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This is a note about the solution of Riemann-type initial value problems for 
a single conservation law in two space dimensions. By using specific examples 
we exhibit new phenomena in the qualitative structure of solutions of hyperbolic 
conservation laws. There are good existence and uniqueness theories for the 
solution of a single conservation law in several space dimensions based upon  
the viscosity method [6], but the method gives one little insight into the qualitative 
structure of the discontinuity set of solutions. In one space dimension, the quali- 
tative shock phenomena which occur have been described by GELFAND [2-1 and 
BALLOU [1] and fit into the framework of regularity theorems [3, 4, 5]. The 
examples which we calculate here display new kinds of "rarefaction" phenomena 
which occur in the solution of equations in two space dimensions. 

The equation we study is the conservation law 

Ot 6~X1 CtX 2 

where f = ( f l ,  fz): IR ~ ]R 2 is a specified (non-linear) function. Global continuous 
solutions of the initial value problem will not exist for appropriate smooth 
initial data if f is not linear. Therefore, equation (i) is interpreted in the dis- 
tributional sense; namely, a function u: IR 2 x]R+-+]R is a solution of (1) if u 
satisfies the following integral identity: for every C ~ test function ~b: •2 x R + ~ 1~ 
having compact support 

u-~-+f~(U)~x+f2(u)-~x2=O. (2) 

VOLVERT'S existence and uniqueness theory [6] applies to this initial value 
problem with initial data in the class B V if functions of bounded variation (in 
the sense of TONELLI-CESARO). He proves that the solutions of these initial value 
problems also lie in the class B V. If a function g: R k ~  IR is in the class BV, 
then the singular set of g has locally finite Hausdorff ( k -  1) dimensional measure. 
Moreover, on the complement of some set of vanishing (k -1 )  dimensional 
Hausdorff measure, the singular set of g has a well defined normal and g has 
well defined limit values from the two sides of the normal. We shall call these 
points shock points to distinguish them from other singular points of g. 
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A function of u :  ~2  X ~ + ~ ]R in the class B V satisfies the integral equation (2) 
if it satisfies equation (1) at all regular points and if it satisfies the following jump 
condition at all shock points: 

f (Uz)- f (uO 
v - 0 .  (3) 

U 2 - -H 1 

Here v is the normal to the discontinuity set, and ul and u2 are the limit values 
of u on the two sides. 

Let u: IR z xF,--+IR be a function in the class BV which satisfies the jump 
condition. We say u satisfies the entropy condition if at every shock point we have 

v.f(u)< u-ux  f(u2)q --u2-u f(u O. 
g 2 - -  U 1 U 2 - -  U 1 

Here u 1 and u 2, ul < u 2, are the limiting values of u on the two sides of the shock 
point, v is the normal to the shock oriented toward the side of the shock set on 
which u z is the limit value of the solution, and u I < u < u 2 . See Figure 1. VOLPERT 
proves that there is a unique global solution of equation (1) in the class B V which 
satisfies the jump and entropy condition at all shock points and has initial data 
q~: ]R2 ---)- ~ .  in  the class BV. 

The initial value problems we shall consider are of "Riemann type" with 
piecewise constant initial data having discontinuities on three rays with vertex at 
the origin. See Figure 2. To aid in the construction of solutions we now derive 
some general properties of such solutions. 

In solving the initial value problem, we use the fact that our initial data is 
invariant under the dilations x ~ cx, c>0 .  Equation (1) is also invariant under 
dilations. Hence the existence and uniqueness theorem implies that the solution 
of (1) with our piecewise constant initial data is invariant under the dilations 
(x, t)--, (cx, c t), c > 0. This means that the solution is constant along rays having 
the origin as vertex. Consequently, the solution can be immediately determined 
by its restriction to any plane ~ 2  X {t}, t>0 .  We shall describe the solution by 
determining its restriction to the plane t = 1. 

At regular points of a solution u of equation (1), the equation can be inter- 
preted as the statement that u is constant in the direction 

8 
~ + al (u) ~ l  q- a2 (u) ~ 2  
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Fig. 2 

with a(u)=f'(u). If X is a vector field, we say that a function u is constant in the 
direction X if u is constant along the integral curves of X. Where u is smooth, it 
is constant along lines with direction 

These lines are called characteristics. Our procedure for constructing solutions 
is to find the characteristics; more specifically, we determine the shocks at which 
characteristics end or begin. 

If a(u) is bounded, another property of solutions of equation (1) is that the 
value of the solution at a given point (x, t) depends only on the initial data inside 
the ball of radius c t centered at x, where c is a constant depending only on the 
function a. If a (u) is not bounded, c may depend on the maximum and minimum 
values of the initial data. We use this result to assert that the value of the solution u 
far away from the origin in the plane N2x {1} can be determined by solving a 
Riemann problem in which the initial data has a single discontinuity occurring 
along a line. The solution of this simpler Riemann problem essentially reduces 
to the one dimensional case. 

Assume that piecewise constant initial data are given with a single discontinuity 
on a line I through the origin. Let the two values of the initial data be ~b 1 and ~b2, 
with ~b 1 < q~2, and let v be a normal to the line oriented in the direction towards 
which q~t is the value of the initial data. We have already remarked that the 
existence and uniqueness theorem implies that the solution of equation (1) with 
this initial data is constant on rays having the origin as vertex. Now the group of 
translations along l acts as another group of symmetries leaving (1) and the 
initial data invariant. Consequently, the solution of this initial value problem 
is constant on lines parallel to I. Hence the discontinuities are planes containing I. 
Except perhaps for points of l, all singular points of the solution will be shock 
points. To find the shocks and the solution, we proceed below as if we were solving 
the one dimensional Riemann problem. 
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Consider the graph of the function v .f :  [41,42]-~IR. From this graph, 
construct a new function j: [41 ,42]  ~ R ,  with j defined by 

j (u)= limsup ~ u 2 - u  f(ul)+ u - u 1  f(u2) }. (4) 
~1 ~Ul-----U-----U2~t~2 ~ ~/2 --Ul /'/2 --/ll 

See Figure 3. There will be an open set Uc(41,42) on which j(u),v .f(u). On 
each component of U, there will be a shock of the solution along the half plane 
containing l and 

0 f(u2)-f(ul) 
-~+ u2-ul ~x" 

Between each of these shocks the solution will take the value u on the half-plane 

containing 1 and 3---+a(U)~x-- Since j is a strictly concave function between 
c3t __  

the shocks determined above from U, the solution u is well defined between the 
shocks. Moreover, u has limit values from both sides of each shock and is such 
that both the jump conditions and the entropy conditions are satisfied. Note 
that the solution of the Riemann problem may have an infinite number of shocks, 
but only if v . f h a s  an infinite number of inflection points in the interval [41,42]. 
The regions between shocks are called rarefactions. 

Let us now return to "Riemann type" problems with initial data having 
three values 41, 42, and 4a in angular sectors centered at the origin. The general 
strategy will be first to solve the problem far away from the origin by using the 
solution of the Riemann problem considered above. This will be the correct 
solution outside some cone with vertex at the origin. Having solved the Riemann 
problem along each ray of discontinuity in the initial data, we then want to fit 
together (near the origin) the shocks of these three Riemann problems. Un- 
fortunately, there is no reason to expect the shocks emanating from the three rays 
of discontinuity in the initial data to have a common line of intersection. The 
typical situation is depicted in Figure 4. There exists a tetrahedral cone with 
vertex at the origin and faces contained in what appear to be the shocks of the 
solution, but unfortunately the points of the interior of the cone are on the 
"wrong"  side of each shock. 

Something more subtle must be done to fit the shocks together near the 
origin. We are not able to give a satisfactory procedure for doing this, but can 
derive certain qualitative properties of the solution and compute two examples. 
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The correct solution to the Riemann problem must agree with the values 
already found, except in some cone which intersects the plane R 2 x  {0} only 
at the origin. Consequently, any new shocks and characteristics that are introduced 
must begin either at the origin or at some positive time. Using the fact that the 
solution is constant along rays, we can derive equations which must be satisfied 
by such additional shocks and "rarefactions".  

Suppose (x, t) lies on a shock which has limit values ul < u2 on the two sides 
of the shock. The jump condition implies that the vector 

fl  (u2 ) - f l  (ua) ~ f2(u2)-f2(ux) - - +  
Ot u 2 - l l  1 ~ x  1 ~ u 2 - u  I O x  2 

is tangent to the shock. The vector 

O 0 0 
+ x  2 - -  t +x, 

is also tangent to the shock because the shock consists of lines passing through 
the origin. Consequently, the vector 

u 2 - u  x !OXl u 2 - u  a ! ~ x 2  

is tangent to the shock. 

A similar argument gives a differential equation to be satisfied in a conical 
region in which the solution u is smooth. Let R be such a region and let 5 ~ = R 
be a surface on which u is constant. 5 ~ is conical; therefore 

0 0 0 
+ x  2 - -  t x' ax2 

is tangent to 5 p. In addition, 5 p consists of characteristics. Hence 

Ot t-al(u) +a2(u) 0x---22 
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is tangent to 5 e. We conclude that 5 p is a subset of the plane spanned by these 
two vectors. In particular, 

(~__ al(u)) 63 Ix2 (u)) ~ 
~x1 + I t  - -a2 63x2 

is tangent to 5 e. 

In a plane t=cons tan t  (say t =  1), this gives us two vector fields relating 
equation (1) and the jump condition for a solution u. The entropy condition 
places additional restrictions on solutions. Let us now examine the nature of 
these restrictions. In a region R of the sort considered above, most of the char- 
acteristics cannot begin at the origin because the only set of characteristics which 
can emanate from a point are those which form a two dimensional set. Distinct 
characteristics with the same value of u must begin at different points. Conse- 
quently, most characteristics in R begin at some positive time. If a characteristic 
begins on a shock, the entropy condition implies that the characteristic will be 
tangent to the shock at its point of origin. Thus a shock from which characteristics 
emanate will be the envelope of the planes on which u is constant. The region R 
will be the union of portions of the tangent planes of the shock. 

If the characteristics inside a region of rarefaction do not begin on a shock, 
then they must begin on a set of codimension two. This set must be a ray y with 
vertex at the origin because the solution is invariant under dilations. R will be 
a union of portions of planes containing the ray y. Besides these there are no 
other alternatives for the origin of characteristics in a region of rarefaction. 

We summarize our discussion by listing several principles concerning the 
restriction of a solution to the plane t = 1: 

O: Almost all boundary points in a rarefaction region are non-singular points 
(in the sense of Hausdorff  1-dimensional measure). 

I: Far away from the origin the solution is given by solving a Riemann 
problem with a single jump discontinuity along a line. 

2: Inside each region of rarefaction, the curves u = constant are segments of 
lines passing through the points a (u). 

3 : A shock curve with limit values u 1 and u 2 at the point x has tangent vector 

f (Uz)-- f (Ul) X 
U 2 --IA 1 

4: In a compact  rarefaction region, each segment on which the solution is 
constant has one end which approaches the boundary tangentially or tends to a 
singular point of the boundary. 

Using these principles we construct the solutions of two specific Riemann 
problems. The solution of each will be described by its restriction to the plane 
t = 1. In each of these problems we have chosen the rays of discontinuity in the 

0 0 # 0 
initial data to be the rays generated by ~x '  0y '  and - ? - - ~ + ~  and the three 

w ~ 

values of the initial data to be 0, 1, and - 1 .  

Example 1. We consider the case f(u)=(u 2, -1 /3  u2). The initial data (given 
0 0 0 

by Figure 5) is 0 in the angular sector from to - w - + ~ - ,  1 in the sector from 
ux oy 
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0 
1 y=-~ 

v =  - d y ,  

Along - ~ y  we have 

v=dx, 

Along -~xx.+~V we have 

1 

0x ~-~y to -~yy,  and - 1 in the sector from -~yy to ~xx" F r o m  the rays of  dis- 

cont inui ty  in the initial data, we compute  the shocks which arise. Along  ~xx we 
have 

v . j - ~  , and  V . x  u ~ - u  1 -! - 1 / 3 .  

v . i : .  
\ u2 - -u l  I 

v = ~ ( d x + d y ) ,  v . f = - f f - u  , and v.  - -  - 
\ u 2 -- u I ! 3 

All three of the shocks de termined in this manne r  satisfy the en t ropy  con-  
dition. They intersect the plane t = 1 a long the lines y = 1/3, x = 0, and x + y = 2/3 
respectively. See Figure  6. To  obta in  the solution,  note  that  

f ( 1 ) - f ( -  1) 
- (0 ,  0). 1-(-1)  
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This means that any plane through the origin might contain a conical shock by 
principle 3 above. Thus we insert the segment from the origin to the point (~,g)x 1 

1 
in Figure 6. The normal for the corresponding shock is v=--~(dx-dy). Hence 

VZ 
v . f = ~ u  2 and the shock satisfies the entropy condition. The final solution 

restricted to the plane t = 1 is given by Figure 7. 

Example 2. In this example no rarefaction takes place along the shocks far 
away from the origin, but rarefaction does occur in a cone with vertex at the 
origin. Here j~r~u~-t• 2y-~2 ,• j and the initial data is again as in Example 1 and 
Figure 5. 

The shocks arising from the rays of discontinuity in the initial data intersect 
the plane t = l  along the lines y =  1/3, x = 0 ,  and x+y=5/6. See Figure 8. Each 
of these shocks satisfies the entropy condition. The line y =  1/3 also satisfies the 
jump condition as a conical shock from - 1 to 1. However, it does not satisfy the 
entropy condition since dy.f=�89 3 so that the segment joining the points 
( -  1, - 1/3) and (1, 1/3) lies on both sides of the graph of dy. f. 

To find the solution we assume that there will be a region of rarefaction with 
vertex at a point p=(0,  yo); y o > 0  (in the plane t= l ) .  The value of Yo is to be 
determined later. Inside the rarefaction region, the solution is to have the value u 
on lines joining (0, Yo) with a(u)=(u, u2). Inside the rarefaction region u will vary 
from 1 to Uo, where u o is a value of u for which the points 

f (uo ) - f ( -  1) 
(0, Yo), and a(Uo) 

u o + l  

are collinear. This line can then be a shock from u o both to - 1  and to the limit 
value from inside the rarefaction region. 

Finally, we compute the shock separating the rarefaction region from the 
region in which the solution is 0. This shock intersects the line y = 1/3 at a point q 
which depends upon Yo. The value of Yo is determined by the condition that q 
lies on the line through (0, Yo) and a (Uo). This yields the diagram of the solution 
shown in Figure 9. 

We now prove that Yo can be chosen so that q lies on the line through (0, Yo) 
and a (Uo). The slope of the line dividing the rarefaction region and the region in 
which the solution is 1 is (1-Yo). The equation relating u o and Yo is 

1 1 Yo = ~ - 3 ( U o -  1) 2. 
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curve of X 

The line through (0, Yo) and a(uo) intersects the line y =  1/3 at 

u~ 1)2 1/3) 
4u o - 2  ' 

On the interval (�89 1), the function 
(U 0 - -  1) 2 

i(u~ 4u o - 2  

is decreasing, with i(1)=0 and i(uo)~ ~ as u o ~�89 Since 

i_ 1 (�89 2 - ] , / 2 0 . 5 8 6  
4 

it follows that u o >0.58. This imples that Yo = 1 /3 -  1/3 (u o - 1 )  2 >0.27. 
It does not seem possible to calculate explicitly the integral curve Of the 

vector field determining the shock between the rarefaction region and the region 
in which the solution is 0, but we can make estimates of its behavior to prove 
that there is a value of Yo for which 

u ~  1)z 1/3) 
4u 0 - 2  ' 

is on this integral curve. 
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If Yo is specified, then the line from (0, yo) with slope (1 -yo)  intersects the 
line x + y = 5/6 at the point 

( 5 - 6 y o ,  5+yo  
r = \6 ( 2 -  Yo) 6(-2~y-Yo)! ' 

which lies between the points (!,  1 3 5) and ( 3 ,  ~5)- The shock will then contain 
the integral curve of the vector field X ( x ,  " ,1 u x 1 u z , Y) = t-2 - , ~ - y ] ,  where (x, y) and u 
are related by the equation 

Y - Yo _ u2 - Yo 
X U 

This equation yields 

u y _ y o _ l | / [ y _ y o ]  2 
+4yo. 

We assert that X is never tangent to the line through (0, Yo), (x, y) and (u, u z) 

along the integral curve through r. Indeed this could happen only if the equation 
y- - �89  2 y - - u  2 

were also satisfied. Solving these equations yields 3 y = (4 x -  u ) u  
x - - l u  X- -U 

U 2 
and Y - Y o -  x ( u Z - Y ~  " Hence y o = ~ - < 0 .  Therefore, X is not tangent to the line 

u = constant since Yo > 0. 
In particular, this implies that X is transverse to the segments in the rarefaction 

region on which u is constant. Moreover, the y component of X is l u Z - y ,  which 
is negative and bounded away from 0 if ue(�89 1) is bounded away from 1 and 
y__> 1/3. Along the line x +y- -5 /6 ,  X is transverse and points down to the left. 
From these considerations we conclude that the integral curve of X intersects 
the line y =  1/3 in the interval between (0, 1/3) and (�89 1/3). 

Clearly X varies continuously with Y0. Hence there is a value of yoe(0, 3) 
such that the integral curve of X through r intersects the line y = 1/3 at the point 
( i (yo) ,  1/3). We now insert this value of Yo into our construction and thereby find 
the required solution. 

The only thing which remains to be proved is that the entropy condition is 
satisfied on the shock separating the rarefaction region and the region in which 
the solution is zero. At each point along the shock the normal of the shock 
restricted to the plane t = l  is of the form c ( d x + b d y ) ,  where c > 0  and b < l .  
Thus v . f = c ( � 8 9 1 8 9  Since the function v . f  is convex on the interval (0, 1), 
the entropy condition requires only that 

[ 1 b 2 2 or  u+su < u + b u  
u - O  ! 

This will be satisfied if b > - 3 / 4 u .  The value of b is determined from the vector 

field X to be b = x -  u / 2  Hence the entropy condition requires 
y -  u2/3"  

x - u / 2  
y__u2/3 < 3 /4U.  
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Us ing  this re la t ion  and the re la t ion  

X -  Y - Y 0  u, 
u2 - Y0 

we find tha t  the en t ropy  cond i t ion  will be satisfied if u 2 > y  a long  the shock.  If  
it h a p p e n e d  that  u 2 =  y, then x = u. But x <0 .5  < u. We conc lude  that  the en t ropy  
cond i t ion  is satisfied a long the shock separa t ing  the ra re fac t ion  region f rom the 
region in which the so lu t ion  is 0. This comple tes  the p r o o f  that  the en t ropy  
cond i t i on  is sat isfied for our  solut ion.  

The  above  examples  i l lus t ra te  very clear ly that  solving the ini t ial  value  
p r o b l e m  for a single conse rva t ion  law in more  than  one space d imens ion  by 
geomet r i c  techniques  involves compl i ca t ions  not  encoun te red  in one space 
d imension .  One  wou ld  hope  that  for "gene r i c "  conse rva t ion  laws and  ini t ia l  data ,  
the so lu t ions  wou ld  be piecewise smooth .  Even for piecewise cons tan t  ini t ial  
data ,  however ,  this is not  settled. F u r t h e r  bar r ie rs  to p rov ing  such theorems  arise 
f rom the a p p a r e n t  difficulty in reconci l ing  the en t ropy  cond i t ions  for shocks  
which  lie in different  d i rect ions .  

Added in Proof The author thanks B. KEYFITE for finding a mistake in his original calculations. 
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