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1. Introduction 

It has been known since 1888 that many chemicals, upon heating, exhibit a 
phase which is ordered on the molecular level yet possesses the mechanical 
properties of a fluid. This so-called liquid crystal phase was classified by FRIEDEL 
into three types; smectic, nematic and cholesteric. All types consist of large, 
relatively rigid elongated molecules, the elongation giving rise to a preferred 
direction. The smectic type is thought to have a stratified structure, the molecules 
lying in layers with their long axes roughly normal to the plane of the layers. In 
the nematic and cholesteric type, however, the long rod like molecules appear to 
be free to move randomly, except that they align themselves approximately 
parallel to their neighbours. 

The theoretical description of these mesophases is still being developed. The 
OS~N-FRANK static theory for liquid crystals of nematic and cholesteric type, 
proposed by OSEEN [1 ] in 1929 and later modified by FRANK [2], has been successful 
in describing observed orientation patterns for these crystals* and, at present, is 
regarded as a reasonable static theory. In an attempt to describe the dynamical 
behaviour of these crystals, ERICKSEN proposed a simple continuum theory of 
anisotropic fluids. A review of his theory, together with some of its predictions, 
can be found in the treatise by TRUESDELL & NOLL [4, pp. 523 -- 537]. As ERICKSEN 
[5] pointed out, this theory, as well as that proposed by LESLIE [6], in which 
thermodynamic restrictions are considered, does not reduce to the OSEEN-FRANK 
static theory or a likely alternative. More general theories are required to remedy 
this defect and LESLIE [7, 8] has proposed such theories for liquid crystals of both 
nematic and cholesteric type. In this paper, we are concerned with the former. 

The viscometry of liquid crystals seems to be one area in which theory and 
experiment may be compared. LESLIE [7, pp. 279--281] has already considered 

* See, for example, EmCKSEN [3]. 
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an exact solution for shear flow between two parallel flat plates, a fixed distance 
h apart, one of which is at rest and the other moving with constant speed V along 
a straight line in its plane. In this solution, the orientation of the preferred direction 
varies, in general, with the distance from the plates, and, for a given material, the 
nature of this variation depends upon the product Vh. Defining an apparent 
viscosity ~/as the ratio of the shear stress producing the motion and the nominal 
shear rate V/h, LESLm found that ~/is a function of the product Vh for a given 
liquid crystal. Also, he showed that, when the argument Vh tends to zero, ~/tends 
to a limiting value, and when Vh tends to infinity, t/tends to a second limiting 
calue, which is in general different from the first. ERICKSEN [9] has shown that 
the scaling found by LESLm holds more generally. 

Since most of the experiments are conducted in either capillary tubes or 
Couette viscometers,* it is desirable to examine the predictions of LESLm'S theory 
for these flows. Arran & LESLIE [12] have considered an exact solution for the 
flow between two rotating coaxial circular cylinders. The results are similar to 
those found for shear flow. In general, the orientation of the preferred direction 
varies throughout the liquid crystal. The manner in which the orientation, as 
well as a suitably defined apparent viscosity, varies, depends upon the torque 
applied per unit length of either cylinder about the common axis and upon the 
ratio of the radii of the cylinders. Couette flow has also been considered by 
CURare [13]. 

In this paper, we consider the flow due to a pressure gradient in both a stationary 
capillary tube and two coaxial stationary tubes, all cross sections being circular. 
We also mention briefly the case when the outer tube moves with a constant 
velocity whilst the inner tube remains stationary. 

After outlining LmLm'S theory in Section 2, we apply it, in Section 3, to a 
possible exact solution of the governing equations for the flows under consideration. 
For the two coaxial tubes, we find that it is possible, under assumptions specified 
in Section 3, to establish the existence and uniqueness of this particular solution. 
At this stage we restrict our attention to orientations of the preferred direction 
below a critical angle 0o .** For the flow in a capillary tube, the type of solution 
considered here has been examined previously by ERICKSEN [14] and LESLIE [6] 
using their earlier theories. EmCKSEN found that a "plug" flow, in which the 
orientation of the preferred direction along the axis of the tube was parallel to the 
streamlines, was necessary for the stresses to be finite throughout the region. 
LESLIE eliminated this effect, which so far has not been observed experimentally, 
by thermodynamic considerations. However, he found that the orientation was 
constant throughout the region, thus making it impossible for the solid boundary 
to induce a different orientation to that of the mainstream. In the present analysis, 
we find that no "plug" flow is necessary, but, for finite stresses throughout the 
region, the orientation along the axis has to be parallel to the streamlines. We also 
show that solutions for the orientation having the required property at r =0 exist 
for finite r. However, we are unable to establish the existence of solutions satisfying, 
in addition, a specified boundary orientation on the tube. In Section 4, we consider 
a more general flow and adapt E~CKSEN'S scaling analysis to relate the measurable 

* See, for example, PETER • PETERS [10] and PORTER & JOHNSON [11]. 
** For definition of 00 see equation (3.13). 
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quantities in the two viscometers. For a capillary tube, the relation is found to 
agree with recent data obtained by FISI-mR & Fm~DSJCKSO~ [15] when the boundary 
orientation of the preferred direction is perpendicular to the tube. In the case 
when this orientation is parallel to the tube, there is still a discrepancy between 
the analysis presented here and the experimental data available. 

2. Basic Theory 
In this section, we outline the continuum theory proposed recently by LBSLm [7] 

for liquid crystals of the nematic type. 
As is customary in continuum theories, LESLm represents the preferred direction 

of these mesophases by assigning to each particle, occupying a place x* at time t, 
a vector (or director) d(x, t). Throughout this paper, we assume that 

d.  d =  1. (2.1) 

Further, we restrict our attention to isothermal flows, in which the liquid is 
incompressible and, for simplicity, we suppose that all external body forces, 
which influence orientation and motion, are absent.** The kinematic quantities 
required for the theory are the director gradient tensor, the director velocity 
vector w(x, t), the fluid velocity vector v(x, t), the rate of deformation tensor 
A(x, t) and the vorticity tensor O(x, t). In the absence of external body forces, 
the mechanical quantities, which are required to describe the behaviour of the 
crystals, are an intrinsic director body force vector g(x, t), a stress tensor r t) 
and a director stress tensor 7t(x, t). The latter tensor represents the surface forces 
which do work in changing the orientation and, theoretically, it is through this 
quantity that  solid boundaries may act to influence the orientation. Although no 
experimental data for such a force is available, it is known that, statically, the 
orientation can be influenced by surface actions. For example, when a liquid 
crystal is in contact with a glass wall the surface orientation can be influenced by 
rubbing the glass***. Finally we have the specific Helmholtz free energy F(x, t). 

The basic field equations of the theory were first proposed by ERICKSEN [17]. 
If we refer the motion of the continuum to a fixed system of rectangular Cartesian 
co-ordinates xl,  x2, x3 (the x-co-ordinate system) and use the conventional 
notation for the x components of the various vectors and tensors introduced, 
under our assumptions these equations take the form 

p (v~ + vv vi, v) = try ~, v, (2.2) 

p l ( ~v~-l- vp wi, p)= gi'l- ~zp~, p, 

* See TRU~SD~LL & NOLL [4, p. 37]. 
** For the analysis given in Section 3, ordinary body forces, which L~Lm [7, equation (3.1)] 

denotes by F(x, t), may be included, provided we assume that they are conservative. Equations 
(3.7), (3.9) and (3.10) are then modified in the obvious way. If these forces are included in 
Section 4, they have to be scaled appropriately (see, for example, ATKIN & LESLtE [12]). 

*** See BROWN & SHAW [16], Section X G. 
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where wi = tt~ + Vp d~, p. (2.3) 

The superposed dot notation denotes partial derivatives with respect to the time t 
and the comma notation partial derivatives with respect to the co-ordinates x~. 
Tensor indices take the values 1, 2, 3 and are subject to the summation convention. 
The symbols p and Pl denote positive constants. Further, the relation 

aj i - -~pj  di, p + & di = f f i j -  7tpi dy, pq- gi d1 (2.4) 

must hold. LESLIE also postulates a generalized form of the entropy-production 
inequality due to MiJLLr~R [18]. 

The theory is completed by postulating constitutive assumptions for F, g, o 
and n. Since the liquid is incompressible and the director is of unit magnitude, 
the stresses and the intrinsic director body force are indeterminate to a certain 
extent. Referring these quantities to the x-co-ordinate system, we therefore write 

tTji-~ - - P r i j + f f  j i ,  

7~ji=tjdi-~-~ji , ( 2 . 5 )  

gi = ~ di -- (tip di), p-I- gi, 

where J, ~ and ~ are referred to as the extra stress tensor, extra director stress 
tensor and extra intrinsic director body force vector respectively. The arbitrary 
scalars p (x, t), ? (x, t)* are called the pressure and the director tension respectively 
and are determined from the equations of motion. 

The arbitrary vector/~(x, t) is indeterminate. However, for problems in which 
either the couple stress** or the orientation of the preferred direction is prescribed 
on the boundary, its value does not affect the predictions of the theory, since it 
appears neither in the differential equations (2.2) governing the behaviour within 
the liquid crystal nor in the boundary conditions. For the problems which follow, 
we may therefore set p =0 without loss of generality. 

LESLIE simplifies his theory by assuming that the non-equilibrium parts of the 
extra stress tensor and the extra intrinsic director body force vector are independent 
of the director gradients and depend linearly upon the kinematic variables. This 
assumption, together with motivation from the entropy-production inequality, 
leads him to propose the following constitutive equations, 

^ 0F 
a j i=  --P ~ dp, i+ ~l dpd~Ap~dtd j+ It2 dj Ni+ Pa d iN j+  p4 Atj 

+115 djdeApi-F lt 6 d i dpApj ,  

OF (2.6) ^ 

7~ji=P Odi, j ' 

OF 
g,i = - p - ~ i  + 21Ni+ 22dpApi, 

* The quantity denoted here by 7 differs from the corresponding quantity in [7] by a term 
div p. 

** For definition see ERICKSEN [19]. 

15" 
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where the x-components of the tensors A and 0 and the vector N are given by 

2Au=v~ , j+v i ,  i, 2 0 u = v i d - v j ,  i , N i=wi+Opidp .  (2.7) 

LESLIE assumes that the specific Helmholtz free energy is given by 

2 p F = k22 dp, q dp, q + (k l  l - k 2 2 -  k24) dp, p dq, q 

+ (k33 - k22) dp dq dr, p dr, q + k24 dp, ~ dq, p. (2.8) 

Here we retain FRANK'S [2] notation for the codficients. 
Under our assumptions, the coefficients 21, 22; /.tj ( j = l ,  2, ..., 6) and kll ,  

k22, k33 and k24 are  constants. 21, 22; /lj ( j =  1, 2, . . . ,  6) have the dimensions of 
viscosity and 

21 ~--- ]22-- ~t3 , ,~2 =flS--f16 �9 (2.9) 

They are also restricted by the entropy-production inequality, which takes the form 

^ aF ^ aF 

LESLIE [6] has shown that this is satisfied if 

/~4>0, 2/~1 + 3~, +2(/~5 +~6) >0 ,  2/~,+~5+/~6>_-0 

~1__<0 ' _421 (2/~4+~5 +#6)>(~2 + p 3 _  22)2" (2.11) 

For the specific Helmholtz free energy to be positive definite, EmCKSEN [20] has 
shown that k l  1, k22, k3a and k2, must satisfy certain inequalities. Of these we note 

k11__>0, k33>__0. (2.12) 

EmCKSEN [21, 22] has suggested that two possible techniques for measuring 
some of the 2's and #'s are the observation of normal stress effects and the 
application of a magnetic field. This latter technique has been employed by 
MmsowIcz [23] for the compound p-azoxyanisole. For the same compound, 
SAUPE [24] has given estimates of kl 1, k22, k33 by measuring static deformations 
in the presence of a magnetic field and he found that k ~  and k33 are of the order 
of 10 -6 dynes. Since k24 does not appear in the governing differential equation, 
a new technique is necessary for its measurement.* From EmClCSEN'S [26] analysis 
of the so-called "twist" wave, which produces little or no motion of the fluid, 
p~ emerges in the expression for the attenuation coefficient of this wave. A technique 
for measuring this quantity could therefore yield estimates of P l- However, 
SAUPE [27] has suggested that the possibility of observing such waves may be 
remote. 

3. An Exact Solution 

One of the simplest viscometric flows is that in which steady laminar flow is 
caused by a pressure gradient along one, or more, tubes, the tube being stationary 
and of infinite length so that end effects can be neglected. In this section, we first 

* See ERICKS~N [25]. 
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consider such a flow, often called Poiseuille flow, through two coaxial circular 
tubes. Later we consider the case when the radius of the inner tube is zero. We 
also refer briefly to the case when the outer tube moves with a constant velocity V 
whilst the inner tube remains stationary. Henceforth, we refer the motion to a 
cylindrical polar co-ordinate system (r, ~b, z), the z-axis being along the axis of 
the tubes and, when necessary, use physical components of the vectors and tensors 
involved. 

One possible solution, which we now consider, is 

v,=O, v~=O, vz=v(r), 
(3.1) 

dr=sinO(r) ,  d~=0 ,  d~=cos 0(r) .  

Here we assume that the orientation for the steady flow remains in the (r, z) plane 
and makes an angle O(r) with the z-axis. This form for the components of d is 
motivated by the earlier work of ERICKSEN [14], where it was shown, using the 
simplified theory, that, for a steady solution, the flow tended to turn the directors 
into the flow plane. It is not clear whether a similar result is implied by the present 
theory. The solution (3.1) automatically satisfies the continuity equation (2.21). 

For  this solution, b~,  ~ ,  and ~ are functions of r only and the other 
non-vanishing constitutive equations (2.6) may be written in the form* 

where 

~r, = - f ( O )  {0'(r)} 2 _ (2 r)-1 (kl l  _ k22 - k2#) sin 2 0 0' (r) + h (0) v' (r) 

~, z = g(O) v' (r)  

o '~  = -- (2 r ) -  1 (k 11 - k22 - k24) sin 2 0 0' (r) - r -  2 kl 1 sin2 0 

2~z ,=  - f ' ( 0 )  {0'(r)} 2 +2  r -1 (kl l  - k22-  k24) sin 2 0 0'(r) 

+ {2g(0) + 21 + 22 cos 20} v ' ( r ) ,  

~,~ = { k l 1 + (ka a - k22) sin2 0) cos 0 0' (r) + r -  1 (k 11 - k22 - k24) sin 0 

~ z = - (k22 cos2 0 + ka a sin2 0} sin 0 0' (r) 

~r r = (kl 1 - k22 - k24) cos 0 0' (r) + r -  1 kl i sin 0, 

g, = y sin 0 -  (k a 3 - k22) sin 0 (0'(r)} 2 + �89 (21 + 22) cos 0 v'(r) 

g~ = y cos 0 -  �89 - 22) sin 0 v'(r ) , 

(3.2) 

(3.3) 

(3.4) 

f(O) = kl  1 c~ 0 + k a a sin2 0 

2 g(O) = 2#1 sin 2 0 cos 2 0 + (#5 - #2) sin2 0 + (P6 + ]'/3) cOs2 0 -]- [2 4 (3.5) 

4 h (/9) = (2#1 sin 2 0 +/ t  2 + #a +/is +/-t6) sin2 0. 

It follows from the inequalities (2.12) and the entropy-production inequality (2.10), 
which for the particular solution (3. I) reduces to 

g(0) {v'(O} 2 > 0, (3.6) 

* Throughout, the notation c'(t/), c"(rl) denotes dc/dtl and d2c[dtl 2, respectively. Also we 
have placed p= 0. 
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t h a t f  and g are non-negative functions of 0. We restrict our attention to the case 
when both functions are strictly positive. 

Finally, for the particular solution (3.1) the field equations (2.22, 3) reduce to 

d ~ , ,  1 ^ ^ dp 
d r  t- r (a" r - tr~ 4') ---~-~r = 0  

@=0 a~ 
d ^ ap  

--d--~ ( r trr z) -- r ~-~z = O , 

(3.7) 

d~, r  1 
d r  [ - r  ( ~ r ' - ~ ) +  g ' = 0  

~(r~rz)+rg~=0. 
d r  

(3.8) 

It follows from equations (3.7) that 

p = - a z + k ( r ) ,  (3.9) 

where a is an arbitrary constant, usually referred to as the specific driving force 
of the flow, and k(r)  is a function determined from (3.71). Solving for k(r) ,  with 
the aid of equations (3.21.3), we see that p is given by 

P = Po - a z + ~,,  + S { h [0 (s)] v ' ( s ) - f r  [0(s)] (0'(s)}2 t- k ll sin 2r  3 0 (s) j~ ds ,  (3.10) 

Po being an arbitrary constant. Integrating equation (3.73) and using (3.22) , (3.9) 
we have 

1 b 
g(O) v ' ( r )= - - ~ a r  + - f  , (3.11) 

where b is an arbitrary constant. Unless otherwise stated we take a and b to be 
non-zero. Two further differential equations are obtained on substituting (3.3) 
and (3.4) into (3.8). Eliminating y from these equations, we obtain 

where 

2f(O) 0" (r) +f ' (O)  {0' (r)} 2 + 2 r -  i f(O) O' ( r ) -  r -  2 k l 1 sin 20 

+ 2 2 ( c o s 2 0 - c o s 2 0 o ) V ' ( r ) = O ,  (3.12) 

41 (3.13) cos20o = 22 " 

Henceforth we assume that 

1&~l~l&21#o (3.14) 
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so that the angle 0o is real. This assumption is equivalent to that used by ERICKSEN 
[14, 21] and by LESUB [6, 7]. The angle 0 o has arisen in previous analyses of 
"Poiseuille" flow in a capillary tube using the simpler theories of ErdCKSEN [14] 
and LESLIE [6]. In particular, LESLIE [6] found that, for a solution of the type (3.1), 
his simpler theory predicts that the angle, which the orientation of the preferred 
direction makes with the z-axis, is 0 o throughout the tube. LESLIE [7, p. 279] has 
also shown that, for the particular solution he takes for simple shear, it is the 
orientation predicted by this theory for crystals flowing at large distances from a 
solid boundary. 

(i) Existence and uniqueness of solutions of (3.11 ), (3.12)for two coaxial cylinders 
of radii rl, r 2 ( 0 < r  1 <r2). Eliminating v'(r) from equations (3.11) and (3.12), we 
obtain the differential equation 

2f(0) O"(r)-t f '  (0) {0'(r)} 2 + 2 r- if(O) O' ( r ) -  r -2 k~  sin20 

+22 (c~176176 g ( O )  ( _ l a r + b )  =0 .  (3.15) 

We first investigate the existence of solutions of this equation subject to the 
boundary conditions 

O(rO=01, 0(r2)=0~. (3.16) 

Throughout this subsection, we restrict our attention to orientations which satisfy 
the inequalities 

IO(r)l<Oo 0<0o~7r/2, (3.17) 

so that, in particular, 0i (i=1, 2) satisfy (3.171). These restrictions are necessary 
in the argument which follows. 

Making the logarithmic substitution 

r= r 2 e -~, O(r)=O(r2 e-~)d~'O(~), (3.18) 
so that 

O'(~) = -rO'(r) ,  O"(r (3.19) 

we may rewrite (3.15) in the form 

O"(~)=G(~, O, O') de-f" 1 [(k~l kaa) 
f(O~ 2 s in20  {O'(~)}2 

1 (cos 2 0  - cos 20o) ] (3.20) 
+-2 -kx~ sin20+h(~) g(O) J ' 

where 
h (~)def. 2 2/'2 e-  q 

2 ( 2 r ~ e - 2 r  " (3.21) 

In terms of the new variable ~, we are interested in the existence of solutions 
of (3.20) on the interval [13, ~1] subject to the boundary conditions 

0(0)=02,  O(~1)=01, (3.22) 

~ =loge(r2/r~) being the value of ~ corresponding to r =rl .  
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Existence Theorem. Let Oi ( i=1,  2) be constants which satisfy (3.171). Then there 
exists at least one solution 0 ( 0  of equation (3.20) which satisfies the boundary 
conditions (3.22) and is such that ] 6) (0  [ < 0o. 

Proof. Sincef,  f '  and g are bounded functions of 6), it follows from (3.20) that 

(i) 16)"1 < ~r [ 6)'12 + &,  (3.23) 

where d and & are positive numbers. Also, recalling the inequalities (2.121), 
(3.172), we see that 

(ii) G(~, 0o, 0 )>0 ,  G(r - 0 o ,  0 )<0 .  (3.24) 

For  a function G with the properties (i) and (ii), the scalar version of Theorem 5.1 
[28, p. 433] ensures the existence of a solution O (0 ,  which satisfies the conditions 
of the theorem. 

Uniqueness Theorem. Suppose that the constants which appear in equations (2.6), 
(2.8) and (3.11) satisfy* 

(a) p ~ < 0 ,  ]AS - -  112 - -  p 6  - - /A3 > - -  2/A1 > 0 ,  

(b) kl l  ~_~k33 , kl 1::~ 0, 
(c) ~ >0, (3.25) 

(d) 2 z r 2 ( ~ - r 2 + l b l )  <k''c~176 , 0o4:7r/4. 

Then there exists at most one solution 6)(0 of equation (3.20) which satisfies the 
boundary conditions (3.22) and is such that I 0 (01 < 0o. 

Proof. We first show that, for fixed (~, O'), the inequalities (3.25) are one possible 
set of sufficient conditions which ensure that G is a strictly increasing function 
of O on the interval [ - 0 o ,  00]. In view of (3.172) and (3.25c, d), we confine our 
attention to 0 < 0o < 7r/4. 

Since, under our assumptions, both s i n20  and [ f (O)]-1  are strictly increasing 
functions of O on this interval, it suffices to show that 

dee. 1 (COS 2 0  -- COS 200) (3.26) 
H(r  g(O) 

is a strictly increasing function of O for fixed ~. We define 

OH h ( 0  sin 2 (9 
K [ h ( O ,  O] =-~-~-=kl l  c o s 2 0 -  2[-g(O)] 2 (3.27) 

�9 [4g(O)+(cos26) - cos2 0o) (2#1 c o s 2 0  +#s  --P2 --/16 --#3)] ,  

* Assumption (a) is an additional constraint in the sense that it does not appear to follow 
from the inequalities (2.11). Since, as we shall see later, the value of b depends upon the radii of 
the tubes and the boundary conditions for v(r), assumption (d) is a restriction on all these 
quantities. 
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and note that 

K[h(0, e]=K[-h(O, - e l ,  K [h(~), 0]=kit >0. (3.28) 

Under assumption (a), the function appearing in the square brackets is an even 
positive function of O with minimum and maximum values occurring at 0 
and 0o respectively. Thus, if either 0 < O < 0 o  and h(~)<0 or - 0 0 < O < 0  
and h(~)>0, it is clear, since k l l c o s 2 0  is positive in each range, that K is always 
positive. In general, for any fixed ~, h (0  can be positive, negative or zero. In view 
of (3.28), to establish the result in the remaining cases we need only consider 
h (~) > 0 and 0 < O < 0 o . Now g(O) satisfies the inequalities 

[16 + # 3  +[24 <g(O) < g(0o). (3.29) 

Further, since 0<0o <r  r/4, cos 2 0  is positive for 0<  O <0o with its minimum 
value occurring at 0o. The maximum value of s in20 also occurs at 0o. It now 
follows that the minimum value taken by K on the interval [0, 0o], for fixed ~, is 

2 h (O sin2 0o g(O o) (3.30) 
k t t c ~  (g6 ..~/23 ..~/24.) 2 ' 

which can be shown to be positive under assumption (d). We therefore see that, 
for fixed ~, K is positive and hence, for fixed (r O'), G is a strictly increasing 
function of O on the interval [ -0o ,  00]. 

Suppose now that there exist two solutions 01(~), 02(r of equation (3.20) 
which satisfy the boundary conditions (3.22) and are such that I Oi(01<0o 
(i= 1, 2). If ~ ( ~ ) = 0 1 ( ~ ) - 0 2  (~), then ~v satisfies the boundary conditions 

V(0)  = ~ ( ~ 1 )  = 0 (3.31) 

and the differential equation 

~"(r 01, O'~)-G(~, 02, O~). (3.32) 

Equation (3.32) may be written in the form 

~"'(0 = ~ - ~ -  

where the notation used in this equation is defined by 

1 
~(~) = j'~(~, sO1 +(1 - s )  02, sO~ +(1 -s) 0'2) ds (3.34) 

0 

[28, pp. 97 & 426]. 
Since the function ~(~) satisfies (3.31), on the interval [0, ~t] ~ can be zero, 

have at least one positive maximum or one negative minimum. We consider the 
possibility of a positive maximum. A negative minimum may be treated similarly 



234 R.J. ATKIN: 

by replacing ~ by - ~ .  Suppose at # =#0 there is a positive maximum, then at 

this point ~ '  =0 and ~ "  < 0. However, from equation (3.33), since (d G/O 6)) > 0 
we see that when ~ '  =0, T"  >0,  which is the required contradiction. We therefore 
conclude that there exists at most one solution having the required properties. 

Although we have proved uniqueness under assumptions (3.25a to d), it is 
elear from the proof that they may be replaced by any conditions, which ensure 
that G is a strictly increasing function of 6) on the interval [ -0o ,  0o]. 

Finally, we consider the velocity field v(r). Assuming that the fluid adheres 
to the tube and that the inner tube is stationary, it follows from (3.11) that 

1 r r v(r)=----a S sds ~-b S ds (3.35) 
2 ,,  g[O(s)1 sg [O(s)]  " 

We now consider whether b can be chosen so that 

(A) v(r2)=0 and (B) v(r2)=V, (3.36) 

where V is a constant. 

(A) Since the solution (3.35) is to vanish at both boundaries, there must be at least 
one turning point on the interval [rl, r2]. Clearly, from equation (3.11), this 
requires that a and b have the same sign. In this case there exists one such positive 
turning point rc given by 

2 2b 
rc = (3.37) a 

We also require that 
2 2 < r 2 " (3.38) rl <rc= 

Since g[O(s)] is positive, using a mean value theorem*, we have 

v(r2)=(--larl1-t--~2 ) i 2 grO(s)]ds , (3.39) 

where ~/1, ~/2e [rl, r2]. Thus, by choosing b such that r~ =rh ~/2, the solution (3.35) 
satisfies (3.36A) and (3.38). 

(B) For (3.35) to satisfy v(r2) = V the appropriate choice of b is 

2___b_b= r 1 1 2 V + i ~  ' sds } (3.40) 
a ,'2 ds ( a ,., g [0(s)] " 

s g [0 (s)] 

Thus, given the geometry of the viscometer, the velocity V and the pressure 
gradient, in theory, b can be computed for all boundary velocities. In this case, 
there is no restriction placed upon the sign of a and b, although their signs do 

* If f is a real continuous function on [cq p], and g is a non-negative function integrable 
over [~, p], then there exists an t/~ [~,/~] such that 

# # 

~ f(x) g(x) dx=f(tl) ~ g(x) dx. 
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affect the bahaviour of (3.35). Alternatively, since the integrals are positive, the 
behaviour of the solution depends upon the sign of Via. I f  Via is positive, it can 
be shown, by the previous mean-value theorem, that r c >=rl. The solution (3.35) 
then either has a turning point or is monotonic depending upon whether rc <r2 
or r~ > r2. I f  Via is negative, there are two possibilities depending upon the relative 

I" 2 

magnitudes of I V/al and �89 S s ds/g[O(s)]. When 
r l  

_~ 1 "~" sds 
> - -  J (3.41) 

2 ,, g [ 0 ( s ) ]  

the solution is monotonic but is of the opposite sign to a. In the opposite case, 
it can be shown that re<re and that the solution (3.35) is monotonic or has a 
turning point depending upon whether r~ < ra or r~ > r~. 

Combining the previous results, we conclude that, for flow between two 
coaxial circular tubes, there exist solutions O(r) and v(r) satisfying the required 
boundary conditions, provided we restrict our attention to orientations less than 
0o ~ [0, rr/2]. In the case when both tubes are stationary we also require a and b 
to have the same sign. Further, if the assumptions (3.25) are satisfied O(r) is unique. 

(ii) Existence of solutions of (3.15)for a capillary tube of radius r 2 . The physical 
requirement of finite pressure and stresses throughout the region O<r<-r2 leads 
us to put b identically zero and to consider the existence of solutions of (3.15) 
which are 0(r) as r-~0. At present, it does not seem possible to establish the 
existence of a solution of the two point boundary-value problem with the above 
property by considering a solution 0 ( 0  of (3.20) on the interval [0, m). We 
therefore adopt the approach given below and first consider the existence of such 
a solution in the neighbourhood of r =0. 

Rearranging equation (3.15), we see that it may be rewritten in the form 

r 2 0" (r) = L(r 0', O, r), (3.42) 
where 

L(x ,O , r )=-  f'(O) x 2 _ x  q k~l sin20 + l a 2 2  (cos20-cos20o)  r3 (3.43) 
2f(0) 2 f(O) f(O) g(0) 

= ~ s ~, Lpq, x'O' (3.44) 
p=o~=os=o ptq!s----------~, r', 

and 
ap+q+s 

Lpq~=~.Oxp--~-~r ~ L(x, O, r)}o. (3.45) 

The suffix 0 indicates that the partial derivative is evaluated at the point (0, 0, 0). 
In the analysis which follows, we require the results 

L,oo = -Lo lo  = - 1  

L2oo=Lo2o=Looz=Lllo=Loll = L i t  1 =Lot  I = Loot =0. (3.46) 

These are obtained by direct calculation. 
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Adopting FORSYTH'S analysis [29, pp. 187--189], we assume a solution of 
the form 

O(r)=flr  + ?r2 + ru ( r ) ,  (3.47) 

where the coefficients f l(=0'(0)) ,  ? are constants and u(r) is O(r 2) as r -*0.  We 
are required to show that, for equations (3.42) to (3.45), a sufficiently smooth 
function u(r) exists and hence that (3.47) represents a possible solution. 

Substituting (3.47) into (3.42) to (3.44), equating powers of r 2 and using (3.46), 
we find that 

? =0.  (3.48) 

It then follows that our differential equation may be written as 

r a u"  (r) = - 3 r 2 U' (r) -t- 1r r a + r 2 Cg (u'(r),  u (r), r),  (3.49) 

where ~: is some constant. The function r2~ represents the terms remaining in 
(3.44) after the terms which are O (r a) and lower have been written out explicitly, 
taking into account (3.47) and (3.48). In particular, (~ does not contain linear 
terms in u(r) or u'(r). Since u(r) is O(r 2) as r ~ 0 ,  we can write 

u (r) = r w(r ) ,  (3.50) 

where the function w(r) vanishes when r=0 .  Then 

y ( r ) = u '  ( r ) = r w '  ( r ) + w ( r ) ,  (3.51) 
and since 

u"  (r)= y'  (r) , (3.52) 

the differential equation (3.49) is equivalent to the system 

r y'  ( r ) = t c r -  3 y + &(y, rw, r) 
(3.53) 

r w ' ( r ) = y - w ,  

where f~ does not contain linear terms in the variables r, w or y. This follows 
since originally ~ did not contain any linear terms in u(r) or u'(r). The equations 
(3.53) have the same form as the system considered by FORSYTH [29, pp. 45--52]. 
Further the roots of the corresponding critical quadratic (see [29], p. 45) are 
both negative integers. It therefore follows that, for sufficiently small r, there 
exists a unique power series solution w(r) of (3.53) and hence from (3.47) a power 
series solution 0(r) in this region. In fact there are infinitely many such solutions 
corresponding to different assigned values of ft. 

We have shown that infinitely many solutions with the required physical 
properties exist in a neighbourhood of r =0. Further it can be shown that, provided 
these solutions remain bounded, their first and second derivatives are also bounded 
for 0 _  r_< r 2 . It then follows* that they may be continued for any finite r. 

At present it does not seem possible to consider the existence of a solution 
which has the required property at r =0  and also satisfies a specified boundary 
orientation at the capillary tube. It seems likely that some restriction on the 
boundary data may be necessary, since it is not clear that every solution of 

* See Theorem 4.1 on p. 15 and the remarks on p. 19 of reference [30]. 
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equation (3.15) has a finite derivative at r =0. It therefore seems possible to pick 
out a boundary orientation which gives rise to a solution with this undesirable 
physical property. However, the detailed analysis of this conjecture awaits further 
study. The velocity field for this flow follows immediately from equation (3.11) 
once the existence of O(r) has been established. 

4 .  Scaling Analysis 

In a recent paper ERICKSEN [9] considered the flow of a given liquid crystal 
between two parallel flat plates, one moving with constant velocity and the other 
stationary, in which p, ),, v and d were allowed arbitrary spatial dependence. At 
the plates the fluid was assumed to adhere to the surfaces and the director was 
assumed to be given by constant vectors independent of the plate velocity and the 
gap width or, at most, varying with the product of these quantities. Further, 
EmCKSBN neglected the "molecular inertia".* By transforming the problem to 
that for a unit gap width, he was able to deduce, by scaling arguments, that a 
suitably defined apparent viscosity for this general flow is a function of the product 
of the plate velocity and the gap width. 

We now adapt this analysis to the case of a steady flow of a given liquid 
crystal between two stationary coaxial circular cylinders of radii r~, r2 (r~ <r2) , 
the flow being caused by a pressure gradient along their length. The variables ~, 
v and d depend upon r and ~b andp  depends upon r, ~b and z. Following ERICKSEN, 
we neglect "molecular inertia". We assume that the fluid adheres to the cylinders 
so that 

v = 0  at r = r  1 and r = r  2. (4.1) 

For the director we assume that 

d=dl  at r = r  x, d=d2 at r = r  2, (4.2) 

where the vectors d i (i= 1, 2) are given at the boundary. In view of our earlier 
assumptions these vectors are considered to be independent of the time and the 
axial distance so that the orientation of the preferred direction at the boundary 
can vary only with the azimuthal angle ~. They are also assumed to be independent 
of the pressure gradient along the tube. 

Let R, q~, Z and T be new variables defined by 

r = r 2 R ,  qb=q~, z=r2Z,  t = k T ,  (4.3) 

where k is a positive constant. Here, we have used the outer radius r 2 to scale the 
spatial variables. We could, of course, use the inner radius rx in which case 
analogous results are obtained. This scaling therefore transforms our original 
problem, in which both radii varied, to one in which the outer cylinder is of unit 
radius and the inner has variable radius R~ (=rl/r2). In the following, we do not 
scale the director. Denoting all quantities referred to this latter problem by a 
superscript 0, we have 

v = (r  2 k -  1) vo, w = k -  1 w o ( 4 . 4 )  

* The "molecular inertia" is the term used for the left hand side of equation (2.23). 
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so that 

grad v = k-  1 (grad v) ~ grad d = r21 (grad d) ~ 

Also, provided 
p = r ;  2 pO, ~ = r~ 2 ~0, k = r22 , 

we have 
~r =r22  ~r 0 , n = r 2 1 ~  ~ , g = r 2 2  g 0 . 

Let Q be the efflux emitted from the tubes in unit time, then 

r2 2 ~z 

Q= ~rdr S v~(r,~b)d~b, 
r l  0 

QO = j. R dR J v ~ 
R1  0 

Using equations (4.3), (4.4) and (4.61,3), we obtain 

= r~ 3 ~o,  Q = r2 Qo, 

where ~ denotes the pressure gradient along the tube. 

N = k-  1 N o. (4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Equations (2.2) form a system of seven partial differential equations for the 
seven unknowns p, ~, the components of the vector t and the two components 
of the unit vector d. Using (4.3), (4.4) and (4.7), we obtain the corresponding 
system for the unknownsp ~ yo, vo and d ~ Moreover, this new system has precisely 
the same form as the original system. Provided that, for a fixed material and a 
fixed wall orientation, there exists a unique solution of this new system, QO, ~o 
and R 1 are uniquely related so that 

QO = j ( R 1 ,  ~o) ,  (4.10) 

where J is some unknown function to be determined. Employing equations (4.9), 
we find 

Q = r2 J ( r l / r 2 ,  r a ~ )  (4.11) 

in the original problem. For the special case of a capillary tube of radius r2, this 
reduces to 

Q = r 2 J ( r a 2 ~ ) .  (4.12) 

The analysis presented here essentially separates into two parts. First, we 
transformed the system of differential equations into an equivalent system and 
secondly, we related the measurable quantifies, assuming that solutions of the 
equations existed. In the first part, the analysis goes through if p, ~, v and d are 
allowed arbitrary spatial and time dependence. Although we assumed that the 
vectors d~ (i = 1, 2) were independent of the pressure gradient, we now see, from 
equation (4.91), that it is possible to allow a dependence of the form r2a~. For the 
present analysis to proceed it is essential to neglect "molecular inertia". At the 
wall the "molecular inertia" vanishes since the vectors d~ (i=1, 2) are assumed 
to be independent of time and the fluid velocity satisfies the boundary condition 
(4.1). However in the mainstream neglecting the "molecular inertia" may introduce 
a restriction. 
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The  func t ion  J in the  above  is de te rmined  exper imental ly .  F o r  the  case of 
the  capi l la ry  tube  if we p lo t  Q/r2 agains t  r 3 ~  for  different  values of r2, and  if the 
above  theory  is relevant ,  we should  f ind tha t  one curve results.  The  recent  da t a  
ob ta ined  by  FISHER & FREDRICKSON [15] agrees wi th  this  p red ic t ion  when the 
wall  o r i en ta t ion  is pe rpend icu la r  to  the  tube.  However ,  in the case of para l le l  wall  
o r ien ta t ion ,  there  is a d iscrepancy between the analysis  presented  here and  the 
avai lable  exper imenta l  data .  
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