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Abstract 

A new proof  of  the existence of  the flux vector is given for general Cauchy fluxes. 
The proof  is based on an approximation theorem in the theory of functions 
rather than on the classical tetrahedron argument. This enables us to replace 
the usual assumptions of  Lipschitz continuity with respect to area and volume 
by less restrictive assumptions so as to produce the flux vector fields with possible 
singularities. The classical expression for the area density of  the flux is proved 
and the flux is shown to satisfy an appropriate version of  the divergence theorem. 

1. Introduction 

There are many physical quantities that, at a given instant, can be associated 
with each surface in a body. Examples of  such quantities are the contact force 
and the heat conducted in that body. As these quantities usually can be inter- 
preted as fluxes through the surfaces, a mathematical object describing them is 
called the Cauchy flux in recent papers [1], [2], [3]. 

The physical interpretation requires that the flux behave additively on com- 
patible material surfaces. Further, it is natural to assume that if two surfaces 
differ by a set of  zero area, then the values of  the flux on these two surfaces 
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coincide. Finally, the fluxes encountered in physics usually satisfy a classical 
balance law which states that the flux corresponding to the boundary of any part 
of the body is equal to some quantity that is additive and volume-continuous 
with respect to parts of the body. A central result in the theory of  Cauchy fluxes 
states that the above properties, when rendered precise and augmented with 
suitable technical assumptions, imply the existence of  the flux vector field whose 
scalar product with the normal to the surface yields the surface density of  the 
flux. The first result of this type was established by CAUCHY [4] in 1823 under an 
additional non-technical assumption that the density depends only on the normal. 
NOLL (1957) [5] showed that this assumption is essentially a consequence of the 
other assumptions on the flux. This stimulated new research, and the works of 
NOLL [6, 7], GURTIN &; WILLIAMS [8], GURTIN, MIZEL &; WILLIAMS [9], GURTIN 
&; MARTINS [1], and ZIEMER [3] contain further important developments. 

The most general proofs available in the literature can be carried out only 
under the assumption of  global Lipschitz continuity with respect to the area of  
the surface and with respect to the volume of the part of  the body. The subsequent 
sections contain a precise statement of these conditions. They are rather restrict- 
ive because they imply the global boundedness of the field of the flux vec- 
tor and the global boundedness of its divergence. On the other hand, it seems 
reasonable, both from physical and mathematical points of  view, to allow sin- 
gularities of the flux vector at certain points. This is perhaps best motivated when 
the flux is visualized as the contact force: neither does the presently available 
theory of  partial differential equations afford tools sufficient to guarantee the 
boundedness of  the stress tensor, nor does that boundedness seem natural from 
the point of view of applications. 

In this paper I give a new argument to prove the existence of the flux vector 
under less restrictive additional assumptions which, I believe, cover more situa- 
tions encountered in mechanics, including those in which unbounded and sin- 
gular stresses occur. The proof  is based on the following observation: if the flux 
vector q exists and is sufficiently smooth, then by the divergence theorem, 

f vq �9 n dA = f div (vq) d V  
OP P 

= f ( v .  d i v q - + - V v . q ) d V  
P 

(1.1) 

for every smooth (in fact, Lipschitz continuous) function v and every part P of  
the body. Here 8P is the boundary of the part P and n the exterior normal to 
8P, dA is the element of the area of 8P and dV is the element of volume of P. 
Now, the first expression in (1.1) can be given immediate meaning provided 
the Cauchy flux behaves as a measure on bP: 

f vq . n dA = f v dO (1.2) 
OP OP 

and we note that the right-hand side of (1.2) does not contain the flux vector q. 
On the other hand, the last expression in (1.1) can be used to define both the flux 
vector and its divergence. In other words, we seek to prove the existence of a 
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vector field q and a scalar field b such that 

f v dQ = f (v. b + Vv.  q) dV, (1.3) 
OP P 

for every part P of the body and every Lipschitz continuous function v. Obvious 
candidates for the components of q are the surface densities of the flux with re- 
spect to planar material surfaces perpendicular to the coordinate axes. That with 
such a definition of q (and with an appropriate definition of b) the formula (1.3) 
holds can be proved by a surprisingly simple computation if v is affine or piece- 
wise affine. The validity of (1.3) is then extended to general v by approximating 
v by a sequence of piecewise affine functions. 

From (1.3) we deduce that the divergence div q of  q in the sense of distribu- 
tions satisfies div q = b and this in turn implies that 

f v dO = f div (vq) dV (1.4) 
0P P 

which is the divergence theorem for the Cauchy flux Q. The validity of this theorem 
is important in considerations about energy in mechanics (q = stress tensor, 
v = velocity) and in manipulations with the Clausius-Duhem inequality (q = 
heat flux vector, v = 1/0 = the reciprocal of the absolute temperature). 

Next we use the divergence theorem (1.4) to establish the usual expression 
for the surface densities of the flux in terms of the flux vector. A set No of  ex- 
ceptional points of  the body emerges in the proof. No is small in the sense that 
its volume is zero, and the formula for the density of  the flux can be proved only 
for surfaces whose intersection with No has area at most zero. Whether or not No 
is empty depends on whether or not the flux vector can be changed on a set of  
zero Lebesgue measure to produce a function whose Lebesgue set [10] is the whole 
region occupied by the body. The latter condition is certainly satisfied if the 
components of the flux vector can be represented by continuous functions, in 
which case the exceptional set is empty and the surface density is given by the 
usual expression for every surface. This is the position of the classical result within 
the present approach. Also the other results known can be recovered by using the 
present methods, and the present approach often permits slight generalizations 
of  them. 

The present study hence shows that each Cauchy flux satisfying the additional 
technical assumption gives rise to a vector field with divergence in the sense of 
distributions of class L ~. I do not know if the converse is also true. It can be proved 
that any bounded measurable vector field with bounded divergence gives rise to 
a Cauchy flux satisfying the conditions of Lipschitz continuity. The general vector 
fields with divergence of  class L ~ induce certain power functionals close to the 
Cauchy fluxes. However, it is not clear whether the power functionals can be 
identified with the Cauchy fluxes. 

2. Bodies, parts, and material surfaces 

Throughout, we identify the N-dimensional Euclidean space with the space R N 
of N-tuples of real numbers. We further denote by 5 N-I the unit sphere in RN; 
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5 N-1 • {n E R N :  In [  = 1}, where I'] denotes the Euclidean norm. V denotes the 
Lebesgue measure in R N and A the (N --  1)-dimensional Hausdorf f  measure in 
R N. The values of these measures on a Borel set S are denoted by V(S) and A(S), 
respectively. 

We identify the body with a bounded open region B C R N. No regularity 
of  the boundary is assumed. To stress the generality of  the present approach, 
I interpret the parts of  the body B as sets of  finite perimeter contained in B. How- 
ever, the results of  the present paper can be established for smaller collections of  
parts of  B as well. An extensive treatment of sets of  finite perimeter is contained 
in FEDERER'S book [11], and I also refer to ZIEMER [3, w 2] for a brief introduction 
to this topic. The treatment of  sets of finite perimeter in continuum mechanics 
can be found in BANFI • FABRIZIO [12, 13] and ZIEMER [3]. 

A part P of  B is any Borel subset of  B of finite perimeter whose boundary OP 
in the sense of  measure theory is contained in B. We denote by ~ the set of  all 
parts of  B. Each set P of finite perimeter has a well defined exterior normal n P 
which is defined A-almost everywhere (A-a.e.) on 8P. The class ~ forms a 
ring of  subsets of B, and this ring generates the a-ring of Borel subsets of  B. 
Note also that actually it is natural to identify the sets P1, P2 E ~ if their sym- 
metric difference has Lebesgue measure zero and to consider them as forming 
the same part  of  the body B. That means that  rather than with the ring ~ one 
should work with the quotient of  ~ modulo the ideal of  the sets of  Lebesgue 
measure zero, as BIRKHOFF & VON NEUMANN proposed in a different context [14]. 
The same applies to the class of  all surfaces and the ideal of  sets of  Hausdorff  
measure (area) zero. I do not follow this possibility here, although I note that in 
this way certain requirements of absolute continuity would be automatically satis- 
fied. 

A material surface S is any pair S ---- (S, n), where S is a Borel subset of  B 

and n : S ~  R N a Borel measurable function such that there is a part  P E 

with S C S P  and 

n ( x )  = n~(x)  

for all x E S for which the exterior normal n"(x) is defined and 

n ( x )  = o 

otherwise. The function n is the normal to the surface S; it orients S. The oppo- 

site of  the material surface S ---- (S, n) is the pair - - S  given by - - S  ---- (~;, - -n) .  
It  may happen that - - S  is not a material surface. However, if the material surface S 
is contained in some compact subset of B, then - - S  is a material surface. We shall 
frequently identify the material surface S with the corresponding underlying 

set S. For  instance, if P is a part  of  the body, then 8P will denote both the set 
8P and the oriented surface (~P, ne). I f  $1, S 2 a r e  two material surfaces, then 
the inclusion St C $2 will be understood to mean not only that the underlying 
sets satisfy the corresponding relation, but also that S~ has the same orientation 
as $2 on $1. The set of  all material surfaces is denoted 6 e. 

A countable family $1, $2 . . . .  E 6 a of  material surfaces is said to be compa- 
tible if there is a part  PE  ~ such that S i ( 8 P ( i =  1,2 . . . .  ). A compatible 
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family $1, $2 . . . .  is said to be disjoint if the underlying sets of all members of the 

family are pairwise disjoint. In this case, we denote by kJ Si the (oriented) 
i = 1  

union of  the family, i.e., the material surface whose underlying set is the union 
of the underlying sets of the members of  the family and whose orientation is the 
same as that of each member of the family. 

The symbol LX(B, V) denotes the usual Lebesgue space of all measurable 
functions f defined on B which satisfy 

f Ifl dV < oo. 
n 

Similarly, if S is a material surface, then L ~ (S, A) denotes the space of all Borel 
functions f defined on S which satisfy 

f ]fl dA < ~ .  
S 

3. Cauchy fluxes 

Before defining formally the concept of the Cauchy flux, we briefly discuss the 
definitions employed in the earlier papers [1], [2], [3]. As in these works, also 
here the Cauchy flux will be a function Q : 5 a -+ R which assigns to each material 
surface S a number Q(S). In [1], [2], [3], the function Q is subject to the following 
requirements: (a) additivity: 

Q(S, k) $2) = Q(S,) q- Q(S2) (3.1) 

whenever $1 and $2 are two disjoint compatible material surfaces, and, (b) Lip- 
schitz continuity with respect to area, i.e., 

[Q(S) I <: C A(S) (3.2) 

for every SE 6e, where C is a constant independent of S. The additivity (3.1) 
is well justified. In contrast, I wish to discuss the role of  (3.2). Examination 
of  the proofs reveals that (3.2) serves two purposes in the theory. First, this con- 
dition is used, in conjunction with additivity, to prove [8] that Q can be extended 
to a countably additive measure on each material surface, defined on all Betel 
subsets of that surface, and absolutely continuous with respect to the area measure 
on the surface. Hence Q has a density on each material surface. Were this the 
only reason to impose (3.2), then of  course, to generalize it would be a routine 
excercise in measure theory. (This exercise is stated as Proposition 1, below.) 
However, there are deeper reasons to impose (3.2), namely, certain parts of  the 
argument proving the dependence of the density on the normal [3] cannot be car- 
ried out without (3.2); also the tetrahedron argument, even in its refined form in 
[1], rests on this assumption. 

Now we wish to avoid (3.2) but the countable additivity and the absolute 
continuity drawn from (3.2) seem to be reasonable. (This in particular applies 
to the condition of  absolute continuity, because the boundaries of disjoint parts 
add only to within sets of area zero.) Hence we introduce a definition of the Cauchy 
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flux such that countable additivity and absolute continuity are satisfied but (3.2) 
need not hold. However, the existence of the flux vector cannot be established 
in this generality and certain additional assumption, much weaker than (3.2), 
will have to be added in Section 5. 

Several equivalent versions of the present definition of the Cauchy flux can 
be given, and it is hard to select one of them as the basic one. The following pro- 
position, a routine consequence of  measure theory (FUGLEDE [15]) lists the 
equivalent versions of the definition. 

Proposition 1. For a real-valued function Q defined on 5 a the following four condi- 
tions are equivalent: 
(1) For every SE5r there is a Borel function qSE L~(S,A) such that 

Q(s') = f qS dA 
S" 

for every S' E 5 a, S' C S. 
(2) The function Q is eountably additive on compatible material surfaces, i.e., 

for every disjoint compatible family $1, $2 . . . .  E ~ ,  and moreover, 

Q(S) ~- 0 
whenever A(S) = O. 

(3) The function Q is additive on compatible material surfaces, i.e., 

Q(S~ w S2) = Q(S,) + Q(S2) 

for every pair S~, $2 of compatible disjoint material surfaces, and moreover, 
for each SE 5 a there is a non-negative Borel function hSE La(S, A) such 
that 

IQ(S')I =< f h S d A  
S' 

for every S' E ~ ,  S' C S. 
(4) The function Q is additive on compatible material surfaces and, moreover, for 

every e > O there is a ~ ~ 0 such that 
1 

Z I Q(s3l < e 
/=1 

for every finite number S~ . . . . .  St of compatible disjoint material surfaces satis- 
fying 

l 

A(Si) < 8. 
i - -1  

Any function Q satisfying the above four equivalent conditions is called a 
Cauehy flux, and the function qS as in (1) is called the surface density of  Q. 
Contact with the definitions of the Cauchy flux given in the earlier papers [1], 
[2], [3] is established through Condition (3), as obviously every function satis- 
fying (3.t), (3.2) satisfies also (3) with h s = C = const. However, the present 
definition is more general, as the converse need not hold. 
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4. Weakly balanced Cauehy fluxes 

The basic motivation for the concept of a weakly balanced Cauchy flux is the 
fact that the fluxes encountered in physics satisfy the integral form of the classical 
balance law. One possible definition of a weakly balanced Cauchy flux is precisely 
the condition expressing this, and it is listed below as Condition (1) in Theorem 1. 
However, using the countable additivity of Cauchy fluxes, we can adopt seemingly 
weaker but actually equivalent conditions. These are listed as the remaining two 
conditions in Theorem 1. 

Theorem 1. For a Cauchy flux the following three conditions are equivalent: 
(I) There is a function b E LI(B, V) such that 

Q(~P) = f b d V  (4.1) 
e 

for every part P. 
(2) There is a function k E LI(B, V) such that k >= 0 and 

l Q(eP) t < f k dV 
P 

for every part P. 
(3) For every e > O there is a ~ > 0 such that 

l 

Y~ I a(ee,)]  < e 
i = l  

for every finite number P1 . . . .  , Pt of  disjoint parts for which 

l 

E v(e,) < 6. 
i = 1  

We say that the Cauchy flux Q is weakly balanced if it satisfies the three equi- 
valent conditions of the preceding theorem. The function b as in Condition (1) 
is called the volume density of the flux Q. Of the three equivalent conditions, 
Condition (1) is most easily handled. It will be precisely this condition that, 
together with Proposition 2, below, will be used in the following section to 
establish the existence of the flux vector. Note, however, that the important fea- 
ture of Conditions (2), (3) is that they do not postulate the additivity of Q(~P) 
on disjoint parts. 

The present definition of weak balancing is less restrictive than the definitions 
in [1], [2], [3], wherein the following stronger version of Condition (2) is adopted 
as the definition: there is a constant C such that 

for every part of the body. 

IQ(~P) t ~ cv(P) (4.2) 

Proposition 2. I f  Q is a weakly balanced Cauchy flux, then 

Q ( - S )  = - a ( s )  (4.3) 
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for every SE s with - - S E  5r Hence the surface density satisfies 

q -  S(x) = --qS(x) (4.4) 

for A-a.e. x E S. 

Proof of Theorem 1 & Proposition 2. The implication (1) ~ (2) is trivial, and 
(2) ~ (3) is routine in measure theory. Concerning the implication (3) --~ (1), we 
note that (3) is a general necessary and sufficient condition under which an addi- 
tive set function defined on a ring generating the measurable sets can be represented 
as in (1); see [15]. In the present situation we apply this condition to the set func- 
tion M, given by 

M(P) = Q(OP), P E ~ .  

However, we must verify that M is additive on t~. In order to do that, we first 
prove that if (3) holds, then the conclusion of Proposition 2 holds. This proof  is 
easy but long at the present level of generality, for non-smooth material surfaces 
may occur. I shall only sketch the basic idea, or, rather, I shall indicate how the 
proof  can be reduced to the verification of  (4.3), (4.4) for smooth material surfaces 
only. Namely, if S is smooth and its relative ( N -  2)-dimensional boundary is 
sufficiently regular, then we can use almost the same argument as in [8], [1] to 
prove (4.3). I note that the proofs in [8], [1] are given under assumptions stronger 
than the present concerning Q, but in this case the generalization is easy. Now the 
validity of (4.3) for every smooth material surface with sufficiently regular relative 
boundary suffices to prove, by using the derivatives with respect to regular families 
shrinking to a point x E S, the validity of (4.4) for A-a.e. point of a smooth 
surface S. By integrating over a Borel subset S'  of  S, we prove the validity of 
(4.3) for a general S'  contained in a smooth material surface. Finally, the proof  
of  (4.3) for a general non-smooth material surface S is completed by using the 
nontrivial fact that A-almost all of  any S E 5 a can be covered by a countable 
family of smooth material surfaces S I11]. This implies that, to within a possible 
set of  area zero, S can be written as a union of a compatible, disjoint, countable 
family of material surfaces that are contained in appropriate smooth material 
surfaces. Then, by using the countable additivity of Q, absolute continuity, and 
the validity of  (4.3) for surfaces contained in smooth surfaces, we establish (4.3) 
generally. 

Note. Another proof  of Proposition 2 is possible (under the assumption that Con- 
dition (3) is valid) which does not use the non-trivial result about covering a 
general S by smooth material surfaces. It is based on the observation that if P 
is any part of the body, then for A-a.e. x E ~P the following quantities tend to 0 
as r--> 0+ : 

r N+IQ(OB(x, r)), r-N+IQ(O(P f~ B(x, r))), r-N+IQ(O(P c A B(x, r))), 

where B(x, r) is the open ball of  radius r centered at x, and pc is the complement 
of P in B. This is proved from Condition (3) by using directly the definition of  
Hausdorff measure, the equality V(SP) ~- O, and an argument similar to the one 
given in FED~RER [11], pp. 179--181. The details are omitted. Next one splits 
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the boundary of P • B(x, r) into two parts, one being the portion of the bound- 
ary contained in B(x, r) and the other being the portion contained in OB(x, r). 
The same is done for pc A B(x, r). The portions of  the boundaries contained in 
B(x, r) are opposite each to other in the sense defined in section 2. Then, using 
the additivity of  Q, and the fact that the limits of  the quantities indicated above 
are 0, we may evoke the basic result on the differentiation of set functions to prove 
(4.4) for a general boundary P. The result then follows. 

Now the conclusion of Proposition 2 is used to find that the set function M 
is indeed additive: if P1 and P2 are two disjoint parts, then the contributions 
to the sum Q(~PO § Q(~P2) from the overlapping parts of  the boundaries cancel 
in view of (4.3) and their opposite orientations.The proof  is complete. 

5. The flux vector and the divergence theorem 

To prove the existence of a flux vector that satisfies the divergence theorem, we 
have to impose a further condition on the Cauchy flux. This condition is embodied 
by the definition of the Cauchy flux of classL ~, below. We first introduce the fol- 

lowing terminology. We say that a material surface S = (S, n) is planar if there 

is a hyperplane Ho in R s for which S ( Ho. Given a unit vector n* E 5 s - l ,  

we say that a planar material surface S = (S, n) is perpendicular to n* if 

n(x) = n* for every x E S. A Cauchy flux Q is said to be of class L I if there 
are N linearly independent vectors n t . . . . .  h u e  S N-1 and a non-negative Borel 
function h E L~(B, V) such that 

[Q(S)I ~ f h aA (5.1) 
S 

for every planar material surface S perpendicular to one of the vectors n~ . . . . .  nN. 
Since h is non-negative and Borel measurable, the surface integral in (5.1) is 
meaningful, but it can be infinite for certain surfaces S. Such a situation is not 
excluded in the above definition. However, using the condition h E LI(B, V) and 
Fubini 's theorem, one can prove that hE L~(Ho A B, A) for "almost  every" 
hyperplane Ho perpendicular to one of the vectors nl . . . . .  ns .  For  material sur- 
faces contained in such hyperplanes the finiteness of  the integral in (5.1) is then 
guaranteed. The condition (5.1) thus introduces some uniformity on the varia- 
tions of  the Cauchy flux on hyperplanes perpendicular to the vectors n~, . . . ,  nN. 

I f  the Cauchy flux satisfies the assumption of area Lipschitz continuity (3.2) 
employed in [1], [2], [3], then Q is of  class L I and satisfies (5.1) for every material 
surface, not only for the planar material surfaces perpendicular to the vectors n i. 
It  is precisely the passage from (3.2) to (5.1) that enables us to obtain a larger 
class of  flux vector fields including the unbounded ones. Actually the results to 
be given below can be established under even less restrictive assumption of local 
summability, defined in an appropriate way. 

The main conclusion in the present section deals with vector fields of  class L t 
over B. A vector field q of  c l a s s L  x on B is an N-tuple q----(q~ . . . . .  qN) of  
measurable functions each of which belongs to L~(B, V); we write q EL~(B, V) 
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irt this case. Let C~(B) be the set of  all infinitely differentiable functions ~0: 
R N-+ R with compact support in B. The divergence in the sense of  distributions 
of the vector field q E LI(B, V) is a linear functional div q on Cg(B) whose 
value (div q, ~v) on a general 99 E C~(B) is given by 

(div q, V) = - -  f q .  VV dr, 
B 

where 7q~ is the gradient of  of. We say that the vector field q has divergence of  
class L 1 if there is a function b E La(B, V) such that 

(div q, of) = f bqJ dV 
B 

for every q~ E C~(B). The function b is defined uniquely to within to values on a 
set of Lebesgue measure zero, and we identify it with the divergence, 

div q --~ b. 

The fact that q has divergence of class L x can be expressed by writing div q E L 1 
(B, V). We easily verify the following: if q has divergence o f c l a s s L  1 and if v 
is a Lipschitz continuous function on B with compact support, then also vq 
has divergence of class L x and 

div (vq) ~- v div q + 7 v .  q (5.2) 

where 7v  is the gradient of  the function v, which, according to the theorem of  
Rademacher,  exists V-a.e. on B. 

The definition of Cauchy flux implies that Q induces a Borel measure on each 
material surface S; if v is a bounded Borel function defined on S, then the symbol 
f v dQ will denote the integral of  v with respect to the measure induced by Q on S: 

S 

f vdQ = f vq  s dA, 
S S 

where qS is the surface density of  the flux. 

Theorem 2. Let Q be a weakly balanced Cauchy flux of class L 1. Then there is a 
Borel-measurable vector field q with q E LI(B, V) and div q E LI(B, V) such that 

f v dQ = f div (vq) dV (5.3) 
OP P 

for every part P and every Lipschitz continuous function v on B. The fieM q also 
satisfies the local form of the balance law: 

div q = b (5.4) 

where b is the volume density of Q. 
Any function q satisfying the assertions of the above theorem will be called 

a flux vector for Q. Any two flux vectors differ at most on a set of Lebesgue meas- 
ure zero. 
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Under stronger assumptions about the flux ZIEMER [3] proves that div q E 
L~(B, V) (in fact, under his assumptions, div q E L~176 V)), but his method of  
proof, following essentially the traditional line, does not lead to the divergence 
theorem (5.3). 

Proof. By using a suitable affine transformation, one can assume that the vectors 
occurring in the definition of the Cauchy flux of class L 1 are the natural basis 
vectors el . . . . .  eN in R n. 

We shall first prove that for each i (1 _~ i ~ N) there is a Borel function 
qiE LX(B, V) such that 

f dQ = f (x b + q,) dV (5.5) 
OP P 

for every P E ~ ,  where x*: R'v-+ R is a natural coordinate function, given by 

x[~(x) = xi, x = ( x ,  . . . ,  xN) E R N. 

Then we shall define a vector field q E LI(B, V) by 

q(x) = (q,(x) . . . . .  qN(x)), x E B, (5.6) 
and prove that 

f v dQ : f (vb + V v .  q) dV  (5.7) 
OP P 

for every P E ~ and every Lipsehitz continuous function v on B. 
To prove (5.5), let i (1 ~ i ~ N) be fixed. Consider, for each t E R, the closed 

half-space R(t) in ~N given by R ( t ) :  (xE RN: x ~ ( x ) ~  t}, the corresponding 
open half-space R~ = {x E R N : x*(x) < t}, and the boundary hyperplane 
U(t) = (x E ~i~U ._ X'~ (X)  = t} .  

Let P be any part of the body. Denote by P(t) the intersection of P with 
the closed half-space R(t), 

e( t )  ~- P A R(t). 

It can be shown that P(t) is a set of  finite perimeter; hence P(t)E ~ for every 
t E R. The boundary of  P(t) in the sense of  measure theory is given by 

8P(t) ~ S(t) LI T(t),  

where S(t) is the portion of the boundary 8P of the original set P that is contained 
in the open half-space R~ 

S(t) ~- 8P A R~ 

and T(t) is the remaining part of  ~P(t); one has, for almost every t E R, 

T(t) ~ P A N(t) (5.8) 

to within a set of zero area. All these essentially geometric facts are intuitively 
clear and can be verified formally by using the definition of  a set of finite peri- 
meter. Note also that most of the above facts are special cases of  a general method 
of "slicing" described in FEDERER [11]. 
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F(t) = Q(S(t)),  

a(t)  = Q(T(t)), 

H ( t ) =  f b dV. 
e(t)  

The boundedness of P and (5.8) imply that G vanishes outside some compact 
interval. Applying Condition (1) of Theorem 1 to P(t) yields 

F(t) -}- G(t) = H(t)  (5.9) 

for every t E R. Applying (5.2) to T(t) yields 

Ia(t)] ~ f h d A .  (5.10) 
T(t) 

Now F is the distribution function of the function x~ with respect to the 
measure induced by Q on oP and H is the distribution function of x~ with respect 
to the measure L ~ f b dV, L Q R N, a Borel set. Hence F and H have bounded 

L~e 
variation. (5.9) implies that also G has bounded variation. The general properties 
of distribution functions enable us to express the integrals of x* with respect 
to the indicated measures through the corresponding distribution functions as 
the "first moments": 

f x* dQ = f t dF(t), 
oP R 

f x*b dV :- f t dH(t). 
P R 

The last two formulas, (5.9), integration by parts, and the fact that G vanishes 
outside some compact interval justify the following computation: 

f x~ dO -- f x?b dV = f t d ( r  -- H)  (t) 
OP P I~ 

= - f t dG(t) 
R 

~- f G(t) dt 
R 

Inequality (5.10), relation (5.8) and Fubini's theorem establish the inequality 

o R 

= f h d V ,  
P 
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i . e , ,  

for every part P E ~.  
I t  is now observed that the set function 

.f x* d ? -  f x*bdV, Pc (512) 
~P P 

is additive. Indeed, it is obvious that the volume integral is additive. The addi- 
tivity of  the surface integral in (5.12) is verified by using (4.4) to cancel the contri- 
butions to the sum from the overlapping parts of the boundaries. 

To summarize, the set function (5.12) is additive and satisfies (5.11). The 
result of FUGLEDE [15] then implies the existence o f a  Borel function qi E LI(B, V) 
such that (5.5) holds. 

We now define q by (5.6) and prove (5.7). Noting that Vx~ = el, one sees 
that (5.5) is precisely (5.7) for v = x*. Further, (5.7) is also satisfied by constant 
functions, for in this case the gradient vanishes and (5.7) reduces to the already 
established equality (4.1) of  Theorem 1. But this proves that (5.7) holds for all 
affine functions since an affine function is a linear combination of x~ . . . . .  x~v 
and of  constants. 

Next, if v is piecewise affine, we establish the validity of (5.7) for a general 
part P by dividing it into smaller parts Rk on which v is affine, and using the 
already established validity of (5.7) for affine functions. Then adding the equal- 
ities (5.7) for each Rg and using the additivity of the expressions on both sides of 
the equality, we find that (5.7) holds. (To prove the additivity of  the left-hand 
side, we must evoke (4.4) to cancel the contributions of the overlapping parts 
of the boundaries of Re's.) 

Finally, if v is a general Lipschitz continuous function on B, then there is a 
sequence of piecewise affine functions v~ such that 

v n --~ v uniformly on B 

7vn ~ Vv V-a.e. on B 
and 

IVvnl ~ C V-a.e. on B, 

with C a constant independent of n. (See e.g. EKELAND & TEMAM [16].) Applying 
(5.7) to v, and letting n tend to c~ then yields (5.7) in the general case. 

We now prove (5.4). For  every q~ E C~(B) there is a part P of the body such 
that the support o f~  is contained in the interior of P. Hence the function 9 vanishes 
on the boundary of P, and applying (5.7) to P and the function ~0 yields 

0 = fq~ dQ = fq~b + Vq~. q dV = fq~b + Vcp. q dV. 
OP P B 

But this equality means precisely that the divergence of q in the sense of distribu- 
tions is of class L t and equals b. 

Finally, (5.4) and (5.2) enable us to reduce the right-hand side of (5.7) to the 
right-hand side of (5.3), and the proof  is complete. 
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6. The surface densities 

In this section we consider a group of  results associated with the expression for 
the surface density in terms of  the flux vector. 

Theorem 3. Let Q be a weakly balanced Cauchy f lux  o f  class L ~ with the correspond- 
ing f lux  vector q. Then there is a Borel subset No ~ B o f  Lebesgue measure zero 
such that 

a ( s )  = f q " n dA (6.1) 
s 

for every material surface S = (S, n) satisfying 

A(S A No) = 0. (6.2) 

In other words, the surface density corresponding to any such a material surface is 
given by 

qS(x) = q (x ) .  n(x) A-a.e. on S. (6.3) 

Proof. Let ~ : R N - +  R be a non-negative, infinitely differentiable, spherically 
symmetric function with compact support satisfying 

f ~o(yl . . . . .  YN-I, O) d y  1 . . .  dYN_  1 = l ,  (6.4) 
RN-- 1 

and let P be any part of the body. In this situation, the following lemma holds. 

Lemma 1. For A-a.e. x E OP, 

and 

lim r -N f V ~ o ( r - ~ ( x  - y ) )  d r ( y )  = nV(x) 
r~O+ p 

lim r -N+~ f q~(r-l(x -- y)) dA(y) = 1. 
r~0+  OP 

(6.5) 

(6.6) 

The first assertion of  the lemma is verified by a direct computation if P is 
a half-space. The general case is then verified by using this special case and the 
definition of the normal in the sense of measure theory. The details are omitted. 
By applying the Gauss-Green theorem (FEDERER [11]), we can transform the vol- 
ume integral in (6.5) into a surface integral to restate (6.5) in the form 

lim r -N+1 f q~(r-l(x -- y)) ne(y) dA(y) = nV(x) 
BP 

(from now on I omit the symbol r ~ 0 +  in the limits.) This statement implies 
(6.6) at every Lebesgue point of  n v relative to A. The lemma is proved. 
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The proof  of Theorem 3 is now easily completed. Let No be the complement 
(in B) of the set of all Lebesgue points x for q that satisfy 

lim r -N+l  f qJ(r-l(x --  y))  b(y) dV(y)  = 0 
B 

(6.7) 

We easily find that (6.7) is satisfied at every Lebesgue point x for b and since 
V-a.e. point of B is simultaneously a Lebesgue point for both q and b, we have 
V(Uo) - -  O. 

Now let S satisfy (6.2). Then A-a.e. point x E S is a Lebesgue point for q 
and satisfies (6.7). In virtue of this and in view of (6.5) then, if P is any part with 
s C  ~P, 

lim r -N  f Vq~(r-'(x - y ) )  . q ( y )  d V ( y )  = q ( x )  . n e ( x )  (6.8) 
P 

and similarly, by (6.6), 

lim r -N+'  f q~(r-'(x --  y)) qOp(y) dA(y) = q~ 
OP 

(6.9) 

for A-a.e. x E S. Application of Theorem 2 (in the form of the equality (5.7)) 
to the function v(y) = r-N+l~o(r- l(x  - -  y))  and then use of (6.7), (6.8) and (6.9) 
will reduce (5.7) with our special choice of v to 

qOe(x) = q ( x ) .  he(X) for A-a.e. x E S, 

and the results follow. 
Unfortunately it is not known whether one can change the flux vector on a 

set of zero Lebesgue measure so as to make (6.1) hold for every material surface. 
The set No was defined as the complement of the set of all Lebesgue points for q 
that satisfy (6.7). The following proposition gives some information about the 
size of the set of  points x that satisfy (6.7). 

Lemma 2. I f  b E LI(B,  V), then 

l imr  -N+' f Ib(Y)l dV(y)  = 0 (6.10) 
B(x,r) 

f o r  A-a.e. point x E B. 
According to this lemma, not only the "volume", but also the "area" of the 

set of points that do not satisfy (6.10) is zero. Note that if b is the volume density 
of  a weakly balanced Cauchy flux, then the lemma implies that 

lim r N+IQ(OB(x, r))  = 0 

for A-a.e. x E B and this information is a strengthened version of the information 
obtained in the "Note"  at the end of Section 4 concerning the vanishing of  the 
limits of the quantities indicated there. In that note we derived this information 
from Condition (3) of Theorem 1 without having b at our disposal. 
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Proof. Let M be the set of  all points of  B where (6.10) holds. As has been pointed 
out in the proof  of  Theorem 3, the complement of  M satisfies 

V(B --  M) = O. (6.11) 

We apply FEDERER [11, Thm. 2.10.18, item (2)] to the present situation. Namely, 
we identify his space X with our B, his measure # with the indefinite integral 

/~(z) = f I bl dV 
Z{~B 

for any Borel subset Z Q B, choose his function ~" to be given by ((S)~-- 
(diam S) u-~, the family C to be the family of  all balls, and the set A to be our M. 
The measure ~p occurring in the indicated theorem then must be our measure A. 
With this choice of  the objects the theorem asserts that 

l i m r  -N+I f lbl d V = O  
Mf~B(x,r) 

for A-a.e. xE B --  M. In virtue of  (6.11) the limit in the last equality is the same 
as the limit in (6.10), and hence (6.10) holds for A-a.e. xE  B --  M. However, 
since according to our definition of  M (6.10) holds at no point of  B --  M, we 
conclude that A(B --  M) ----- 0, and the proof  is complete. 

According to this lemma, we may concentrate our attention entirely on the 
complement of  the set of  Lebesgue points of  q since adding the points that do 
not satisfy (6.7) increases negligeably the size of  the set No from the point of  
view of surface integration. The set of  all Lebesgue points of  q will be the whole 
of  B if the flux vector is continuous, and that in turn is true if the flux Q is contin- 
uous in the following sense. A Cauchy flux Q of  class L 1 is said to be continuous 
if there are N linearly independent vectors nl  . . . . .  nuE 5 N-1 and continuous 
functions q* . . . . .  q~v on B such that 

Q ( S )  = f q* dA 
S 

for every planar material surface element S perpendicular to n i. 

Theorem 4. Let Q be a weakly balanced continuous Cauchy flux. Then its flux 
vector is continuous, and (6.1) holds for every material surface. 
This is essentially a result of  NOLL [5] under slightly weaker assumptions. (Note 
that Lemma 2 can be avoided completely if Q satisfies the conditions of  Lip- 
schitz continuity with respect to volume.) 

We conclude with another theorem generalizing a known result (NOLL [5], 
ZIEMER [3]). TO state the result, we say that a Cauchy flux is of class L ~ if there are 
N linearly independent vectors nl  . . . . .  nNC 5 N-I  and a constant C such that 

[Q(S) I ~ CA(S) 

for every planar material surface S perpendicular to one of the vectors n~ . . . .  , lrt N. 
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Theorem 5. Let Q be a weakly balanced Cauchy f lux  o f  class L ~176 Then there is a 
bounded function q* : B •  N-1 --> R such that 

Q(S) = f q*(x, n(x)) dA 
S 

for  every material surface S. 
The p r o o f  is based on essentially the same idea as the p roo f  o f  Theorem 3 and 

will be omitted. Note  again that  the present version o f  the result generalizes the 
existing ones since the condit ion o f  Lipschitz continuity with respect to volume 
is not  imposed and Lipschitz continuity with respect to area is postulated only 
for planar  material surfaces perpendicular to the vectors n. Also it is worth stress- 
ing that  the previous works use this result as an impor tant  intermediate step in 
proving the more  concrete results o f  the type o f  Theorems 3, 4, while here we have 
found a way to avoid use o f  the funct ion q*(x, n). Theorem 5 is included for  
completeness and to indicate that  no information was lost by following the path 
indicated in this paper. 
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