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Introduction 

The purpose of this work is to treat the spectral theory and the scattering theory 
of electromagnetic fields in the exterior of bounded obstacles within the abstract 
framework developed by LAX and PHILLIPS in their book [4]. There the theory is 
applied to the wave equation and to a certain class of linear systems of first order 
equations. As was pointed out in an appendix to this book (Scn~nDr [9]), MAX- 
WELL'S equations are not covered by the class of linear systems considered there, 
but require a separate, though in many respects analogous, treatment. This we 
now provide. 

We begin by sketching the main features of the abstract theory. Let U(t) 
be a group of unitary operators on a Hilbert space H. Suppose that there exist 
two orthogonal subspaces D+ and D_ such that 

(a) U(t)O+=O+, t > 0 ;  (a') U(t)D_cO_, t < 0 ;  

(b) N U(t)D+={O}; (b') N U(t)D_={O}; 
t~O t~O 

(c) U U(t)D+ is dense in H. (c') U U(t)D_ is dense in H. 
t < 0  t ~ 0  

These subspaces are respectively said to be outgoing and incoming with respect 
to the group U(t). As a consequence of the existence of these subspaces one can 
prove that there are two corresponding unitary translation representations of H 
on L 2 ( - ~ ,  ~ ;  N) 1 (where N is an auxiliary Hilbert space), such that U(t) 
corresponds to the group T(t) of translation operators. In the case of one re- 
presentation, the so-called outgoing translation representation, D+ corresponds 
to L z (0, 00; N), while in the second case, the incoming translation representation 
D_ corresponds to L e ( -  ~ ,  0; N). To any e lement f  in H there correspond two 
representers in L2(--00, 00; N), an incoming representer k_ and an outgoing 
representer k+. We introduce a unitary map S of L z ( - ~ ,  00; N) onto itself 
which maps k_ to k+;  S is called the scattering operator. 

The physical significance of the operator S is not immediately evident. Scatter- 
ing theory usually involves two groups, an unperturbed group Uo(t ) and a per- 
turbed group U(t). The wave operators W• are defined as the strong limits of 

1 We shall use the notation S(D; R) to denote a space of functions with domain D and taking 
their values in R and with norm appropriate to S. In the case that the functions are complex 
valued we shall simply write S(D). 
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U(-t)  Uo(t) as t goes to +_oo respectively, in the case that these limits exist. 
The scattering operator is then defined by S = W+ 1 W_. In the theory described 
above the unperturbed group is not explicitly mentioned; however, implicitly, 
it plays a role, for in actual practice D+ and D_ are subspaces on which the 
perturbed and the unperturbed groups act in the same way for positive and 
negative t respectively. In fact LAX and PHILLIPS show that the operator they 
define is essentially the same as the usual scattering operator. 

It is convenient to introduce outgoing and incoming spectral representations 
of H on L2 ( -  o0, oo ; N) by composing the previous representation maps with 
a Fourier transformation F of L 2 ( - 0 %  00; N). In this way H is mapped onto 
L 2 ( - o o  , o0; N) in such a way that U(t) corresponds to multiplication by e ~t ,  
and D+ and D_ are mapped onto A+ =FL2(0, o0; N) and A_ = F L z ( - 0 %  0; N) 
in the outgoing and incoming cases respectively. The scattering operator in this 
representation is denoted by 60. One can show that 5 a can be realized as a multi- 
plicative operator valued function 5a(o) such that 

(a) For each a, re(a) maps N into N; 

(b) 5e(a) is unitary for almost all a;  

(c) Se(o) is the boundary value of an operator-valued function re(z) analytic 
for Im z<0 ,  which converges strongly along the lines Re z=a to re(a) for almost 
all a;  

(d) I 5e(z) I < I for all z with Im z < 0. 

Further analysis is needed in order to obtain greater insight into the analytic 
behavior of 5a(z). LAX and PHILLIPS introduce a semi-group Z(t)=P+ U(t)P_ 
which acts on the subspace (D+ + D _ )  ~, where P+ and P_ are projection operators 
onto D+ x and D -t. It  turns out that there is an intimate connection between the 
behavior of the resolvent of the generator B of Z(t) and 6a(z). More explicitly, 
the following is true: 

(a) If Re #<0 ,  then # belongs to the resolvent set of B if and only if 5a(i 
is regular. 

(b) A purely imaginary /t o belongs to the resolvent set of B if and only if 
Se(z) can be continued analytically across the real axis at ao =i/70. 

As a final result given us by the abstract theory we state the following: If for 
some positive values of T and ~c, the operator Z(T) (x I-B)-1 is compact, then 
the scattering matrix Sr is holomorphic on the real axis and meromorphic 
in the whole plane, having a pole at each point z for which i z belongs to the 
spectrum of B. Compactness of the operator Z(T) for some T would allow a 
stronger conclusion, but since this has not been proved in any of the applications 
we do not write down the details. 

In applying the abstract theory to concrete situations it is necessary to prove 
the existence of incoming and outgoing subspaces, to obtain as much information 
as possible about Z(t), and to identify the spectrum of B. Not surprisingly, 
the unperturbed problem, in our case MAXWELL'S equations in free space, plays 
an important role, even though, as was noted before, it remains submerged in the 
general theory. In the proof of the applicability of the abstract theory there is a 
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delicate interplay between the many facts known about the unperturbed problem 
(such as domain of dependence properties and HUYGHEN'S principle) and a few 
fundamental results concerning the perturbed problem (such as the absence of 
point spectrum from the generator of the perturbed group, and a local compactness 
property). 

One would expect the spectral and scattering properties of MAXWELL'S 
equations in an exterior domain to be very close to those of the wave equation, 
for the electro-magnetic fields satisfy the wave equation in the absence of free 
charges and currents. For a number of reasons the theory of Maxwell fields 
cannot be entirely subsumed under the corresponding theory for the wave equa- 
tion: 

(a) Both in free space and in an exterior domain MAXWELL'S equations have 
stationary solutions with finite energy (i.e., 0 is an eigenvalue of the generator 
of the unitary group). 

(b) The energy density function corresponding to electro-magnetic fields is 
different from that usually associated with the wave equation. 

(c) In the exterior problem the electro-magnetic fields are required to satisfy 
quite different boundary conditions from those which arise naturally for the wave 
equation. 

We therefore have to follow a path different from, but parallel to, that taken 
by LAX and PHmLIPS in their treatment of the wave equation. Accordingly our 
work fails into three parts: 

1) A detailed discussion of MAXWELL'S equations in free space. 

2) The proof of several fundamental results about the exterior problem. 

3) The proof of the applicability of the abstract theory and a listing of the 
conclusions allowed by that theory. 

In free space it turns out that we can exploit the connection between MAX- 
WELL'S equations and the wave equation, once this has been formulated. Section 1.1 
is devoted to a study of the various function and distribution spaces to which 
the initial data for MAXWELL'S equations and the wave equation belong. De- 
composition of these spaces corresponding to the later decomposition into 
stationary and non-stationary fields are considered, and a theorem (1.1.9) is 
proved which allows the introduction of an electromagnetic potential in the Hilbert 
Space setting. In Section 1.2 we recall, and suitably formulate, various properties 
of the wave equation. We then introduce MAXWELL'S equations (which have 
the form dtm=Aom ) in Section 1.3. The space of initial data is decomposed 
into stationary and non-stationary components; for the latter we introduce 
electro-magnetic potentials (Theorem 1.3.2), thus establishing the connection with 
the wave equation. This allows us to obtain fairly directly several properties of the 
equations in free space (Theorems 1.3.4 to 1.3.7). In Section 1.4 the existence 
of outgoing and incoming subspaces is proved, and the translation representation 
for MAXWELL'S equations together with some of its properties is obtained from 
the corresponding representation of the wave equation. It is necessary to consider 
distribution-valued initial data; this is done in 1.5. The translation representation 
is extended to a certain class of such data. An existence theorem, (1.5.3), is 
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obtained for the equation ( A 0 - # ) m = g ,  where g is divergence free and has 
compact support and m is required to be eventually outgoing (i.e. Uo(t)m(x) 
vanishes for I x [ < t - R  ( t>R)) .  That theorem is used in Section 1.6 to obtain 
the fundamental outgoing solution for MAXWELL'S equations. In Theorem 1.6.5 
several equivalent statements of the outgoing condition for electro-magnetic fields 
m for which (Ao-#)m has compact support are given; the first of these clarifies 
the dynamic significance of the Sommerfeld radiation condition. These results 
allow/z to be any complex number. 

The exterior problem requires essentially different methods from those used 
for the wave equation. The first section of Part 2 is devoted to the relevant initial 
boundary value problem. The skew adjointness of the generator A corresponding 
to MAXW~LL'S equations and certain general classes (Theorem 2.1.3) of boundary 
conditions is proved using the results of LAX and PHILLIPS in [6], The absence of 
non-zero point spectrum is established with the aid of Theorem 1.3.6. The local 
compactness theorem (2.2.9) which is crucial to further developments is proved 
for a particular boundary condition (corresponding essentially to an obstacle 
which is a perfect conductor) and in the complement of the null space of A, using 
an inequality of FPOnDPdCHS [3] and RELLICH'S compactness theorem. 

The application of the abstract theory in Part 3 offers few difficulties since 
the proofs of the various assertions can virtually be read off word for word (with 
a few minor modifications, some of which were noted in Appendix 4 of [10]) 
from the corresponding proofs for the wave equation in [4]. The scope of the 
techniques due to LAX and PHILLIPS and applied here can best be judged by a 
perusal of the results stated in the last section of this paper. 

A somewhat amplified form of this paper has appeared as a technical report 
[10], and will frequently be referred to for more complete proofs. 

The author wishes to express warm thanks to his doctoral supervisor Professor RALPH 
PHILLIPS under whose guidance and encouragement most of this work was carried out. 

1. The Free Space Problem 

w 1.I. Some Mathematical Preliminaries 

In this section we introduce the spaces from which the initial data for the 
Cauchy problems corresponding to the wave equation and to MAXWELL'S equa- 
tions will be taken, and study their relevant properties. 

We begin by defining the Beppo-Levi space 2 BL (R3); this is, roughly speaking, 
the closure of C~~ 3) in llfllBz--llVfllL2, where V is the vector operator 
(01, 02, 03) and 0i denotes a/Ox i. The manner in which the space C~(R 3) is to 
be completed is clarified by Lemma 1.1.1, according to which smooth functions 
with compact support satisfy the inequality (,). Hence a sequence of smooth func- 
tions with compact support, Cauchy in [l" ]1Br~, is also Cauchy in L~z~ 3) and hence 
determines uniquely a limiting function. In this way C~(R 3) is completed to 
give BL(R3), and the inequality ( , )  continues to hold for all functions in the 
completed space. 

2 For a detailed study of more general spaces of this type see DENY and LIONS [2]. 
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Lemma 1.1.1. Suppose fEBL(R3). Then 

[f(r@12 d~ < 1  I[fll~L. (*) 
I,ol= 1 r 

This is well known and is proved, for instance, on p. 95 of [4] or in [10]. 

Clearly, if f lies in BL(R 3) then Vf lies in L2(R3; ~3). It is evident from 
Lemma 1.1.1 that the converse does not hold; the constants, for instance, have 
square integrable gradients but do not belong to BL(R3). This situation will be 
clarified by Lemma 1.1.5. We precede this by three lemmas which state simple 
facts which we shall use repeatedly. Differentiation is always to be understood 
in the distribution sense. 

Lemma 1.1.2. 

a) If f~L2(R 3) and Af  =O, then f =O. 
b) If f~Lz(R3; ~r V. f  =O and V• then f =O. 
c) If f~L2(R3; cg3), V.f~L2(R 3) and V• if3), then Vf i~L2(R3; ~r 

(i = 1, 2, 3); and furthermore if g satisfies the same conditions, 
3 

Z ~ Vfi" Vgj dx= ~ V x f .  Vx g dx+ ~ (V.f)(V. g) dx. 
j = l  

Lemma 1.1.3. 

a) If f~BL(R 3) and Af  =O, then f =O. 
b) If f eBL(R 3, ~3), V-f=O and V xf=O,  then f =O. 
c) l f  f and g lie in BL(R 3, ~fa), then 

3 

Z I  Vfj. Vgjdx= I V x f .  V•  ~ (V. f ) (V.g)dx.  
j = I  

Lemma 1.1.4. The following is an orthogonal decomposition of L2(R3; cg3) into 
closed subspaces : 

L2 (R 3; ~3) = t 0 (R 3; 43) ~ L~ (R 3; ~3), 
where 

L o (R 3 ; c~3) = {f~ L2 (R 3 ; ~3); V • f = 0} 

= closure in L 2 of S O = { V~0; (p e C~ (R3)}, 
and 

L~(R3; ~3)=(feL2(R3; ~a); V . f=0}  

= closure in L2 of $1 = { V• ~; ~ ~ C~ (R3; c~a)}. 

These lemmas are easily verified, as is done in [10], by using Fourier transforms 
and elementary vector identities. We can now prove 

Lemma 1.1.5. Let g be a distribution such that Vg can be represented by a function 
in Lz(R3; ~a). Then g=f  +c, where f belongs to BL(R 3) and c is a constant. 

Proof. Since Vg is in L2(Ra; cga) and is curl free it must lie in L~ cg3). 
Consequently there is a sequence {tpn} of functions in C f ( R  3) such that the 
sequence {Vq~,} converges to Vg in L 2 . The sequence {q~,} converges in the Beppo- 
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Levi norm and hence determines a func t ionf  in BL(R s) in the manner described 
at the beginning of this section. Clearly Vf = iZg, and therefore g = f +  c. 

From this we easily obtain 

Lemma 1.1.6. If  f~L2 (R 3) and Vf~L 2 (R a ; cg3), then f ~  BL (R3). 

Proof. By the previous lemma, f - f l + C  where f l~BL(R3).  Because of the 
behavior of the functions f and f l  at infinity we must have c=0,  and thus 
feBL(R3).  

Recalling part c) of Lemma 1.1.2 we find the following corollary: 

Corollary 1.1.7. If  fEL2(R 3, c~3), V. feL2(R3), and VxfEL2(R3; c~3), then 
f~BL(R3; c~3). 

We now prove a decomposition lemma for BL(R3;~  3) analogous to 
Lemma 1.1.4. 

Lemma 1.1.8. The following is an orthogonal decomposition of BL(RS; ~3) 
into closed subspaces: 

BL(R3; ~,3)= BL o (R3 ; c~3) ~ BLI(R3; c~3) 
where 

and 
BLO(R3; c~3)= { feBL(R3;  cK3); V• f = 0 }  =closure in BL of S ~ 

BIJ(R 3 ; cga) = {fE BL(R 3 ; oK3); V. f = 0} = closure in BL of $1. 

Proof. We first assert that if f lies in BL(Ra; cg3) and is orthogonal to S O 
in that space, then V . f = 0 ;  similarly if f is orthogonal to S 1 it must satisfy 
Vxf=0 .  We prove the second assertion; the proof of the first one is analogous. 

I f f  is orthogonal to S 1 in BL(R 3 , cg3) we have 

0 = ~ S  Vfj. V(Vx~k)j dx,  for ~/ffC~~ c-~3). 
J 

We use the identity of Lemma 1.1.3, part c), to obtain 

O= S Vx f . IZx(Vx~k) dx+ S (V. f )(V.  Vx~)  dx .  

Because VxVx~b=-A~b+V(V.  ip) and V. Vx~k=0, we find 0=~ V x f .  A-~dx. 
Thus Vxf i s  harmonic. Since Vxf  lies in L2 ( f ly ing  in BL), Lemma 1.1.3, part a), 
tells us that V x f =  0. 

It is now clear that S o is dense in BL ~ for i f f  is in BL ~ but is orthogonal to 
S o we have that V x f = 0  and that V.f=O, so that Lemma 1.1.3, part b), applies 
to give f = 0 .  Similarly S 1 is dense in BL 1. The spaces BL ~ and BL 1 are orthogonal 
because of the identity 

E I v(vq,)j, v(v•  O)j dx = I v•  v o. v• v•  r dx + I (V. (V. V• O) 
J 

the right side vanishes since V• Vq) =0 and V. V• r =0. That BL ~ and BL 1 span 
all of BL is clear since i f f  is orthogonal both to S o and to S t, then V. f=O and 
V• which again imply that f=O.  

The following is the most important result of this section and will allow us 
to introduce a potential for the electromagnetic fields and thus to establish the 



290 G.  SCHMIDT: 

connection between MAXWELL'S equation and the wave equation within the Hilbert 
space setting. 

Theorem 1.1.9. There exists a unique one-to-one norm preserving map J of 
L21(Ra; cda) onto BLI(Ra; cd3), such that if f is in L21(R3; cg3) then f = F x J f .  

Proof. The work lies in defining J suitably. G i v e n f  we have to define J f  so 
tha t f=FxJf ,  J f  lies in BL(R3; cg3), and F- J f = 0 .  Let 

g(~)=l ~ 1 - 2 (  i ~ X f ( ~ ) ) ,  

where f (~ )  is the Fourier transform o f f  (x). Since V - f = 0  we have ~. f(~)  =0, and 
thus 

i ~ x g(~)= 1~1-2 [i ~ • (i ~ x f(~))] = 1 ~ i-2(1 ~12 f ( o -  ~ (4- f (~)) )=  f (~) .  

We now show that g(O is a tempered distribution in Sf'(R3; c~3). Let t ingg(r  
g l (~)+g2(O,  where gx(~) and g2(r are the restrictions of g(~) to 1~1<1 and 
[4[ > 1 respectively, it is enough to show that gl (4) and g2(~) lie in L I(R 3 ; cga) 
and L2(R3; cg3), respectively, and hence are tempered distributions. Since 
4" f (~)  = 0, I g ( 0  1 = I ~ I - 1 I f ( 0  I. Thus 

I l g i ( O I d ~ =  I Ig(~) ld~--  I ) r  < I I f (OI2d~ S [ ~ 2 - d ~  ; 
Ra I~1 --< 1 I~1 ---- 1 LI~I _-< X Ir = 1 t i a 

the last expression is finite since f(x) and f(~) are square integrable and since 
d~=l~12dl~ld09 in R a. Also 

X Ig2(r 2 d r  S l ~ l - 2 1 f ( O I 2 d r  - - $ If(r 
R3 I~1 > 1 Ir > 1 

which is again finite since f(~) is square integrable. 
Since g(~) is a tempered distribution it is the Fourier transform of a tempered 

distribution t; i.e. 7(~)=1r215 Since i~.  7 ( 0 = 0  and i ~ x T ( 0 = f ( ~ ) ,  
we have I 7. t = 0  and 17• We cannot define Jf=t,  since we cannot be sure 
that t lies in BL(R3; c~3). We shall see, however, that by subtracting a suitable 
constant from t we obtain a function satisfying all the requirements. Clearly 

E r 7j(r r r • r • 7(r if(e)) 2. (,) 
Hence the ~ t'y's and thus also the di t fs  are square integrable for i , j=l ,  2, 3. 
According to Lemma 1.1.5 applied componentwise, t = [+ c, where/ is  in BL (Ra ; cda ) 
and c is a constant vector. Obviously 17. [=V. t=0 ,  and Vx[=17• so that 
we can define i f =  {. 

That J is an isometry is obvious from the identity (.) above, since 17[ = 17t. 
J is onto, for if h lies in BLI(R3; c~3) then 17• is in L2(R3; c~a) and J17xh=h. 
The map ] is unique, for if J '  is a second such map we have for any h in L21 (R 3 ; ~a) 
that 17. ( J -J ' )h=O and 17x(J-J')h=O; since ( J - ] ' ) h  is in BL(Ra; c~3) it 
must vanish identically. This completes the proof. 

We shall need the following approximation lemma in Section 1.4. 

Lemma 1.1.10. Suppose that f and dyf both lie in L2(R 3) (or BL(R3)). Then 
there exists a sequence {q~,}~C~(R a) such that (tp,) and {~y q~,} converge toy  
and ~yf respectively in L2(R a) (or BL(Ra)). 
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Proof. The lemma is well known and easily proved for functions in L 2 (R a) 
by a "cut-off and mollification" procedure, or by a method similar to that which 
we now present for functions in BL(R3). 

We consider the Hilbert Space 

= {f  ~ BL (R 3); ~j f~  BL (Ra)} 

with inner product ( f ,  g)~r Vf. -~ dx+ S Vaif. V~jg dx. For the case of func- 
tions in BL(R 3) the assertion is equivalent to the statement that C~(R  3) is dense 
in .r ~. To prove this we show that any g lying in W but orthogonal to C~ (R 3) 
vanishes identically. The explicit orthogonality condition and integration by 
parts show us tha tg  is a weak solution of A(1 + a ] ) g = 0 .  Hence the 0,g ( i=1 ,  2, 3) 
are likewise weak solutions of that equation, and since they are square integrable 

we may take Fourier transforms and find I~ 12(1 + ~ff) O~g(~)=0, so that O~g =0 
as an element of L2(R3). Thus alg=O, so that g is a constant; since g lies in 
BL(R 3) this means that g = 0 ,  as was to be proved. 

Note. We shall in fact need the following assertion which is proved in the 
same way: Suppose that f and Vxf  both lie in L2(RZ; Clga) (or BL(R3; cg3)). 
Then there exists a sequence {r = C~~ cg 3) such that {~O,} and {Vx ~b,} con- 
verge t o f  and Vxf  respectively in L2(Ra; cg3) (or BL(R3; cg3)). 

Our initial data will on occasion be taken to be distributions. Sometimes it 
is necessary to consider arbitrary vector-valued distributions in ~ ' (R3;  ~3). 3 
For  some purposes, however, it is convenient to restrict our attention to a class 
of distributions smaller than ~ ' .  This is true in particular when we wish to de- 
compose vector-valued distributions into curl free and divergence free parts. 

Let ~L~ ={~;  D" ~ o~L2 (R3; cg3), for any ~} topologised by the semi-norms 

I1~11~ = ~ IID~IIL~; 
lal~m 

here we have employed the familiar multi-index notation. By SO~OLEV'S inequali- 
ties we know that each ~k in ~L2 is infinitely differentiable. We shall be concerned 
with distributions in ~J:2. It is well known that 8 '  = ~ ~ 6 a' = ~ ' .  The following 
lemma, and more particularly its dual, indicates the usefulness of ~ '  for our L2 
purposes. 

Lemma 1.1.11. Let ~e~L~. Then there is a unique continuous decomposition 
~k=~b~ 1, such that ~k ~ and ~,1 belong to ~L~, and are respectively curl free and 

_ o + ~ .  divergence free. We write ~ - ~ 

Proof. From the orthogonal decomposition of L2(Ra; c~a) (Lemma 1.1.4) we 
know that ~k=~~ ~, where ~b ~ and ~k x are both square integrable and respec- 
tively curl and divergence free. We prove that in the case that ~k is in ~ the other 
assertions also hold. 

3 ~ (R3; c~3) is simply C~ ~ (R3; c~3) supplied with the usual distribution topology, the euclidean 
norm replacing the usual absolute value in the definition of the relevant semi-norms. ~ '  (R3; c~3) 
is the set of continuous linear functionals on ~(Ra; ~3) and can be identified with ~'(Ra)• 
~ '  (R 3) x ~'  (R3). 
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We proceed inductively. Suppose that D ' ~  ~ is square integrable for [a l<n.  
In the sense of distributions D'd/=D'~k~ 1, so that V x D ' ~ ~  and 
V. D'qJ~ = V. D ' ~  which is square integrable. Thus by Corollary 1.1.7 D ' ~  ~ lies 
in BL(Ra; (ga) for any ~ with [~[<n. But then DP~ ~ is square integrable for 
I/~1 = n +  1. In this way we see that D ' ~  ~ and hence also D ' ~  1, are square inte- 
grable for all a, so that both ~b ~ and ~b I lie in 9L~. That the decomposition is 
continuous is obvious since II ~ 2 D~ffo �9 i 2 D ~ IlL2 = II I1~ + II Dip  I1,.~. The uniqueness 
of the decomposition is a consequence of the corresponding uniqueness of the 
decomposition for L2 (R 3 ; cga). 

We can now unambiguously define a dual decomposition for ~ 2 .  

Lemma 1.1.12. There is a continuous decomposition of ~ z ( R 3 ;  (~3) into curl 
free and divergence free components, 

r 3 ~L,(R ; c#3) = [~ [ ,  (Ra; c#3)]~ + ' 3 [~,~(R ; ~e~)] ~. 

More explicitly, if T is in ~'L2 then T= T o + T 1, where T o (r = T(~o o) and T 1 (qO = 
T(q91). Restricting T O and T x to be distributions in ~ ' (Ra;  (g3) we have TO= 
-(1/r),V(V. T) and T 1 =(1/r)*V• 

Proof. The first statements follow trivially from the definitions and the proper- 
ties of the decomposition of ~L2- The last assertion is seen as follows. It is well 
known that 

6 = - - ~ - - A !  
r " 

Consequently we have the following decomposition for ~0 in 9 (Ra ;  cga): 

1 1 1 1 1 1 
* A q ~ = - -  - - *  Vx Vx ~o * V(V. ~o). 

q~= 4n r 4n r 4n r 
We show that 

r 1 1 V(V.q~) 
4re r 

by proving that the latter curl free expression is square integrable. By the diver- 
gence theorem we have 

1 1 
4n I x - y [  

- -  V(V. r (y) d y = lim 1 ~ ____~1 _ V(V. q0 (Y) d y 
.-~o ~n,<l~-yl<R [x--y[  

R --'J" oo 

= l i m [  S V ]x-~y[ (V'cp)(y)dy 
e"* 0 e < l x - - y l < R  

R--* co 

V. q~ (y) 
+ S n e2dr j" n - -  

Ix-yl =e e Ix-y[ =R 

1 x - - y  (V. q~)(y) dy ,  
- -~  I x - e l  2 [ x - y l  

17. ~o(y) dSy] 
]x-y l  
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which is square integrable by a Sobolev inequality ([1], p. 220). We therefore 
also have ~pl =(1/r)*Fx(VxqO. Thus for ~ in 

T~ (cp)= T(cp~ T ( l *  v(17. tp))= --1*17(17. T) (cp) 

and similarly 

T1(cp) =__i �9 Vx (Vx T) ((p). 
/. 

Note. Let e~ be the i-th vector of an orthonormal basis in ffa and define the 
distribution 6~ = 6 e~ in ~[2 (R3; cr by 6~(q~)= ~(0) ;  we then have 

and hence 6 ~ is the distribution -17(I 7. (e+/r)) in ~'(Ra; cr Similarly 61 is 
given by IZx(IZx [eJr]). 

w 1.2. The Wave Equation in Free Space 
We shall now review some properties of the wave equation, all of which are 

proved by LAX and PmLLIPS in [4]. We shall formulate the relevant results in 
terms of the vector-valued wave equation; they follow immediately from the 
corresponding results for the scalar equation. 

We introduce the following space of complex valued functions defined in 
all of 3-space: Wo =BL(Ra; cga) xL2(Ra; (~a). The norm in Wo is evidently the 
usual energy norm 

II w Ilwo = [�89 ~ (I Vwxl 2 +lw21 s) dx] +. 
R 3 

Let w=(wl, w2) belong to Wo and consider the Cauchy problem 

wtt(x,t)=Aw(x,t) (xER a, teR1), 
w (x, O) = w~(x), w,(x, O) = w~ (x).  

The wave equation can be expressed as 

+(w) (o 
= 

0 t W t W t 

this motivates the definition of an operator B 0 which acts like 

where the Laplacian is understood in the distribution sense, and where we make 
the convention that a vector w =(wl, w2) is always to be interpreted as a column 
vector when it is acted on by a matrix. B 0 turns out to be skew-adjoint and there- 
fore generates a group Vo(t)=exp(Bo t) of unitary operators on W o. For given 
initial data w in Wo, the function w(x, t) = [Vo (t) w]l (x) is a solution of the initial 
value problem, and wt(x, t) = [ Vo (t) w]2 (x). 

2! Arch. Rat ional  Mech. Anal., Vol. 28 
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The following theorems are crucial. 

Theorem 1.2.1. I f  w ( x) has its support in Ix-Xo[_>_ r, then for It I< r the func- 
tion (Vo(t) w)(x) has its support in [X-Xo[>=r-[t [. 

Theorem 1.2.2. I f  w(x) has its support in [X-Xo] __<r, then for It[ > r  the func- 
tion (Vo(t) w)(x) has its support in [X-Xo[>=[t[-r. 

Theorem 1.2.3. / f  (Vo(t) w) (x)=O for Ix[ < t  (for all t>0) ,  and (Vo(t) ~) (x) 
=O for ] x ] < - t  (for all t<0) ,  then w and ~ are orthogonal in Wo. 

Theorem 1.2.4. Let w be an element of Wo. I f  for some real, but non-zero, 
value of I~ the function (B o -  ip) w (which is to be understood in the distribution 
sense) vanishes for Ix[ > r, then w(x) also vanishes for Ix[ > r. 

These theorems are all proved by LAx and PHILLIPS within the framework 
of a detailed analysis of the outgoing and incoming spectral and translation 
representations for the wave equation in free space. They can also be proved 
more directly. Theorem 1.2.1 describes domains of dependence for the wave equa- 
tion. Theorem 1.2.2 essentially expresses HUYGrIENS' principle, which is generally 
established from an explicit representation of the solution in terms of the initial 
values. Theorem 1.2.3 is proved directly in a paper by LAx, MORAWETZ and 
PmLLIPS [7], while Theorem 1.2.4 follows immediately from a theorem of RELLICH 
concerning solutions of the reduced wave equation (A + # 2 ) u = 0  (which is pre- 
sented, for example, by MmhNI~R in [8]4). 

LAX and PHILLIPS extend the domain of the group Vo(t) to include all distri- 
bution valued initial data. We summarize their procedure since it will prove to 
be useful. 

Given a p a i r f = ( f l ,  f2) of distributions, we define Vo(t)f  component-wise by 

and 
[11o (t) f ]~  (go) = f~(EVo ( -  t) (0, go)] 2) - f 2  (EVo ( -  t) (0, go)] 1), 

[11o (t) f ] 2  (go) = - f l ( [  11o ( -  t) (go, 0)] 2) + f2 (IV0 ( -  t) (go, 0)] 1). 

This definition depends strongly on the fact guaranteed by the above theorems 
that Vo(t) takes compactly supported data to compactly supported data, and 
also on the classical result that smooth data leads to smooth solutions. It is easy 
to verify that w=  [Vo(t)f]~ is a distribution solution of the wave equation and 
that [Vo(t)f]2=wt. The inital conditions are clearly satisfied. That there is 
only one solution corresponding to given initial data is also readily established. 

Theorems 1.2.1 and 1.2.2 continue to hold for the extended group Vo(t ) 
and distribution data. We prove the extension of Theorem 1.2.1. Suppose that 
the d a t a f  has its support in Ix-Xo[  > r. Let go be a smooth function with support 
in [X-Xo l<r - l t [ .  Then according to Theorem 1.2.15, Vo(- t ) (O , go) has its 
support in [X-Xo[<r. Looking at the explicit expressions for [Vo(t)f]l and 
[ Vo ( t ) f ]2  and recalling that the support o f f  lies in [ x -  x o [ > r, we see that Vo ( t ) f  

4 The main advantage of the method of LAX and PHmLn'S is that it leads to a generalization 
of the theorem stated here. 

s It is an easy consequence of Theorem 1.2.1 that if the data w has its support in [ x-- Xo] < r, 
then V o (t) w has its support in ] x-- x o I < r -I- [ t [. This is what we use here. 
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has its support  in I x - x o I > r -  I t I. Theorem 1.2.2 can be extended in similar fashion. 
We formulate two further lemmas. 

Lemma 1.2.5. Let w be data such that 6 V. w(Vx  w) has its support in [ x -  Xo I >-- r, 
then for  Itl<r, V. Vo(t) w(Vx Vo(t) w) has its support in Ix-xol>r-lt[. 

Lemma 1.2.6. Let w be data such that V. w (Vx  w) has its support in [X-Xol  < r ,  
then for  [ t l > r ,  V. Vo(t) w(V•  Vo(t) w) has its support in [X-Xol~ltl-r. 

These lemmas follow f rom Theorems 1.2.1 and 1.2.2 once we note that  
V. V o ( t ) w  (Vx Vo(t ) w) are solutions of the initial value problems with initial 
data V. w (Vx w) vanishing in the specified regions. 

To complete this section on the wave equation let us define 

Wo~ = {w E Wo; v. w=(o, o)}. 

As an immediate consequence of Lemma 1.2.5 we then have 

Theorem 1.2.7. The subspace W~ of W o reduces the group Vo(t ) of unitary 
operators on Wo; i.e., if  we define V~(t)  and B~ to be the restrictions of Vo(t) 
and Bo to Wo 1, then Vo x (t) is a group of unitary operators on Wo ~ and Blo is the 
skew-adjoint generator qf that group. 

w 1.3. MAXWELL'S Equations in Free Space 

MAXWELL'S equations in the presence of a charge distribution p(x,  t) and a 
corresponding current distribution p(x,  t) (satisfying an equation of con- 
tinuity) but in the absence of obstacles are 

0, ml(x,  t )=  Vx m2 (x, t) + #(x,  t) , 7 

8, m2 (x, t )=  - Vx ml(x,  t) , 

subject to the initial conditions 

ml(x,O)=rnl(x)  and m2(x ,O)=m2(x) ,  

where the pair (mx(x), m2(x)) belongs to the space of initial data 

Mo = L2 (R a; cg3) x L 2 (R3; cg3), with II m II = [�89 ~ (I m 112 + [ m212) d x] ~. 

These equations describe the dynamic behavior of the electric field m~ and the 
magnetic field m2. The vector fields m~(x, t) and m2 (x, t) are generally required 
to satisfy the additional conditions 

V. ml(x,  t ) = p ( x ,  O, V. m2(x, 0 = 0 .  

We shall assume throughout that  no currents are present, i.e., that  #(x, t ) = 0 .  
In  this case the charge distribution is time independent and the divergence con- 
ditions on ml(x,  t) and m2(x, t) turn out to be conditions on the initial data 

6 Here we use the notation V. w=(V" w 1, V. Wz). Similarly Vx w=(Vx wl, Vx w2). 
7 In more familiar notation m 1 (x, t) is the electric field E, and m 2 (x, t) is the magnetic field H. 

21" 



296 G. ScHMmT: 

alone; the following heuristic argument indicates that this is so: 

0 t V. ml(x, t) = V. O, ro t (x ,  t) = V. Vx m2 (x,  t) = 0 ,  

so that V. mi(x, t )= V. mr(x). 
Since we are here concerned with MAXWELL'S equations in free space we 

could immediately assume that p(x, t)vanishes, and hence restrict ourselves to 
divergence free initial data. Instead we shall use a procedure which points the 
way to our subsequent treatment of the perturbed problem. 

MAXWELL'S equations can be written as 

( 0 
\m2 (x, t)] \m2 (x, t)] ' 

and this suggests the definition of an operator A o which acts like 

o n  

(o 

D(Ao)= {m=(mx, m2)eMo; (Vx m2, - Vx ml )eMo} .  

We now introduce the following orthogonal decomposition of the space of initial 
data M 0 along the lines of Lemma 1.1.4: M o = M ~  where 

M o = LO2 (R 3; cg3) 0) L ~ (R 3; ~3) and Mo ~ = L�89 (R3; cg3) ~) L~ (R 3; c~a). 

One then has that M ~  and that Ao annihilates M ~ It is trivial to 
check that the following holds: 

Lemma 1.3.1. The decomposition M o = M  ~ O) Mo 1 reduces the operator A o. 

We shall now establish a correspondence between the part Ao 1 of A o acting 
on Mo 1, and Bo 1, defined in Theorem 1.2.7 and acting on Wo 1. This clarifies the 
relationship between MAXWELL'S equations and the wave equation. 

Theorem 1.3.2. There exists a one-to-one, norm-preserving map J of Mlo onto 
Wo 1 such that 

a) if Jm=w,  then m l = V x w  1 and m2=w2; 
b) JD(Alo)=D(Blo), and Ato=J-1BloJ. 

Proof. We use the map J introduced in Theorem 1.1.9 to define J = J x L  
That J is a one-to-one, norm preserving map of Mo 1 onto Wo i satisfying a) is 
immediately evident. It remains to prove the relationship between Ao x and Bo 1 . 
Suppose that m lies in D(A~) and that w=Jm. Then m 1 =Vxwl ,  m2=w2, [ T x m  1 

= V x  Vxwi ,  and Vxm2=Vxw2  are all square integrable. We shall show that w 
is in D(B~) or, explicitly, that wleBL(R3; c63), w2eL2(R3; qg3), w2~BL(Ra; c63), 
A wxeL2(R3;Cg3). The first two conditions are fulfilled because J maps Mo 1 into 
W~. That  w2 lies in BL(R3;Cg a) is a consequence of Corollary 1.1.7, since V- w 2 
(which vanishes), V x w2 and w2 are square integrable. Finally Awl is in L 2 (R3; ~g3) 
since A w = - V x  Vxw  1 (wt being divergence free). Thus JD(A~)cD(B)to . That 
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J is onto follows since the above steps are reversible. Finally we have 

JA~ S - x w = J A ~  J - ' ( w  l ,  w2)  =- S A t  (17 • w x, w2) 

=J(Vx w2, - Vx Vx w0 =(w2, A wi)----B~ w. 

This completes the proof of the theorem. 
It is interesting to note that although the mapping J of Mo 1 onto Wo I is an 

isometry, locally the energy density of the "potential field" w is not the same as 
the energy density of the electro-magnetic field m. In order to illustrate this, 
two examples were presented in Appendix 1 of [10] which demonstrate that m 
may vanish inside or outside a sphere without J m  doing likewise. 

Combining the last theorem with Theorem 1.2.7 we have 

Theorem 1.3.3. A~ is a skew-adjoint operator on Mo 1 , and A o =0 �9 Alo is a 
skew-adjoint operator on Mo = M  ~ O Mo 1 �9 

The operator Ao generates a group Uo(t) of unitary operators on 3//o. For 
given initial data m in M o, Uo(t)  m is the solution of the corresponding initial 
value problem for MAXWELL'S equations. By the preceding decomposition of 
M o and Ao we have Uo ( t)= 1 0  U~ (t), Uo 1 (t) being the group of unitary operators 
on M~ generated by Ao 1 . Thus fields corresponding to curl free and divergence 
free initial data are respectively stationary and time-dependent, while arbitrary 
fields can be decomposed uniquely into stationary and time-dependent parts 
(here fields have finite energy). 

As a consequence of the relationship Alo=J-1BloJ ,  we also have uot(t)= 
j - 1  vot(t)j. We shall now exploit this fact to obtain for MAXWELL'S equations 
corresponding to Theorems 1.2.1 up to 1.2.4 for the wave equation. It is clear 
from the preceding discussion that we could not expect these theorems to hold 
for Uo(t) acting in all of Mo. 

Theorem 1.3.4. I f  m lies in 3111o and re(x) has its support in Ix-xol>r, then 
f o r  I t l<r ,  [Uol(t)m] (x) has its support in I x - xo l >_>_ r - l t l. 

Theorem 1.3.5. I f  m lies in Mo 1 and re(x) has its support in [X-xol<r, then 
f o r  I t I > r, [ U~ (t) m] (x)  has its support in I x -  Xo I >= ] t] - r. 

Theorem 1.3.6. I f  m and ~ lie in Mo 1 and [Uol(t)m] (x) vanishes f o r  Ixl<t 
( for  all t>0), while [Ud(t) ~] (x) vanishes f o r  Ixl< - t  ( for all t<0), then m and 

are orthogonal. 

Theorem 1.3.7. Let  m be an element of  D(A~).  1f f o r  some real, but non-zero, 
value o f  p (A~-i lOm vanishes f o r  Ixl>r, then m itself  vanishes f o r  Ixl>r .  

As before, these theorems can be generalized to apply to distribution valued 
data; in particular Theorem 1.3.7 can be greatly strengthened. However, the 
theorems as stated will be sufficient for our purpose. We proceed to prove them 
successively. The proofs via Theorem 1.3.2 are not quite as simple as one might 
anticipate; the difficulty lies in the fact, noted before, that the correspondence 
between m and w = J m  is global rather than local. The proofs of all four theorems 
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are given in [10]. Here we prove only Theorem 1.3.5 and 1.3.6; this involves an 
interesting intermediate result which clarifies the behaviour  of the map J. 

Lemma 1.3.8. Suppose that w lies in Wo and that Vx Vo(t ) w and V. Vo(t)w 
have their supports outside the cone I x l < t (t > O) [or I x l < - t (t < 0)]; then Vo (t) w 
likewise has its support outside that cone. 

Proof .  Since V. Vo(t)w and V• Vo(t)w vanish in the cone ]xl<t,  [Vo(t)w]l 
and [Vo(t ) w]2 are harmonic  in their dependence on x in that  cone. As a con- 
sequence of at Vo(t)w=Bo Vo(t)w we then have 

a 
at [V~176 for  I x l < t .  

Thus [Vo(t)w]2 (x) is constant  in t for  t > l x [ .  Let  ~o(x)=[Vo(t)w]2 (x) with 
t>lxl. The funct ion q~(x) is then harmonic  in R 3. For  any t > 0  

lg(x)l  z d x =  S I[Vo(t)w]2(x)12<l[wll2o. 
Ixl<t Ixl<t 

Thus ~0(x) is square integrable in R 3 ;  since it is harmonic in R 3 it must  vanish 
identically. Thus [ Vo (t) w]2 (x) = 0  for  I x l < t. It  remains to show that  [ V o (t) w]l (x) 
vanishes in the same cone. Since 

0 
O---{ [Vo(t)w]l=[Vo(t)W]z(x)=O, for  [ x l < t ,  

we have that  [Vo( t )w] l (x )  is constant  in t for  t>lxl. As before we can define 
~(x)=[Vo(t )  w]l(x) for  t > l x l .  Since 

3 3 

S IVtPjlZdx=-~ ", ~ [V[Vo(t)wqljle<llwil~o, 
j = l  [xl<t j = l  Ixl<t 

we know that  ff (x) has a square integrable gradient. Fur thermore  ~b (x) is harmonic 
hence it is a constant ,  i.e., ~ ( x ) = c .  We show that  c = 0 .  For  any r > 0  and t>r, 
Lem ma  1.1.1 gives 

4 r cc=  ~ I~(Rco)12&o= ~ I[Vo(t)w]x(Rog)12d09< I[wl12~ 
I~ol=l iofl=l = R 

Lett ing R become infinite we see that  c = 0  and that  therefore [Vo(t)w]~(x) 
vanishes in I x I < t. The backwards cone I x I < - t (t < 0) is treated similarly. 

Coro l l a ry l .3 .9 .  Let w=Jm.  Then Ulo(t)m vanishes in Ixl<t (t>0) [or 
I x l < - t  ( t<0 ) ]  if and only if Vlo(t)w vanishes in the same cone. 

Proof .  Suppose that  Vo x (t) w vanishes for  [ x l < t. Then 

Uol(t) m = j - 1  VoX(t) Ym = j - x  Vol(t) w =(Vx  IVy(t) w]l, IVy(t) w]2 ) 

also vanishes there. Conversely, if Uol(t)m vanishes for  [xl < t, the identity 

Vd(t) w = J Uol(t) d-1 w = J Ud(t) m 
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implies that Zx[Vol(t)w]1 and [Vol(t) w]2 vanish for [x [< t .  Noting that 
V. Vd(t)w=O and applying the previous lemma we see that in fact Vot(t)w 
vanishes there. 

Theorems 1.3.5 and 1.3.6 are now easily proved. 

Proof of Theorem 1.3.5. Let  m be in Mo 1 and have support in [X-Xol<r. 
We have to show that Uo 1 (t) m vanishes in the cone I x -  Xo I < I t l - r. Let w =Jm; 
then both V. w and F x w  have their supports in Ix-xol<r. By Lemma 1.2.7 
F. Vd(t)w and Vx Vot(t)w vanish in [X-Xol<l t l -r .  Thus by the previous 
lemma Vo t (t)w itself vanishes in that cone. Hence by the above corollary Uo 1 ( t )m 
vanishes for [ x -  x o [ < [ t [ - r. 

Proof of Theorem 1.3.6. Let w=Jm and ~ = J ~ .  By Corollary 1.3.9 Vol(t)w 
and V~(t)~ vanish for Ixl<t (t>0) and Ix l<- t  (t<0) respectively. Hence by 
Theorem 1.2.3 w and ~ are orthogonal in Wo 1. Consequently, because of the 
properties of J, m and ~ are orthogonal in Mo 1. 

w 1.4. Incoming and Outgoing Subspacesfor MAXWELL'S Equations, 
and the Translation Representation 

We define two subspaces of Mo by 

DP+ = { m e M o ;  Uo(t) m(x)=O for ]x[<p+t, t>O) ,  

D p - = { m e M o ;  Uo(t)m(x)=O for [x[<p-t ,  t<O}.  

In particular we denote D ~ and D ~ by D+ and D_, respectively. We now prove 

Theorem 1.4.1. DP+ and D p- are subspaces of Mo ~. They are orthogonal, and 
are respectively outgoing and incoming with respect to the group Ud (t). 

ProoL We prove the various assertions concerning D~;  the situation for D"_ 
is analogous. 

Suppose that m is in D"+ and that n is in Mo ~ Then Uo(t)n =n for all t and thus 
it is easy to verify using the unitary property of Uo(t ) that (see [10]) 

I(m,n)~ol<llmlluo[ S (Inll2+ln212)dx'l~; 
Ixl>t+p 

the latter integral tends to zero as t tends to infinity since nt and n2 are square 
integrable. Thus (m, n)go=0 for any m in DP+ and all n in Mo ~ Hence D"+ = M o  1. 

That U(t)D~_ =D"+ for t > 0  is clear since if U~(t)m(x) vanishes for Ixl <t+p 
then Uo 1 (s) (Uo 1 (t) m) (x) = U01 (t + s) m (x) vanishes for I xl < t + s + p, and afortiori 
for Ixl<s+p. 

It  is equally trivial that 0 Ud(t) DP+ ={0}, since if m is in 

N vJ(t)o"+ 
t>O 

we have for all t=>0 that Uot(-t)m is in D~., i.e., m=Uot(t) (Ulo(--t)m) vanishes 
for [ x I < t + p. Thus m vanishes identically. 
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That  U Uol(t)DP+ is dense in Mo 1 follows from the following assertions: 

1) data with compact support are dense in Mo 1 (this is a consequence of 
Lemma 1.1.4); and 

2) data with compact support lie in 

UoI ( t ) DP+ . 
t<=o 

This second fact is a consequence of Theorem 1.3.5, for if the support of m lies 
in Ixl_-<r, then Uol(t) U d ( r + p ) m =  U d ( t + r + p ) m  vanishes in Ixl < ( t + r + p ) - r  
= t + p ,  so that Uol(r+p)m is in D~ and m is in Uol(-r-p)DP+. 

Finally, the orthogonality of D~ and D p _ involves simply a rephrasing of 
Theorem 1.3.6. This completes the proof of Theorem 1.4.1. We note that we 
could simply have used Corollary 1.3.9 to obtain the properties of D~. and D~ 
from the corresponding properties of the incoming and outgoing subspaces for 
the wave equation. 

The properties of DP+ and D5 established in the last theorem ensure that 
the theory of LAX and PHILLIPS is applicable. In particular we now know that there 
exist outgoing and incoming translation representations of Uo 1 (t) in Mo 1. In fact 
these two representations are the same (which is to be expected since no scattering 
is taking place), and can be derived from the translation representation of V o (t) 
acting in I4," 0 . This latter transformation is obtained by the ingenious use of 
Fourier transformations and is described in the following theorem of LAX and 
PHILLIPS. 

Theorem 1.4.2. For Vo(t) acting on I4" 0 there is a simultaneously outgoing 
and incoming translation representation on L 2 ( - o o ,  oo; N), where 

N = { f ( t o ) e L 2 ( S 2 ;  cd3)}, ($2 = {toeR3; ltol = 1}). 

f f  w is of class a 6e then its translation representer k(s, to) is given by 

 211 ] [ 1  ] k(s, t o ) = - c ~  -4--~ x. Io=~wl(x)dS +0~ ~---~ x. I~=s w2(x )dS  , 

where d S  is an element of surface area on the plane x . to =s. Conversely if k(s, .) 
is infinitely differentiable it is the representer of data w given by 

1 S k ' (x.  to, to) dto wl(x)= I,o1~1 k(x.to, to)dto and w 2 ( x ) = -  2---~-i,o1=1 

where k' (s, 09) = Os k (s, o9). 

We denote the representation map from Wo to L 2 ( -  o0, o0; N) by ~ .  We 
then define the map ~ = ~ o J, which maps Mo 1 onto the subspace ~ J M o  1 = ~ Wo 1 
of L2 ( -  m, oo ; N). We then have 

s Sa is the class of infinitely differentiable functions such that all derivatives tend to zero at 
infinity faster than any polynomial of I xl -~. 
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Theorem 1.4.3. ~ defines a simultaneously outgoing and incoming translation 
representation of Mo 1 on L2 ( -  oo, oo; N1), where 

N 1 = {f(og) e N;  ~ .f(r 

If  Jm is of class 6 a the translation representer of m is given by 

2 1 I [Jm]l(x)dS] +O, 1 

Conversely ilk(s, .) is infinitely diff erentiable it is the representer of data m given by 

2-~ I k'(x.o),o))do~. 
1 

ml(x)= I~1=1~ a)xk'(x.09,09)&o and m2(x)= 2r~l,~l= 1 

Proof. We have to show 
a) ~Mo~ =L~(-oo, oo; N1); 
b) ~ takes Uo 1 (t) in Mo 1 to the translation group in L 2 ( -  o0, o0, N I ) ;  

c) ~ D _  = L 2 ( -  oo , 0 ,  N 1) and ~ D +  =L2(0, oo; N1). 

a) We know that JMo ~ = W~, so we simply need to show that ~ Wo 1 = 
L2(--oO , oo; N1). From Theorem 1.1.8 and Lemma 1.1.4 we know that smooth 
data with compact support are dense in Wo 1. For such data w we have the re- 
presentation of Theorem 1.4.2, and thus 

m-~w(og)=co,  k(s, co)= -(~ 2 [1._~_x ~ o 9"̀ ~='~ �9 w,(x)dS] 

We now show that this vanishes. We have 

1 
a,[ S oJ.w~(x)dS]=lim-~[ S co .w j (x )dS-  S co.wj(x)dS].  

X �9 r  h " + O  ~r " ( ~ = s q ' h  x ' ~ = s  

Noting that (o is a unit normal to the planes x .  09 =s and x .  co =s+h, and that 
wj has compact support, we can apply the divergence theorem to obtain 

a,[ I 
X �9 ~ : S  ~Dh 

where Ds is the region between the planes x �9 09=s, and x .  w=s+h.  This last 
expression vanishes since wy is divergence free. Hence ~ w (s) lies in L 2 ( -  00, oo; N 1), 
and since the smooth data with compact support are dense in Wo l, we have 

Wo 1 eL2  ( - 0 0 ,  00; N:). The opposite inclusion is easily proved since infinitely 
differentiable functions k(s, co) are dense in L 2 ( - o o ,  00; N1); for the corre- 
sponding data in Wo we have 

l~l I ~Tz l~l=1 

and similarly V. w2(x)=0; and hence we/,Vo 1. This completes the proof of a). 
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The proof of assertion b) is immediate since ~ = ~ o  J;  J establishes a corre- 
spondence between Uo 1 (t) and Vo l(t),  while ~ establishes a correspondence be- 
tween Vd(t) and the translation group in L 2 ( - o o ,  oo; N1). 

Assertion c) follows from Corollary 1.3.9 and the fact that ~ defines a trans- 
lation representation of Vo(t) which is simultaneously incoming and outgoing. 
In fact we see that, more generally, 

~DP+=L2(p, oo ; N~), ~DP_ = L 2 ( -  ~ ,  - p ; N 1 ) .  

Finally the explicit expressions for m and ~ m=k(s, o9) in terms of each 
other follow directly from the definition of J and the corresponding statements 
in Theorem 1.4.2. 

We shall now prove some further properties of the representation ~ = ~ o J  
given above. In deducing the properties of ~ from the corresponding known 
properties of ~ ,  we are as before faced by certain difficulties associated with 
the behavior of J. The following lemma (and particularly the remark following it) 
proves to be convenient. 

Lemma 1.4.4. Let w lie in 14Io, and suppose that ~w=k(s ,  co). Then Ojw lies 
in Wo if and only if cojk'(s, oo) lies in L 2 ( -  oo, oo ; N);  if one of these equivalent 
conditions is fulfilled we have ~Oj w =~ojk' (s, co). 

Proof. We suppose first that cojk'(s, co) lies in L 2 ( -  oo, oo; N). If k(s, co) is 
infinitely differentiable we can apply the explicit equations of Theorem 1.4.2 to 
find that cojk'(s, co) is the representer of the data F in 141o with components 

I,ol 1 2re Icol=l 

1 1 
----2~ cojk"(x, co, co) dco = - 2re icol= 1 F2 (x) = H S  ' I Ojk'(x'o),co)dco---ajw2(x). 

Hence 0jw lies in W o and ~t?jw=cojk'. If k(s, co) is not infinitely differentiable 
in the s variable we mollify in the usual way to obtain a sequence kn(s, co) of 
infinitely differentiable functions such that k,(s, co) and cojk'(s, co) converge to 
k(s, co) and cojk'(s,o~) respectively in L 2 ( - - o o  , oo;  N) .  Let wn be the element 
represented by k~. Then by the preceding discussion Ojw, is represented by cojk'. 
Since k~ and cojk" converge to k and coik' respectively, w~ converges to w, and 
Ojw~ converges to that element F of Wo which is represented by cojk'. Hence 
in the sense of distributions 0j w~ converges both to F and to 0j w. Thus F =  Oj w 
and therefore 0jw lies in W o and ~O~w=cojk'(s, co). 

Conversely, suppose that 0j w lies in W o . The proof again proceeds through 
two stages. If w is of class Sp we have 

k (s, co) = - O~ [~-~ x. ~ =s Os 1 j. , 

and thus 

%k'(s, co)=-a~ ~-Os +Os-g-~-Os I cojw2(x)dS. 
X �9 X �9 C O = s  
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Using the same technique as in the proof of Theorem 1.4.3 (i.e. a difference 
quotient, the divergence theorem, and the integral mean value theorem) we find 

as[ S cojw,(x)dS]= S t3jwi(x)dS, i = 1 , 2 ,  
X . ~ )=$  X . (O=$  

so that 

2 1 ~ dS] +O~ o,=~ " 

Thus we indeed have ~ d j  w = coj k '  (s, co). If w is not of class 6 a, we use Lemma 1.1. I0 
to find an approximating sequence {wn} of smooth data with compact  support  
such that  wn and 0~ w~ converge to w and 0j w respectively in Fr o. An argument 
similar to that  used in the first part  of the proof shows that in the limit we have 
djw in W o and ~c~jw=cojk'(s, co). 

Note.  In similar fashion we can prove the following: Let  w lie in Wo, and 
suppose that  ~w=k( s ,  co). Then Vxw lies in Frot 9 if and only if co xk'(s, co) 
lies in L 2 ( - o o ,  09; N1); if one of these equivalent conditions is fulfilled we 
have ~ V x w =co x k' (s, co). 

Theorem 1.4.5. Suppose that m lies in Mo t, and that k(s, co)=~ m. Then 
a) if k(s, co)=O for I s l < r ,  then m(x)=O for I x l < r ;  

b) if re=O for Ixl>r, then k(s, co)=O for Isl~r. 

Proof. Part  a) follows directly f rom Theorem 1.4.3 in the case that  k(s, co) 
is infinitely differentiable, for the explMt formulae show that the value of re(x) 
is given entirely in terms of values of k(s, co) in the sphere Isl<x. If k(s, co) is 
not infinitely differentiable it can be approximated through a mollification 
procedure by functions k~(s, co) with supports in ]sl > r-1/n. The corresponding 
elements m~ of Mot have their supports in Ix] >r - l /n ,  and converge to m which 
therefore has its support in I x I --> r. 

Part  b) is a little more delicate. We suppose first that  m is infinitely differ- 
entiable with support  in [xl~r. Then w=Jm lies in Frot, and Vxw=(Vxwl ,  
VX W2):(m l, Vxm2) likewise lies in Wot; furthermore Vx w vanishes for [xl>r. 
Let ~ m = ~ w = k ;  then by L e m m a l . 4 . 4  ~ F x w = c o x k ' ( s ,  co). Since Vxw 
vanishes for I xl_>-r, ~ v•  w vanishes for I sl > r  (which is directly evident f rom 
Theorem 1.4.2 and is in any case a known property of the translation represen- 
tation for the wave equation). Hence co• co)=0 for [sl>r. Since in is in 
Mot we also know that co. k'(s, co) =0.  Consequently k'(s, co) vanishes for Isl ____r, 
and thus k(s, co)=n_+(co) for s>r and s <  - r  respectively. Since k(s, 09) is square 
integrable n • vanish, so that  part  b) has been proved for infinitely differentiable 
m(x). To obtain the proof for arbitrary elements rn of Mo ~ we use an approximating 
sequence analogous to that  used previously. 

It  would presumably be possible to obtain partial converses to the assertions 
of the last theorem analogous to those obtained by LAX and PHILLIPS for the 
translation representation of the wave equation. We shall not need these. It  is 
however necessary to discuss infinite energy solutions of MAXWELL'S equations, 

9 The superscripts 1 can be introduced immediately since V. V x w ~ 0 and to.o)x k" (s, co)=--O. 
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and to extend the translation representation to a certain class of functions which 
do not necessarily lie in Mo ~. This will be done in the next section. 

w 1.5. MAXWELL'S Equations in the Space of Distributions 
Instead of restricting the initial data to the space Mo 1 we shall now consider 

distribution valued initial data. Let m lie in ~ ' ( R  a, c6a)x ~ ' (Ra ;  c~3). We then 
define Uo(t) m by 

[Uo (t) re'It (q~) = m 1([ Vo ( -  t) (q~, 0)]1) + m2 ([ Vo ( -  t)(~p, 0)] 2), 

[Uo (t) m]2 (~) = ml([Vo ( -  t)(0, q~)] 1) + m2 ([Vo ( -  t)(0, q~)]2) �9 

It is easy to verify that: 

a) Uo(t)m is a solution of MAXWELL'S equations with initial value m. 

b) This solution is unique. 

c) If m is curl free, Uo(t)m=m. 
d) If m is divergence free Uo(t)m continues to be divergence free. 

We denote Uo(t ) acting on divergence free data by U~(t). 
The distribution data m is said to be eventually outgoing (initially incoming) 

if there exists a positive r such that Uo(t)m vanishes in the cone Ix[ < t - r  for 
t >  r ( [ x [ <  - t - r  for t <  - r ) .  We shall now show that if m is eventually outgoing 
(or initially incoming) it is necessarily divergence free. We have 

V- [Uo (t) m] l(q~) = - l-Uo (t) m] l(Vq~) 

= - m~([Uo ( -  t)(Vq~, 0) ]1) -  m2([Uo(t)(Vq~, 0)]2). 

Since (Vq~, 0) is curl free 

[Uo(-t)(17q~, O)]l=[(17~p, O)]l=17r , [Uo(-t)(17qg, 0)]2=O, 

and hence 
V. [Uo(t)m] l(~p) = -ml(V~p)= V. ml(cP) �9 

Consequently, since m is eventually outgoing, if the support of tp lies in Ix[ <a ,  
V. [Uo(t) m]l(q~ ) and hence also I 7. ml(q~) vanishes for t>r+a. Thus 17. ml 
and similarly I 7. m2 both vanish as was asserted. 

The question arises whether it is possible to extend the translation represen- 
tation of Uo 1 (t) acting on Mo i to Uo 1 (t) acting on distribution valued data. 

It is convenient to introduce the inverse map J ( = J - %  J )  of ~ which takes 
L 2 ( - ~ ,  ~ ;  N 1) onto Mo ~. We first consider the extension of this map. The 
formulae 

I 
I~I=I 

1 - - - -  k' (X. 09, CO) do), [tk]2(x)= 
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of Theorem 1.4.3 can be used to define Jk ( s )  for any k(s) in C ~ 1 7 6  oo, oo; N 1) 
since for each x the integrals involve the values of k(s) only in the compact set 
I s I < I x I. A further extension of J by continuity to all distributions in ~ '  ( -  oo, oo; 
N 1) is also readily justified. Then an explicit calculation with the above formulae 
shows that 

A o J = - J a s  and U 0(t) j = j T ( t ) .  

Furthermore ff k vanishes for Isl<r,  j k  vanishes for Ixl<r. 
There is no equally natural extension of the mapping ~ to all divergence 

free distribution data. However, by considering the dual of the lemma which we 
shall now prove, we obtain an extension of Yr to a class of data useful for  our 
purposes. 

I.emma 1.5.1. ~ is a one-to-one map of i 3 ~L2( R , C_~3) • ; c~3) onto 
~L2(--OO, 00; N 1) and or is its inverse. Furthermore if k = ~  m, then IIA~mlIMo 

Proof. This follows from the basic properties of ~ and 0r from Lemma 1.4.4, 
and from the fact that J is an isometry between Wo ~ and MoL 

For m in [ ~ ( R 3 ;  c63)]1 • [ ~ ( R 3 ;  c63)]1 we now define 

Y~ m (qo) = �89 m ( J  cp) for any q~ in ~L~ ( -  o0, oo ; N1). 

We prove immediately 

Lemma 1.5.2. ~ is a one-to-one mapping of [ ~ ( R 3 ;  c63)]1 • [ ~ ( R 3 ;  cr 
onto ~'z2(- 00, oo ; N 1) and J is its inverse. I f  m 1 is the divergence free part of 
distribution valued data with support in [xl <r, to then ~ m 1 has its support in 
Isl<r. 

Proof. The first statements follow immediately from the preceding lemma. 
The assertion about the supports is obtained as follows: Since for q~ in ~ ( -  ~ ,  oo; 
N1), ( j~p)t  = j~p ,  we have 

~ ml(q~)= �89 m l ( J  q~)=�89 m ( J  q~l)=�89 m ( J  q~). 

For any cp which vanishes in I s l~  r, J ~o vanishes in Ix I-< r so that m ( J  cp) and 
hence ~ ml(q~) vanishes, which is what we need to prove. 

It is possible to extend ~ further. We say that divergence free data m in 
~ ,  (R 3; ~r x ~ '  (R a; ~3) has a translation representer k in ~ '  ( -  oo, oo ; N 1) if 
J k = m .  The following theorem is to be understood in this way. 

Theorem 1.5.3. Let gt be the divergence free part of distribution valued data 
with compact support in ]xl<r. Then the equation ( A o - # ) m = g  1 has a unique 
eventually outgoing solution which has a translation representer given by the following 
distribution in ~ ' ( -  oo, oo; N1): 

k(q~)=~ gt (e"S_~ { e - ~  q)(a, co)- [_~ e-~" ~p(~, co)dz] O(a, co)} da)  

lo m t need not have compact support! 
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where 0(~r, co) is a smooth non-negative function with compact support in ( -  oo, - r )  
such that 

0 

I 0(~, o~)d~=l. 
- - o 9  

Proof. Proceeding formally one would expect a translation representer k of 
m to vanish at - oo (if m is to be eventually outgoing) and to satisfy the equation 

- (0s + #) k = ~ gl.  I t  is easily verified by explicit evaluation of - [(0 s + p) k] (q~) 
=k( [0s - /~]  q~), that  k as defined above does in fact satisfy the latter equation 
in the distribution sense. Furthermore, since R gX has support in [s]<r it is 
easy to show that k vanishes for s < -  r. 

If  we define m = J k  we have 

(A o - / t )  m =(,4o - # )  J k =  - J ( e s  + p )  k--- ~ ga = gl,  

and m is eventually outgoing (for if T(t + r) k = 0 for [ s [ < t we know that U(t + r) m 
= J T ( t + r )  k = 0  for Ix[<t). The solution m is unique, since otherwise there 
would exist a non-trivial eventually outgoing solution to ( A o - # ) d = 0 .  This is 
impossible since Uo (t) d = e "t d. 

Corol laryl .5 .4 .  If m is eventually outgoing and ( A o - # ) m = 0  for [x[>r, 
m has a translation representer of the form 

k(s, o))={ 0 s< - r  
e - ~  n(o)) s> r. 

Proof. That  k vanishes for s < - r  has already been indicated. That  k(s, co) 
has the stated form for s>r follows since ~ ( A o - # )  m vanishes for s>r, so that 
for each test function with support in s > r 

0 = [(0s +/t)  k] (e "~ q~) = - k ( [ ~ -  #] e ~ ~o) = - k (e "s 0~ ~0) = [0s(e "~ k)] (q0. 

This implies that e"~k is independent of s for s>r, i.e., that eU~k(s, co) is in fact 
a function of co alone. 

Notes. a) Naturally w-n(co)=0 .  

b) We shall show later that n(co) lies in N I. When m is infinitely differentiable 
this is obvious. 

c) There are analogous results for initially incoming solutions. 

w 1.6. The Fundamental Solution and Various Forms of the Outgoing and Incoming 
Radiation Conditions 

A fundamental  solution for MAXWELL'S equations is a 6 x 6 matrix valued 
solution of 

(A o - #) G (x; p) = 6 (x) I ,  

which generally is required to satisfy some outgoing or incoming condition at 
infinity. The latter requirement does not have any dynamical significance for the 
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stationary component of the equation, so in accordance with our general procedure 
we separate the equation into 

( A o - p ) G ~  ~ and (Ao- i~)Gl=(6I )  1. 

Here 61 has as its rows (6 i, 0) and (0, 6~) with i=1,  2, 3, and (6I) 0 and(6 / )  1 
are obtained by replacing c5~ by 6,0 and 6~ respectively. It is easy to check, using 

r69~ --c69~ 1 the explicit form of 6 o and 6~, that ~ , ~j-~ j,~ and (6i)j =(6~)~, and hence that 
(6/) ~ and (6/) 1 are symmetric, and respectively curl and divergence free in rows 
and columns. 

The equation for G O has an immediate solution; since Ao G o must vanish we 
have G O = - ( l / p )  (6/) ~ The equation for G 1 can be handled by means of Theo- 
rem 1.5.3. The lengthy but conceptually simple calculations necessary for the 
proof of the next theorem are given in [10], and will not be reproduced here. 

Theorem 1.6.1. The equation (Ao-P)  G(x; #)=(61)1(x) has a unique solution 

G(x; p ) = _ l  _ - ~ ' _  

V x [ - ~ I ]  1 V x V x [ ( e  r 1) I ' 

each column of which is eventually outgoing. (The operator Vx is taken to act 
columnwise on the square bracketed matrices.) 

Corollary 1.6.2. Let g be divergence free distribution-valued data with compact 
support. Then the equation ( A o - # )  f = g  has a unique eventually outgoing solution 
given explicitly by f =  G 1 *g. 

Before writing down further corollaries we make some observations and a 
definition which will make the whole procedure less cumbersome. 

The equation 
( A o - # ) m = g  (1) 

is equivalent to the equations 

Vx Vx ml +p2 ml = _ p  gl -- Vx g2 (2') 
and 

1 1 
= - - -  Vx ml  - - ~  gs .  (2") m2 p 

Definition. A solution of the equation IZ x V x f +  # s f  =g  (where g is a divergence 
free 3-vector-valued distribution with compact support) is called #-outgoing 
(p-incoming) if (f, - ( I / p )  V• is eventually outgoing (initially incoming). 

In order to find an eventually outgoing solution of equation (1), where now 
we assume g to be divergence free data with compact support, we need to find 
a p-outgoing solution ml of (2') and to define ms by (2"). Then (m l, ms)=  
( m l , - ( 1 / # )  V x m l ) + ( 0 , - g s / P )  is eventually outgoing since ml is #-outgoing 
and g has compact support, and is a solution of (1). 

Corollary l.6.3. The equation (VxVx + # 2 ) f = g ,  where g is divergence free 
and has compact support, has a unique #-outgoing solution f=y~  *g, where ~ is 
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the unique 3 x3 matrix valued distribution solution of (V x V x +#2)y~ =(6/)~ with 
#-outgoing columns. ~ is given explicitly by 

4~ 7 Vx Vx I . 

In the case where we do not restrict ourselves to divergence free data we 
obtain the following result, which is proved in [10]. 

Corollary 1.6.4. The equation (Vx V• + #2) f =g (g a distribution with compact 
support) has a unique solution f which can be decomposed into a curl free part 
and a #-outgoing divergence free part. That solution is given by f=y~ .g ,  where 

is such a solution to the equation with g=t~ I. 

We are now in a position to discuss the various forms of the "outgoing wave" 
conditions for the reduced MAXWELL'S equations. We assert 

Theorem 1.6.5. Let f be a solution of (Vx Vx +#2)f=g, where g has compact 
support and where f is locally square integrable together with its first and second 
derivatives. The following statements are equivalent: 

(1) f can be written as the sum of a curl free (and hence stationary) part and a 
divergence free part which is #-eventually outgoing. 

(2) If G is a bounded region containing the support of g then in the exterior of 
G the solution f can be represented in terms of the boundary values o f f  on aG by 

f (x )  = S [n x (Vx ~ ( x -  y)) f ( y ) -  y . ( x -  y) n x (Vx f )  (y)] dSy. 
OG 

In the case that Re #>0 ,  (1) and (2) are equivalent to 

(3) f satisfies the asymptotic conditions 

Sr Sr 

where r = I xl and S, is the sphere of radius r. 

The proof involves the same techniques as are used by LAX and PmLueS for 
the wave equation; it is given explicitly in [10]. 

Notes. a) The assumption t h a t f  is locally square integrable together with ist 
first and second derivatives was needed to justify the use of GREEN'S identity in 
proving the equivalence of (1) and (2). In fact it is easy to see the equivalence 
of (2) and (3), and also the assertion that (2) implies (1), without using any regu- 
larity o f f  in G: Outside the support of g we have f=(1/# 2) Vx Vxf; h e n c e f  is 
divergence free and satisfies ( - A  + # 2 ) f = 0 ,  and thus is infinitely differentiable. 

b) It is easy to verify that the stationary part of f ,  viz. 

1 v. g(y) ) 
f ~ = Y ~ * g = Vx - -~-~-~ I d y 

Ix-y[ 
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behaves asymptotically like O(e-UTr2). Consequently we have for 
dependent part 

1 e - ~  [ e - ~ ' ~  
- -  co x09 x S g(y) e~~  I ~ ] "  f t ( x ) =  4n  r 

the time- 

We proved previously (Corollary 1.5.4) that if m is an eventually outgoing 
solution of ( A o - # ) r e = g ,  where g has support in Ixl <r ,  then m has a trans- 
lation representer k(s, 09) which vanishes for s <  - r  and is of the form e - ~  n(09) 
for s>r. At this point one can prove that n(09) is in L2($2; N1). In fact we can 
be more explicit (see [10]): 

Theorem 1.6.6. Let n(09) be the function appearing in Corollary 1.5.4. Then 

where 

and 

n (co) = ~ co x a (co), 

a (09) = co x 09 x S (It g l(Y) + V x g2 (Y)) eU o,. y d y ,  

1 e-~" a(09)+0 e-U" 
ml(x)= 4 ~  ~ ( r---~-) " 

2. The Perturbed Problem 

w 2.1. MAXWELL'S Equations in the Exterior of an Obstacle 

Let G be a domain exterior to an obstacle which we suppose to have a twice 
continuously differentiable boundary. Let M=L2(G; cg3)xL2(G; cga) and con- 
sider the initial value problem 

cOtml(x,t)=Vxm2(x,t ((x,t) in G xR) ,  

O, m2(x, t ) =  - Vx ml(x, t ) ,  

ml(x,O)=mt(x),  m2(x,O)=m2(x) 

where the pair of initial data m=(mx, m2) lies in M. We wish to define the 
operator A(O 
in such a way that it becomes skew adjoint. We shall specify the domain of A 
in terms of suitable boundary values. 

It is convenient to introduce the following class of data: 

= {q~ = (q~ 1, q~2); q~ 1, ~o2 e C 2 (G; cg3) and q~, A q~ ~ M} 

where G denotes the closure of the domain G. The following is not difficult to 
prove with the aid of the divergence theorem, although the unboundedness of 
the domain requires some attention (see [10]). 

22a Arch.  Rat ional  Mech. Anal. ,  Vol. 28 
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Lemma 2.1.1. For go and ~9 in ~ the following identity holds 

(go, A r + (A go, ~h)M = I (gO. A n ~) dS, 
0G 

where 

An=( ox~ no) , 
n being the outward normal to the boundary surface OG of G, and dS denoting an 
element of surface area. 

At this point we present a brief account of the relevant definitions and the 
main theorem contained in the paper [6] of LAX and PHILLIPS. They consider a 
first order matrix partial differential operator which acts on real n-vector valued 
functions defined on a bounded domain G in Rm: 

L = ~ A j (x) aj + B (x), 
j = l  

where the AJ(x) and B(x) are real n xn  matrix valued functions defined in G 
and satisfying the conditions: 

(a) The Ai(x) are symmetric, continuous and piecewise continuously differen- 
tiable. 

(b) B(x) is piecewise continuous. 
In 

(c) Letting K = B - � 8 9  OjA j, K+K*<O. 
j = l  

Condition (a) characterizes symmetric operators, while (c) characterizes "formally 
dissipative operators". The boundary value problem is formulated in the following 
way. Let dG be the boundary of G, G being assumed to be bounded and dG to 
be twice continuously differentiable. For  x in OG let 

An(x ) = ~ nj(x) aJ(x), 
j = l  

where n =(n j) is the surface normal. It is assumed that: 

(d) An(x ) can be continued into a neighborhood of ~G in such a way that it 
has constant rank there. 

With each point of aG we associate a subspace N(x) of Rn; this boundary 
space is supposed to vary smoothly with x. The boundary condition on a function 
u(x) is then "u(x) lies in N(x) for each x in aG". The boundary condition is 
said to be non-positive if u(x). An(x) u(x)<O, for all u(x) in N(x). It is said to 
be maximal non-positive if the subspace N(x) cannot be extended without violating 
non-positivity. 

For  g ivenf  in L2(G; R n) we seek a solution u of ( l -L)u  =f with u(x) in N(x) 
for all x in OG. We shall say that a function u is a strong solution of that equation 
satisfying the boundary condition in a strong sense if there exists a sequence 
{gon} of functions in 

~v={go~C2(G;  R"); go, Lgo~L2(G;Rn), go(x)~N(x) for x ~ G }  
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(the superscript r reminding us that we are for the moment restricting ourselves 
to real valued functions) such that 

tpn~u, ( I - L ) ~ p ~ f  in Lz(G;Rn). 

The central theorem is 

Theorem 2.1.2. Let L be a formally dissipative symmetric operator, G a bounded 
domain whose boundary is of class C 2, and N(x) smoothly varying boundary spaces 
which are maximal non-positive. Then for every given square integrable function f ,  
the equation ( I - L ) u  = f  has a unique strong solution satisfying the given boundary 
conditions in the strong sense. 

Actually LAX and PHILLIPS prove the existence of a solution u approximable 
by functions continuous in G and piecewise continuously differentiable there. 
However the same arguments with only slight modifications yield a strong solu- 
tion as defined above. 

The theory is clearly applicable to the operator 

In fact, since K=O in this case, - A  is also formally dissipative (and symmetric). 
Hence subject to suitable boundary conditions the theorem allows us to solve 
both equations (I+_A)u--f. We proceed to examine various possible maximal 
non-positive boundary conditions. Maximal non-positive subspaces N(x) for 
which we have not only u. An u<0 ,  but in fact u .  An u=0 ,  are of particular 
interest. For  (a) in this case N(x) is maximal non-positive both for A and for 

- A; and (b) the identity of Lemma 2.1.1 ensures that A is skew-symmetric when 
acting on functions satisfying such conditions. 

We define two classes of subspaces of R 6 - -  R 3 • R 3. Let x be a point in aG, 
and n(x) the surface normal. Let 2 be any real number (or oo) and ~z a plane in 
R 3 containing n(x). Then we define 

Nx(x)=(u=(u~, u2); n(x) xu l  = 2(n(x) xu2)},  

(N~(x)={u=(u.u~); n(x) • 
Nn(x)={u=(ul, uz); u ~ ,  uz~} .  

Theorem 2.1.3. Nx(x) and Nn(x) are maximal non-positive subspaces, and 
u. An u=O for u in N~(x) or u in Nn(x). Furthermore, if N(x) is any maximal 
non-positive boundary space for which u. A n u=0 ,  then N(x) is either a subspace 
of the type Nz(x) or of the type Nn(x). 11 

Proof. For  any u =(ul ,  u2) in R 3 x R a we have 

u �9 a n u = U  ~ �9 n X U 2 - - U  2 �9 n •  1 = 2 u l  �9 n X U 2 .  

It This  t heo rem gives a character izat ion of real bounda ry  spaces N ( x )  satisfying the require-  
men t s ;  it does  no t  characterize all suitable complex  bounda ry  spaces.  It  is easy to see tha t  N,((x) ---- 
Nx ( x )q - iNx (x )  and  NC (x )=  N n ( x ) +  iNn (x) are such  complex  b o u n d a r y  spaces;  conceivably  
there are others.  

22 b Arch. Rational Mech. Anal., Vol. 28 
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If u is in N~ or  in N ,  we know tha t  ul ,  u2 and n are coplanar ,  and  hence 
u 1 �9 n x u2--0 .  Thus in ei ther  case we have u �9 An u =0 .  

W e  now show tha t  N~ and N~ are maximal .  We  could  do this by a d imen-  
s ional i ty  a rgument  looking  at  the eigenvalues of An. However  we shall  argue more  
directly.  

W e  begin by  consider ing Nz. Suppose  tha t  v is a vector  such tha t  {v} w N~ 
generates  a non-pos i t ive  b o u n d a r y  space;  we have to  show tha t  v lies in Nx. 
F o r  any u in Nx and  for  a rb i t r a ry  real k we have (v+ku) �9 A,(v+ku)<O. Since 
u �9 A ,  u =0 ,  and  since A,  is symmetr ic ,  v. An v+2kv �9 A, u<O. Since this holds  
for  each real  k we mus t  have v .  A,  u = 0  for  each u in N;.  Thus vl �9 n x u 2 -  
v 2 �9 n •  =0 ,  or, since u is in Nz,  vl �9 n x u 2 - 2  v2. n x u 2 = 0 .  Hence we f inal ly 
have u2 �9 [n x v 1 - 2 n  x v2] =0 .  The vector  u2 is a rb i t r a ry  since for  any  u2(2 u2, u2) 
lies in Nx. Hence  (n • xvx),  so tha t  v lies in Nx. 

In o rde r  to show tha t  N ,  is maximal  we proceed in similar  fashion to conclude 
tha t  if {v}wN,~ generates  a non-posi t ive  subspace then v .  An u = 0  for  each u 
in N , .  Choos ing  u=(ul, 0) or  u = ( 0 ,  u2) with u~ and  u2 in n we conclude  tha t  
vt �9 n x u 2 ~--0 and/)2 " n x ul =0 ,  so tha t  vl and  v 2 lie in ~z and v indeed lies in N . .  

W e  now consider  an  a rb i t r a ry  max imal  non-posi t ive  b o u n d a r y  space N(x) 
for  which u �9 A,  u =0 .  If u �9 An u = 0  then ux �9 n x u2 =0 ,  and  hence ul ,  u2 and n 
are  coplanar .  We  choose  v in N(x) so tha t  v~, v2 and n are no t  col l inear ;  there  
mus t  exist such a v since otherwise N(x) is p roper ly  conta ined  in N ,  for  any  
and  is thus no t  maximal .  Since v~, v2 and n define a plane,  n x vl and  n x v 2 do  
no t  bo th  vanish.  Thus (n x v l ) = 2 ( v ) ( n  x v2), 2(v) being uniquely de te rmined  
(possibly  infinite in the case tha t  n x v 2 --0).  F o r  any u in N(x) we define 2(u) 
so tha t  (n x u 0 = 2 ( u ) ( n  xu2)  in the case where ua, u2 and  n are no t  col l inear ,  
and  pu t  2(u) =2(v)  when ul ,  u2 and  n are coll inear.  If  2(u) =2(v)  for  all u in N(x) 
we have N(x)~  Nx(v)(x); since N(x) is max imal  this implies tha t  N(x)=Nxtv)(x). 
In the a l ternat ive  case there exists ~ in N(x) such tha t  2(~):~2(v);  by  the way 
in which v was chosen and  2(fi) was defined we know that / )1,  v2, n and  vl,  v2, n 
specify uniquely  two planes 7z and  ~. We shall  show tha t  ~ =re, and  tha t  N(x)= 
N,(x). Given  any u in N(x) ,  2(u) is different  f rom one or  o ther  of 2(v) and  2(fi). 
Suppose  first  tha t  2 (u )+2(v ) .  If 2(u) and  2(v) are bo th  finite then n • and 
n x u2 do  no t  vanish,  and  

O = � 8 9  n x v2-u2 . n x vl 

= - v ~ .  n x u ~ - u ~ ,  n x v ~ = ( ~ ( u ) - , ~ ( v ) ) u z ,  n x v ~ .  

Hence  uz �9 n x v2 =0 ,  and  thus uz lies in ~z. Since (n x ux) =2 (u )  (n x uz), ux like- 
wise lies in zc. The case where one or  the  o ther  of 2(u) and  2(v) is infini te can be 
hand led  similarly.  In  all  cases we f ind tha t  2 (u )+  2 (v) implies tha t  u lies in N~ (x). 
In  pa r t i cu la r  ~ lies in N ,  and  thus ~=zr .  Suppose  on the other  hand  tha t  2 ( u ) =  
2(v). Then  2(u):~2(~),  and  as before  we can conclude tha t  ul and  u2 lie in ~ = n .  
Thus  we again  have tha t  u is in N ,  (x). Hence  N ( x ) c  N, (x). Since N(x) is maximal ,  
N(x) =N~(x) .  This completes  the p roof  of the theorem.  

We are now in a pos i t ion  to define the ope ra to r  A in such a way tha t  i t  
becomes skew adjoint .  
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Let 2(x) be a smooth real valued function defined on dG. Let n(x) be a smooth 
function which to each point x on ~G assigns a plane n(x) in R 3 which contains 
n(x). Then N~t~) and N~(~) are smoothly varying maximal non-positive boundary 
spaces for the operator A. Returning to our spaces of complex vector-valued 
functions we let 

~a tx)={~oe~;  Re q~(x)eNatx), Im ~o(x)~Natx) for xeOG}, 

and similarly we define ~ ( ~ ) .  The graph norm of A in the space M is II ~0112+ 
[[ A tp 112. We define the operators Aa(~) and A~ t~) to be 

(o 
acting in the distribution sense on 

D (A a (~)) = closure in the graph norm of ~ <~); 
and 

D (A, (~))= closure in the graph norm of  ~ (x). 

We then have 

Theorem 2.1.4. The operators Axtx) and A=tX) are skew adjoint. 

Proof. We prove the assertion for A ~ ) .  The proof for A~<~) is exactly anal- 
ogous. It is sufficient to show that Ax(~) has a dense domain, is skew symmetric 
and closed, and that its deficiency indices are zero. That D(Ax(~)) is dense in M 
is clear since it contains C~~ cg3)xC~(G;  ~g3). The skew symmetry follows 
from the identity of Lemma 2.1.1 if we note that 

~p. A n ~ = [Re ~o + i Im q~]. An [Re ~k - i Im ~ ] ,  

which vanishes since we not only have u. An u=O for u in Natx), but also 
u. Anv=O if v is likewise in Nxtx) (which is a consequence of 0 = ( u + v ) .  
Aa(u+v)=2u. A,v). The identity (tp, Ar ~b)M=0 which holds for tp 
and ~b in ~a(~) continues to hold when we take the closure of ~ ( ~ )  in the graph 
norm. That  Ax~) is closed is obvious since D(Aa(x)) is closed in the graph norm. 
In order to show that the deficiency indices are zero we have to show that 
1-t-Ax~x) map D(Aa(x)) onto M,  that this is the case follows by an easy extension 
of Theorem 2.1.2 to unbounded domains, which is valid in the situation we are 
considering (as was proved in Appendix 2 of [10]); we have, of course, to apply 
that theorem separately to the real and imaginary parts. 

Notes.  (a) We shall usually simply write A instead of A~(~) or A~(~), and 
where necessary specify which boundary conditions we are considering by saying 
that A corresponds to boundary values of the first or second kind, depending on 
whether A is of the form Aa~x) or A~<x). 

(b) The boundary condition corresponding to 2 ( x ) = 0  can be expressed as 
n x m l  =0  on dG; this is the boundary condition usually imposed on the electric 
field when the object is a perfect conductor, and expresses the continuity across 

22c Arch. Rational Mech. Anal., Vol. 28 
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the boundary of the tangential components 12. It does not seem clear to what 
physical situations the other boundary conditions correspond. 

As a consequence of the last theorem, A generates a group U(t) of unitary 
operators. For given data m in M, m(x, t) = [U(t) m] (x) is a solution of MAX- 
WELL'S equations corresponding to the initial value m(x, 0)=m(x).  We now 
study the generator A and the group U(t) in greater detail. 

59 2.2. Properties of the Generator 
The crucial step in our development of the theory is once again the decom- 

position of the space M of initial data into two orthogonal subspaces, corre- 
sponding to stationary and time-dependent fields respectively. 

Let M ~  m~D(A), Am=O), and define M 1 to be the orthogonal com- 
plement of M ~ in M. The operator A and the group U(t) are then reduced and 
we have 

M = M ~  O M  1, A = O O A  l, U(t)=I OUI(t) .  

We shall later have to investigate this decomposition in some detail; for the 
moment it suffices to note that M~ 1, Vq~2); q~l, q~2eC~(G)}, and con- 
sequently that the data in M 1 are divergence free. 

At this point we can easily prove 

Theorem 2.2.1. The operator A l acting on M ~ has no point spectrum 13 

Proof. Since A 1 is skew-symmetric its spectrum lies on the imaginary axis. 
Suppose that (A 1 - i / ~ ) m = 0 ,  with /~ real and m in D ( A 1 ) = D ( A ) n M  ~. We can 
suppose that/z:~0, since otherwise m would lie in M ~ According to the com- 
ments preceding the theorem m is divergence free. Hence 

(A + #2) m=(Al  + i l2)(A 1 - i  /~) m=O, 

where we have used the identity V x (17• m~+ V(V. m~)=-A m~. Since 
m satisfies the above elliptic equation m must be an analytic function of x in G. 
We shall show that m vanishes identically outside some neighborhood of the 
obstacle; since m is analytic it must then vanish everywhere in G. Let ~o (x) be an 
infinitely differentiable function in G which vanishes in a neighborhood of the 
obstacle and is identically one for [xl > r. We "cut off" m(x) to obtain divergence 
free data vanishing near the obstacle by defining ~ ( x ) = - i / ~  -~ A 1 (q~m). Since 
- i # - a A ~ m = m  it is clear that ~(x)=m(x)  for Ixl >r ,  that ~(x)  lies in D(A a) 
and that (A 1 _ i/a) ~(x)  vanishes for Ix I> r. We can therefore apply Theorem 1.3.7 
and conclude that ~(x)  vanishes for I xl>r.  Thus m(x) vanishes there, and hence 
vanishes identically. Thus A 1 has no point spectrum. 

We now try to clarify the sense in which the data in D (A) satisfy the boundary 
conditions. This will at the same time be the first step towards the local compact- 
ness theorem which we shall prove subsequently. At this point it becomes neces- 
sary to restrict ourselves to boundary conditions of the first kind; furthermore 

12 The boundary condition n �9 m 2 = 0  usually imposed on the magnetic field at the surface of 
a perfect conductor will arise in a natural fashion later. 

la Later we shall see that the spectrum of A 1 is in fact absolutely continuous. 
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we shall suppose that 2(x) can be extended into G in such a way that 2(x) is 
once continuously differentiable in G and that 2(x) as well as its first derivatives 
are uniformly bounded there. 

Our analysis relies heavily on a paper by FRIEIgRICnS [3]. We now specialize 
his results to our situation, retaining his notation. We suppose first that G is a 
bounded domain in R a which has a C 2 boundary. We define 

1 = {f~ L2 (G; R 3); dj f~ ~ L2 (G; R 3) in the distribution sense for i, j = 1,2, 3} ; 

9~d = {f~ L2 (G; R 3); F x f ~  L2 (G; R 3) in the distribution sense} ; 

G3o = { f  ~ L2 (G ; R 3); V. f e L2 (G) in the distribution sense}. 

We shall introduce subspaces of these spaces corresponding to functions satisfying 
various boundary conditions. Let 

IS = {u(x); u is Lipschitz continuous in G and n x u =0  on OG}; 

2S={u(x); u is Lipschitz continuous in G and n.  u---0 on OG}. 

We then define 

k~t~=closure in I l f l [2+~ []Vf~ll 2 of ks, k = l , 2 ;  
i 

~ a = c l o s u r e  in [[fl[ 2 + II V• z of 1S; 

2~b=closure in Ilfll2+ [17.fl[ 2 of 2S. 

FRIEDRICHS proves 

Lemma 2.2.2. ~&l =1&acorn and for f hi 1~ 1 

3 

l[f II 2 + ~] I1Vfi II 2 < C [l[fl] 2 + II Vx fll 2 + II V'fll2] �9 
i = l  

Lemma 2.2.3. 2~ 1 = g d  C~ 2M n and for f in z ~  

3 

Ilfl12+ ~ [[1%112<C[11f112+ IIVxfll2 + [117.f112]. 
i = l  

We now can prove 

Theorem 2.2.4. Suppose that A = A ~ ) ,  that m lies in D(.4) and that V. m a 
and V. m2 are square integrable. Then, defining Fl (m)=rnl ( x ) -  2(x) m2(x), where 
2 (x) is the extended function, we have 

3 

115112+ ~ 1117FxiI[z<c[IIFI[12+ II VxF~ll2+ ]IF. Fail2]. 
i = 1  

Proof. Since the domain is not bounded we have to be a little careful. Let us 
choose two non-negative smooth functions Ip ~ and ~,2 respectively vanishing near 
the obstacle and away from the obstacle and such that ~ + if2 = 1. We then con- 
sider ~lFl(rn) and ~2Fl (m ) separately. ~blFl(m) is handled by means of 
Lemma 1.1.2 while Lemma 2.2.2 can be applied to ~k2Fa(m) (once we note that 
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since m is in D(A) it can be approximated in the graph norm by a sequence {tp"} 
of data in 9~(x), so that ~b2Fl(m) can be approximated in ilf[]2+[[ Vxf[[2 by 
~b 2 F1 (q~,) and hence lies in ~J).  

This theorem shows that the function Fl(m ) can be assigned a value or 
"trace" on the boundary of G in the sense usual to elliptic theory. We made the 
additional assumption that I 7. m is square integrable, and deduced that not only 
the tangential components of F 1 (m) but also the normal components are properly 
defined on the boundary. It is not clear what happens in the absence of an 
assumption on 17. m. 

We now still require a local compactness property of the generator A ~. At 
this point we must unfortunately restrict ourselves to boundary conditions of the 
first kind for which the function 2(x) is identically a real constant. It is evident 
that the method of proof used below is not directly applicable to more general 
boundary conditions. In fact J. RALSTON has recently shown by means of an 
example that the local compactness property does not hold for arbitrary 2(x). 

The following theorem provides the key to the proof of the local compactness. 

Theorem2.2.5. If  the decomposition M = M ~  ~ M 1 is associated with the 
operator Aa, and if m lies in M 1 c~ Ca((~; R3), we have that m is divergence free 
and that n �9 (2mr + m 2 ) = 0  on OG. 

Proof. We already know from a previous remark that m is divergence free. 
Since 2 is a constant, M~  17~0, 17~o); tpeCo~(G)}. Thus for m in M 1 

0 = S [2 Vq9 .m 1 + Vtp. m2] dx  = S 17~o. (2 m I + m2) dx 
G G 

= _ S g V . ( 2 m x + m 2 ) d x +  ~ n ' ( g m l + m z ) q ~ d S ,  
G OG 

and hence, since m is divergence free and 2 is a constant, 

n . ( 2 m l + m 2 ) t p d S = O  for any ~o in C~(G). 
e~ 

Thus n �9 (2m 1 +m2) vanishes on 0G. 

In the case of a perfect conductor we have 2=0 ,  and hence n . m z  =0, this 
being precisely the boundary condition which is usually imposed on the magnetic 
field at the boundary of a perfect conductor (expressing the continuity of its 
normal components across the boundary surface). 

We define F2 (m) = 2 ma + m2 ; the boundary condition derived above will allow 
us to obtain for F2(m ) with m in D(A 1) the same inequality obtained previously 
for FI (m). To do this rigorously we again rely on results proved in the paper of 
FRIEDRICHS. The method essentially amounts to a refinement of the previous 
theorem. 

We introduce the following notation. Let 

II[=L2(G); l la={f~L2(G); VfeL2(G; RS)}; d l l = { V f ; f ~ l l a } .  

FRIEDRICHS proves 

Lemma 2.2.6. I f  f belongs to L2(G; R s) and is orthogonal to d~I then f lies 
in 2 ~ .  
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This allows us to prove 

Lemma 2.2.7. f f  m lies & M 1 , the real and imaginary parts of F2(m) lie in 2~ 6. 

Proof. We show first of all that 

M ~ ~ S = {(2 g, g); g ~ d U} = {(2 V.f, Vf); f ~  Ua}. 

We apply the approximation theorem proved in the Appendix to conclude that 
there is a sequence {fn} contained in C~176 - )  such that (2 Vf,,, Vf,,) converges to 
(2Vf, Vf) in M. Since Vx Vf=O we conclude that (2Vf,, Vf,) lies in M ~ and that 
(2 Izf,, Vf,) converges in the graph norm of A to (2 Vf, Vf). Consequently we in- 
deed have S c  M ~ Hence 

0 =  I [2Vf. m t + V f ,  mz] dx= I Vf. ( 2ml+m2)dx .  
G G 

Thus F2 (m) is orthogonal to d l l ;  by the previous lemma the real and imaginary 
parts of F 2 (m) lie in 2~  6. This enables us to prove 

Theorem 2.2.8. Suppose that A=A~, and that m is in D(A)c~M 1. Then 

3 

II F2 (m) II 2 + Z II VF2,(m) II 2 ~ C [H F2 (m) II 2 § II V x F 2 (m) II 2]. 
i=1 

Proof. Since m is in D(A), the real and imaginary parts of F2(m) are in ~a.  
By the previous lemma they also lie in 2 ~ .  We can thus apply Lemma 2.1.3, 
taking the same precautions as in the proof of Theorem 2.2.4 to deal with the 
unboundedness of the domain. 

Besides clarifying the meaning of the boundary condition " n .  F2 vanishes 
on ~G", this last theorem finally enables us to prove the local compactness 
theorem. 

Theorem 2.2.9. Let S be the set of data m in D(A]) (2 a constant) such that 
I l m l l 2 + l l A ] m l l 2 < l .  Then S is precompact in II .l]G, for any bounded domain G' 
contained in G, where ll" II o' denotes the local energy norm 

II m II~ ' =  S (ml" m t §  m2)dx. 
G' 

Proof. It is easy to check, as is done explicitly in [10], that as a consequence 
of Theorems 2.2.4 and 2.2.8 each component of data m in D(A ~) satisfies 

3 2 

II mj  II % ~] il Vm~i II 2 < C Z (ll mk II ~- + II Vx mk ll~). (*) 
i = l  k = l  

As a consequence we have for all m in S 

3 

II m21lz+ ~ llVmjzll 2<C, j = l , 2 .  
i=1 

The precompactness of S in the local energy norm is then an immediate conse- 
quence of RELLICH'S theorem. 
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As a by-product of the last proof we have 

Corollary 2.2.10. f f  m lies in D(A~) 

3 

II [u(t) m]j II 2 + Z II v[u(t) m]j i 112 < M, 
i = 1  

j = ] , 2 .  

Proof. The proof is obvious, since if m lies in D(A~), A i m  lies in M 1, and for 
all t, 

II U(t) m 112+ IIa a U(t) m II 2 = I[ m II 2 + [Ia mil 2 

The assertion then follows if we apply ( ,)  to U(t)m.  
We suppose now that m is in D(A1). Then because of Corollary2.2.10, 

U(t) m and aj[U(t)m] are square integrable as functions of x and t in any 
domain G x [ - T ,  T]. Furthermore since Ot[U(t) m] = U(t) Am, and since Am 
lies in M 1, at [U(t) m] is also square integrable in that domain. Thus the "trace" 
of U( t )m  on "nice" hypersurfaces in G x [ - T ,  T] is properly defined, and the 
divergence theorem may then be applied in the usual way (see [10]) to obtain the 
following theorem first of all for m in D(A1), but then also for all of M 1. 

Theorem 2.2.11. Let 

E ( m , R ) =  S (Iml12+lm212) dx ,  
G ~ S R  

where as before SR denotes a sphere of radius R. Then for any m in M 1 

E(U(T)  m, R)<=E(m, R+ T) .  

3. Conclusions from the Abstract Theory 

We now have all the ingredients necessary to prove that the general scattering 
theory of LAX and PHILLIPS is applicable to MAXWELL'S equations in the exterior 
of an obstacle, provided that we restrict ourselves to boundary conditions of the 
first kind corresponding to boundary functions 2 (x) which are identically constant. 
We shall state the various theorems without proof; the proofs differ only in the 
most trivial details from the proofs of the corresponding statements about the 
wave equation presented in Chapter 5 of [4]; some of these modifications were 
described in Appendix 4 of [10]. 

Let p be chosen so that the obstacle lies inside the region [ x ] < p. We consider 
the subspaces D~ and D p _ defined in Section 1.5 which are contained not only 
in Mo 1 but also in M 1. U 1 (t) and U~(t) act in the same way on DP+ for positive t 
and on D p _ for negative t. 

Theorem3.3.1. The subspaces DP+ and D p _ of M 1 are orthogonal and are 
respectively outgoing and incoming with respect to U 1 (t). 

The assertions U UI(t)  DP+ = M r  and U uX(t) D p- = M I  which are hidden 
in the statement of the previous theorem are equivalent to local energy decay. 

Theorem 3.3.2. For any m in M 1, and for G' a bounded subdomain of G 
lim E(U 1 (t) m, G')=0.  

t -- ,  + o9 
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Also, since as a consequence of Theorem 3.3.1 Ul( t )  is unitarily equivalent 
to the group of translation operators on L 2 ( - o o ,  oo; N1), its generator has an 
absolutely continuous spectrum. 

Theorem 3.3.3. The spectrum of A 1 is absolutely continuous. 

An investigation of the associated semi-group Z( t )=P+ U 1 ( t )P_ shows that 
Theorem 3.3.4. Z(2p) (~cI- B) -1 is a compact operator for ~c>0. 

Consequently we obtain 

Theorem 3.3.5. The generator B of Z( t )  has a pure point spectrum, and the 
resolvent B is meromorphic in the plane and holomorphic on the imaginary axis 
and in the right half plane. 

One says that data m belongs locally to the domain of A if ~om belongs to the 
domain of A for any q~(x) in Cd~ We can now also show 

Theorem 3.3.6. The generator B has It as an eigenvahle if and only if  the equation 
A m = # m  has a non-triviaL eventually outgoing solution which lies locally in D(A). 

Putting the last two theorems together we find 

Theorem 3.3.7. Aside from a discrete set of #'s with Re #<0 ,  there are no non- 
trivial, eventually outgoing local solutions of the equation A m = # m  which satisfy 
the boundary condition. 

The last result together with an extension of the proof of Theorem 3.3.6 gives 

Theorem 3.3.8. I f  # belongs to the resolvent set of B and if g lies in (D~+ + DL) • 
with c> p (in particular if g has compact support), there exists a unique eventually 
outgoing local solution of ( A - # )  m=g.  The solution depends analytically on It 
in the strong sense of the local energy norm. 

Theorem 3.3.9. Aside from the discrete set of #'s (with Re # < 0 ) f o r  which 
(A - I t )  m=O has a non-trivial outgoing solution, there always exists a unique 
eventually outgoing solution of the equation ( .4-It)  m =g O.e. a It-outgoing solution 
of the reduced equation) satisfying the boundary condition. This solution depends 
analytically on It in the local energy norm. 

Note. Corresponding results are valid when "outgoing" is replaced by "in- 
coming". 

We now exploit the connection between the poles of the scattering matrix 
and the spectrum of B. We recall from the introduction that the scattering operator 
can be represented as an operator valued function 6e (z) acting "multiplicatively" 
on the spectral representation of M ~. 

Theorem 3.3.10. The scattering matrix 6e (z) is well defined. It is holomorphic 
on the real axis and in the lower half plane, and is meromorphic in the whole plane, 
having a pole at exactly those points z for which there is a non-trivial, eventually 
outgoing local solution of the reduced MAXWELL'S equations A m = izm satisfying 
the boundary conditions. 

Finally, with the aid of generalized eigenfunctions of A we shall explicitly 
describe the incoming and outgoing spectral representations of U ~ (t) acting on 
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M 1, and use this to represent the scattering operator as the identity plus an integral 
operator acting on spherical coordinates. In Appendix 4 of [10] we prove the 
following lemma from the corresponding statement about the wave equation: 

Theorem 3.3.11. The free space spectral representation in L 2 ( -  0% oo ; N l) of 
U~(t) acting on Mo 1 is given by the map m ( x ) ~ ( ~ o ( . ,  a, 09), ~ ( . ) ) ,  where 

1 VxVx[ le_ i , , x . , , , ] )  " tb~ V x [ I e - i " x " ~  ia  

(The conjugated form of the inner product is used to let the matrix valued data 
~o( ", a, 09) act on the column vector m( . )  in the by now familiar way.) For the 
exterior problem we then obtain 

Theorem 3.3.12. Let a be real. There exist solutions 7~+ (x, a, 09) and ~g_ (x, a, 09) 
to the equation ( A - i a )  T+(x,  a, 09)=0, which are respectively outgoing and 
incoming and such that 7t• (x, a, o9)= - ~ o ( X ,  a, 09)for x on aG. Let 

• (x, a, 09) = r (x, a, 09) + ~e• (x, a, 09). 

Then the outgoing and incoming spectral representations are given by 

m (x)  -* ~• (~, 09) = ( ~  ~ ( . ,  o,  09), ~ (.)). 

According to the proof of Theorem 1.6.5 and note (I) following it, we have the 
asymptotic estimate 

[TJ_(rO, 09, a)],  = ~ -  [(2n)-~O xS(0,09; a ) ] + O  -r~ , 

where S(O, 09; a) is a matrix valued function such that O. S(O, 09; a )=0 ,  and 
where the bracketed phase function has been factored in a convenient way. 

Theorem 3.3.13. The scattering operator is given by 

^ i a  
/~+ (a, 09) = [Se (a)/~_ (a, .)] (09) = k_ (a, 09) + 2---~-ioiS 1 S(  - O, 09, a) k_ (a, O) dO. 

As a consequence of the unitarity of the scattering operator, and the behaviour 
of MAXWELL'S equations under time reversal and complex conjugation we have 

Theorem 3.3.14. The kernel S(0, 09; a) satisfies the following identities: 

ia  
a) S(--0,09, tr)--S(--09,0, tr)=-~-n-n S S(--09,0' ; tr) S(--O,O';a) dO' 

ia  
- 2n SS(-O' ,09,  a )S ( -O ' ,O ,a )dO ' ;  

b) S(0,09; - a ) = S ( 0 9 , 0 ;  a); 

c) S(0,09; -a )=S(0 ,09 ;  a); 

d) S(0,09; a)=S(09,0;  a).  
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Appendix 
We prove an approximation theorem which was used at one point in Sec- 

tion 2.2. 

Theorem. Given f such that f and IZfi ( i=1,  2, 3) lie in L2(G; R3). Then there 
exists a sequence {fn} of functions such that 

(a) .f" lies in C~176 Ra); 

(b) f~ converges to f ,  and lzf~ converges to 17f z ( i=1,  2, 3) in L2(G; Ra). 

Proof. We cover 8G with a finite number of open sets O~ (~ = 1 . . . . .  n) in 
such a way that for each O~ we can find an open cone C,, such that 

(a) for x in 8Gc~O~, x+C~ lies outside G and x - C ~  lies inside G; 

(b) for x in O~ n G, x - C ~  lies inside G. 

Then we choose an additional open set Oo with 0 o c G, and such that {Oo} w{O~} 
covers G. We construct a finite partion of unity {~}  for G subordinate to this 
covering. Then in G 

f = ~ , f ~ ,  where f~=~b~f. 
r 

For eachf~ we havef~, Vf~ in L2(G; R3). We prove the assertions of the theorem 
for the f , .  Once we have constructed suitable sequences {f~} corresponding to 
the f~ we define 

f " = E f ~ ;  

since this is a finite sum the sequence (f~} has the desired properties. 

We now consider a particular f~. If the support of f~ is contained in Oo we 
simply mollify it in the usual fashion to obtain a suitable approximating sequence. 
If the support is contained in some boundary patch O~ we have to proceed more 
carefully. We choose a mollifier j~(x) whose support lies in the cone C~. Then 

.f2 =Js*f~ satisfies (a) in the usual way and f~ converges to f~ in L 2 (G; Ra). We 
consider now 

17f~,= 17S f ,  i(y ) js(X--y) dy - -  S f~i(Y) 17"~ j~(x-y)  dy 
G G 

= -- If~i(Y) Izy j , ( x - y )  dy.  
G 

Let U be an open set such that s u p p f c  U and U~O~.  Let q~ be a smooth func- 
tion such that ~o is identically one on the support of f~ and vanishes identically 
outside U. Then 

IZf~ ,(x) = - ~ f~, (y) Iz r [q~ (y) j~ (x - y)-] d y .  
G 

We consider the boundary values of q~(y)j,(x-y) for fixed x in G. If y lies 
outside U, ~0(y)=0. If y lies in 8Gn U we shall show that q~ (y) j ,  (x - y) vanishes 
for e small enough, uniformly for x in G. Suppose first that x is in G - O ~ .  Let 
eo = dist (U, G - O~). Let e < Co. Then I x -  y I > e0 > e and hence j~ ( x -  y) = 0. If on 
the other hand x is in GnO~, js(x-y)~:O means that x - y  is in C~ and hence 
that y = x - ( x - y )  lies in x -C~ ,  and consequently in G; this contradicts the 
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assumption that y is on OG. Hence in this case too, j , ( x -y )=0 .  Thus in all cases 
tp(y)j~(x-y)=O for x in G and y on OG, providing that e<eo.  Similarly, deri- 
vatives of tp (y) j ,  (x - y) with respect to y vanish there. 

For  ~k in C~ (G) we have 

- ~.f~,(y). Vy •(y) dy = S Vy f~,(y) $(y)  dy 
G G 

and this identity continues to hold for functions such as 9(y) j~(x-y)  lying in 
CoO~ (G). Hence we finally have 

Vf~=(VL,) * L 

and thus Vf~i(x) converges to Vf~i(x ). 
Note. By a slight modification of the usual argument it can easily be shown 

that the approximating sequence {f"} constructed in the above way converges 
uniformly t o f  on compact subsets of G on wh ich f  is continuous. 
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