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Introduction 

In this paper we discuss a class of Gaussian processes {Art: t~T} for which 
the time domain T is an n-dimensional space rather than the usual real interval. 
Of special interest to us are those processes which we call Markovian. These are 
intuitively described by requiring that for any smooth surface F which separates 
T into complementary domains, what happens inside is independent of what 
happens outside when conditioned by knowledge of X t on (and near) F. 

The discussion centers on the reproducing kernel Hilbert space associated 
with the covariance function of the process. Those spaces associated with Markov 
processes are characterized by a locality condition on their inner products that 
requires functions with disjoint support to be orthogonal. The discussion of these 
matters is very general and together with the introduction of local reproducing 
kernel spaces appears in Part I. 

With appropriate additional assumptions the inner product in the reproducing 
kernel space can be identified as coming from a non-negative Dirichlet form 

(u,v)=~ ~a~#D~uD#v. 
r f l T  

Moreover, if this form is elliptic the associated process {Xt} is found to have 
certain generalized normal derivatives on the surface and the "b o u n d a ry "  a-field 
is seen to be generated by these normal derivatives. We call such a process Mar- 
kovian of finite order. 

It is then shown that the least squares prediction problem for the process 
is intimately related to the Dirichlet problem for an associated elliptic operator. 
Formulas which solve the Dirichlet problem may be reinterpreted to give a 
solution of the prediction problem. These matters are discussed in Part II. Those 
readers familiar with the work of MCKEAN [8] and MOLCHAN [9] on Brownian 
motion with a multidimensional time parameter will easily recognize this as an 
extension of their work. 

In Part III we have done some spectral theory for stationary Gaussian Markov 
processes on Rn. This material is not complete but does contain the characteri- 
zation of the spectral densities of Markov processes of finite order as being 
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inverses of non-negative elliptic polynomials. Further work in  this direction 
will appear in [1 I]. 

We have attempted to make this paper accessible to an audience of probabilists 
that is neither used to processes with a several-dimensional time nor  familiar 
with Dirichlet problems for higher order operators. For  this reason we have not 
stressed formal completeness and generality, but we have included such items 
as the example in Section 1 of a Markov process whose time parameter runs 
over the circle. This example is the simplest possible and shows in the absence 
of all technical problems the identity of the least squares prediction problem 
for the process and the Dirichlet problem for the associated differential operator. 

This work was begun at Rockefeller University during the year 1969-70. 
The ideas of H. P. MCKEAN, Jr. appear throughout this paper, and with gratitude I 
acknowledge his influence. 

1. An Example: A Stationary Markov Process on the Circle 

Let {X,: - ~ < t < o o }  be a real continuous stationary Gaussian process 
that is periodic with period 2~ and has zero expectation. We consider {Art} to be 
a process defined for t on the circle C=Rl (mod2~  ), and call {X,} simply Mar- 
kovian if*: 

For each interval I=[~,  fl] on the circle C, the " p a s t " = { X t :  teI} and the 
" fu tu r e "  = { Xt ~ t r I} are conditionally independent given the "presen t"  = {X~, Xp}. 

Since the process is Gaussian this is equivalent to the condition that for tr 

E{X,]X,: s~ I }=E{Xt[X , ,  Xp}. 

Our process {Xt} is described by the periodic covariance function R ( t - s )  
= EXtXs. Covariance functions of Markov processes are easily characterized. 

Proposition 1.1. A non-constant covariance function R ( t - s )  on C corresponds 
to a Markov process if and only i f  R is the Green's function of a second order 
operator 

(1.1) L f = ~ f - y f " ;  0qy>0* 

on C. 

Note. Our proof makes no use of the reproducing kernel spaces introduced 
later. The relationship with the Dirichlet problem for L and the fact that as 
operators R = L - 1  are, however, still to be stressed. 

Proof, First suppose that L is given and R is the Green's function for L.  
For  any proper sub-interval I =  [~,/~] of C, the space of functions on I satisfying 
Lf=O has dimension two and is spanned by the functions R ( s - ~ )  and R ( s - p ) .  
For  tr I we have L R (. - t ) =  0 o n / ,  and thus R ( s - t )  satisfies a relation 

(1.2) R ( s - t ) = A ( t ) R ( s - ~ ) + B ( t ) R ( s - ~ ) ;  s~I, t~I 

* This definition is a natural extension of the classical definition for processes with time 
domain T= [0, oo). In both cases the topological present is a point set separating the time domain 
into complementary domains. 

I The restrictions on ~ and y are consequences of the fact that R is positive definite. 
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where the functions A and B are continuous. But R(s-t)=EXtX ~ so that (1.2) 
implies that Xt-A(t)X~-B(t)Xp and X~ are uncorrelated for seL Since the 
process is Gaussian, this implies independence. 

Equivalently we have for tq~I 

(1.3) e {Xtl X~: s~I}= A(t) X,+ B(t) Xt~. 

Taking conditional expectations on both sides given X~ and Xa, it follows that 

(1.4) E (Xt[ X~: s~I}= E (XtI X~, Xr 
and thus {Xt} is Markovian. 

Conversely we note that the steps leading from (1.2) to (1.4) are reversible, 
and we conclude that if {X,} is Markovian then functions A and B must exist, 
which satisfy (1.2). Differentiating* R(s-t)  twice with respect to s, equation (1.2) 
shows that as functions of t each of the three functions R(s-t),  R'(s-t) and 
R"(s-t)  is a linear combination of A (t) and B(t). R(t) thus satisfies an equation 

(1.5) 2R(t)+#R'(t)+R"(t)=O on (0,2n).  

Moreover, R is even about n since X t has period 2re and the odd and even parts 
of (1.5) must vanish separately. We conclude that 

(1.6) 2R(t)+R"(t)=O on (0, 2r 0.  

Without loss of generality we may assume that R(O)=EX~=I. With this 
normalization the unique solution of (1.6), which is even about rt, is 

Cosh [ ( t -  it) V -  2/v] if 2. v < 0 

(1.7) R(t)=.  C~ 0r V~2/v)  

Cos [ ( t -  z 0 V2-~] if 2.  v > 0. 
Cos( V ) 

The first is a Green's function as required, while the second is easily eliminated 
as a possibility. 

In fact, we must have [R(t) i=< l, and for 2. v>0  we have R(~) = 1/cos(~]/2~-). 
The only possibility is that R(~)--_+l, but this would imply X,,+l,=Xh. This 
deafly cannot happen for a non-constant Markov process and the proof is 
complete. 

Before leaving this example we make two further observations. First, note that 
equation (1.2) implies LA (t)=LB(t)= 0. It then follows from (1.3) that the func- 
tion u(t)=E{XtlX~: s~I} satisfies 

Lu(t)=O for tr 
(1.8) 

That is, the prediction of X, given {X~: seI} is the solution of the Dirichlet 
problem Lu(t)=O on C-1 with the boundary data u(g)=X, and u(fl)=Xa. 

R(t) is easily shown to be smooth on the interval (0, 2n) by considering the smooth con- 
volutions f R(s-- t) q}(t)dt= R(s--cO f A (t) ~(t)dt+ R(s--,8) f B(t) ~(t)dt, where ~ is a smooth 
function vanishing on L 

25 Arch. Rational Mech. Anal., Vol. 43 
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Lastly, we comment that an obvious generalization of our definition of a 
Markov process is available. We call {At: t~C} Markovian of orderp if the sample 
paths have p - 1  continuous derivatives and if for each interval /, the past= 
{At: tel}  and the future={Xt: t~I} are conditionally independent when given 
the present= {X~, X,' . . . . .  X~p-a), X#, ..., X~P-a)}. Our proposition and its proof 
then have easy extensions to the effect that {Xt} is Markovian of orderp if and only 
if R(t) is the Green's function of an operator of order 2p. 

This result is well-known when T=R~ instead of the circle. The Fourier 
version states that a stationary Gaussian process is Markov of order p if and only 
if its spectral density is the inverse of a polynomial of degree 2p; see LEVINSON & 
MCK~AN [7]. The reader may also wish to compare this example with the work 
of Doon [4], HIDA [5] and DOLPH & WOODBURY [3]. 

I. General Theory 

2. Splitting Fields and the Markov Property 

We begin by fixing some notations and reviewing the concept of splitting 
fields introduced by MCKEAN [8]. 

A fixed probability space (t2, Z, P) is given. The a-field Z is assumed to be 
complete, and a field ~- is always to be understood as a sub tr-field of Z which 
contains all null sets of Z. The field generated by a collection {f~: ~eA} of random 
variables will be denoted by a{f~: ~ A } .  

We will use HUNT'S excellent operator formalism ([6], p. 44) and write ~ f  
for the conditional expectation of the random variable f given the field ~.. This 
notation is especially appropriate when f is square integrable; ~- f  is then simply 
the orthogonal projection of f onto the space L 2 (t2, ~,, P). 

Let ~" and t be two subfields of Z and let ~ be a subfield of ~ .  We say that 
and i split over ~9 ~ or that A '~ is a splitting field of ~ and i if ~ and i are 

conditionally independent given ~, that is, if 

(2.1) 50 (fg) = 5: ( f ) .  5 o (g) 

for all bounded f a n d  g with a{f} = ~  and a{g} = t .  
Splitting fields are easily characterized by the following lemma, which surpris- 

ingly seems to be new. 

Lemma 2.1. A field 5:= :~: is a splitting field if  and only if  57 contains the field 

(2.2) 5Po=a{~'g: g bounded and if-measurable}. 

Proof, If 5~oC5#c~ we will show that (2.1) holds. In fact, since 5 : c ~  
we have 5r = ~ : ( f . g )  = 5e(f. ~g).  But 5~o = 5: implies that 5:g = ~ 'g  and thus 
f .~:g=f  . 5~ Hence 5:( f  .g)= 5r 5# g)= 5P(f) �9 59(g). 

The converse is equivalent to showing that 5"g=~g for any bounded i -  
measurable function g and any splitting field 5~. But E(5"g) 2 =ESe(g) �9 o~-(g)< 
E(~rg) 2, and the equality 5r will follow from the converse of Schwarz's 
inequality if we prove E(5"g)2=E(:~'g) 2. This, however, follows from (2.1) by 
E( Aag) 2 = ESP(~g.g) = E~'(g).g = E(~'g) 2. 
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The elementary properties of splitting fields proved by MCKEAN [8] are now 
immediate consequences of Lemma 2.1. In particular, we have 

Corollary 2.2. (i) ~ is a splitting field 
(ii) 6a o is the minimal splitting field 

(iii) ~c~fg~S~o. 

Simplifications occur when the fields ~ and ff are generated by Gaussian 
systems. These are described in the following known lemma, which we include 
here for completeness. 

Lemma 2.3. Suppose ~=tr{Xr  q~e~} and~=tr{Xv: 7eF} where {X~: cte~uF} 
is a Gaussian family. Then 

~o =~ {~-xv: ~er}. 

Proof. Since polynomials in the variables {Xr: 7eF} are dense in L2(f2, (q, P), 
it is enough to show for each monomial X~ ... X~." that ~ ' (X~ ... xk~) is meas- 
urable over a{~Xr: 7eF}. To this end we write Xr,= Y~+Z i where Y~=~Xr,. 

Then the Z~'s are independent of ~ ,  and we observe that ~ k~ = 

~ (Yi + Z~) k' may be written as a sum of terms of the form ~r(1- I Y.",._, .~--,J17 Zb.,'l = 

I-[Yf'~(HZ~').  Since the Z,'s are independent of~ we see that ~(1-'[Z~')= 
E(~Z~") is a constant and the result follows. 

We turn now to our definition of the Markov property. As formulated here 
the concept is perhaps too broad, and we must introduce further assumptions 
later to obtain deeper implications. The present generality has the advantage, 
however, of yielding the easy characterization in Theorem 3.3 of the next section. 

Let {Xt: teT} be a real or complex valued process whose time domain T 
is a smooth open set in some Euclidian space R~. Everything that follows could 
easily be done when T is a smooth manifold. Because the changes necessary 
are easy to make we will not pursue the added generality. Let D_ c T be an open 
set whose boundary in T is a smooth n -  1 dimensional surface F in T. We write 
/)_ for the closure D_ u F of D_ and D+ for the complement in T of / )_ .  

With these conventions we introduce the following fields of events: 

the " p a s t "  =2~(D_)---tr {Xt: teD_} 

t h e "  future" = Z (D +) = tr {Xt: t eD + } 

the "present"  =2~(F) --- 0 {~(0): 0 ~ F ,  0 is open} 

2~(F_) = 0 (,~(D_ c~0): 0 = F ,  0 is open} 

,~(F+) = ~ {2~(D+ n0) :  0 = F ,  0 is open}. 

We then define the Markov property. 

Definition2.4. {Xt: teT} is called Markovian if for each open set D _ = T  
with smooth boundary F we have 

(2.3) z(r+ ) = z ( r _ ) = z ( r ) ,  
25* 
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and 

(2.4) Z(F) is the minimal splitting field of Z(D_) and Z(D+). 

Condition (2.3) is of a technical nature and says we see the same things in the 
very near future as in the very near past. Thus Y_,(F)=Z(D+)c~Z(D_) and the 
definition requires that the splitting field of Z(D_) and Z(D§ is as small as 
possible and involves only boundary data. 

The analogy with classical definitions of a Markov process is clear. In one 
dimension, however, our definition allows many processes that are not classically 
Markovian. For example, the integral of a Wiener process is Markovian by our 
definition but not classically so. In HmA'S terminology [5] it is a 2-pie Markov 
process. 

For Gaussian processes Lemma 2.3 gives a useful translation of this definition 
into Hilbert space language. Each of the previously introduced fields is associated 
with a closed subspace of L 2 (I2, P). Namely, for the open set D_ we introduce: 

H (D _ ) = closed linear span of {Xt: t cO_ }, 

and the boundary space 

H(F_)= 0 {H(D_ n0): 0=F,  0 is open}. 

Analogously we define H(D+), H(F§ and H(F). We will write H for H(T). 
When applied to variables in H, the conditional expectation operator Z(D_) 

is simply the orthogonal projection onto the space H(D_), and Lemma 2.3 
implies that the minimal splitting field of Z(D_) and Z(D+) is generated by the 
variables {~(D_)X: XeH(D+)}. In this language the definition of the Markov 
property becomes: 

Definition 2.4'. A Gaussian process {Xt} is Markovian if for each open set 
D_ = T with smooth boundary F, 

(2.5) H(r+)=H(r_)=H(F) 

and 

(M.1) The projection of H(D+) onto H(D_) is H(F). 

Because of its later importance we introduce the special notation of Ho(D• 
for the orthogonal complement of H(F• in H(D• Assuming condition (2.5) 
is satisfied, then each of the following two statements is equivalent to the Markov 
property for (Xt}. 

(M.2) The orthogonal complement of H(D+) in H is Ho(D_). 

(M.3) H = Ho (D_) $ H(F) ~ Ho(D+). 

3. Local Reproducing Kernel Spaces 
and the Markov Property for Gaussian Processes 

In order to obtain convenient function space representations of the spaces 
H(D) we introduce the formalism of reproducing kernel Hilbert spaces. For 
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Markov processes these spaces are easily characterized; when further assumptions 
are introduced in Part II we will see that the inner products have the form 
(u, v)= ~ S v,a D~uD#v" This leads us to a class of Dirichlet problems (we have 

tried to use a suggestive notation). 

Let {X~} be a Gaussian process with covariance function R(t, s)=EXtX s. 
For an open set D = T we introduce the function space ~"(D) which is isomorphic 
to H(D);  ~(D)={u(s)=EXXs: s~D and X~H(D)} with the inner product 

(ul, u2)=EX1X2 where ui(s)=EXiX(s), for i = 1 , 2 .  

The map X ~  EXX~ is easily seen to be an isometry of H(D) onto g ( D ) .  
Instead of JC~(T) we will usually write ~ ,  and we list without proof the following 
well-known elementary properties of g ( D )  (see [2]): 

(3.1) ~:(D) is spanned by the functions R(t, .) for teD. 

(3.2) For  each u in g ( D ) ,  u(t)=(u, R(t, . ) ) ;  that is, R is a reproducing kernel for 
~(D). 

The functions EXX, in g(D) were defined only for s in D, but H(D)cH 
so that it makes sense for s to vary over T. Each u in ~,~ff(D) thus extends to a func- 
tion fi(s) in ~ with Ilu[Jtrw)= Ilull~, and we may consider ~ ( D )  as a subspace of 
~ .  Also note that the restriction of a function u in ~ to D defines a function 
in M'(D) which may be interpreted as the projection of u onto M'(D). We summarize 
these remarks. 

Each function in M'(D) has a unique norm preserving extension to a function 
in ~ .  The projection of a function u in M' onto M'(D) may be interpreted either 
as its restriction to D or as the unique element in M' of minimal norm which agrees 
with u on D. 

If D_ and D+ are a complementary pair of open sets with smooth boundary F, 
we introduce spaces ~ ( F + )  which are isomorphic to the boundary spaces H(F+), 

~(F+)= (u~=EXX~: s~D • and X~H(F• . 

If H(F+) = H(F_) we may identify ~,~(F+) with g ( F _ )  and write g ( F ) =  g ( F + )  
= ~:(F_). This makes sense because g ( D + )  and g ( D _ )  are both contained in ~ .  
Thus g ( F )  is a subspace both of g ( D + )  and of g ( D _ ) .  

The orthogonal complement of g ( F )  in ~:(D+) (resp. ~ ( D _ ) )  is denoted 
as ~o(D+)  (resp. ~o(D-) ) .  From the definition of H(F) we see that ~o(D+)  
may be described as the closure in ~ ( D + )  of 

(3.3) { u e g ( D + ) :  u vanishes near F}.  

Intuitively, ~o  (D +) consists of functions with zero boundary data, while ~'~'(F)c 
~ ' (D+)  consists of "ha rmon ic"  functions on D+. 

For  reference we translate our earlier characterizations of the Markov prop- 
erty as follows. 

Proposition 3.1. A Gaussian process {Xt: t~T} satisfying the condition 

(3.4) M' (F+) = M' (F_) = M'(F) 
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is Markovian 
satisfied: 

(M.1)' 

i f  and only i f  one of  the three following equivalent conditions is 

The projection of  ~,~(D+) onto 9f'(D_) is g ( F )  

(M.2)' ~o(D_)  = ~r G ~ ( D + )  

(M.3)' 9(~ = ~ffo (D-)  G W(F)  ~)~o (D+) �9 

The next definition is introduced to characterize the kernel spaces associated 
with Markov processes. L,e is a linear function space on T with an inner product. 

Definition 3.2. s162 is said to be local if for each pair of complementary open 
sets D_ and D+ with smooth boundary F, conditions (L.1) and (L.2) are satisfied.* 

(L.1) If u+ and u_ are in ~ with the support of u• in ~ •  then (u+,  u _ ) = 0 .  

(L.2) If u=u+ +u_ is in s with the support of u+ in D+ and support of u_ 
i n / )_ ,  then u+ and u_ are in LP. 

Theorem 3.3. A Gaussian process {Xt: tET} which satisfies o~r 
= W(F)  is Markovian if  and only i f  the space ~ = W ( T )  is local. 

Proof. Suppose {Xt} is Markovian. We will first show that (L.1) is satisfied. 
Thus let u• e.,ug and assume the support of u• c Dz .  Then (u+, R(t, . ) )  = u+ (t) = 0 
for t eD_.  Since the functions {R(t, -): t~/)_} span 3r we conclude that 
u+ is orthogonal to 3r and by (M.2') that u+~Wo(D+)cW(D+) .  The same 
reasoning shows that u_ is orthogonal to W(D+). Thus (u+,  u _ ) = 0  and (L.1) 
is satisfied. 

Turning to (L.2), let u=u+ +u_e~r with the support of u+ in D+ and the 
support of u_ in /~_. Write Uo for the projection of u onto arg(D+). Then Uo 
vanishes near F since u does. Thus Uoe~o(D+), and applying (M.2') we see that 
Uo~WOag'(D-);  that is, Uo vanishes on D_. But Uo agrees with u onD+ so that 
u+ =Uo is in W and (L.2) is satisfied. 

To prove the converse we will show that if 9r is local then (M.2') holds; 
that is 3r 3r (D_). We begin with the inclusion 3r + ) c  W(D_).  
Let P be the projection onto ag'(D_) and u~WG W (D +) .W e  know that u - P u = O  
on b _  and that the support of u is in D_. Thus by (L. 1), H (1 - P)  u II 2 = < u -  p u, u> = 0 
and hence u = P u  and ue~g(D_). 

To show U~Wo(D_) it is now sufficient to show that u is orthogonal to W(F). 
This is clear since a~(F)caC~(D+) and by assumption u is orthogonal to af'(D+). 

The proof of the identity a f 'Gaf ' (D+)=Wo(D- )  will be complete if we prove 
~u and for this it suffices to prove that any u in Yg(D+)n 
~ o ( D - )  vanishes on D_. Moreover, since such a u must be orthogonal to arg(F) 
we can find a sequence 0, of open neighborhoods of F for which lim u, = 0, where 
u, is the projection of u onto a~(D+ nO,). The problem thus reduces to showing 
that v, = u - u ,  vanishes on D_. 

�9 Conditions (L.1) and (L.2) are satisfied by such examples as L2(Rz) and the Sobolev 
spaces H 2. Condition (L.2) is introduced to eliminate such examples as the space of even L 2 
functions. 
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But v, vanishes on B+ c~0 .=F  so that by (L.2) we may write v.=v++v_ 
where v_ vanishes on D+,  v+ has support in D+ and v• ~ a~". By (L.1), <v+, v_> = 0  
and IIv.ll2=llv+ll2+llv_ll 2. On the other hand, llo.[l</Iv+ll since v,~,~(D+) 
and v+ agrees with v, on D+. Hence IIv-I1 = 0  and v ,=  v+ vanishes on D_. 

II. Markov Processes of Finite Order 

4. Smooth Local Spaces of  Finite Order 

We now show that if the function space M' is local and rich enough then its 
inner product is given by a Dirichlet form. This result follows from PEETR~'S [10] 
characterization of differential operators. For  the sake of completeness we include 
PEETm~'S proof here. 

First we introduce some notation. For  a smooth open set T ~ R , ,  C~ (T) 
is the set of infinitely differential functions with compact support contained 
in T. We will write C~ instead of C~(R,). If a = ( ~  . . . .  , a,) is a multi-index 
where cq's are non-negative integers, we write [~l=cq + . . .  +~, .  D ~ denotes the 

d ~, d~. 
differential operator D~= - - . .  , and for the generic point x =  (xa . . . . .  x,) 

dx~' dx~" 
in R n, x ~ will denote the monomial x]'  ... x~-. Let A denote the Laplacian 

d 2 d 2 
�9 

For each N__>0 we introduce an inner product ( . ,  ")N on C~(T) ;  namely 

( f ,  g>N = ~ Z O' fD 'g  �9 
T I~I=<N 

HSo(T) denotes the completion of Cd ~ (T) with respect to the norm Ilfll~= ( f , f>N.  
Clearly H{(T)=H~+I(T).  Functions in H{(T) have strong L z derivatives 
of all orders up to N; the Fourier representation easily shows that for I a I < N -  n/2 
there is a constant C(a) such that the Sobolev like inequality 

(4.1) sup IO~f (t) l < C(~) llflIN 
t~Rn 

holds for all f in C~ ~ and hence by continuity this holds for all f in H~(T). 
Convergence in C~ ~ (T) is defined as follows: {f~} converges to f if there is a 

bounded open set U with U ~ T  for which f~eC~(U) for each n and such that 
f~ converges to f i n  H~(U) for all N > 0 .  

The inequality (4.1) shows that C~ (T) is complete. 

We will call a bilinear form 

B(f, g)=  ~ ~ a~#(t) D~f (t) DP g(t) 
a , # T  

a Dirichlet form if the coefficients a~#(t) are locally square summable and if 
on each compact set all but a finite number of the at# vanish. Such a form is well- 
defined and continuous on C~ ~ (T). Moreover, if B is symmetric and positive 
then C~ (T) together with the inner product B(f ,  g) is a local space. 
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The following theorem states that any reasonable positive local form on 
C~ ~ (T) is continuous and that if a local form is continuous then it agrees with 
some Dirichlet form. The proof of parts (ii) and (iii) are adopted from PEETRE [10]. 

Theorem 4.1. (i) A non-negative form ( . ,  .}  on C~(T) ,  which satisfies the 
honesty condition: i f  u, ~O in C~ (T) and (Un--Um, U,--Um) ~O as n, m ~ cr 
then ( u, , u,} ~ O, is continuous. 

(ii) I f  ( . ,  �9 ) is a non-negative local form on C~ (T), there exists a discrete 
set A c T such that ( . ,  .}  is continuous on C~ ( T -  A). 

(iii) I f  ( . ,  .}  is a continuous local form on C~(T) ,  then ( . ,  .}  is a Dirichlet 
form. 

Proof of (i). For any relatively compact open subset t2 of T, the space H~  (f2) 
= N N~(t2) is complete with respect to the quasi-norm 

I[fll = ~, 2 -N" IIfIIN(I+ IIfIIN) -1. 
n > 0  

Since ( . ,  �9 ) is everywhere defined on H~  (t2) we may define another quasi-norm 
[ f l  = Ilfll + <f,f) �89 on n ~  (12). 

It now suffices to show that the two quasi-norms 11" [I and I" I are equivalent. 
To see this let {f~} be a Cauchy sequence with respect to 1. l- Then {f~} is Cauchy 
with respect to [1" II and thus has a II. II limit f in H~  (f2). This may then be used 
to determine a linear map S from the I'1 completion of Hd~ into H~  (f2). 
S is easily seen to be continuous and onto, and therefore by the open mapping 
theorem S is open. Thus if S -  1 exists it must be continuous, and this would show 
that II �9 [I and I" [ are equivalent. But S -  1 will exist if and only if S is one to one or, 
what is the same thing, if and only if ker S =  {0}. This, however, is precisely the 
content of our honesty condition and the result follows. 

Proof of (ii). We will call a point x e T  singular if the form <., �9 > is unbounded 
on C~~ for each neighborhood 0 of x; that is, if there are functions fk in Co(0) 
with IIAIIk< 1 and <fk,fk>Too. We claim that any relatively compact open set 
~2 with ~ c T contains only a finite number of singular points. 

If this were not so we could find open sets O k c f2 with disjoint closures and 
functions f~ in C~(Ok) which satisfy IIAIIk=< 1/k 2 and <fk,fk>> 1. Then f = ~ f k  
is in Cd ~ (T) and because ( . ,  �9 ) is local we would have for each N, 

( f , f )  > , N ,  

which is impossible. 
Now let A be the discret set of singular points and let ~ be a relatively compact 

open set with ~ c T - A .  An elementary partition of unity argument easily yields 
the existence of an integer N and a constant C for which the inequality ( f , f } <  
C llf[l~ holds for all f in C~ frO- Thus ( . ,  �9 } is continuous on Cd ~ (f2) and hence 
on C~ ~ (T- / t ) .  

Proof of (iii). For each bounded open set U with U = T there is an N'  for which 

(4.2) [<f, g>l~  IlfllN, ItgllN,; for f,  geCg'(U). 
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Let N = N ' + k  where k>n/2. The inclusion i: H~(U)~H~ ' (U)  is known to be 
Hilbert-Schmidt so that if { f j } c C ~ ( U )  is an orthonormal basis in HI(U ) 
we have ~ [Ifj[12,< oo. 

On finite sums ~ bi j f i ( s ) f j ( t  ) we define the functional 

(4.3) F (~ bi j fi(s) f j(t))= ~ bi j<fi , ~> . 

But <fij,fj><= [[fil[N[[fi[lN" SO that ~ ]<fi,J~>[2<oo, and we see that F is con- 
tinuous on a dense subspace of H2N(Ux U). The functional F thus determines 
a distribution F e  C~ ~ (U x U)' for which 

(4.4) F(f(s)  g(t)) = <f, g ) .  

Because <., �9 > is local the support of F is contained in the diagonal of U x U, 
and using (4.4) we conclude that there are finitely many measures #~p on U 
which give 

<f, g> =ZSp~a(dt) D~fDP g. 
U 

The measures #,p may be written in the form (1-A)ma'p where the a',p are 
continuous functions. Integrating by parts and changing g to g, we obtain the 
desired expression 

<f, g>= ~ ~ a~(t) D~f (t) D~ g(t) . 
U 

Because U was arbitrary the proof is complete. 

Note that the set A of singular points for a non-negative local form on Cg (Rn) 
which commutes with translations must be closed under translations. Since A 
is discrete by part (ii) we see that A is empty. 

Corollary4.2. A non-negative local form on C~(Rn) which commutes with 
translations is a Dirichlet form. 

5. Markov Processes of  Finite Order 

It is reasonable to expect that if an inner product <., �9 > on C~ (T) is given 
by a well-behaved Dirichlet form, then there should be naturally associated with 
<., �9 > a Gaussian Markov process. In this section we will investigate these prob- 
lems when the form <., �9 > is elliptic. In this case we can obtain rather complete 
results, and the processes that we obtain are the analogues of the Markov pro- 
cesses of order p discussed at the end of Section 1. 

A general answer to the question of when the completion of (C~ (T), <., �9 >) 
is the reproducing kernel space associated with some Gaussian process is contained 
in the following known 

Proposition 5.1. Let ~ be the completion of  (C~(T), <., .>). Then ~r ~ is a 
reproducing kernel space i f  and only i f  for each t e T  the functional u ~  u(t) is 
continuous with respect to the norm <u, u> 1/2 on C~ (T). 

Proof. If ~ has a reproducing kernel R(t,s), then u~u(t)=<u, R(t, .)> 
is continuous. 



378 L.D. PITT: 

Conversely if u ~ u(t) is continuous and if u, is any sequence which converges 
in ~ ,  we see that u,(t) converges for each t in T. Thus ~ ( T )  is a function space. 
Moreover, since u- .  u(t) is continuous we know that for each t there is a function 
rt(s) in Xa(T) such that u(t)=<u, rt>. Setting R(t,s)=rt(s), we see that R is 
a reproducing kernel for ~ and the proof is complete. 

Note that  R(t, s) is non-negative definite and thus is the correlation function 
of some Gaussian process {Xt: t~T}. 

Now let 

(5.1) <u,v)= ~, Sa~p(t)O'u(t)OPv(t) 
[~1,101--<p T 

be a positive symmetric Dirichlet form on C~ ~ (T). We will assume that the coeffi- 
cients a~p are bounded, uniformly continuous and infinitely differentiable. The 
form ( - ,  �9 ) is called uniformly strongly elliptic if there is a constant C > 0 such that 
for all xeR .  and t eT  we have 

(5.2) IRe ~ a~a(t)X=+ai>ClXlZP. 
I~l,l~l=p 

If the form ( . ,  . )  is uniformly strongly elliptic then it follows from Garding's 
inequality (see [1], p. 78) that for each 2 > 0  the two norms (u, u)~/2+2[lullo 
and Ilullp are equivalent on C~(T), where II Iio is the L z norm and II lip is t h e p  th 
order Sobolev norm. Thus if the norm [1 Iio is continuous with respect to the inner 
product ( . ,  . )  we may conclude that the space 9fr coincides as a function space 
with the space H~(T) and that the two norms are equivalent. 

Theorem 5.2. Let ( . ,  . ) be a uniformly strongly elliptic inner product of order 
p on C~ (T) and let ~ be the completion ofC~ (T) with respect to this innerproduct. 
I f  the norm Ilu[I =(u, u) 1/2 is equivalent to the norm II lip, then ~ is local. I f  more- 
over 2p > n, then u ~ u(t) is continuous, and hence J~ is a reproducing kernel space. 

Proof. We have noted that  9~' contains the same functions as H~(T), and thus 
for any pair u • in 9r we have 

(u+, u_ )=  ~ Sa~(t)D~u+(t)D~u_(t); 
I~1, IPI-~p T 

and these integrals converge absolutely. 

I t  follows that if F is a smooth surface which separates T into open sets D e , 
then (u+ ,  u _ ) = 0  for any two functions u+ and u_ in Jr with the support  of u• 
in D•  (L.1) is thus satisfied. 

(L.2) follows f rom the observation that if u = u+ + u_ is in Jr and the support  
of u+ is in D+ while the support of u_ is in D_, then u+ ~H~(D+). 

The last statement follows f rom inequality (4.1) with ~=0 .  
Now let (~ ,  ( . ,  . ) )  be as in Theorem 5.2 with 2p>n and let R(t, s) be the 

associated reproducing kernel. For  technical reasons we need to know that R(t, s) 
is jointly continuous or, what is the same, that t ~ R t is continuous f rom T to ~.. 
This follows f rom the general theory of fundamental solutions for elliptic operators, 
but it also admits an elementary Hilbert space proof which we now give. 
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On J~f the inner products ( . ,  �9 > and 

(u,v)p= ~ ~O~u(t)OPv(t) 
I~l-<p r 

are equivalent. Thus there is a reproducing kernel p(t, s) in (~ ,  (. ,  .)~) and a 
bounded operator B on i t '  for which 

(u,v),=<u, Bv> for all u and v in ~r 
The identity 

U (t)  ---- (U, Pt)p = <U, Rt> for all u in Jq' 

implies that R t = Bp t, and since B is continuous it suffices to show t ~ Pt is con- 
tinuous. 

But P,=PPt where P: H~(Rn)~H~(T) is the projection and g(t,s) is the 
reproducing kernel in H~(Rn). The inequality (4.1) shows H~(Rn) is populated 
with continuous functions u(t) =(u, ~t)p. This implies t ~ Pt is weakly continuous. 
It is thus strongly continuous if t--* I1~,1[ is continuous. But II~,ll is constant since 
(.,  -)p is translation invariant on H~(R,). 

Actually we can prove considerably more with these methods. By the trans- 
lation invariance of (. ,  .)p it follows that ~(t, s) is a function ~ ( t - s )  of the differ- 
ence t - s ,  and elementary manipulations show that 

~ ( t )=c  S eit'x( Z xZ~) -1 

and, moreover, that ~(t) is Lipschitz continuous. It then follows from 

IIRt- R, II 2 = IIBP-p,- BP-psll = < [IBII = II~,-~sll~ 
that R(t, s) is Lipschitz. 

Standard arguments (see e.g. [12]) show that any centered Gaussian process 
{Art: t~T} with a Lipschitz covariance function R may be modified to have 
continuous sample paths. We will assume this has been done and will investigate 
the boundary spaces H(F) associated with a smooth p - 1  dimensional surface 
F i n T .  

The first result says that in an appropriate weak sense {Xt} has p -  1 normal 
derivatives on F. 

To formulate this we let do- be the surface measure on F and let ~ be a continuous 
choice of the unit normal vector to F at the point s on F. For  each function f 
in L z (F) with compact support we introduce the function 

(5.3) F ( h ) =  Sf(s)X,+h.~d~r 
F 

of the real variable h. 

Lemma 5.3. As an H valued function F(h) is p - 1  times continuously differ- 
entiable. 

Proof. Let X ~ H  and let u(s)=EXX~. Then uE~ff and hence is in H~(T). 
It now follows from the Imbedding Theorem of SOBOLEV ([13], p. 69) that for 
I f l l<p- -1 ,  Dau(s)eL~o~(F) and that as a function of h, with values in 2 L,oo(r), 



380 L.D. Pitt: 

(DPu) (s+hJ) is continuous. In particular, for feL2(F) with compact support, 

~ f (s) u(s + h~) da 
F 

has p -  1 continuous derivatives. But 

$ f (s) u(s + hh) da=EX S f (s) Xs+h~ aa, 
F F 

and because Xr was arbitrary we conclude that ~f(s)Xs+h'~da has p - 1  con- 
F 

tinuous weak derivatives. But the continuity of weak derivatives implies that they 
are strong derivatives and the result follows. 

Following MCI~AN in [8] we now define a p-th order Markov process. Suppose 
that for all f t h e  function F(h) is for small h, p -  1 times continuously differentiable 
in measure. We then introduce the "differential" a-field 

(5.4) Z~(F)= a {F~ok~: O<k<p,f~L2(F) has compact support}. 

If F splits T into D+ and D_ then it is clear that Xv(F)cY,(F+)c~(F_). 
If, in addition, for all such F, z~v(F) is the minimal splitting field of Z(D_) and 
Z(D+) we will call (Xt} Markovian of order p. 

If {Xt} is Gaussian we will also introduce the Hilbert spaces 

(5.5) Hv(F)=span{F(~: O<k<p,f~L2(F) has compact support}. 

In this case we see that a Gaussian process {Xt: t~T} is Markovian of order p 
iff for each f i n  L z (F) with compact support, F(h) has p -  1 continuous derivatives 
and the projection of H(D+) onto H(D_) is Hp(F). 

Theorem 5.4. Let {Xt: t~T} be a Gaussian process and let ~ be the associated 
reproducing kernel space. Suppose that ~ contains C~ (T) as a dense subspace, 
that the inner product (. ,  .) on ~ is given by a uniformly strongly elliptic Dirichlet 
form of degree p>n/2, and that the norm on o~t ~ is equivalent to II I1~. Then {Xt} 
is Markovian of order p. 

Proof. By combining Theorem 5.2 and Lemma 5.3 it only remains to identify 
Hp(F) with H(F). But Hp(F)r and we will show that Hp(F)=H(F) by 
showing that the orthogonal complement of Hv(F ) in H(F) is {0}. Thus we let 
X~H(F) @Hp(F) and set u(s)=EXX~. Then uE.,~ff(F) and because {Xt} is Markov- 
ian we know that C~(D_)cgo(D_ ). Thus, for any ~beCo(D_) we have 0=  
(u, ~). 

Now let f~L u (F) have compact support and observe that for k_=p-  1 : 

(5.6) ~f--~ bk~ku(s)da=EX[d-dhFkhk ~rf(s---)X~+h~da]h=o F Or/ 
d k 

where ~ u(s) is the k-th normal derivative of u at seF. But by assumption 

the fight side equals zero and we conclude that 
Sk 

(5.7) ~ u = 0  a.e. o n F  for k=0 ,  , p - 1 .  d~/k "" 
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It is now a simple approximation argument to show that because of the con- 
ditions (5.1) the restriction of u to D_ is in H~(D_) and thus is the limit in af(T) 
of functions ~b, in C~(D_). 

We have already seen, however, that <u, ~b>=O for each dp~C~(D_), and we 
conclude that u(s)=O on D_. By the same argument u(s)=O on D+, and we see 
that u is the zero function and that ,Y-O. 

6. The Spaces af(D• ~o(D• and af ( r) 
The prediction problem for {Xt: teT} when <., .> is uniformly strongly 

elliptic of order p>n/2 is given in the next section. As a first step we give a new 
characterization of the spaces af(D+), ~o(D• and af(F). 

The key idea, which goes back to McKEA~ [8] and MOLCnAN [9], is to intro- 
duce the operator 

(6.1) Au= ~ (-1)l'l(O'a, pOPu) 
I~1, 1#l--<p 

associated with the inner product 

(6.2) (u, v>= E Sa~a(t)D~u(t)DPu(t) 
I~1, IPI-~p T 

on ~ .  If the form <., �9 > is uniformly strongly elliptic and satisfies the conditions 
of Theorem 5.4, the operator A is also uniformly strongly elliptic and formally 
self-adjoint. 

The various subspaces af(D+), af(D_) and af(F)  of af(T) are easily described 
in terms of A. 

Recall that af(D+) may be identified as the orthogonal complement in af(T) 
of afo(D-) and that the space afo (D-) may be identified as the closure in H~(T) 
of the space C~(D_). Thus if u~af(D+) and ~b~C~(D_) we have 0=<u,  ~b>. 

Integrating by parts we see that 

0 =  S u(t)Acp(t) for all ~peC~(D_). 
D -  

But A is formally self-adjoint so that on D_ u is a weak solution of Au=O. By the 
regularity theorems for elliptic operators ([1], p. 131) it follows that u is actually 
infinitely differentiable and is a classical solution of A u=  0 on D_. 

Conversely if u ~ a f  and satisfies Au=O on D_ we see that <u, ~b>=0 for each 
~b~C~ (D_) and hence that u~ af(D+). We thus have 

Proposition 6.1. (i) A function u defined on T is in the space af(D • if and only 
if u ~ H~ (T) and satisfies 

Au(t)=O for t~O~. 

(ii) A function u in af is in a f ( F ) =  af(D+) c~ af(D_) if and only if 

Au(t)=O for t~O+ uO_. 

The question of when a function u(t) defined on D_ is the restriction of a 
function in a f  to D_ is answered by the following 
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Proposition 6.2. A function u(t) defined on D_ is the restriction to D_ of some 
function in ~ if  and only i f  it has an extension fi (t) in H~(T) which satisfies 

Aft ( t )=0  for t in D+ . 

The restriction of~ (t) to D + is the unique solution in ~ ( D  +) of  the exterior Dirichlet 
problem 

Aft ( t )=0  for teD+ 

with the same boundary data as u on F. 

Proof. The only point which requires comment  is the uniqueness of fi, and for 
this it suffices to show that if u e ~ ,  u has zero boundary data on F, and Au(t)=-O 
on D+ then u(t ) -O on D+.  

Let v be the projection of u onto J/g(D+). Then v(t)=EX.V, t e ~ ( F  ) and has 
zero boundary data. Thus if feL2(F) has compact support then 

O= I f (s ) - -~-wu(s)da=EX If(s)Xs+h.~da 
r or/ ~ r h=o 

for k = 0  . . . .  , p - 1 ,  and we conclude that EXF~o)=O. Since XeH(F) and the 
Fh(0) span H(F), we conclude that X = 0 .  Thus v = 0  and since u(t) agrees with 
v(t) on D+ we must have u(t)=O on D+.  

Note. I t  follows from the Calder6n extension theorem ([1], p. 171) and Pro- 
position 6.2 that if D_ is bounded wi th / )_  c T and if u is in the Sobolev space 
HP(D_), then u extends to an element in ~ .  

7. Solution of  the Prediction Problem 

The prediction problem for {Xt) is most easily discussed in terms of the Dirichlet 
problem for A. To this end we let D_ = T be a bounded open set with smooth 
compact  boundary F. Let D+ be the complementary open set in T. For  t in D+,  
let h t ( ' )  be the projection of R(t, .) onto J/f (D_). Then ht(s ) agrees with R(t, s) 
for s in D_ and satisfies Aht(s)=O for s in D+.  Thus R(t, . ) - h t ( .  ) vanishes 
on D_ and hence belongs to ~o(D+) .  Moreover, the restriction of ht(s) to each 
of the sets D_ u F  and D+ u F  is smooth. 

Now let ue ~a(D_). Then 

O=<u,R(t, " ) -  hi(-)> 

and since u ( t ) =  (u, R(t, .)) we see that 

(7.1) u (t) = (u, ht) 

Approximating u by a sequence u , e ~ f  
= lira (hi, u,) or 

(7.2) 

for teD+. 

with compact support we have u(t) 

u(t)= lira ~ ~a,p(s)D~u.(s)Daht(s). 
,~oo [~1, IPl-<P r 
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Integrating by parts to bring the derivatives onto h t and using the fact that 
Aht(s)=O for sCF, we may pass to the limit to obtain a formula 

p-t  3~u 
(7.3) u (t) =r~ j~o bj(t, s ) - ~ i ( s ) d a ,  teD+ 

where the functions bj(t, s) are C OO functions of s on F. 

Formula (7.3) can now be used to solve the least squares prediction problem 
as was illustrated by MCKEAN [8]. That is, we can use (7.3) to calculate the pro- 
jection of X,, teD+ onto the space H(D_). 

Set 
p - l _  s 3 iX s) 

(7.4) X(t )=r  ~ bj(t, ) - ~ j  ( dcr 

3JX 
where the derivatives ~ are to be interpreted in the sense 

3J x d j 
(7.5) S f(s) ~ (s) dr = a h j I f(s) X~ +h; d a. 

We claim that 2 ( 0  is the projection of Xt onto H(D_). To see this, we only 
have to show that for zeD_,  

EX, Xt = EX~ 2 , .  

But for zeD_,  EX, Xt=R(v,  t) is in o~g(D_) and hence satisfies 

p-  1 0y 
R(% t)= I X bj(t, s)-~yTR(*, s)d* 

F j = O  vr I- 
(7.6) p- 1 M 

= ExJ  bat, s) X . d . = E X . X ,  

Since 2 ,eH(D_)  it follows that Xt is the projection of X, onto H(D_). 
For completeness we formulate the 

Proposition 7.1. Assume the Gaussian process {Xt: teT} is Markovian of  order 
p andsatisfies the conditions of  Theorem 5.4. Let F ~ T b e  a smooth compact surface 
which separates T into complementary open sets D_ and D+ where D_ is bounded. 
Then there exist smooth functions b j(t, s), teD+ and seF so that for each smooth 
function u defined in a neighborhood of F, 

p-1 OJu(s. ) da 
(7.7) ~( t )= I ~ bj(t, s) , teD+ 

r j=o 3rfl 

is the unique solution in o~f~ of  the exterior Dirichlet problem 

(7.8)  A ~ ( t ) = 0 ,  teD+ 

with 
ai u OJ u 

, s e r .  
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For teD+ the least squares prediction of  X, for given {Xs: s~D_} is then 

(7.9) X,=. [  ~ hi(t, s) . da.  
r j=o t~/J 

Note that just as the problem of predicting Aft for teD+ when we are given 
{Xs: seD_} is related to exterior Dirichlet problem for the operator A, the inter- 
polation problem of predicting X s for s in D_ when we are given {X,: tED+} is 
related to the standard interior Dirichlet problem for A. 

IH. Stationary Gaussian Markov Processes on R. 

A process {X,: tERn} is called stationary if for each choice of tl . . . .  , tk in R. 
the distribution of Xtl+,, . . . ,X,k+, is independent of teR n. For stationary 
Gaussian processes it is possible to obtain much more detail than the general 
results in Part I. 

The mean of a stationary process is constant and may be normalized with 
EX,-O. The covariance function EX, Xs is then a function p ( t - s )  of the differ- 
ence t - s .  Being a covariance function, p is positive definite and by Bochner's 
theorem it is the Fourier transform of a unique positive finite measure A (dx) 
on R.; that is, 

p( t)= j" eit'~A(dx). 
R,, 

In the next three sections we prove some elementary results which relate 
the Markovian character of {X,} to analytic properties of the spectral measure 
A. Section 8 is a general discussion of the Fourier representation. Section 9 is a 
further study of A under the assumption that {X,} has the Markov property 
for half-spaces. In Section 10 we prove that if {X,} is Markovian of degree p then 
A- ~ is an elliptic polynomial of degree 2p. 

8. The Spectral Representation of  ~,~(T) 

The identity EX, X's=Se~t'Xe-~S'XA(dx) implies that the map X , ~ e  it's 
determines a linear isometry from the space H onto L2(R,, A). Thus each element 
X of H is associated with a unique element f o f  L2(R,, d). If u(s)=EXX s is the 
corresponding element of ~ we have 

(8.1) u (s) = S f (x) e- ~s. ~ a (d x) . 

Hence 

Proposition (8.1). ~ consists of  all functions of  the form 

u (s)=Sf(x) e-iS" XA (dx) 

where fEL2(R, ,  A). The map u(s)~f (x)  is an isometry of  onto L2(R,, A), and thus 

<u, u> =~ If(x)] 2 A (dx). 

We next establish a decomposition of {Xt} analogous to the classical decom- 
position of a stationary Gaussian process into deterministic and regular parts. 
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We introduce the spaces 

aCao =closure of u {u~Yg': u has compact support} 

av~ = a e e ~ .  

The space Yg'~o corresponds to the tail field Z~o= 0a{Xt :  It I>N},  and ~r corre- 
sponds to the largest field independent of Z~o. 

Proposition (8.2). Let A (dx)=Ac(x)dx + A~(dx) be the Lebesgue decomposition 
of A into absolutely continuous and singular parts. Then: 

(i) l f  ~o 4:{0}, then 

Ygo = {u (s) = S f (x) e-'" ~ A c (x) d x : f eL 2 (R,, A ~)} (8.2) 

and 

(8.3) .ga| = {u (s) = ~ f ( x )  e -t~'x A~(dx):fEL 2 (R,,  A3}. 

Thus the splitting ~,'~'=~o~a~'o~ corresponds to the splitting L2(R, ,A)= 
L 2 (R., a 3 �9 L 2 (R., a3. 

(ii) ~o 4:{0} if and only if  for some L 2 function u(t)@O with compact support 

(8.4) e IF(x)12 . j ~ a x < o o  

where 

(8.5) 1 , . x  F ( x ) = ~ S e  u(t)dt.  

Proof. From the Fourier representation of .Of it is clear that the translation 
operator u(s)--, ut(s)= u(t + s) is unitary on ~ .  Moreover, since it leaves the space 
of functions with compact support invariant, the space Ygo must be invariant 
under translations. 

Assuming ~r let u(s)=Sf(x)e-~"XA(dx) have compact support. 
We now show that a function v(s)=Sg(x)e-t"XA(dx) is in afao if and only if 
g(x) vanishes almost everywhere with respect to Lebesgue measure dx. 

If v ~ |  then v is orthogonal to ut(s) for all t in R,.  That is, 

0 = (u,(s), v(s)) = ~f(x) e - " ' x  g(x) A (dx), 

and this is equivalent to saying that g ( x ) = 0  a.e. with respect to the measure 
If(x)l A(dx). But u(s)=~ei~'Xf(x)A(dx) has compact support, so by the easy 
half of the Paley-Wiener theorem the measure f (x )A (dx) equals F(x)dx where 

1 , . x  
F ( x ) = ~ I e  u(t)dx 

is an entire function of exponential type. In particular, F(x) vanishes at most 
on a set of Lebesgue measure zero, and hence If(x) I A (dx) is equivalent to Le- 
besgue measure dx. Since U ~ o  was an arbitrary function with compact support, 
the proof of (i) is complete. 

26 a Arch.  Rat ional  Mech. Anal. ,  Vol. 43 
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TO prove (ii) let u(s) be as before and observe that 

dx.  
zlctx) 

Conversely, if u~L 2 has compact support and F(x) defined by (8.5) satisfies 

S IF(x)] 2 . A-~--~ a x < oo , then 

F(x) 
f (x) - -  Ac(x ) eL2(R,,, Ac) and u(s)=Sf(x)e-~S'Xdc(x)dx 

is in ~o .  This completes the proof. 

Our splitting ~ =  ~0 ~) ~'o corresponds to a splitting of the space H = H 0 ~ Ho ,  
where 

(8.6a) H o =  0 H({t: I t l > N } ) ,  
N~_0 

(8.6 b) H 0 = H  e H o .  

Let Yt be the projection of X t onto Ho and let Z t be the projection of X t 
onto H o . Then { Yt} and {Zt} are independent stationary Gaussian processes and 

(8.7) X, = Yt + Zt. 

The correlation functions of Yt and Z,  are respectively 

~eU'Xdc(x)dx and ~eU'XAs(dx). 

Using a superscript notation such as H y and H~ to denote the obvious Hilbert 
spaces defined for the processes { Yt} and {Zt}, we have the following elementary 
rdations: 

(8.8) nL={0} 

no = n  =no no={0}. (8.9) x �9 : , : 

From our view point {Zt} is rather uninteresting, and we will assume in all that 
follows that Z t = 0  or what is the same that HX=Hg. Thus the measure A(dx) 
is assumed absolutely continuous and we will speak of the spectral density A (x). 

The spectral density of a Markov process is very smooth, and we will show in 
[11] that A-l(x)  must be an entire function of minimal exponential type. For the 
present, however, we will content ourselves with the following proposition. 
Note that {Xt} is not assumed to be Markovian. 

Proposit ion 8.3. Suppose ~o =;~e and that for some bounded open set D, 
~ ( D ) c ~ o ~ { 0  }. Then A(x) agrees a.e. with the ratio of  two entire functions of  
finite exponential type. 

Proof. Let u(s)=~f(x)e -is "XA (x)dx be in ~ ( D )  and have compact support. 
Then f (x)A (x) agrees a.e. with an entire function of exponential type. Because 
D is bounded we have for s in D and for large t, ut(s)=u(t+s)=O. That is, u t 
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is orthogonal to ~ ( D )  and because ue ~ ( D )  we have 

O= <ut, u> =If(x)  e-"" X f (x) A (x) dx. 

This implies that f fA agrees a.e. with an entire function of exponential type 
so that A =(fA .f-A)/(ffA) agrees a.e. with the ratio of two entire functions of 
exponential type. 

9. The Markov Property for Half-Spaces 
The easiest approach for obtaining information about A from Markovian 

conditions imposed on the process {Xt} is to restrict considerations to the special 
case when the domains D_ and D+ are half-spaces. This leads to a decomposition 
of the spaces oW(D_) and oet~ which reduces considerations to the one dimen- 
sional case. We now discuss this decomposition. An application of the techniques 
is made in the next section. 

As usual {Xt: teR,} is a stationary Gaussian process with spectral density A. 
We treat R. as the direct sum R t ~ R . _  1 and write t=(a, ~) with aeR 1 and 

E R._ 1 for an element t of R..  For any real number r we write 

(9.1) OL = {teR,: tr<r} 

(9.2) D~. = {t~R,: a > r}. 

The spectral density A(x) is defined on the dual of RI~R,_x,  and we will 
write x=(r  t/) with ~eR~ and t/eR,_a. A is to be considered as a function A(~, tl) 
of two variables. The covariance R(t) takes the form 

(9.3) R (t) = R (tr, z) = j'j" e' co. r +,. ,) A (~, r/) d ~ d t/. 

Corresponding to the spaces ~ ( D ~ )  we introduce the appropriate subspaces 
of L2(Rn, A). Namely 

(9.4) Z(D~:) = closed span {e it" x: t eO~: }. 

Then u(s)E:gg(D'~) iff u(s)=S f (x  ) e-iS'XA(x)dx where f~Z(D~). 
By Fubini's theorem we may change A on a set of measure zero so that for all 

r/~R,_l the non-negative function Ar tl) is in LI(R1). Thus Ar is a per- 
missible spectral density on RI, and we may introduce the space L2(Ra, A~) 
and the subspaces of L2(R1, A~) 

(9.5) Z~ + =closed span {e ~` "r a > r} 

(9.6) Z~- =closed span {e ir162 a < r } .  

The previously mentioned decomposition is based on the following proposition 
which shows how the spaces Z(D'~) are built from the Z~ • The proof we give 
is by no means the shortest possible but is instructive. 

Proposition 9.1".  A function f in L2(Rn, A) is in Z(D~) if and only if f ( . ,  rl) 
is in Z "• for a.a. ~. 

* In the language of direct integrals L2(Rn, A)=f ~L2(R1, Ar this proposition says 
that zC/Y'• = f ~ Z~n• dr/. 

26b Arch. Rational Mech. Anal., Vol. 43 
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Proof. We present the proof for Z(DL). Let g r  denote the subspace o fL  2 (Rn, A) 
of functions fsatisfying f ( . ,  r/) Z r- for a.a. r/. We must show Z(D'_)= ~ ' .  

First we claim ~ '  is closed. In fact, if fk is a convergent subsequence in ~e~ 
with limfk = f w e  have Fubini's theorem that 

(9.7) S dn {~ IA(r n ) - f ( ~ ,  r/)l 2 A (4, n) de} -- IlA-fJl 2 

and this converges to zero as k--. o0. Choosing a subsequence k ' ~  oo so that 
$ IA,(~, r/)-f(~, n)12~ (~, r/)d~--.0 for a.a. r/we see that for a.a. r/, f ( . ,  r/) is the 
limit inL2(R1, A,) of the functions fk,(. ,  r/)eZ~-. But Z~- is closed so f ( . ,  r/)eZ~- 
and f e  Lr', and L~ r is closed. 

The inclusion Z(D'__)c~ r is now obvious since each f in Z'(DL) is a limit 
of finite sums of the e ~t'x where teD'__, and each such sum is in ~ ' .  
N To prove the inclusion ~rr=Z(D'..) we observe that each function of the form 

e"k~hk(r/) where ak<r and ~ Ihk(r/)12A (~, r/)d~ dr/is in Z(DL). We now show 
1 

that each f e  ~ "  can be approximated by such functions and the result will follow. 

For this we let {gk(r be an enumeration of the countable set of finite sums 
ak e ~'kr where the ak<r and both the a k and a k are rational. The set {gk(~)} 

is dense in each of the spaces Z ' - .  For fixed f e  ~ "  we define the approximating 
sequence 

k 

(9.8) fk(~, r / ) = ~  gj(r 1Bk. j(r/) 
1 

where ln~.j is the indicator function of the measurable set Bk,~CR,_~, which 
is defined by the condition: r/eBk,j if and only if j is the smallest integer satisfying 

I f ( l ,  r/)--gj(~, r/)12 A (~, r/)d~ = min {I I f ( l ,  r/)-g,(~, r/)12 A (~, r/) d e / .  
l < i < k  

Then for each fixed r/, 

(9.9) ~ I A(r r / ) - f (~,  r/)l ~ ~ (r r/) d~ = min {S I gj(r r / ) - f (~,  r/)l 2 A (r r/) d 
1-<j__k 

decreases to zero as k ~ oo. By the monotone convergence theorem we conclude 
that 

(9.10) IIA-fll2--~ dr/ {$ lA(r r / ) - f  (r r/)12 A(~, r/) d~}--,O. 

Note that if f i s  an arbitrary element of L 2 (R n, A) and the sequence fk is defined 
by (9.8), then fk converges to the projection of f on Z(DL) while for almost all 
r/, fk( ' ,  r/) converges to the projection of f ( . ,  r/) on Z~-. 

The usefulness of this proposition in studying the Markov property is that it 
reduces the study of the projection of ~t~(D~.) onto aSe(D'._) to the study of the 
projections of Z~ + onto Z~-; and for fixed r/ this is a one variable problem. 

An example of the results obtainable by this technique is the following easily 
proved 

Proposition9.2.  Suppose {Xt: tern) is a stationary Gaussian process with 
spectral density A (x). Suppose also that {Xt} is Markovian. Then for a.a. r/, the 
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projection of Z~ + onto Z~- is contained in 

N span{ e ~ :  0=~r -c r<~} .  
~>0 

Assuming that  ~ = {0} it then follows f rom results of LEVINSON & MCKEAN [7] 
that  for a.a. ~, A -1(~, ~) agrees a.e. with an entire function of minimal exponential 
type. 

10. Stationary Markov Processes of Finite Order 
We have seen in earlier sections that if {Xt: teR,} is a Gaussian Markov 

process, then under appropriate additional assumptions it follows that the inner 
product in acg is given by a Dirichlet form. When the form is of order p, elliptic 
and satisfies other technical conditions, we were able to prove that {Xt} was Markov- 
ian of order p. 

In this section we assume that  {Xt: t~R,} is stationary and Markovian of 
order p. In light of the previous results a reasonable conjecture is that the inner 
product in ~ comes f rom a constant coefficient elliptic Dirichlet form. We prove 
the Fourier t ransform version of this conjecture. 

Theorem 10.1. Let {Xt: t~R,} be a stationary Gaussian process with spectral 
density A (x). I f  {Xt} is Markovian of order p then A- a(x) is an elliptic polynomial* 
of degree 2p. 

Proof. For  n = 1 this is well-known and was mentioned in the comment at the 
2p d~t 

end of Section 1. In fact, R(t) is the Green's  function of the operator ~ a ,  
dr" if and only if R ( t ) =  S eitXP-1(x) dx where O 

2p 

p(x) =~, a . ( -  ix)'. 
0 

We can also formulate the proposition for n = 1 in terms of the space L 2 (R1, A). 
If X} p-a) exists then x p- x eL2(Rx, A). Thus A-  a(x) is a polynomial if degree 2p 
if and only if x p-x is in L2(R1, A) and the range of the projection of {e~tX: t>0}  
onto {eitX: t_<0} in L2(Rx, A) is {1, x, . . . ,  xP-X). 

Turning to the case n > l  we know from Proposit ion8.3 that A-X(x)= 
P(x) Q- l(x) where P(x) and Q(x) are entire functions. We can thus find some open 
set U=R. on which Q(x) is non-zero. If we can show that  the restriction of 
P(x) Q-l(x) to U is a polynomial it will then follow by analytic continuation 
that P(x) Q- X(x) is a polynomial. 

Moreover, since A-x=PQ -~ is analytic on U, we see that A-~(x) must be 
a polynomial on U if we can show that in each of the separate variables x~ . . . . .  x . ,  
A-l(x)=A-X(xl, ..., x,) is a polynomial. The proof of this will follow from 
the case n = 1 and the reduction discussed in Section 9. 

With this in mind we again write t= (z ,  a) for the general point t in R. = 
R 1 ~ R._ ~ and x = (~, ~/) for the general point in the dual Euclidian space. 

* The polynomial Y, a~x ~ is elliptic if there is a constant c>0 with c] x[m [ y. a,x~]. 
I.l__.m I~1=., 
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Without loss of generality we may assume U has the form 

(10.1) U={(4,  r/)~Rt t~Rn-1 : 141<~; I~l<~}. 
We must show for fixed t /with I~l<e that as a function of 4, A -~(~, r/) is a poly- 
nomial of degree 2p for 141 < e. 

Again we set 
D_ = {t~Rn: t r<0},  D+ = {t~R~: a>0}  

(10.2) F= {t~R.: a = 0 } .  

If f~L 2 (F) has compact support we set 

F(tr)= 5 f(z)X(,.odz" 
Rn-  1 

Under the map Xt -+ e ~ t. x from H onto L 2 (R,, A) the function F(tr) corresponds 
to et'gfO1) where 

f(~/) = I e ' " " f ( z )  dz, 
F 

and taking derivatives we have the correspondences 

(10.3) F(O)of(tl), F~ko~(i4)k frl) for l<_k<p-1. 

Moreover, F~g~-2) exists if and only if 

(10.4) I 14 p- I f(r/)12 A (4, t/) d{ dr/< m .  
Rn 

Thus if {Xt} is Markovian of order p we conclude that (10.4) holds for each 
f i n  L 2 (R,_ 1) with compact support and that in L z (R,, A) the range of the projec- 
tion of {e"X: a>-0} onto {e*tX: tr<0} is contained in the closure of 

(10.5) {4kf(~/): O<k<p andfeL2(F) has compact support}. 

But if (10.4) holds for all permissible f w e  have 

10.6) 5 I{P-~I2A(4,~/) d 4 < ~ 1 7 6  for a.a. ~/. 
RI 

Proposition 9.3. now shows that for a.a. ~/, the projection of {e~'g: tr>0} onto 
{e~'r a < 0 }  in La(RI, A~) is contained in {1,{ . . . . .  {P-~}. Thus for a.a. t/, 
A -*({, ~/) is a polynomial of degree 2p in 4. Since A - l is continuous on U it follows 
that A-l({,  t/) is a polynomial of degree < 2 p  in 4; and that for almost all t / i t  is 
of degree 2p. From the previous comments we see that A-l(s) is a polynomial. 

That A - ' (x )  is an elliptic polynomial of degree 2p follows simply from the fact 
that any polynomial which is not elliptic of degree 2p may be reduced by an 
orthogonal change of coordinates to a polynomial which is of degree k=l=2p 
in the variable x,.  This possibility contradicts the earlier discussion, and we 
conclude A-  t is elliptic of order 2p. The proof is complete. 

If A -  l (x)> 0 is an elliptic polynomial of degree 2p one should expect that the 
associated stationary Gaussian process is Markovian of order p. If A-  '(x) has no 
zeros this is true and upon taking Fourier transforms follows immediately from 
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T h e o r e m  5.4. However ,  when A- l ( x )  has zeros the  n o r m  in ~e  is no t  equivalent  
to  the  n o r m  II lip a n d  T h e o r e m  5.4 is no t  appl icable .  In  this  case I have been 
unable  to  p rove  the general  resul t  a l though  I believe i t  to  be true.  

The  bas ic  p r o b l e m  consists  of showing tha t  the  associa ted  Dir ichle t  p r o b l e m  
for  A is wel l -posed in ~ for  an u n b o u n d e d  region D _  with non -compac t  b o u n d a r y  
F. F o r  a general  A - 1  wi th  zeros  this  seems very difficult.  However ,  if we res t r ic t  
cons idera t ions  to  the  case when F is compac t  there  is no real  p rob lem.  F o r  funct ions  
u in ~ wi th  a f ixed compac t  suppor t  the  n o r m  in ~e  is equivalent  to the  n o r m  
II lip, and  the  so lu t ion  of the  pred ic t ion  p ro b l e m given in Sect ion 8 is valid.  
W e  thus  have 

Proposi t ion 10.2. Let A (x) be the spectral density of  a stationary Gaussian 
process {Xt: t ~ R,} and suppose that A - 1(x) is an elliptic polynomial of  degree 2p. 

(i) l f  A - l (x )  has no zeros then {Xt} is Markovian of  order p. 

(ii) I f  A - 1 has zeros the Markov property of  order p remains valid for {Xt} 
when formulated with respect to compact surfaces F. 
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