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1. Introduction 

In this article we describe our experiences with a new strategy, called the hints 
strategy, for increasing the effectiveness of automated reasoning programs. Under 
the hints strategy, a generated clause is given special consideration (as defined 
by the user) if it subsumes or is subsumed by a user-supplied hint clause. We 
have implemented the new strategy in the automated reasoning program OTTER 
[6] and have experimented with it extensively. What began as an exercise in the 
obvious - verifying the steps of  a given proof - turned out to be more interesting 
and more valuable than we expected. The hints strategy is applicable to a variety 
of reasoning tasks, including proof checking, proof completion, and proof find- 
ing. Using the hints strategy, we have successfully checked proofs, found and 
corrected an error in a published proof, completed partial proofs, and used known 
proofs to help find shorter proofs and proofs of related theorems. It is especially 
significant, we believe, that each of the reported successes came quite easily. 

The hints strategy is closely related to the weighting strategy [5]. In Section 2 
we give a brief overview of  the hints and weighting strategies in order to highlight 
the key similarities and differences. In Section 3 we summarize our experiments 
with the hints strategy for a variety of reasoning tasks. We conclude that the 
hints strategy is a valuable enhancement to an automated reasoning program. 
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2. Hints and Weighting 

Search strategies are used to restrict and direct the application of inference roles. 
The weighting strategy [5] is used to restrict and direct the search by associating 
a value, called a weight, with every clause in the database of clauses and by 
ordering the application of inference rules according to these weights. User- 
supplied weight templates indicate preferences for symbols and terms appearing 
in clauses. Weight templates can be used to express intuition or knowledge about 
a problem or problem area in order to help guide the search for a proof or to 
prevent the consideration of certain clauses. Weighting also can be used to give 
preferences for the type of proof found. For example, when doing a circuit design, 
one might prefer a solution that emphasizes the use of "and" gates over the use 
of "or" gates. Years of experience have demonstrated the value of the weighting 
strategy to automated reasoning. 

The hints strategy enhances the weighting strategy by adding a new dimension 
to the determination of weight values. The hints strategy is similar to the weight- 
ing strategy in that it makes use of user-defined patterns to determine the relative 
importance of generated clauses, but there are some significant differences. 

Weighting: Weighting focuses on the assignment of a weight to each clause. 
User-supplied weight templates define a recursive mapping wt 0 from terms and 
atoms to corresponding weight values. For example, the OTTER weight tem- 
plate 

weight (f ($ (3), g($(2) ) ), -15) 

defines a mapping for terms of the form f ( t l ,  g(t2)), where tl and t 2 are arbitrary 
terms. The $(3) and $(2) patterns in the template are multipliers for the weights 
of the corresponding subterms; the -15  indicates a value that is added to the 
result. Specifically, 

w t ( f ( t l ,  g(t2))) = 3 * wt( t l )  + 2 * wt(t2) - 15. 

The weight of a clause is then defined as a simple function of the weights of its 
atoms. 

The process of matching weight templates and terms can be defined in terms 
of instantiation. For example, the weight template 

weight (f ($ (3) ,g($(2) ) ), -15) 

matches any instance of the term f ( x ,  9(Y)); the term is derived from the weight 
template by replacing each $ multiplier by a unique variable identifier. 

Hints: In contrast to weighting, the hints strategy focuses directly on the iden- 
tification of key clauses rather than on the general calculation of weights. Any 
generated clause that subsumes or is subsumed by a user-supplied hint clause is 
identified as being "interesting". The weight of such a clause is adjusted (either 
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positively or negatively) according to user preferences; the cases of subsuming 
a hint, being subsumed by a hint, or both are controlled separately. The case in 
which a generated clause subsumes a hint clause is probably the most interesting 
and potentially valuable. Such generated clauses can be viewed as key milestones 
on the way to a proof. (If a fact is deemed significant, then for many applica- 
tions of automated reasoning, anything that subsumes the fact would be just as 
significant.) The case in which a clause is subsumed by a hint looks more like 
weighting (i.e., identifying instanc.es of user-defined patterns) and may be less 
interesting, although there are problems for which finding instances of key claus- 
es is significant. The third case, identifying clauses that both subsume and are 
subsumed by a hint, is particularly useful for various types of proof checking. 

In summary, the hints strategy enhances the weighting strategy, first, by focus- 
ing on entire facts (i.e., clauses) rather than terms and subterms, and second, by 
using subsumption as a criterion for determining the value of a generated clause. 
Being based on subsumption, the hints strategy adds a semantic, or logical, com- 
ponent to the evaluation of a clause. 

3 .  C a s e  S t u d i e s  

The hints strategy has been implemented in OTI'ER and experimented with exten- 
sively. In the current implementation, the user can specify a list of hint clauses, 
a hint weight value, and one of the following three conditions.* 

- A generated clause subsumes a hint clause. 

- A hint clause subsumes a generated clause. 

- A generated clause is equivalent to a hint clause. (For our purposes, clauses 
A and B are equivalent if and only if A and B subsume each other.) 

The hint weight value is added to the weight - as computed in the usual way 
under the weighting strategy - of any generated clause that satisfies the specified 
condition. Since the user-specified hint weight value can be positive or negative, 
the hints strategy can be used either to focus on or to avoid generated clauses 
that satisfy the specified condition. 

In this section, we summarize our experiments for a variety of reasoning tasks 
and for a variety of application areas. The reasoning tasks range from proof 
checking to finding new proofs. The applications include problems from ring 
theory, various logical calculi, and Robbins algebra [14]. Our objective is to point 
out the range of reasoning tasks for which the hints strategy is valuable; hence 
we organize our case studies by reasoning task rather than by application. 

* The user can specify more than one condition, each with its own hint weight value, but this 
typically is not done. It does appear desirable, however, to allow the user to specify different hint 
weight values for different hint clauses. This option is being considered for future implementations. 
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3.1. PROOF CHECKING 

Proof checking can mean a variety of things, ranging from verifying specific 
applications of inference rules to completing proofs for which only key, high- 
level steps are given. In the limiting case, the distinction between proof checking 
and proof finding can be somewhat arbitrary. For the sake of discussion, we 
have grouped our experiments roughly into three categories: proof checking, 
proof completion, and proof finding. The differences among the categories are in 
the nature of the hints provided and the extent to which the automated reasoning 
program is required to follow the hints. 

Say we are given a set of hypotheses, a set of inference rules, and a sequence 
S = {C1,C2, . . .  ,Ck) of clauses purported to be a proof of the clause Ck. 
There are several questions that we might ask about this "proof", including, for 
example, the following. 

- Is the proof correct? That is, is each clause in the sequence S derivable (with 
the given inference rules) from the hypotheses and clauses appearing earlier 
in the sequence? 

- Is the proof complete? That is, is each clause in S derivable with a single 
application of an inference rule? Of course, an incomplete proof is not a 
proof in the formal sense; proof completion is discussed in the next section. 

- Is the proof minimal? That is, is there a proper subsequence of clauses from 
S (not necessarily adjacent in S) that gives a complete proof of C/~? A proof 
would not be minimal if, for example, it contained derived clauses that do 
not actually participate in the derivation of Ck. 

- Is the proof minimum? That is, does there exist a "shorter proof" of Ck with 
respect to some given measure for the length of a proof. For one example, 
we could ask whether there is a proof consisting of strictly fewer derived 
clauses. Alternatively, we could focus on the depth of the corresponding 
proof trees and ask whether there is a proof with strictly less depth. 

We have used OTTER to help us answer these and a variety of related questions.* 
The following three examples illustrate the applicability of the hints strategy to 
answering questions about correctness and completeness. Example 6, later in this 
article, discusses the applicability of the hints strategy to the problem of finding 
shorter proofs. 

Example 1, A Straightforward Proof-Checking Exercise 

The five axioms 

(EXI-I) P(i(x,i(y,x))) # Axiom 1. 
(EX1-2) P(i(i(x,y),i(i(y,z),i(x,z)))) # Axiom 2. 

* We have experimented with even more restrictive notions of proof checking that require, 
for example, generating proof clauses in a specified order and with specified ancestry. This work 
involves the use of special representations and special-purpose demodulators and is not reported 
in this article. 
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(EXl-3) P(i(i(i(x,y),y),i(i(y,x),x))) # Axiom 3. 
(EXI-4) P(i(i(i(x,y),i(y,x)),i(y,x))) # Axiom 4. 
(EXI-S) P(i(i(n(x),n(y)),i(y,x))) # Axiom 5. 

together with the inference rule condensed detachment are known to be a com- 
plete system for the many-valued sentential calculus [4, 16]. It is also known that 
condensed detachment can be applied by using hyperresolution and the following 
nucleus. 

(EXI-6)-P(i(x,y)) i -P(x) f P(y) # Condensed Detachment. 

The problem is to show that Axiom 4 is dependent on the four remaining 
axioms, specifically, by showing that Axiom 4 can be derived from Axioms 1, 
2, 3, and 5 with repeated applications of condensed detachment. For proof by 
contradiction, the input consists of Axioms 1, 2, 3, and 5 and the negation of 
Axiom 4. 
(EX1-7) -P(i(i(i(a,b),i(b,a)),i(b,a))) # Negation of Axiom 4. 

We were given a proof of this fact that consists of 63 steps, representing 
63 applications of condensed detachment; Step 63 is clause (EX1-4). Our task, 
for this example, is simply to verify that the 63 given steps are sufficient to 
prove the result. We do this by including each of the 63 steps as a hint clause 
and instructing the automated reasoning program to keep a generated clause if 
and only if it is equivalent to a hint. Within this set of clauses, the program is 
instructed to focus on clauses in the order that they are generated (i.e., to perform 
a breadth-first search of the search space). 

It is no surprise, of course, that a proof is obtained immediately. Further, the 
breadth-first requirement increases the likelihood that the automated reasoning 
program will find the given proof rather than a different proof that happens to 
use a subset of the given clauses. Our original proof did, in fact, use each of the 
63 given clauses. When we dropped the breadth-first requirement in a second 
experiment, we obtained a 58-step proof consisting of a proper subset of the 
original 63 clauses. 

We note that there are subtleties associated even with this seemingly trivial 
use of automated reasoning. It is likely that a proof being checked was not gen- 
erated by the system doing the proof checking. Automated reasoning programs 
are complex systems that are influenced by representation and by strategies for 
keeping information in a simplified or canonical form. Consider, for example, 
problems that involve commutative and/or associative operators. In order for an 
approach using hints to be effective, it is essential that hints and generated claus- 
es be subject to the same strategies for maintaining information. This issue is 
addressed in Example 2. 

Example 2, Checking a Proof for Which Representation Is an Issue 

The x 3 ---- x problem for associative rings (x 3 -- x implies commutativity) has 
been considered to be a benchmark problem for automated reasoning programs 
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[1]. We reported, in [10], a proof of the problem using the automated reasoning 
program AURA [8]. Since that time, the problem has been attacked with a variety 
of approaches [2, 9, 13]. T. C. Wang's proof is quite a bit different from other 
proofs we have seen, so we decided to try to verify it with OTTER. 

Clauses corresponding to Wang's original input are as follows. 

% (xy)z = x(yz) 
(EX2-WI) EQ(ADD(ADD(x,y),z),ADD(x,ADD(y,z))). 

X - XXX = e 

(EX2-W2) EQ(ADD(x,INV(MULT(x,MULT(x,x)))),e). 

% xxy + xyx + xyy + yxx + yxy + yyx = e 
(EX2-W3) EQ(ADD(MULT(x,MULT(x,y)),ADD(MULT(x,MULT(y,x)), 

ADD(MULT(x,MULT(y,y)),ADD(MULT(y,MULT(x,x)), 
ADD(MULT(y,MULT(x,y)),MULT(y,MULT(y,x))))))),e). 

% xyz + xzy + yxz + yzx + zxy + zyx = e 
(EX2-W4) EQ(ADD(MULT(x,MULT(y,z)),ADD(MULT(x,MULT(z,y)), 

ADD(MULT(y,MULT(x,z)),ADD(MULT(y,MULT(z,x)), 
ADD(MULT(z,MULT(x,y)),MULT(z,MULT(y,x))))))),e). 

Wang's proof has two basic steps. The first step consists of generating ground 
equations by taking ground instances of the input axioms and by multiplying 
on the right and on the left by ground monomials. The second step consists of 
adding and subtracting six of the resulting equations to conclude that a b  - b a  = 

e, for arbitrary a and b. 
Our attempt to verify Wang's proof required three sets of clauses: clauses 

to systematically generate new ground monomials, clauses to ground Wang's 
input axioms and to multiply by the ground monomials, and a clause to add and 
subtract equations. In addition, we used a set of input demodulators to help keep 
generated clauses in a reduced, or canonical, form [12]. 

The following clauses are used to generate ground monomials (for constants 
a and b). 

% a and b are monomials. 
(EX2-MI) MONO(a). 
(EX2-M2) MONO(b). 

% If x and y are monomials, then so are INV(x) and MULT(x,y). 
(EX2-M3) -MONO(x) I MONO(INV(x)). 
(EX2-M4) -MONO(x) I -MONO(y) I MONO(MULT(x,y)). 

The following clauses are used to generate Wang's equations by instantiating 
axioms (EX2-W2), (EX2-W3), and (EX2-W4) and by multiplying on the right 
and left by ground monomials. Since we use demodulation to right associate 
expressions with respect to the ADD predicate, we do not include the clauses 
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corresponding to axiom (EX2-W1); such clauses would not participate in any 
significant applications of resolution. 

% instantiate only 

(EX2-EI) -MONO(x) I EQ(ADD(x,INV(MULT(x,MULT(x,x)))),e). 

(EX2-E2) -MONO(x) I -MONO(y) ] 
EQ(ADD(MULT(x,MULT(x,y)),ADD(MULT(x,MULT(y,x)), 

ADD(MULT(x,MULT(y,y)),ADD(MULT(y,MULT(x,x)), 
ADD(MULT(y,MULT(x,y)),MffLT(y,MULT(y,x))))))),e). 

(EX2-E3) -MONO(x) I -MONO(y) I -MONO(z) I 
EQ(ADD(MD-LT(x,MULT(y,z)),ADD(MULT(x,MULT(z,y)), 

ADD(MULT(y,MULT(x,z)),ADD(MULT(y,MULT(z,x)), 
ADD(MULT(z,MULT(x,y)),MULT(z,MULT(y,x))))))),e). 

instantiate and multiply on the right 

(EX2-E4) -MONO(w)'I -MONO(x) I 
EQ(ADD(MULT(x,w),INV(MULT(x,MULT(x,MULT(x,w))))),e). 

(EX2-E5) -MONO(w) I -MONO(x) I -MONO(y) I 
EQ(ADD(MULT(x,MULT(x,MULT(y,w))), 

ADD(MULT(x,MULT(y,MULT(x,w))), 
ADD(MULT(x,MULT(y,MULT(y,w))), 
ADD(MULT(y,MULT(x,MULT(x,w))), 
ADD(MULT(y,MULT(x,MULT(y,w))), 

MULT(y,MULT(y,MULT(x,w)))))))),e). 

(EX2-E6) -MONO(w) I -MONO(x) I -MONO(y) I -MONO(z) I 
EQ(ADD(MULT(x,MULT(y,MULT(z,w))), 

ADD(MULT(x,MULT(z,MULT(y,w))), 
ADD(MULT(y,MULT(x,MULT(z,w))), 
ADD(MULT(y,MULT(z,MULT(x,w))), 
ADD(MULT(z,MULT(x,MULT(y,w))), 

MULT(z,MULT(y,MULT(x,w)))))))),e). 

% instantiate and multiply on the left 

(EX2-E7) -MONO(w) I -MONO(x) I 
EQ(ADD(MULT(w,x),INV(MULT(w,MULT(x,MULT(x,x))))),e). 

(EX2-E8) -MONO(w) I -MONO(x) I -MONO(y) I 
EQ (ADD (MULT (w, MULT (x, MULT (x, y) ) ), 

ADD (MULT (w, MULT (x, MULT (y, x) ) ), 
ADD (MULT (w, MULT (x, MULT (y, y) ) ), 
ADD (MULT (w, MULT (y, MULT (x, x) ) ), 
ADD (MULT (w, MULT (y, MULT (x, y) ) ), 

MULT (w, MULT (y, MULT (y, x) ) ) ) ) ) ) ), e). 
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(EX2-E9) -MONO(w) I -MONO(x) I -MONO(y) I -MONO(z) I 
EQ(ADD(MULT(w,MULT(x,MULT(y,z))), 

ADD(MULT(w,MULT(x,MULT(z,y))), 
ADD(MULT(w,MULT(y,MULT(x,z))), 
ADD(MULT(w,MULT(y,MULT(z,x))), 
ADD(MULT(w,MULT(z,MULT(x,y))), 

MULT(w,MULT(z,MULT(y,x)))))))),e). 

The following clause can be used to derive the combination of six equations 
specified in Wang's proof. The first three negative literals correspond to equations 
to be subtracted; the next three negative literals correspond to equations to be 
added. 

Z template for adding and subtracting 6 equations 
(EX2-S1) -EQ(x l , e )  I -EQ(x2,e)  ] -EQ(x3,e)  I 

-EQ(x4,e)  I -EQ(x5,e)  ] -EQ(x6,e)  ] 
EQ(ADD(INV(xl),ADD(INV(x2),ADD(INV(x3), 

ADD(x4,ADD(x5,x6))))),e). 

To ensure the cancellation of like terms, a general subtraction template would 
include qualifications to force unification between equations. This is not necessary 
for this problem because the six key equations are known to be ground. Without 
any qualifications, however, there are 6 6 ways to match the six key equations with 
the six negative literals of template (EX2-S 1). The following template is designed 
to reduce the number of undesirable and redundant combinations. Specifically, 
it ensures that six distinct equations will be combined, that any three equations 
will match the first three negative literals in at most one way, and that any three 
equations will match the next three negative literals in at most one way. 

modified template for adding and subtracting 6 equations 
(EX2-S2) -EQ(x l , e )  I -EQ(x2,e)  ] -EQ(x3,e)  ] 

-$LLT(xl ,x2)  I -$LLT(x2,x3) I 
-EQ(y l , e )  I -EQ(y2,e)  I -EQ(y3,e)  I 
-$LLT(yl ,y2)  I -$LLT(y2,y3) I 
$1D(xl,yl) l $ID(x l ,y2)  ] $1D(xl,y3) l 
$ID(x2 ,y l )  I $ID(x2,y2)  I $ID(x2,y3)  I 
$1D(x3,yl) l $1D(x3,y2) l $1D(x3,y3) l 

EQ(ADD(INV(xl),ADD(INV(x2),ADD(INV(x3), 
ADD(yI,ADD(y2,y3))))),e). 

The $LLT and $ID predicates refer to OTI'ER's underlying lexical ordering of 
terms. The positive $ID literals ensure that the three equations being added will 
be distinct from the three equations being subtracted. The negative SLLT literals 
ensure that only one ordering within each set of three equations will be consid- 
ered. Because much of the work associated with combining equations is in the 
processing (e.g., demodulation) of the positive unit resolvent, using (EX2-S2) 
instead of (EX2-S1) results in substantially better performance. 
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Our task, for this example, is to simulate the steps of Wang's proof. We do this 
by including Wang's six key equations as hints and by instructing the automated 
reasoning program to keep a generated clause if and only if it is an instance of 
predicate MONO (i.e., a new ground monomial) or it is equivalent to a hint. 

The hint clauses are as follows. 

ba - bbba = e 
(EX2-HI) EQ(ADD(MULT(b,a),INV(MULT(b,MULT(b,MULT(b,a))))),e). 

ab - abbb = e 
(EX2-H2) EQ(ADD(MULT(a,b),INV(MULT(a,MULT(b,MULT(b,b))))),e). 

aabb + abab + abbb + baab + babb + bbab = e 
(EX2-H3) EQ (ADD (MULT (b, MULT(a, MULT (a, b) ) ), 

ADD (MULT (b, MULT (a, MULT (b, a) ) ), 
ADD (MULT (b, MULT (a, MULT (b, b) ) ), 
ADD (MULT (b, MULT (b, MULT (a, a) ) ), 
ADD (MULT (b, MULT (D,MULT (a,b)) ), 

MULT (b, MULT (b, MULT (b, a) ) ) ) ) ) ) ), e). 

aabb + abab + abbb + baab + babb + bbab = e 
(EX2-H4) E[~ (ADD (MULT (a, MULT(a,MULT(b,b) ) ), 

ADD (MULT (a, MULT (b, MULT (a, b) ) ), 
ADD (MULT (a, MULT(D, MULT (b, b) ) ), 
ADD (MULT (b, MULT (a, MULT (a ,b) ) ), 
ADD (MULT (b, MULT ( a, MULT (b, b) ) ), 

MULT (b, MULT (b, MULT (a, b) ) ) ) ) ) ) ), e). 

abab + abba + baab + 2(baba) + bbaa = e 
(EX2-HS) EQ (ADD (MULT (a, MULT (b, MULT (a, b) ) ), 

ADD (MULT (a, MULT (b, MULT (b, a) ) ), 
ADD (MULT (b, MULT (a, MULT (a, b) ) ), 
ADD (H (MULT (b, MULT (a, MULT (b, a) ) ), 2), 

MULT (b, MULT (b, MULT (a, a) ) ) ) ) ) ), e). 

X aabb + 2(abab) + abba + baab + baba = e 
(EX2-H6) EQ (ADD (MULT (a, MULT (a, MULT (b, b) ) ), 

ADD (H (MULT(a,MULT (b,MULT(a,b))) ,2), 
ADD (MULT (a, MULT (b, MULT (b, a) ) ), 
ADD (MULT ( b, MULT (a, MULT (a, b) ) ), 

MULT (b, MULT (a, MULT (b ,a) ) ) ) ) ) ), e). 

These are Wang's six equations, but they have been mapped into our represen- 
tation, and they have been demodulated by the input demodulators. We note that 
our representation includes integer coefficients for polynomial terms. The term 
H (NULT (a, MULT (b, NJLT (a, b) ) ),  2) in clause (EX2-H6), for example, represents 
Wang's term 2(abab). 

The automated reasoning program got the proof on the first attempt. 
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Example 3, Finding and Correcting an Error in a Published Proof 

Because of the easy success with Wang's proof of the x 3 = x problem, we 
decided to try to check his proof of the X 4 = X problem, also reported in [13]. 
We used the same strategy described in Example 2, except we separated the 
proof into two steps, one to generate the twelve key equations given in Wang's 
proof, and a second to combine the equations exactly as specified in the proof. 
The exact combination is easy to specify in a separate experiment by giving each 
of the twelve key equations a distinct predicate name and modifying the analog 
of template (EX2-S 1) accordingly. 

Using this strategy, we got the twelve key equations of Wang's proof in 
the first attempt. We failed, however, to confirm Wang's combination of the 
twelve equations to complete the proof. A third experiment was designed to 
compare the result of the specified combination of equations with the twelve hint 
clauses. The result showed an extra two copies of one of the hint equations (the 
eleventh), indicating that the sign for this equation is incorrect in the published 
proof. In other words, the equation should be subtracted instead of added in the 
combination. The corrected combination is easily verified. 

It is interesting to note, we believe, that the hardest and most time consuming 
part of this exercise was to get Wang's equations into a clause format suitable 
for the automated reasoning program. We did this with a substantial amount 
of editing and by using the automated reasoning program as a term-rewriting 
system. 

3.2. P~ooF COMPLETION 

In this section we look at problems for which we have some, but not all, of the 
clauses for a proof. The objective is to complete the proof. 

Example 4, Remembering a Forgotten Proof 

While working with Wang's proof of x 3 = x, we realized that we had pretty 
much forgotten the details of the proof we had obtained ourselves previously, 
although we did remember the key significant steps. We decided to use OTTER to 
try to "remember" the proof. In the first experiment, we included the following 
as hints, 

~6x=e 
(EX4-i) EQ(H(x,6) ,e). 

Y, 3x + 3xx -- e 

(EX4-2) EQ (ADD (H (x, 3), H (MULT (x, x), 3) ), e). 

Y. 3xy + 3yx = e 
(EX4-3) Eq (ADD (H (MULT(x, y) ,  3) ,H (MULT (y, x),  3)) ,  e) .  
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2xxy + 2xyx + 2yxx = e 
(EX4-4) EQ(ADD(H(MULT(x,MULT(x,y)),2), 

ADD(H(MULT(x,MULT(y,x)),2), 
H(MULT(y,MULT(x,x)),2))),e). 

% 2xxyz + 2xyzx + 2yzxx = e 
(EX4-5) EQ(ADD(H(MULT(x,MULT(x,MULT(y,z))),2), 

ADD(H(MULT(x,MULT(y,MULT(z,x))),2), 
H(MULT(y,MULT(z,MULT(x,x))),2))),e). 

% 2xy - 2yx = e 
(EX4-6) EQ(ADD(H(MULT(x,y),2),H(INV(MULT(y,x)),2)),e). 

and instructed the reasoning program to focus on clauses that are equivalent to 
hints. It is no surprise, of course, that the proof was obtained immediately. In 
further experiments, we gave increasingly vague versions of our memory of the 
proof. For example, in one experiment we included the following as hints, 

% identify clauses that are subsumed by 
% ci*xy + c2*yx = e 
% for arbitrary coefficients cl and c2 
(EX4-7) EQ (ADD (H (MULT(x, y) ,vcl) ,H (MULT(y,x) ,vc2)), e). 
(EX4-8) EQ (ADD (H (MULT(x, y) ,vcl) ,H (INV(MULT(y,x)) ,vc2)), e). 

% identify clauses that are subsumed by 
c*terml + c,term2 + c,term3 = e 

% for arbitrary coefficient c 
(EX4-9) EQ(ADD(H(x,vc),ADD(H(y,vc),H(z,vc))),e). 

and instructed the reasoning program to favor instances of these general hints. 
Again, we obtained a proof, using no special weighting templates and no other 
special strategies. In another experiment, we determined that the single hint (EX4- 
9) suffices. 

Example 5, Finding a More Detailed Proof 

The following are the axioms for a Robbins algebra. For all x, y, and z, 

(EX5-1) o(x,y) = o(y,x) 
(EX5-2) o(o(x,y),z) = o(x,o(y,z)) 
(EX5-3) n(o(n(o(x,y)),n(o(x,n(y))))) = x 

(commutativity) 
(associativity) 
(the "Robbins axiom") 

It is, at least at the time of this writing, an open question whether all Robbins 
algebras are Boolean algebras - that is, whether the axioms for a Boolean algebra 
follow logically from the Robbins axioms. (The implied interpretation is that "o" 
and "n" correspond respectively to "or" and "not" in the Boolean algebra.) In 
[14], Steve Winker shows several conditions that, when taken together with the 
Robbins axioms, are sufficient to imply the Boolean algebra. Several of the 
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proofs of these results appear to be out of reach of current automated reasoning 
programs. 

One of the results, that the axiom 

(EXS-4) (exists x, y (o(x,y) = x)) 

suffices as an added condition, was proved by Bill McCune using an automated 
reasoning program with associative-commutative (AC) unification built in [7]. 
McCune's proof is based on another known (and easily proved) result, that the 
axiom 

(EX5-5) ( ex i s t s  x (o(x,x)  = x)) 

itself suffices. That is, McCune shows that the three axioms for Robbins alge- 
bra together with (EX5-4) logically implies (EX5-5), which in turn implies the 
axioms for a Boolean algebra. McCune's proof, in his representation, is as fol- 
lows. 

(EX5-PO1) 
(EXS-P02) 
(EX5-P03) 
(EX5-P04) 
(EX5-P05) 
(EXS-P06) 
(EX5-P07) 
(EXS-PO8) 
(EX5-P09) 
(EX5-PIO) 
(EXS-PII) 
(EXS-PI2) 
(EX5-P13) 
(EX5-PI4) 
(EX5-P15) 
(EX5-P16) 
(EX5-P17) 
(EXS-PI8) 
(EX5-P19) 
(EXS-P20) 
(EXS-P21) 
(EX5-P22) 
(EXS-P23) 
(EX5-P24) 

-(x+x=x) # Negation of (EXS-5). 
C+D=C # (EX5-4). 
n(n(n(x)+y)+n(x+y))=y # Robbins axiom. 
n(n(C)+n(D+n(C)))=D. 
n(n(C+x+y)+n(D+n(C+x)+y))=D+y. 
n(D+n(C+n(D+n(C))))=n(D+n(C)). 
n(n(n(n(x)+y)+n(x+y)+z)+n(y+z))=z. 
n(n(n(n(x)+y)+x+y)+y)=n(n(x)+y). 
n(n(C)+n(D+n(C+n(x))+n(C+x)))=D. 
n(n(D+n(C+n(D+n(C)))+x)+n(n(D+n(C))+x))=x. 
n(n(C+n(D+n(C)))+n(D+n(C)))=D. 
n(n(C+n(C+n(D+n(C))))+n(C+n(D+n(C))))=C. 
n(D+n(D+n(C)+n(C+n(D+n(C)))))=n(C+n(D+n(C))). 
n(D+n(n(C)+n(n(D+n(C))+n(x))+n(n(D+n(C))+x)))=n(C). 
n(n(n(n(n(x)+y)+x+y)+y+z)+n(n(n(x)+y)+z))=z. 
n(C+n(D+n(C)))=n(C). 
n(n(C)+n(C+n(C)))=C. 
n(n(C+x)+n(n(C)+n(C+n(C))+x))=x. 
n(n(C+C+n(C+n(C)))+n(C+n(C)))=C. 
n(C+n(C+n(C)+n(C+C+n(C+n(C)))))=n(C+C+n(C+n(C))). 
n(C+C+n(C+n(C)))=n(C). 
D+n(C+n(C))=D. 
C+n(C+n(C))=C. 
n(C+n(C))+x=x # Contradicts (EX5-P01). 

Axioms (EX5-1) and (EX5-2) are not present explicitly, since they are already 
built into the AC unification. 

Using the steps of McCune's AC-proof (mapped into our representation) as 
hints, we were able to get a proof of the same result without the use of AC 
unification. Our initial thought was simply to fill in the AC proof with the relevant 
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applications of commutativity and associativity. In fact, the new 45-step non- 
AC proof uses only eight of the generated clauses from McCune's 24-step AC 
proof. 

3.3. PROOF FINDING 

In [16] and [17], Wos describes the resonance strategy and its applicability to 
finding shorter proofs and to using the proof of one problem to help find a 
proof for a related problem. Resonance is a strategy that guides a user's choice 
for weight templates. A special class of weight templates, called resonators, is 
defined that has been shown to be effective for a variety of problems. Similar to 
the hints strategy reported in this article, the focus of the resonance strategy is on 
the selection of clauses rather than the weighting of terms. Being an application 
of weighting, however, resonance is subject to weighting's limited notion of 
matching. We believe that the subsumption-based matching criteria of the hints 
strategy (e.g., when a newly generated clause subsumes a hint clause) is especially 
significant. 

We performed experiments with several of the same problems reported in 
[16]. The hints strategy performed as well or better than the resonance strategy 
in all of the problems tried. 

Example 6, Finding a Shorter Proof 

As reported in [16], Dana Scott presented Larry Wos with a set of challenge 
problems in sentential calculus. The original problem consisted of three theses 
(Theses 1, 2, and 3), known to be a complete set of axioms for the two-valued 
sentential calculus [3] and sixty-eight theses to be proved (Theses 4 through 
71). Many of the examples in [16] are based on this set of problems, including 
derivations from various subsets of the seventy-one theses. 

In this example, we describe our experience using the hints strategy to find a 
shorter proof for one of the problems discussed by Wos. The problem is to show 
that Thesis 21 can be derived from Theses 18 and 35 with repeated applications 
of condensed detachment. 

(EX6-1) P(i(x,i(y,x))) 
(EX6-2) P(i(i(x,i(y,z)),i(y,i(x,z)))) 
(EX6-3) P(i(i(x,i(y,z)),i(i(x,y),i(x,z)))) 

# Thesis 18. 
# Thesis 21. 
# Thesis 35. 

For proof by contradiction, the input consists of Theses 18 and 35 and the 
negation of Thesis 21. 

(EX6-4) -P(i(i(a,i(b,c)),i(b,i(a,c)))) # Negation of Thesis 21. 

Our approach to finding a shorter proof consisted of a sequence of three 
experiments. In the first experiment, we proved Thesis 21 from Theses 18 and 
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35, using all seventy-one theses as hints. The resulting proof, which required 
thirteen applications of condensed detachment, contained nine clauses not from 
the original set of theses. In the second experiment, we again proved Thesis 
21 from Theses 18 and 35, but we used the clauses from the first proof as 
hints. Rather than using ordinary hyperresolution, however, we used linked±UR 
resolution as the inference rule [11]. Linked UR-resolution has the effect of 
combining multiple applications of condensed detachment into a single inference 
step. The significance to this problem is that we are looking for new derivations 
of clauses known to be useful in proving the result; linking provides a local 
permutation of the search space, which increases the likelihood of finding new 
derivations. The proof resulting from the second experiment consisted of exactly 
nine applications of condensed detachment. In the final experiment, we returned 
to ordinary hyperresolution, but we used the clauses from the most recent proof 
as hints. Using this approach, we were able to find a proof with exactly eight 
applications of condensed detachment. In each of the three experiments, we 
instructed the automated reasoning program to focus on clauses that subsume 
hints. 

Example 7, Blocking the Participation of Clauses in a Proof 

Occasionally we are interested in knowing whether a particular theorem can be 
proved without using certain lemmas as intermediate results. For example, each 
of the following axioms is known to be a single axiom for the equivalential 
calculus [15]. Specifically, any one of the following axioms can be used, with 
the inference rule condensed detachment, to derive all valid formulas of the 
theory. 

(EXT-01) P(e(e(x,y),e(e(z,y),e(x,z)))) # Axiom YQL. 
(EXT-02) P(e(e(x,y),e(e(x,z),e(z,y)))) # Axiom YOF. 
(EX7-03) P(e(e(x,y),e(e(z,x),e(y,z)))) # Axiom YOJ. 
(EX7-04) P(e(e(e(x,y),z),e(y,e(z,x)))) # Axiom UM. 
(EX7-05) P(e(x,e(e(y,e(x,z)),e(z,y)))) # Axiom XGF. 
(EXT-06) P(e(e(x,e(y,z)),e(z,e(x,y)))) # Axiom WN. 
(EXT-O7) P(e(e(x,y),e(z,e(e(y,z),x)))) # Axiom YRM. 
(EXT-08) P(e(e(x,y),e(z,e(e(z,y),x)))) # Axiom YRO. 
(EXT-09) P(e(e(e(x,e(y,z)),z),e(y,x))) # Axiom PYO. 
(EX7-10) P(e(e(e(x,e(y,z)),y),e(z,x))) # Axiom PYM. 
(EX7-11) P(e(x,e(e(y,e(z,x)),e(z,y)))) # Axiom XGK. 
(EX7-12) P(e(x,e(e(y,z),e(e(x,z),y)))) # Axiom XHK. 
(EX7-13) P(e(x,e(e(y,z),e(e(z,x),y)))) # Axiom XHN. 

Given an ordered pair (A,B) of single axioms from the list of thirteen, we 
may be interested in knowing whether /3 can be derived from A without first 
deriving any of the eleven remaining single axioms as an intermediate result. 

For this reasoning task we simply include the eleven remaining single axioms 
as hints and instruct the reasoning program not to focus on any generated clause 
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that subsumes a hint. Using this simple strategy, we have been able to find 90 
such proofs out of the 156 (13 * 12) candidate pairs for the thirteen given axioms. 
This study is still in progress. 

Example 8, Increasing the Goal-oriented Nature of the Search 

When the denial of a theorem consists of a multiliteral clause, it makes good 
sense to instruct the automated reasoning program to focus as soon as possible 
on unit clauses that can resolve with the literals of the denial. For example, 
when the theorem is universal (i.e., contains no existentially quantified variables) 
and the proof search is forward in nature, it is useful to include as hints unit 
clauses corresponding to the positive statement of the theorem. By instructing 
the automated reasoning program to focus on any generated clause that subsumes 
a hint, we help ensure that the automated reasoning program will recognize a 
contradiction as soon as possible. This is a somewhat obvious application of 
the hints strategy, but it does highlight the significance of using subsumption 
- specifically, the subsumption of a hint clause by a generated clause - as a 
selection criterion. 

Using hints to focus on the literals of a multiliteral denial clause has been 
useful for proving that one axiom system logically implies another (and, ulti- 
mately, for showing that two axiom systems are equivalent). For example, we 
can show that the system 

(EX8-1) P(i(i(i(x,y),z),i(y,z))) # Thesis 19. 
(EX8-2) P(i(i(i(x,y),z),i(n(x),z))) # Thesis 37. 
(EX8-3) P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))) # Thesis $9. 

(from Scott's challenge) with condensed detachment is complete for the sentential 
calculus by deriving the system 

(EX8-4) P(i(i(x,y),i(i(y,z),i(x,z)))) 
(EX8-S) P(i(i(n(x),x),x)) 
(EXS-e) P(i(x,i(n(x),y))) 

# Thesis i. 
# Thesis 2. 
# Thesis 3. 

which is known to be complete. For proof by contradiction, we include the 
following denial clause. 

% negation of Theses 1, 2 ,  and 3 
(EX8-7)-P(i(i(a,b),i(i(b,c),i(a,c)))) I 

-P(i(i(n(a) ,a) ,a)) I 
-P (i (a, i (n(a) ,b) ) ). 

To focus on this denial, we include clauses (EX8-4), (EX8-5), and (EX8-6) as 
hints as well as any other hints that may help us solve the problem. In this case, 
without any other insight, we include all of the original 71 theses as hints, and 
we get the proof using no weighting templates or any other special strategies. 
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The hints corresponding to the literals of the denial are especially significant to the 
final step of the proof. 

Remark. We note that the Boyer-Moore theorem prover [2] has a "hints" feature 
for directing a proof. While the hints strategy presented in this article focuses on 
the evaluation and consideration of newly generated clauses, hints are used in the 
Boyer-Moore prover to force the use of specific instances of  previously-proved 
theorems, definitions, and axioms and the use of specific rewrite rules. Althrough 
there are similarities when using hints for proof checking, the two approaches are 
somewhat different in spirit and intent. 

4. Summary 

We have described a new strategy for increasing the effectiveness of an automated 
reasoning program. Under the hints strategy, the value of a clause is determined, 
in part, by whether or not it subsumes or is subsumed by a user-supplied hint 
clause. 

The hints strategy is applicable to a variety of reasoning tasks, including proof 
checking, proof completion, and proof finding. The application to proof checking 
and proof completion is natural and intuitive; the strategy ensures that the automated 
reasoning program will focus on clauses that are known to participate in a proof. 
The application to proof finding is less direct, providing a new mechanism for a 
user to supply intuition or knowledge to the automated reasoning program. 

We have implemented the hints strategy in OTTER and have experimented with 
it extensively. We conclude that the use of hints can be an effective strategy for the 
automation of  reasoning and that support for the hints strategy provides a valuable 
enhancement to an automated reasoning program. 
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