
Journal of Automated Reasoning 16: 223-239, 1996. 223
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Studies in A u t o m a t e d Reasoning

Using Hints to Increase the Effectiveness of an
Automated Reasoning Program: Case Studies

ROBERT VEROFF
University of New Mexico, Albuquerque, NM 87131, U.S.A.
e-mail: veroff@cs.unm.edu

(Received: 6 March 1995)

Abstract. In this article we consider the use of hints to help guide the search for a proof. Under
the hints strategy, the value of a generated clause is determined, in part, by whether or not the
clause subsumes or is subsumed by a user-supplied hint clause. We have implemented the hints
strategy and have experimented with it extensively. We summarize our experiences for a variety
of reasoning tasks, including proof checking, proof completion, and proof finding. We conclude
that the hints strategy has value beyond simply "giving the proof to find the proof."

Key words: hints strategy, automated reasoning programs, pl:oof checking, proof completion, proof
finding, weighting.

1. Introduction

In this article we describe our experiences with a new strategy, called the hints
strategy, for increasing the effectiveness of automated reasoning programs. Under
the hints strategy, a generated clause is given special consideration (as defined
by the user) if it subsumes or is subsumed by a user-supplied hint clause. We
have implemented the new strategy in the automated reasoning program OTTER
[6] and have experimented with it extensively. What began as an exercise in the
obvious - verifying the steps of a given proof - turned out to be more interesting
and more valuable than we expected. The hints strategy is applicable to a variety
of reasoning tasks, including proof checking, proof completion, and proof find-
ing. Using the hints strategy, we have successfully checked proofs, found and
corrected an error in a published proof, completed partial proofs, and used known
proofs to help find shorter proofs and proofs of related theorems. It is especially
significant, we believe, that each of the reported successes came quite easily.

The hints strategy is closely related to the weighting strategy [5]. In Section 2
we give a brief overview of the hints and weighting strategies in order to highlight
the key similarities and differences. In Section 3 we summarize our experiments
with the hints strategy for a variety of reasoning tasks. We conclude that the
hints strategy is a valuable enhancement to an automated reasoning program.

224 ROBERT VEROFF

2. Hints and Weighting

Search strategies are used to restrict and direct the application of inference roles.
The weighting strategy [5] is used to restrict and direct the search by associating
a value, called a weight, with every clause in the database of clauses and by
ordering the application of inference rules according to these weights. User-
supplied weight templates indicate preferences for symbols and terms appearing
in clauses. Weight templates can be used to express intuition or knowledge about
a problem or problem area in order to help guide the search for a proof or to
prevent the consideration of certain clauses. Weighting also can be used to give
preferences for the type of proof found. For example, when doing a circuit design,
one might prefer a solution that emphasizes the use of "and" gates over the use
of "or" gates. Years of experience have demonstrated the value of the weighting
strategy to automated reasoning.

The hints strategy enhances the weighting strategy by adding a new dimension
to the determination of weight values. The hints strategy is similar to the weight-
ing strategy in that it makes use of user-defined patterns to determine the relative
importance of generated clauses, but there are some significant differences.

Weighting: Weighting focuses on the assignment of a weight to each clause.
User-supplied weight templates define a recursive mapping wt 0 from terms and
atoms to corresponding weight values. For example, the OTTER weight tem-
plate

weight (f ($ (3), g($(2))), -15)

defines a mapping for terms of the form f (t l , g(t2)), where tl and t 2 are arbitrary
terms. The $(3) and $(2) patterns in the template are multipliers for the weights
of the corresponding subterms; the -15 indicates a value that is added to the
result. Specifically,

w t (f (t l , g(t2))) = 3 * wt(t l) + 2 * wt(t2) - 15.

The weight of a clause is then defined as a simple function of the weights of its
atoms.

The process of matching weight templates and terms can be defined in terms
of instantiation. For example, the weight template

weight (f ($ (3) ,g($(2))), -15)

matches any instance of the term f (x , 9(Y)); the term is derived from the weight
template by replacing each $ multiplier by a unique variable identifier.

Hints: In contrast to weighting, the hints strategy focuses directly on the iden-
tification of key clauses rather than on the general calculation of weights. Any
generated clause that subsumes or is subsumed by a user-supplied hint clause is
identified as being "interesting". The weight of such a clause is adjusted (either

STUDIES IN AUTOMATED REASONING 225

positively or negatively) according to user preferences; the cases of subsuming
a hint, being subsumed by a hint, or both are controlled separately. The case in
which a generated clause subsumes a hint clause is probably the most interesting
and potentially valuable. Such generated clauses can be viewed as key milestones
on the way to a proof. (If a fact is deemed significant, then for many applica-
tions of automated reasoning, anything that subsumes the fact would be just as
significant.) The case in which a clause is subsumed by a hint looks more like
weighting (i.e., identifying instanc.es of user-defined patterns) and may be less
interesting, although there are problems for which finding instances of key claus-
es is significant. The third case, identifying clauses that both subsume and are
subsumed by a hint, is particularly useful for various types of proof checking.

In summary, the hints strategy enhances the weighting strategy, first, by focus-
ing on entire facts (i.e., clauses) rather than terms and subterms, and second, by
using subsumption as a criterion for determining the value of a generated clause.
Being based on subsumption, the hints strategy adds a semantic, or logical, com-
ponent to the evaluation of a clause.

3 . C a s e S t u d i e s

The hints strategy has been implemented in OTI'ER and experimented with exten-
sively. In the current implementation, the user can specify a list of hint clauses,
a hint weight value, and one of the following three conditions.*

- A generated clause subsumes a hint clause.

- A hint clause subsumes a generated clause.

- A generated clause is equivalent to a hint clause. (For our purposes, clauses
A and B are equivalent if and only if A and B subsume each other.)

The hint weight value is added to the weight - as computed in the usual way
under the weighting strategy - of any generated clause that satisfies the specified
condition. Since the user-specified hint weight value can be positive or negative,
the hints strategy can be used either to focus on or to avoid generated clauses
that satisfy the specified condition.

In this section, we summarize our experiments for a variety of reasoning tasks
and for a variety of application areas. The reasoning tasks range from proof
checking to finding new proofs. The applications include problems from ring
theory, various logical calculi, and Robbins algebra [14]. Our objective is to point
out the range of reasoning tasks for which the hints strategy is valuable; hence
we organize our case studies by reasoning task rather than by application.

* The user can specify more than one condition, each with its own hint weight value, but this
typically is not done. It does appear desirable, however, to allow the user to specify different hint
weight values for different hint clauses. This option is being considered for future implementations.

226 ROBERT VEROFF

3.1. PROOF CHECKING

Proof checking can mean a variety of things, ranging from verifying specific
applications of inference rules to completing proofs for which only key, high-
level steps are given. In the limiting case, the distinction between proof checking
and proof finding can be somewhat arbitrary. For the sake of discussion, we
have grouped our experiments roughly into three categories: proof checking,
proof completion, and proof finding. The differences among the categories are in
the nature of the hints provided and the extent to which the automated reasoning
program is required to follow the hints.

Say we are given a set of hypotheses, a set of inference rules, and a sequence
S = {C1,C2, . . . ,Ck) of clauses purported to be a proof of the clause Ck.
There are several questions that we might ask about this "proof", including, for
example, the following.

- Is the proof correct? That is, is each clause in the sequence S derivable (with
the given inference rules) from the hypotheses and clauses appearing earlier
in the sequence?

- Is the proof complete? That is, is each clause in S derivable with a single
application of an inference rule? Of course, an incomplete proof is not a
proof in the formal sense; proof completion is discussed in the next section.

- Is the proof minimal? That is, is there a proper subsequence of clauses from
S (not necessarily adjacent in S) that gives a complete proof of C/~? A proof
would not be minimal if, for example, it contained derived clauses that do
not actually participate in the derivation of Ck.

- Is the proof minimum? That is, does there exist a "shorter proof" of Ck with
respect to some given measure for the length of a proof. For one example,
we could ask whether there is a proof consisting of strictly fewer derived
clauses. Alternatively, we could focus on the depth of the corresponding
proof trees and ask whether there is a proof with strictly less depth.

We have used OTTER to help us answer these and a variety of related questions.*
The following three examples illustrate the applicability of the hints strategy to
answering questions about correctness and completeness. Example 6, later in this
article, discusses the applicability of the hints strategy to the problem of finding
shorter proofs.

Example 1, A Straightforward Proof-Checking Exercise

The five axioms

(EXI-I) P(i(x,i(y,x))) # Axiom 1.
(EX1-2) P(i(i(x,y),i(i(y,z),i(x,z)))) # Axiom 2.

* We have experimented with even more restrictive notions of proof checking that require,
for example, generating proof clauses in a specified order and with specified ancestry. This work
involves the use of special representations and special-purpose demodulators and is not reported
in this article.

STUDIES IN AUTOMATED REASONING 227

(EXl-3) P(i(i(i(x,y),y),i(i(y,x),x))) # Axiom 3.
(EXI-4) P(i(i(i(x,y),i(y,x)),i(y,x))) # Axiom 4.
(EXI-S) P(i(i(n(x),n(y)),i(y,x))) # Axiom 5.

together with the inference rule condensed detachment are known to be a com-
plete system for the many-valued sentential calculus [4, 16]. It is also known that
condensed detachment can be applied by using hyperresolution and the following
nucleus.

(EXI-6)-P(i(x,y)) i -P(x) f P(y) # Condensed Detachment.

The problem is to show that Axiom 4 is dependent on the four remaining
axioms, specifically, by showing that Axiom 4 can be derived from Axioms 1,
2, 3, and 5 with repeated applications of condensed detachment. For proof by
contradiction, the input consists of Axioms 1, 2, 3, and 5 and the negation of
Axiom 4.
(EX1-7) -P(i(i(i(a,b),i(b,a)),i(b,a))) # Negation of Axiom 4.

We were given a proof of this fact that consists of 63 steps, representing
63 applications of condensed detachment; Step 63 is clause (EX1-4). Our task,
for this example, is simply to verify that the 63 given steps are sufficient to
prove the result. We do this by including each of the 63 steps as a hint clause
and instructing the automated reasoning program to keep a generated clause if
and only if it is equivalent to a hint. Within this set of clauses, the program is
instructed to focus on clauses in the order that they are generated (i.e., to perform
a breadth-first search of the search space).

It is no surprise, of course, that a proof is obtained immediately. Further, the
breadth-first requirement increases the likelihood that the automated reasoning
program will find the given proof rather than a different proof that happens to
use a subset of the given clauses. Our original proof did, in fact, use each of the
63 given clauses. When we dropped the breadth-first requirement in a second
experiment, we obtained a 58-step proof consisting of a proper subset of the
original 63 clauses.

We note that there are subtleties associated even with this seemingly trivial
use of automated reasoning. It is likely that a proof being checked was not gen-
erated by the system doing the proof checking. Automated reasoning programs
are complex systems that are influenced by representation and by strategies for
keeping information in a simplified or canonical form. Consider, for example,
problems that involve commutative and/or associative operators. In order for an
approach using hints to be effective, it is essential that hints and generated claus-
es be subject to the same strategies for maintaining information. This issue is
addressed in Example 2.

Example 2, Checking a Proof for Which Representation Is an Issue

The x 3 ---- x problem for associative rings (x 3 -- x implies commutativity) has
been considered to be a benchmark problem for automated reasoning programs

228 ROBERT VEROFF

[1]. We reported, in [10], a proof of the problem using the automated reasoning
program AURA [8]. Since that time, the problem has been attacked with a variety
of approaches [2, 9, 13]. T. C. Wang's proof is quite a bit different from other
proofs we have seen, so we decided to try to verify it with OTTER.

Clauses corresponding to Wang's original input are as follows.

% (xy)z = x(yz)
(EX2-WI) EQ(ADD(ADD(x,y),z),ADD(x,ADD(y,z))).

X - XXX = e

(EX2-W2) EQ(ADD(x,INV(MULT(x,MULT(x,x)))),e).

% xxy + xyx + xyy + yxx + yxy + yyx = e
(EX2-W3) EQ(ADD(MULT(x,MULT(x,y)),ADD(MULT(x,MULT(y,x)),

ADD(MULT(x,MULT(y,y)),ADD(MULT(y,MULT(x,x)),
ADD(MULT(y,MULT(x,y)),MULT(y,MULT(y,x))))))),e).

% xyz + xzy + yxz + yzx + zxy + zyx = e
(EX2-W4) EQ(ADD(MULT(x,MULT(y,z)),ADD(MULT(x,MULT(z,y)),

ADD(MULT(y,MULT(x,z)),ADD(MULT(y,MULT(z,x)),
ADD(MULT(z,MULT(x,y)),MULT(z,MULT(y,x))))))),e).

Wang's proof has two basic steps. The first step consists of generating ground
equations by taking ground instances of the input axioms and by multiplying
on the right and on the left by ground monomials. The second step consists of
adding and subtracting six of the resulting equations to conclude that a b - b a =

e, for arbitrary a and b.
Our attempt to verify Wang's proof required three sets of clauses: clauses

to systematically generate new ground monomials, clauses to ground Wang's
input axioms and to multiply by the ground monomials, and a clause to add and
subtract equations. In addition, we used a set of input demodulators to help keep
generated clauses in a reduced, or canonical, form [12].

The following clauses are used to generate ground monomials (for constants
a and b).

% a and b are monomials.
(EX2-MI) MONO(a).
(EX2-M2) MONO(b).

% If x and y are monomials, then so are INV(x) and MULT(x,y).
(EX2-M3) -MONO(x) I MONO(INV(x)).
(EX2-M4) -MONO(x) I -MONO(y) I MONO(MULT(x,y)).

The following clauses are used to generate Wang's equations by instantiating
axioms (EX2-W2), (EX2-W3), and (EX2-W4) and by multiplying on the right
and left by ground monomials. Since we use demodulation to right associate
expressions with respect to the ADD predicate, we do not include the clauses

STUDIES IN AUTOMATED REASONING 229

corresponding to axiom (EX2-W1); such clauses would not participate in any
significant applications of resolution.

% instantiate only

(EX2-EI) -MONO(x) I EQ(ADD(x,INV(MULT(x,MULT(x,x)))),e).

(EX2-E2) -MONO(x) I -MONO(y)]
EQ(ADD(MULT(x,MULT(x,y)),ADD(MULT(x,MULT(y,x)),

ADD(MULT(x,MULT(y,y)),ADD(MULT(y,MULT(x,x)),
ADD(MULT(y,MULT(x,y)),MffLT(y,MULT(y,x))))))),e).

(EX2-E3) -MONO(x) I -MONO(y) I -MONO(z) I
EQ(ADD(MD-LT(x,MULT(y,z)),ADD(MULT(x,MULT(z,y)),

ADD(MULT(y,MULT(x,z)),ADD(MULT(y,MULT(z,x)),
ADD(MULT(z,MULT(x,y)),MULT(z,MULT(y,x))))))),e).

instantiate and multiply on the right

(EX2-E4) -MONO(w)'I -MONO(x) I
EQ(ADD(MULT(x,w),INV(MULT(x,MULT(x,MULT(x,w))))),e).

(EX2-E5) -MONO(w) I -MONO(x) I -MONO(y) I
EQ(ADD(MULT(x,MULT(x,MULT(y,w))),

ADD(MULT(x,MULT(y,MULT(x,w))),
ADD(MULT(x,MULT(y,MULT(y,w))),
ADD(MULT(y,MULT(x,MULT(x,w))),
ADD(MULT(y,MULT(x,MULT(y,w))),

MULT(y,MULT(y,MULT(x,w)))))))),e).

(EX2-E6) -MONO(w) I -MONO(x) I -MONO(y) I -MONO(z) I
EQ(ADD(MULT(x,MULT(y,MULT(z,w))),

ADD(MULT(x,MULT(z,MULT(y,w))),
ADD(MULT(y,MULT(x,MULT(z,w))),
ADD(MULT(y,MULT(z,MULT(x,w))),
ADD(MULT(z,MULT(x,MULT(y,w))),

MULT(z,MULT(y,MULT(x,w)))))))),e).

% instantiate and multiply on the left

(EX2-E7) -MONO(w) I -MONO(x) I
EQ(ADD(MULT(w,x),INV(MULT(w,MULT(x,MULT(x,x))))),e).

(EX2-E8) -MONO(w) I -MONO(x) I -MONO(y) I
EQ (ADD (MULT (w, MULT (x, MULT (x, y))),

ADD (MULT (w, MULT (x, MULT (y, x))),
ADD (MULT (w, MULT (x, MULT (y, y))),
ADD (MULT (w, MULT (y, MULT (x, x))),
ADD (MULT (w, MULT (y, MULT (x, y))),

MULT (w, MULT (y, MULT (y, x)))))))), e).

230 ROBERT VEROFF

(EX2-E9) -MONO(w) I -MONO(x) I -MONO(y) I -MONO(z) I
EQ(ADD(MULT(w,MULT(x,MULT(y,z))),

ADD(MULT(w,MULT(x,MULT(z,y))),
ADD(MULT(w,MULT(y,MULT(x,z))),
ADD(MULT(w,MULT(y,MULT(z,x))),
ADD(MULT(w,MULT(z,MULT(x,y))),

MULT(w,MULT(z,MULT(y,x)))))))),e).

The following clause can be used to derive the combination of six equations
specified in Wang's proof. The first three negative literals correspond to equations
to be subtracted; the next three negative literals correspond to equations to be
added.

Z template for adding and subtracting 6 equations
(EX2-S1) -EQ(x l , e) I -EQ(x2,e)] -EQ(x3,e) I

-EQ(x4,e) I -EQ(x5,e)] -EQ(x6,e)]
EQ(ADD(INV(xl),ADD(INV(x2),ADD(INV(x3),

ADD(x4,ADD(x5,x6))))),e).

To ensure the cancellation of like terms, a general subtraction template would
include qualifications to force unification between equations. This is not necessary
for this problem because the six key equations are known to be ground. Without
any qualifications, however, there are 6 6 ways to match the six key equations with
the six negative literals of template (EX2-S 1). The following template is designed
to reduce the number of undesirable and redundant combinations. Specifically,
it ensures that six distinct equations will be combined, that any three equations
will match the first three negative literals in at most one way, and that any three
equations will match the next three negative literals in at most one way.

modified template for adding and subtracting 6 equations
(EX2-S2) -EQ(x l , e) I -EQ(x2,e)] -EQ(x3,e)]

-$LLT(xl ,x2) I -$LLT(x2,x3) I
-EQ(y l , e) I -EQ(y2,e) I -EQ(y3,e) I
-$LLT(yl ,y2) I -$LLT(y2,y3) I
$1D(xl,yl) l $ID(x l ,y2)] $1D(xl,y3) l
$ID(x2 ,y l) I $ID(x2,y2) I $ID(x2,y3) I
$1D(x3,yl) l $1D(x3,y2) l $1D(x3,y3) l

EQ(ADD(INV(xl),ADD(INV(x2),ADD(INV(x3),
ADD(yI,ADD(y2,y3))))),e).

The $LLT and $ID predicates refer to OTI'ER's underlying lexical ordering of
terms. The positive $ID literals ensure that the three equations being added will
be distinct from the three equations being subtracted. The negative SLLT literals
ensure that only one ordering within each set of three equations will be consid-
ered. Because much of the work associated with combining equations is in the
processing (e.g., demodulation) of the positive unit resolvent, using (EX2-S2)
instead of (EX2-S1) results in substantially better performance.

STUDIES IN AUTOMATED REASONING 231

Our task, for this example, is to simulate the steps of Wang's proof. We do this
by including Wang's six key equations as hints and by instructing the automated
reasoning program to keep a generated clause if and only if it is an instance of
predicate MONO (i.e., a new ground monomial) or it is equivalent to a hint.

The hint clauses are as follows.

ba - bbba = e
(EX2-HI) EQ(ADD(MULT(b,a),INV(MULT(b,MULT(b,MULT(b,a))))),e).

ab - abbb = e
(EX2-H2) EQ(ADD(MULT(a,b),INV(MULT(a,MULT(b,MULT(b,b))))),e).

aabb + abab + abbb + baab + babb + bbab = e
(EX2-H3) EQ (ADD (MULT (b, MULT(a, MULT (a, b))),

ADD (MULT (b, MULT (a, MULT (b, a))),
ADD (MULT (b, MULT (a, MULT (b, b))),
ADD (MULT (b, MULT (b, MULT (a, a))),
ADD (MULT (b, MULT (D,MULT (a,b))),

MULT (b, MULT (b, MULT (b, a)))))))), e).

aabb + abab + abbb + baab + babb + bbab = e
(EX2-H4) E[~ (ADD (MULT (a, MULT(a,MULT(b,b))),

ADD (MULT (a, MULT (b, MULT (a, b))),
ADD (MULT (a, MULT(D, MULT (b, b))),
ADD (MULT (b, MULT (a, MULT (a ,b))),
ADD (MULT (b, MULT (a, MULT (b, b))),

MULT (b, MULT (b, MULT (a, b)))))))), e).

abab + abba + baab + 2(baba) + bbaa = e
(EX2-HS) EQ (ADD (MULT (a, MULT (b, MULT (a, b))),

ADD (MULT (a, MULT (b, MULT (b, a))),
ADD (MULT (b, MULT (a, MULT (a, b))),
ADD (H (MULT (b, MULT (a, MULT (b, a))), 2),

MULT (b, MULT (b, MULT (a, a))))))), e).

X aabb + 2(abab) + abba + baab + baba = e
(EX2-H6) EQ (ADD (MULT (a, MULT (a, MULT (b, b))),

ADD (H (MULT(a,MULT (b,MULT(a,b))) ,2),
ADD (MULT (a, MULT (b, MULT (b, a))),
ADD (MULT (b, MULT (a, MULT (a, b))),

MULT (b, MULT (a, MULT (b ,a))))))), e).

These are Wang's six equations, but they have been mapped into our represen-
tation, and they have been demodulated by the input demodulators. We note that
our representation includes integer coefficients for polynomial terms. The term
H (NULT (a, MULT (b, NJLT (a, b))), 2) in clause (EX2-H6), for example, represents
Wang's term 2(abab).

The automated reasoning program got the proof on the first attempt.

232 ROBERT VEROFF

Example 3, Finding and Correcting an Error in a Published Proof

Because of the easy success with Wang's proof of the x 3 = x problem, we
decided to try to check his proof of the X 4 = X problem, also reported in [13].
We used the same strategy described in Example 2, except we separated the
proof into two steps, one to generate the twelve key equations given in Wang's
proof, and a second to combine the equations exactly as specified in the proof.
The exact combination is easy to specify in a separate experiment by giving each
of the twelve key equations a distinct predicate name and modifying the analog
of template (EX2-S 1) accordingly.

Using this strategy, we got the twelve key equations of Wang's proof in
the first attempt. We failed, however, to confirm Wang's combination of the
twelve equations to complete the proof. A third experiment was designed to
compare the result of the specified combination of equations with the twelve hint
clauses. The result showed an extra two copies of one of the hint equations (the
eleventh), indicating that the sign for this equation is incorrect in the published
proof. In other words, the equation should be subtracted instead of added in the
combination. The corrected combination is easily verified.

It is interesting to note, we believe, that the hardest and most time consuming
part of this exercise was to get Wang's equations into a clause format suitable
for the automated reasoning program. We did this with a substantial amount
of editing and by using the automated reasoning program as a term-rewriting
system.

3.2. P~ooF COMPLETION

In this section we look at problems for which we have some, but not all, of the
clauses for a proof. The objective is to complete the proof.

Example 4, Remembering a Forgotten Proof

While working with Wang's proof of x 3 = x, we realized that we had pretty
much forgotten the details of the proof we had obtained ourselves previously,
although we did remember the key significant steps. We decided to use OTTER to
try to "remember" the proof. In the first experiment, we included the following
as hints,

~6x=e
(EX4-i) EQ(H(x,6) ,e).

Y, 3x + 3xx -- e

(EX4-2) EQ (ADD (H (x, 3), H (MULT (x, x), 3)), e).

Y. 3xy + 3yx = e
(EX4-3) Eq (ADD (H (MULT(x, y) , 3) ,H (MULT (y, x), 3)) , e) .

STUDIES IN AUTOMATED REASONING 233

2xxy + 2xyx + 2yxx = e
(EX4-4) EQ(ADD(H(MULT(x,MULT(x,y)),2),

ADD(H(MULT(x,MULT(y,x)),2),
H(MULT(y,MULT(x,x)),2))),e).

% 2xxyz + 2xyzx + 2yzxx = e
(EX4-5) EQ(ADD(H(MULT(x,MULT(x,MULT(y,z))),2),

ADD(H(MULT(x,MULT(y,MULT(z,x))),2),
H(MULT(y,MULT(z,MULT(x,x))),2))),e).

% 2xy - 2yx = e
(EX4-6) EQ(ADD(H(MULT(x,y),2),H(INV(MULT(y,x)),2)),e).

and instructed the reasoning program to focus on clauses that are equivalent to
hints. It is no surprise, of course, that the proof was obtained immediately. In
further experiments, we gave increasingly vague versions of our memory of the
proof. For example, in one experiment we included the following as hints,

% identify clauses that are subsumed by
% ci*xy + c2*yx = e
% for arbitrary coefficients cl and c2
(EX4-7) EQ (ADD (H (MULT(x, y) ,vcl) ,H (MULT(y,x) ,vc2)), e).
(EX4-8) EQ (ADD (H (MULT(x, y) ,vcl) ,H (INV(MULT(y,x)) ,vc2)), e).

% identify clauses that are subsumed by
c*terml + c,term2 + c,term3 = e

% for arbitrary coefficient c
(EX4-9) EQ(ADD(H(x,vc),ADD(H(y,vc),H(z,vc))),e).

and instructed the reasoning program to favor instances of these general hints.
Again, we obtained a proof, using no special weighting templates and no other
special strategies. In another experiment, we determined that the single hint (EX4-
9) suffices.

Example 5, Finding a More Detailed Proof

The following are the axioms for a Robbins algebra. For all x, y, and z,

(EX5-1) o(x,y) = o(y,x)
(EX5-2) o(o(x,y),z) = o(x,o(y,z))
(EX5-3) n(o(n(o(x,y)),n(o(x,n(y))))) = x

(commutativity)
(associativity)
(the "Robbins axiom")

It is, at least at the time of this writing, an open question whether all Robbins
algebras are Boolean algebras - that is, whether the axioms for a Boolean algebra
follow logically from the Robbins axioms. (The implied interpretation is that "o"
and "n" correspond respectively to "or" and "not" in the Boolean algebra.) In
[14], Steve Winker shows several conditions that, when taken together with the
Robbins axioms, are sufficient to imply the Boolean algebra. Several of the

234 ROBERT VEROFF

proofs of these results appear to be out of reach of current automated reasoning
programs.

One of the results, that the axiom

(EXS-4) (exists x, y (o(x,y) = x))

suffices as an added condition, was proved by Bill McCune using an automated
reasoning program with associative-commutative (AC) unification built in [7].
McCune's proof is based on another known (and easily proved) result, that the
axiom

(EX5-5) (ex i s t s x (o(x,x) = x))

itself suffices. That is, McCune shows that the three axioms for Robbins alge-
bra together with (EX5-4) logically implies (EX5-5), which in turn implies the
axioms for a Boolean algebra. McCune's proof, in his representation, is as fol-
lows.

(EX5-PO1)
(EXS-P02)
(EX5-P03)
(EX5-P04)
(EX5-P05)
(EXS-P06)
(EX5-P07)
(EXS-PO8)
(EX5-P09)
(EX5-PIO)
(EXS-PII)
(EXS-PI2)
(EX5-P13)
(EX5-PI4)
(EX5-P15)
(EX5-P16)
(EX5-P17)
(EXS-PI8)
(EX5-P19)
(EXS-P20)
(EXS-P21)
(EX5-P22)
(EXS-P23)
(EX5-P24)

-(x+x=x) # Negation of (EXS-5).
C+D=C # (EX5-4).
n(n(n(x)+y)+n(x+y))=y # Robbins axiom.
n(n(C)+n(D+n(C)))=D.
n(n(C+x+y)+n(D+n(C+x)+y))=D+y.
n(D+n(C+n(D+n(C))))=n(D+n(C)).
n(n(n(n(x)+y)+n(x+y)+z)+n(y+z))=z.
n(n(n(n(x)+y)+x+y)+y)=n(n(x)+y).
n(n(C)+n(D+n(C+n(x))+n(C+x)))=D.
n(n(D+n(C+n(D+n(C)))+x)+n(n(D+n(C))+x))=x.
n(n(C+n(D+n(C)))+n(D+n(C)))=D.
n(n(C+n(C+n(D+n(C))))+n(C+n(D+n(C))))=C.
n(D+n(D+n(C)+n(C+n(D+n(C)))))=n(C+n(D+n(C))).
n(D+n(n(C)+n(n(D+n(C))+n(x))+n(n(D+n(C))+x)))=n(C).
n(n(n(n(n(x)+y)+x+y)+y+z)+n(n(n(x)+y)+z))=z.
n(C+n(D+n(C)))=n(C).
n(n(C)+n(C+n(C)))=C.
n(n(C+x)+n(n(C)+n(C+n(C))+x))=x.
n(n(C+C+n(C+n(C)))+n(C+n(C)))=C.
n(C+n(C+n(C)+n(C+C+n(C+n(C)))))=n(C+C+n(C+n(C))).
n(C+C+n(C+n(C)))=n(C).
D+n(C+n(C))=D.
C+n(C+n(C))=C.
n(C+n(C))+x=x # Contradicts (EX5-P01).

Axioms (EX5-1) and (EX5-2) are not present explicitly, since they are already
built into the AC unification.

Using the steps of McCune's AC-proof (mapped into our representation) as
hints, we were able to get a proof of the same result without the use of AC
unification. Our initial thought was simply to fill in the AC proof with the relevant

STUDIES IN AUTOMATED REASONING 235

applications of commutativity and associativity. In fact, the new 45-step non-
AC proof uses only eight of the generated clauses from McCune's 24-step AC
proof.

3.3. PROOF FINDING

In [16] and [17], Wos describes the resonance strategy and its applicability to
finding shorter proofs and to using the proof of one problem to help find a
proof for a related problem. Resonance is a strategy that guides a user's choice
for weight templates. A special class of weight templates, called resonators, is
defined that has been shown to be effective for a variety of problems. Similar to
the hints strategy reported in this article, the focus of the resonance strategy is on
the selection of clauses rather than the weighting of terms. Being an application
of weighting, however, resonance is subject to weighting's limited notion of
matching. We believe that the subsumption-based matching criteria of the hints
strategy (e.g., when a newly generated clause subsumes a hint clause) is especially
significant.

We performed experiments with several of the same problems reported in
[16]. The hints strategy performed as well or better than the resonance strategy
in all of the problems tried.

Example 6, Finding a Shorter Proof

As reported in [16], Dana Scott presented Larry Wos with a set of challenge
problems in sentential calculus. The original problem consisted of three theses
(Theses 1, 2, and 3), known to be a complete set of axioms for the two-valued
sentential calculus [3] and sixty-eight theses to be proved (Theses 4 through
71). Many of the examples in [16] are based on this set of problems, including
derivations from various subsets of the seventy-one theses.

In this example, we describe our experience using the hints strategy to find a
shorter proof for one of the problems discussed by Wos. The problem is to show
that Thesis 21 can be derived from Theses 18 and 35 with repeated applications
of condensed detachment.

(EX6-1) P(i(x,i(y,x)))
(EX6-2) P(i(i(x,i(y,z)),i(y,i(x,z))))
(EX6-3) P(i(i(x,i(y,z)),i(i(x,y),i(x,z))))

Thesis 18.
Thesis 21.
Thesis 35.

For proof by contradiction, the input consists of Theses 18 and 35 and the
negation of Thesis 21.

(EX6-4) -P(i(i(a,i(b,c)),i(b,i(a,c)))) # Negation of Thesis 21.

Our approach to finding a shorter proof consisted of a sequence of three
experiments. In the first experiment, we proved Thesis 21 from Theses 18 and

236 ROBERT VEROFF

35, using all seventy-one theses as hints. The resulting proof, which required
thirteen applications of condensed detachment, contained nine clauses not from
the original set of theses. In the second experiment, we again proved Thesis
21 from Theses 18 and 35, but we used the clauses from the first proof as
hints. Rather than using ordinary hyperresolution, however, we used linked±UR
resolution as the inference rule [11]. Linked UR-resolution has the effect of
combining multiple applications of condensed detachment into a single inference
step. The significance to this problem is that we are looking for new derivations
of clauses known to be useful in proving the result; linking provides a local
permutation of the search space, which increases the likelihood of finding new
derivations. The proof resulting from the second experiment consisted of exactly
nine applications of condensed detachment. In the final experiment, we returned
to ordinary hyperresolution, but we used the clauses from the most recent proof
as hints. Using this approach, we were able to find a proof with exactly eight
applications of condensed detachment. In each of the three experiments, we
instructed the automated reasoning program to focus on clauses that subsume
hints.

Example 7, Blocking the Participation of Clauses in a Proof

Occasionally we are interested in knowing whether a particular theorem can be
proved without using certain lemmas as intermediate results. For example, each
of the following axioms is known to be a single axiom for the equivalential
calculus [15]. Specifically, any one of the following axioms can be used, with
the inference rule condensed detachment, to derive all valid formulas of the
theory.

(EXT-01) P(e(e(x,y),e(e(z,y),e(x,z)))) # Axiom YQL.
(EXT-02) P(e(e(x,y),e(e(x,z),e(z,y)))) # Axiom YOF.
(EX7-03) P(e(e(x,y),e(e(z,x),e(y,z)))) # Axiom YOJ.
(EX7-04) P(e(e(e(x,y),z),e(y,e(z,x)))) # Axiom UM.
(EX7-05) P(e(x,e(e(y,e(x,z)),e(z,y)))) # Axiom XGF.
(EXT-06) P(e(e(x,e(y,z)),e(z,e(x,y)))) # Axiom WN.
(EXT-O7) P(e(e(x,y),e(z,e(e(y,z),x)))) # Axiom YRM.
(EXT-08) P(e(e(x,y),e(z,e(e(z,y),x)))) # Axiom YRO.
(EXT-09) P(e(e(e(x,e(y,z)),z),e(y,x))) # Axiom PYO.
(EX7-10) P(e(e(e(x,e(y,z)),y),e(z,x))) # Axiom PYM.
(EX7-11) P(e(x,e(e(y,e(z,x)),e(z,y)))) # Axiom XGK.
(EX7-12) P(e(x,e(e(y,z),e(e(x,z),y)))) # Axiom XHK.
(EX7-13) P(e(x,e(e(y,z),e(e(z,x),y)))) # Axiom XHN.

Given an ordered pair (A,B) of single axioms from the list of thirteen, we
may be interested in knowing whether /3 can be derived from A without first
deriving any of the eleven remaining single axioms as an intermediate result.

For this reasoning task we simply include the eleven remaining single axioms
as hints and instruct the reasoning program not to focus on any generated clause

STUDIES IN AUTOMATED REASONING 237

that subsumes a hint. Using this simple strategy, we have been able to find 90
such proofs out of the 156 (13 * 12) candidate pairs for the thirteen given axioms.
This study is still in progress.

Example 8, Increasing the Goal-oriented Nature of the Search

When the denial of a theorem consists of a multiliteral clause, it makes good
sense to instruct the automated reasoning program to focus as soon as possible
on unit clauses that can resolve with the literals of the denial. For example,
when the theorem is universal (i.e., contains no existentially quantified variables)
and the proof search is forward in nature, it is useful to include as hints unit
clauses corresponding to the positive statement of the theorem. By instructing
the automated reasoning program to focus on any generated clause that subsumes
a hint, we help ensure that the automated reasoning program will recognize a
contradiction as soon as possible. This is a somewhat obvious application of
the hints strategy, but it does highlight the significance of using subsumption
- specifically, the subsumption of a hint clause by a generated clause - as a
selection criterion.

Using hints to focus on the literals of a multiliteral denial clause has been
useful for proving that one axiom system logically implies another (and, ulti-
mately, for showing that two axiom systems are equivalent). For example, we
can show that the system

(EX8-1) P(i(i(i(x,y),z),i(y,z))) # Thesis 19.
(EX8-2) P(i(i(i(x,y),z),i(n(x),z))) # Thesis 37.
(EX8-3) P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))) # Thesis $9.

(from Scott's challenge) with condensed detachment is complete for the sentential
calculus by deriving the system

(EX8-4) P(i(i(x,y),i(i(y,z),i(x,z))))
(EX8-S) P(i(i(n(x),x),x))
(EXS-e) P(i(x,i(n(x),y)))

Thesis i.
Thesis 2.
Thesis 3.

which is known to be complete. For proof by contradiction, we include the
following denial clause.

% negation of Theses 1, 2 , and 3
(EX8-7)-P(i(i(a,b),i(i(b,c),i(a,c)))) I

-P(i(i(n(a) ,a) ,a)) I
-P (i (a, i (n(a) ,b))).

To focus on this denial, we include clauses (EX8-4), (EX8-5), and (EX8-6) as
hints as well as any other hints that may help us solve the problem. In this case,
without any other insight, we include all of the original 71 theses as hints, and
we get the proof using no weighting templates or any other special strategies.

238 ROBERTVEROFF

The hints corresponding to the literals of the denial are especially significant to the
final step of the proof.

Remark. We note that the Boyer-Moore theorem prover [2] has a "hints" feature
for directing a proof. While the hints strategy presented in this article focuses on
the evaluation and consideration of newly generated clauses, hints are used in the
Boyer-Moore prover to force the use of specific instances of previously-proved
theorems, definitions, and axioms and the use of specific rewrite rules. Althrough
there are similarities when using hints for proof checking, the two approaches are
somewhat different in spirit and intent.

4. Summary

We have described a new strategy for increasing the effectiveness of an automated
reasoning program. Under the hints strategy, the value of a clause is determined,
in part, by whether or not it subsumes or is subsumed by a user-supplied hint
clause.

The hints strategy is applicable to a variety of reasoning tasks, including proof
checking, proof completion, and proof finding. The application to proof checking
and proof completion is natural and intuitive; the strategy ensures that the automated
reasoning program will focus on clauses that are known to participate in a proof.
The application to proof finding is less direct, providing a new mechanism for a
user to supply intuition or knowledge to the automated reasoning program.

We have implemented the hints strategy in OTTER and have experimented with
it extensively. We conclude that the use of hints can be an effective strategy for the
automation of reasoning and that support for the hints strategy provides a valuable
enhancement to an automated reasoning program.

References

1. Bledsoe, W. W.: Non-resolution theorem proving, Artificial Intelligence 9 (1977), 1-35.
2. Boyer, R. S., and Moore, J. S. A Computational Logic Handbook, Academic Press, San Diego

(1988).
3. Kapur, D. and Zhang, H.: A case study of the completion procedure: Proving ring commutativity

problems, in J.-L. Lassez and G. Plotkin (eds), Computational Logic: Essays in Honor of Alan
Robinson, MIT Press, Cambridge, MA, 1991, pp. 360-394.

4. Lukasiewicz, J.: Elements of Mathematical Logic, Pergamon Press, Oxford, 1963.
5. Lukasiewicz, J.: Investigations into the sentential calculus, in L. Borkowski (ed.), Jan

Lukasiewiez: Selected Works, North-Holland, Amsterdam, 1970, pp. 131 - 152.
6. McCharen, J., Overbeek, R. A. and Wos, L.: Complexity and related enhancements for automated

theorem-proving programs, Computers and Mathematics with Applications 2 (1976), 1-16.
7. MeCune, W.W.: OTrER 3.0ReferenceManual andGuide, Technical Report ANL-94/6, Argonne

National Laboratory, Argonne, IL, 1994.
8. McCune, W. W.: Private communication, 1994.
9. Smith, B. T.: Reference Manual for the Environmental Theorem Prover, An Incarnation of AURA,

Technical Report ANL-88-2, Argonne National Laboratory, Argonne, IL, 1988.

STUDIES IN AUTOMATED REASONING 239

10. Stickel, M. E.: A case study of theorem proving by the Knuth-Bendix method: Discovering that
x 3 = x implies ring commutativity, in Proc. 7th Conf. on Automated Deduction, Lecture Notes
in Computer Science 170, Springer-Verlag, New York, 1984, pp. 248-258.

11. Veroff, R.L.: Canonicalization and Demodulation, TechnicalReportANL-81-6,ArgonneNation-
al Laboratory, Argonne, IL, 1981.

12. Veroff, R. L. and Wos, L.: The linked inference principle, I: The formal treatment, J. Automated
Reasoning 8 (1992), 213-274.

13. Veroff, R. L.: An Updated Demodulation Strategy for Ring Problems, Technical Report CS94-12,
Department of Computer Science, University of New Mexico, 1994.

14. Wang, T. C.: Case studies of Z-module reasoning: Proving benchmark theorems from ring theory,
J. Automated Reasoning 3 (1987), 437--451.

15. Winker, S.: Robbins algebra: conditions that make a near-Boolean algebra Boolean, J. Automated
Reasoning 6 (1990), 465-489.

16. Wos, L.: Meeting the challenge of fifty years of logic, J. Automated Reasoning 6 (1990), 213-232.
17. Wos, L.: Automated reasoning and Bledsoe's dream for the field, in R. S. Boyer (ed.), Automated

Reasoning: Essays in Honor of Woody Bledsoe, Kluwer Academic Publishers, Dordrecht, 1991,
pp. 297-345.

18. Wos, L.: The resonance strategy, Computers and Mathematics with Applications 29 (1995),
133-178.

