 
S is unitary if and only if the ranges of W• are identical. We shall prove that 
S is unitary by sh6wing that the ranges of W• are identical and coincide with 
PL~ (E). 

To this end we introduce the operators U• by 

r 0.4) (U_/) (x) = (2 rr)- 11. i. m. f qo (x, k)/o (k) d k. 
M 

(~0.5) u + / = u _ L  

where [o(k) is the Fourier transform of / (x)  EL2(E ) (see (9.5)), and prove 

Theorem 7. U• /ormally defined by (t0.4) and (t0.$), are isometric operators 
with domains L2(E ) and ranges PL2(E), and we h'ave U• = W• S defined by 
(t0.3) is unitary. 

We shall prove the above theorem in the next section and then complete 
the proof of Theorem 5. Here we note that  the statement iii) of Theorem 5 is 
equivalent to the following: Let Z be an isometric operator from PLy(E) to 

L2(M ) defined by Z/(k)=/(k) (/C PL2(E)). Then Z is unitary. (The isometry 
of Z is already shown in (8.4).) 

w 11. Proof of Theorem 7. We first show that  U• are well defined operators. 
To this end we need only to show that this is the case with U_, since U+ is related 
to U_ through (t0.5). 

Let us consider the integral 

(,1.,) L,(g) : j / ; (h)   ih) dh = l !  h) g(x) dx] dk, 

where g (x) E C~~ /o (h) E C~(M) and the carrier of ~ (k) does not contain the 
origin of M. The totality of such functions of k will he denoted by C~(M)'. 
In (11.t) the x- and h-integrations are, actually, extended over compact domains 
and ~ (x, h) i s  bounded in k in a compact domain from which the Origin is ex- 
cluded (see Theorem 3). This fact allows us to interchange the order of inte- 
gration, yielding 

aa See COOK [7], KATO [17] and KURODA [20~. 
a e  "s-lira" denotes strong limit. 
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On the other  hand it follows f rom (1t . t )  t ha t  

IL (g)l _-< (Mr I/o(k)l dkj I (k)l dk)*= II H ![ Pgll --< II/ll flgll 
Thus  Ll(g ) i s  a densely defined, bounded  linear functional  of gCC~(E). But  
such a functional  can be extended to the whole L 2(E), gnd we shall also denote 
the extension b y  Lt(g ). Then b y  means  of RIESZ'S theorem 37 there exists a 
unique element  /* of L2(E ) such tha t  Ll(g)=(/*, g), which defines an opera tor  
U b y  U]=/* and ] I U / [ [ ~  Iltl[. Now in view of (t1.2), again restr ict ing g(x) 
to C~~ we h a w  

(11.3) (Ul)(x)=(2~)-: f q)(x,k)/~(k)dk a.e. (to(k) CC~(M)). 
M 

A s tandard  a rgumen t  shows tha t  (11.3) can be extended to e v e r y / 6 [ L 2 ( E  ) by  
wri t ing 1. i .m. f . . .dk  instead o f f . . . d k .  Comparison of (11.3) with (10.4) gives 

M 

the result t ha t  U is nothing but  the required opera tor  U . Thus we have  proved 
tha t  U_ is an everywhere  defined, bounded  opera tor  (D(U)=L2(E))  and its 
norm [[ U_ [[ does not exceed t. 

Nex t  let us determine the adjoint  U_* of U �9 This can be done most  con- 
venient ly  b y  using the relation (U*_/, g) = (/, U_ g) ; the result is easily seen to be 

(11.4) (U_*I) (x) = (2 :z) - ~ 1. i. m.  f d k'" [(k) d k. 
i 

In the der ivat ion of (11.4). we have  used reasoning quite analogous to tha t  for 
get t ing (t 1.3). 

U_ has the p rope r ty  tha t  

(11.5) U U * =  P ,  

which follows immedia te ly  from the defining equations (10.4), ( t l .4)  of U_,  U* 
and (8.3). Also we have  

(11.6) [7* H (.. H 0 ( ~ .  

This can be seen f rom tile following equat ions : For  [ (X) C D (H) = D (H0) 

U *  - ~  ( _ H / ) ( x )  (2:~)-~l.i.m. fe~k'x(n/)~(k)dk 
31 

= (2:z)-~ l . i .m, f d k'']ki~](k ) dk" 
M 

(Ho U*_ l) (x) (_:r) 
M 

= (2n)  -~ 1] i .m:  fcik'" lk l ' j (k)  az -, 
M 

where we have  made  use of the diagonal  represen ta tmn of H (8.6) and the fact 
tha t  H o is a special case of H with V----0 a n d h a s  no eigenvalues. 

Now we can complete  the proof  of Theorem 7. Applicat ion of U* from the 
left t o .bo th  sides of (10A) gives 

( t t . ~  U_*W = lim U*_ U(I)  (lim----- s-lim), 
t--~ --OO 

a7 See e.g. Rn~.sz & NAG'?' [29] and YOSn)A [-39]. 
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since U_* is a bounded operator and lim U(t) exists. 
l---~ - - 0 0  

by differentiating and again integrating, that  

On the 6ther hand, we see. 

t 

(u*_ u(t) I, g) - (g*_ I, g) = i f (U*_ e "n Ve--"m/, g) dt 
0 t . 8 )  o 

t 

= i f (e "n" U* V -imo _ e / , b u t ,  
0 

where ! (x)~ D (H0)= D (H) and g (x)C L, (E) and we have made use of the fact 
that U* eitH=d *Ho U*, which is a consequence of (tl.6). In view of (!t.7) and 
(11.8), we obtain 

t 

(1t.9) (U*_W_/ ,g )=(U*_Lg)+ lira i f (eimoU*Ve-itno/,g) dt.  
t---~ - - o o  0 

The integrand of (t t.9) is calculated as follows: 

0t.to) 

(e"". u* re -"".  I, g) = f e" ~'~'(U* Ve-"". t)g (k) ~o (k) ak 
M 

--- f e i, Ik!' (Ve-itno/)~ (k) go (k) dk 
M 

---- f (Ve-i! ("~ (k) g0(k) dk 
M 

where 1.i.m. is not needed before f ,  because q~(x, k) is bounded in x, q(x) CL,(E) 
and (e - i '  (n0-~kl') [) (X) E L2 (E). M 

Returning to (11.9), the limit for t--~-- oo of the t-integral can be replaced 
by the Abelian !imit, i.e. 

lim f (e uH~ U* Ve -~  g) dt = lim f e**(e un. U*_ Ve-Uno[, g) dr, 
t---~--oo 0 ~ 0  0 

since the existence of the ordinary limit is known. Then (t t.9) and (I t.10) give 
- -OO 

' f lim e ~t dt•  (U_* W_/, g) = (U_*/, g) + T 2 ~ r  ~*o ~ 

If we assume here that ~o(k)EC~(M)', then we can interchange tlae t- and k- 
integrations, for ~0(x, k) is bounded for x EE and kCD=car r i e r  of ~0(k) (see 
Theorem 3) while 

f Iv (~)11 : ' ' ("0-~':) 1(~)1 d ~ _  Ilqll It111. 
E 

, - - o o  

i �9 . f (U*W l,g)---- (U*_ l,g) + - . - - - - h m  f ~o(k) dk j (e-i'(tt"-('k"-'*))t,F(.,k))dt. 
- - (2=) ~ o  d 

M '  0 

where we have put 

F(x, k) = ~ (x, k) q(x) C L~ (E) (for each fixed k ~ M). 
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Hence 

, 1" (U_* i V / ,  g) = (U_*/, g) - -(2;i ] {i~o " go (k) dh • 
M 

• lim ([e-it(14"-('k~'-i~))--l~Ro, lkl,_i,l,F(.,k)), 
0 t . t l )  ' - - ' - ~  

=(U*_/,g)+ ~ lim f ~o(k)(Ro, N,_~/,F(. ,k))dk 
(2zr)~ ~ o .  

M 

lira f (/,Ro, l~l,+i,9(.,k)q(.)) abo(k)dk. = (U*/,g) +-(2~) $ ,~o . 
M 

Here we further assume that /(x)CC~'(E) (D(Ho). Now the function 

' f ei"lx-yl (Ro;Ik?+itcf(.,k) q(.)) (x )=  4~ -[xZy[ q(y) cf(y,k)dy 
E 

= -  ( r . . ~ ( . , k ) ) ( x )  (~. = V ~ I ~ +  ~ )  
converges to 

1 f e i[ktlx-yl 
4 ~ .  I * - y l  e(Y)~~ 

E 

as e + 0 uniformly with respect to x C E and k contained in the compact carrier 
of g0(k) by virtue of Theorem 3 and Lemma 4.6. Thus the convergence of the 
integrandof  ( t t . t t )  for e~ 0 is uniform, and we can interchange lim and f . . . d k  
so as to obtain ~ ~ o M 

f f 1 /'eiNlx-Yi (U*_W_/,g)=(U*_I,g)+ l_ ~o(k)dk / ( x ) d x 4 . ~ j  i)<• q(y) q~(y,k)dy 
(2=) t 

M E E 

- '  f f I 1 /" ei'< I~-_r! ] (2st)g g~ dk /--(~ q)(x,k)+ 4~ J i ~ _ ;  I q(y)q~(y,k)dy dx 

(t1.12) M E E 
1 -(2=),feo(k)akfe' 'l(x)d. (by (6.2)) 

M E 

= 

M 

C~~ ' is dense in L 2 (M), and hence the totality of such g (x) that g0 (k) C C~~ ' 
is dense in L,, (E). C~(E) is of course dense in L 2(E). We can, therefore, obtain 
from (t t.t2) the following relation: 

(ttA3) U_* W_ = I .  

If we operate wit.l,, U_ on both sides of (t1.t3) and take account of (10.2) and 
(tl.5), we get 

(t1.t4) U_ --= U__ U*_ W__ = P IV_ = W 

and, on substituting this relation into (11.t3), 

(~,~.ts) u._* u = w_* w = i 
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The relations (l 1.5) and (11.15) show that the operator U_ is an isometric operator 
with domain D (U_) = L 2 (E) and range R (U_) = PL 2 (E) ,s. Quite a similar result 
follows for U+ and W+. Thus we can see that S =W~ W_ = U~ U_ and S is unitary. 
Now the proof of Theorem 7 is complete. 

In connection with eigenfunction expansion it remains to prove that  the 
isometric operator Z is unitary, to characterize the domain of H, and to establish 
the unitary equivalence between the part of H in PL2(E ) and H 0. To these 
ends we shall define the operators Y and Z' by 

(Y /) (k) = [o (k) (from L 2 (E) onto L 2 (M)); 

(Z'/) (x)--(2~)-61.i .m. fcp(x,k)/(k)dk (from Lo.(M) into L,(E)). 
M 

Then we have U = Z ' Y  and U*__= Y-1Z, and we have 

(t1.t6) I = U * U _ = Y - 1 Z Z ' Y ,  Z Z ' = Y Y - I = I  'a2 

On the other hand (8.3), (8.4) and (8.5) imply that '  

(t t . i  7) P = Z'Z.  

(tt.16) and (ttA7) show that Z is a unitary operator from PL2(E ) onto L2(M), 
and that  Z'-~Z*, the adjoint operator of Z (Z* is a unitary operator from L 2 (M) 
onto PL 2 (E)). 

Now it follows from (8.6) that 

(ZPH/) (k) = Ik[, f(k) ,  

and it is known that  H 0 represents the operation of multiplying by ]k ] s in L, (M). 
Thus we have proved iv) of Theorem 5. 

Finally let us prove the first assertion of Theorem 5, v). Since the necessity 
is obvious from the diagonal representation (8.6) of H, it remains to show the 
sufficiency. We see from the unitarity of Z and (8.6) that if F(k) E L2 (M) and 
]k ISF(k) E'L2 (M) then Z*F(x) E PD (H) (D  (H). Thus we need only to prove that  
for any sequence F. such that  Y, IF.J2< oo and Y,~.[F.I2< o% l.i.m. ~,F.  9 . 6  
EoD (H)(D (H). But this follows easily from (8.6) and the fact that  the corre- 

spondence between EoL 2 (E) and 12 4~ which assigns every /E EoL2 (E) to [,, •12, 
is one-to-one and isometric, where 12 denotes the Hilbert space of all sequences 
{F,,} such that Z [F.] ' <  zr 

IV. Concluding remarks 
w 12. Higher-dimensional and two-dimensional cases. Our theory, which has 

so far been developed for the 3-dimensional Schroedinger operator, cannot be 
extended directly to the case of higher dimension. One of the main difficulties 
is that Theorems I and 2, which serve as a bridge between the resolvent R, and 
the kernel G (x, y; ~), fail to hold, because the kernel G(x, y; ,~), even though 
it exists, is not of the Carlernan type in the case of more than three dimensions. 

R(A) means the range of A. 
I.' denotes the identity operator in L, (M). 

40 If the dimension m of EoL2(E ) is finite then 12 is the totality of finite sequences 
of length m. 
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A remedy for it has beeu suggested by  G.~RDING [9] ; it is to consider the operator 
(H t -  2) -1, where t is a certain positive integer, instead of R,---- ( H - -  2) -1. The 
Operator ( H ' - - 2 )  -1 is, in fact, known to have a kernel of the Carleman type. 
Of course, this will require m a n y  an alteration in the details of our theory.  

On the contrary,  in the 2-dimensional case our theory  suffers no essential 
modification, for then the  resolvent kernels can be shown to be of the Carleman 
type. But  it should be remarked tha t  results for the 2-dimensional case do not 
follow as special cases from the 3-dimensional t reatment ,  because the potential 
function q(x), which diminishes at  infinity in the 2-dimensional Euclidian space 
E 2, does not  always diminishes at  infinity in E = E  s, which is an extension of 
E. The conditions imposed upon q(x) are to be replaced by  

(A') q (x) is a real-valued /unction which is locally Hoelder continuous except 
at a finite number o/ singularities. Furthermore, q(x) is square integrable 
(q(x) CL~(EZ)) and behaves like O([xl-'~-" ) (h>O) at in/inity, i.e. there exist 
positive numbers h, C o and R o such that 

Iq(x)l<=Colxl-~-h /or Ixl>R0. 

Not  all the details of the theory need be modified if we replace the function 
(4 rt[x -- y I)-I eiX lx-yl, which is the resolvent kernel of R0**, by  41 �88 iHto 11 (~[x - -  y ]), 
where H~ 11 denotes the Hankel  function of first kind of order 0. 

In  concluding we remark that  if we had assumed in addition to (A) tha t  
q (x) E L1 (E) or more  explicitly q (x~ : 0 ([ x / - s -h )  at infinity (in the 3-dimensional 
case), our a rguments  could have been much simplified. 

Acknowledgement. The writer wishes to express his sincere thanks to Professor 
T. KATO for his unceasing encouragement and valuable instruction. 
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