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Abstract 

We consider the equation div (IVul~-2Vu) + ]ul ~-1 u = 0 for p ~ N, 
0 < p - 1 < q. We study the isolated singularities and the behavior near in- 
finity of  nonradial positive solutions when q < N(p -- 1)/(N -- p), and give a 
complete classification of local and global radial solutions of any sign, for any q. 

O. Introduction 

In this article we study essentially the doublY nonlinear equation in a regular 
domain $2 of BN: 

Ap,~ + lui~-1 u = 0, (0.I) 

where p ~ N, q > p --  1 > 0, and Apu is the p-Laplace operator:  

Apu = div (IVu [p-2 Vu). (0.2) 

When p----2, equation (0.1) has been intensively studied. When N >  2, 
two critical values N / ( N -  2) and (N + 2 ) / ( N -  2) appear. The first studies 
in the radial case are due to EMI)EN; then FOWLER [7] [8] [9] gave existence results 
and a full classification of  the global radial solutions in R N or RN/[0). Recently, 
NI, McLEoo & SrRmN [16] give other methods to study equations of  such a kind, 
using Pohojaev type identities and new techniques for oscillating solutions. In 
the nonradial case, the study of positive solutions near the origin is made by 
LIONS [15] when q < N / ( N -  2), AVILES [2] when q = N / ( N -  2); then GIDAS 
& SPRtlCK [11] give local and global results when q < (N + 2)/(N --  2); CArFA- 
arLLI, GIOAS & SeRUC~: [6] have just extended them to the critical case q---- 
(N + 2 ) / ( N -  2). Nothing is known when q is greater. 

In the general case p > 1, the first results in the radial case for positive solu- 
tions are due to NI & SeRRIN [18] who pointed out the existence of the critical 
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values 

Qt = N(p -- 1)/(N -- p), 02 = (N(p -- 1) -+- p) / (N  -- p) ,  (0.3) 

when p < N. Then GUEDDA & VERON [12] studied the global existence and the 
behavior near the origin for radial positive solutions and q < Q2. They ob- 
tained some results also in the nonradial case when q < Qt under conditions of 
majorization or integrability of u near the origin. 

In this paper we study first the isolated singularities and the behavior near 
infinity in the nonradial case, when p < N and q < Q~, or when p = N. Then 
we prove an exhaustive description of all the radial solutions of the equation, 
regular or singular near 0 or infinity, without any condition of sign, for any value 
of  q. 

In Section 1 we deal with the nonradial case. We extend the results of BREZIS 
& L~ONS [5] and LIoNs [15]. Our first result is the following: 

Suppose p < N and 0 ~ [2. Le t  u be a continuous nonnegative function, p- 
superharmonic in [2/(0}, with [Vu [ s and A ,u  locally integrable in [2/(0}. Then 
uP-I E MN/(N--P)([2), IVU[P--1 ~ MN/~<U-')([2) and u satisfies 

--Apu = g + fl ~o, (0.4) 

in the sense o f  distributions in [2, where g C L]oc(~2), fl ~ 0 and 6o is the Dirac 
mass at the origin. 

Then we deduce from [12] and [20] conclusions about singular solutions of 
equation (0.1): 

Suppose p < N and q < QI, or p = N. Let  u be a nonnegative continuous 
solution of(0.1) in O/{0}. Then either u is regular in [2 or there is an o~ > 0 such 
that 

lim u(x)/l~(X) = o~, (0.5) 
X-~-O 

where # is the fundamental  p-harmonic function in RN; and u satisfies (0.4) with 
g = u q and fl = o~ p-1. 

Moreover we give estimates of u -  /~ extending those of [15]. 
Concerning the exterior problem, we prove the following: 

Suppose p < N and q ~ QI, or p = N. Then any nonnegative continuous 
sohttion u of(0.1)  in an exterior domain Ixl > R is identically zero. 

This result was known for radial u from [12]. 

In the other sections we study the radial case. Equation (0.1) takes the radial 
form 

rl--N(r N-I lurl -- -Ur)r + lu l  q - '  U = O, (0 .6 )  

for the function r = I x l ~ u(r). 
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In Section 2, we verify that any solution is defined in (0, q - ~ )  or [0, q-c,~) 
and give equivalent forms of  the equation. The most useful change of  variables, 
u(r) = r -p/~q+l-p)w(t) with t = - -Log  r, reduces the equation to an autonomous 
one. We write it as a system: 

wt : - -pw/(q  + 1 - -  p) + [y I C2-~')/<'-~ y, 
(0.7)  

Yt = - -  l w ]q-I W --~ ( N  - -  pq/(q q- I - -  p)) y .  

We give two energy functions fundamental for the study. 
In Section 3 we study the behavior of any solution near the origin when 

p < N, and q is not  critical. The energy method appears to be more effective 
than phase plane techniques used in [12]. We also give properties of  oscillating 
solutions with the technique of [16], extending the former results [9]. 

In Section 4 we study the behavior near infinity (p < N, q not critical). We 
make another change of  variables which reduces the study to the former one when 
q is greater than Q::  let fi(s) -- - r  u -1  ]Ur] p-2 Ur, with s = r-~fi,, �9 = ( N - -  p) 
( q - Q i ) / ( p -  1) (qq-  1); then lim s : 0 ,  and (0.5) is reduced to 

s I - - N ( s N - - I  I~ls [p--2  ls) s _/1_ ---- 0 ,  (0.8)  

where ~ : (q + 1)[q, ~ : 1/(p - -  1); N =  ff § N/rq  need not be an integer. 
Note in particular that when q = 1 and p < 2, equation (0.1) reduces in the 
radial case to a semilinear elliptic equation with linear principal part. 

In Section 5 we study the global regular or singular solutions (p < N, q not 
critical): what connexions are possible, what connexions do exist. The classifica- 
tion is similar to the one of FOWLER [9]. 

In Seetion 6 we study the global behavior in the critical cases q ---- Q~, q --- Q2. 
In Section 7 we study the case p : N. 

1. Non-Radial Results 

Let N >  1 be an integer. Set BR(x) = {y6RNIIy-- xl < R} for any 
x E R N, R > 0, and B R = BR(O), B'R = BR/(O}. Our main result is the following: 

0 t Theoreml.1.  Let  l ~ p ~ N  and R ~ O .  Assume that u E C  (B~), VuE 
p t ] t t r 

Lloc(BR), Apu E Ljoc(BjO in the sense o f  D (B'R), and 

u >: O, Apu <: 0 a.e. in BR. (1.1) 

7t,tU/~N-p)ru ~ [Vu[P-16 ~N/~N--I)tU ~ and there are a g 6  L~o~(BR) Then uP--I  ~ Z'~loc ~,X~R), ~'~loc \'~ 
and a t3 >~ 0 such that 

--ApU = g q- 13 ~o in D'(BIO. (1.2) 

This result has been proved in [5] by linear methods when p = 2. In the 
general case we use nonlinear techniques introduced by SERRIN [19], [20], TRU- 
DXN6ER [22], also used in GIDAS & SPRUCK [11], and the study of equations with 
second member in L 1, given for p = 2 by BENILAN, BREZIS & CRANDALL [4], 
and for p ~ 2 in [3]. We prove Theorem 1.1 in four steps. 
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Lemma 1.1. Let g(x) ------ --ApU(X), a.e. in B R .  Then gE L~or and for any 
~T E D(BR), 0 <= ~ <~ 1, ~(x) = 1 near x----O, 

f g~" dx <= f IVulo~zVuV(~9 dx. ( 1 . 3 )  
BR B R 

Moreover, for any 9 ~ R, there is a c a > O such that 

. f 1Vu]P dx <= c~or Y k :> O, Vow> 0. (1.4) 
Bof~{k < u < k  + a } 

Proof; From the definition of g we have 

f gckdx= f IVu[p-2VuVtkdx, (1.5) 
B R B R 

for any 4)E WI'~176 with compact support in BR. Set pk.~(t) ---- min ((t -- k)+/ 
~,1)  for any t ~ 0  and k ~ 0 ,  o~>0.  Let 0 < Q < R  and e < 0 / 2 .  Let 

ED(BR) be such that 0 ~ / ~  1, B(x)=  1 on B e , and ( ~ = ~ B ,  with 

C/e. Then the function ~ ~ (1 --p~,~(u)) (~ is admissible in (1.5), and we get 

1_ f f g(! - -  pg,~(u)) ~ dx + l(~ Vu f dx 
BR 06 {k<u.<k+c~) 

= f (1  -pk,~(u)) lVuf-ZVuV(r (1.6) 
B R 

Taking first a -- 1 and adding the equalities for integer k = 0, 1, . . . ,  n, be- 

cause 2 ( 1 - - p k 3 ( t ) ) = ( n +  l - - t )  + we get 
k = 0  

=< f (n § 1 -- u) ]Vut "-2 VuV(n 0 dx 
{.<;,+ 1} 

§ p f. (n § 1 -- u ) I ( ~ V u f - '  IV~,I dx. (1.7) 
{u <n  + I}AB2e 

Now for any real h > 0  we have n +  1 - - u ( x ) > ( n +  1) h / ( h +  1) a.e. in 
{ n §  
u < h - - ~ J ;  hence, dividing by n + 1, we show that 

h 1 
h+l f g:P~dX§  I:~Vu['dx 

n4-1~ 
"< h--g-T) 

p'  
+ (p - l)/~ ~.<f+~ 

) IV. I ~-~ Vu v(n,) dx 
n -Tu 1 Jr- p {u<n+l}AB2ef" 

u) 
n + 1" IVulp-~VuV('/')dx 

I~ Vul" dx + ~-" f IV~l'dx, 
B2, 

/~, v . l ' - '  [v~,r & 
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for  any fl > 0, by the H61der inequality. N o w  choosing an adequate  fl, we get 

h 1 
h 4 -  l{u < }gg'fdx+2(n-~. 1)(u<f+,} 

~ ~) n -  1 [Vul'-2VuV(~P) dx + c (n -  I)P-1CPe'q-P' 

where c = c(N, p). N o w w e  make  successively e ~ 0, n -> + c o ,  h ~ + o ~ .  With 
Fa tou ' s  l e m m a  we get g~?PEL~(BR) and it satisfies (1.3); hence gEL~(B~), 
g E L:oc(BR). Moreove r  we have, for any integer n, 

f IVu[ ~ d x ~ 2 ( n + l )  flVulP-'lV('ff)! dx. (1.8) 
{u<n-,- }('~Bq B R 

Now take any k > 0, a > 0 in (1.6). Then f rom (1.6) and (1.8), 

• f 
Og {k<u-:-k<a} 

r iVu[" dx 

< f IVul " - '  Iv(n')l dx + p f 
B R {u < k  + . ',},"SB2e 

IVul ~-~ IV~ dx 

N - p  

f !Vul ' - '  Iv(n~)] dx + "~Ce " 
B R 

-(  f !vu},-, !v(~')i ax ; 

where ~ = ?(N, p, k, ~). As e ---> 0, we get (1.4). 

Remark. The est imate (1.4) is the keystone in p roo f  of  est imates in Marc in-  
kiewics spaces for  equat ion --Apt, = f 6  LI(B~), v E WoLP(BR); see [3]. Here  we 
need also some est imates of  u; this is done  in next lemma.  

L e m m a  1.2. For any 7 E (0, QI),  uY E L]oc(BR) and there is a C = C(V, N, p, u) 
such that, for any small a, 

f u ~ dx < Ca N- N- .  : p---l ~ (1.9) 
Bo 

Proof .  Here  we use a test function 4~ introduced by SERRIN [19] tO est imate 
the min imum of  u on spheres of  radius a, and then the weak H a r n a c k  inequality. 
Let  Ca = 2 max u(x) and ~ = u - -  Ca. For  any fixed a E ( 0 ,  R/2), set 

Ixl  = R/2 
m(a) = rain if(x). Suppose  first that  re(a) > 0 and define 

I X = :~  

0 

v(a) (x) = ~(x) 
[ m(a) 

' ' > R/2 if a < ix I < R/2 and fi(x) ~ O, or  if  t x l  = , 

if  0 -<_- ~(x) ~ m(a) and a < Ix I < R/2, 

if  ~ ( x ) >  m(o) and a <  !x] < R/2, or if [x! =<a ;  
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then v(o') E C~ [N WI,P(BR). We take 4~ = v(a) - -  m(a) ~? in (1.5), where 
is chosen as in Lemma 1. We get 

f [Vu:  -~ VuV(v(a)) dx + fg(m(a)  -- v(a)) dx = m(a) K, 
B R B R  

where K does not depend of  ~r: 

K =  f lVul~-2 Vu Vv dx + f g(1-- o) dx. 
B R  B R  

As g(m(a) -- v(a)) >~ O, we get as in [19] 

m@ K~ f t V u :  -= Vu dx = f dx 
nR BR 

. w, I N  - -  pXp-1 
re(a) p cap B~ = re(a) ~N ~-~'T--1) aN-"' 

where %v is the volume of  the unit ball in R~;  hence, dividing by re(a) > 0 and 
returning to u, we conclude that 

. p . - -N  

min u ( x ) ~  C~ + C2a p-j V aE (0, R/2), (1.10) 
I x [ = a  

where C1 and C2 do not depend up a. Suppose now that re(a) ~ O. Then (1.10) 
is trivial. 

Now u is a weak supersolution of the p-Laplace equation in B~; hence from 
[22] it satisfies a weak Harnack inequality; for any ? 6 (0, Q0,  there is a C = 
C(N, p, ~) such that, for any ball B3o(Xo) C BR, 

q-w/~, ( f u;. dx) '/~' G C min u(x). 
. n o ( ' : o ~  B2o(xo) 

Then there is another constant C = C(N, p, y) such that, for any a E (0, R/2), 

a-Nh, 3 f u ~ C min u(x). (I.11) 
a/4 < Jxl < 5a/4 I xl = a 

Indeed we recover the annulus by n balls B2e(xi) where 0 = 7a/24, I x,.I = ~r, 
Ixi -- x i - , j  < ~, U(Xo) -= min u(x), and n is independent o f  a; we prove easily 

rxl = a  
that, for any i = 1 . . . . .  n, 

(s q -~/~' u ~' <= C(coN) ~;~' U(Xo), 
B2e(xt)  

and hence we get (1.11). Now we get immediately, with another constant C, 

(f ax)'" a-N/~ U ~ ~ C m in u(x) V a E (0, R/3). (1.12) 
\ B  a Ix[ = a 

Then (1.9) follows from (1.10) and (1.12). 
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L e m m a  1.3. The function u satisfies equation (1.2). 

Proof. First we estimate [Vu Ir-I near the origin. Let ~ < R and 6 > 0 be 
fixed. For any cr < ~ we have 

Bfl Vu'~e+~)lp p-1 u) (e+')@-~)/p f IVul"-' d x =  (1 + dx 
B. (1 + 

(.:,,+ IV l" -7- u)o+ldx (1 + u) (~+1)('-1) . 
I \no 

Now from (1.4) we get 

f iVuiV +oo <f~+ ]~Tu]" + f  1 
slo (1 + u) ~ dx = Y~ (1 -t- u) a+l dx << c o 0( 1 ~ k)~.+l < + o o .  

" k = 0  {k<u I } A B  O ' 

(1.13) 

Take ~ < p / ( N - - p ) ;  then ( ( ~ + l ) ( p - -  1 ) < Q 1 ;  hence by Lemma 1.2, 
I~Tul p-j EL~o~(BR) and from (1.9) there is a Co such that, for small or, 

f lVul"-' dx <= c ~  (1.14) 
B o  

Now since IVu [p-2 Vu f: L~o~(BR) we can define the distribution 

T = --div (IVu ]p-z Vu) -- g in D'(BR). 

Then, as in [5], we have T =  ~ fl, D ~ o .  Let ~pED(BR) such that (--1) ~ 
trl~_m 

(D'w) ( 0 ) =  fl~ for every I r[ <= m, and ~0,(x)= ~o(x/e). Then 

( T , ~ e ) =  Z f l 2 E - r :  flvuI"-~VuVw, a x -  fg~,~dx. 
[r] ~rn B R B R 

As g--> 0, we get from (1.14), for small e, 

Z fl~ e-r ~ Co e-ofN-p)in (i.15) 
I,r<,n 

N o w  (<~(N--p)ip)< 1; hence /Tr = 0 when [r I ~ 1. F ina l ly ,  fo r  any ~E 
D ( B . ) ,  0 < ~7 <= 1, ~7(x) = 1 near the or ig in,  we have 

f t V u l . - : V u V ( v O a x  - fg~fdx, 
BR B R 

and hence flo ~ 0 from (1.13). [ ]  

Remark. The estimate (1.14) is not optimal. We prove in the next lemma that 
we can take c$ : 0 in (1.14). 

h/fN/(N-- 1 ) / / ~  " I a~.ut(u--p)ro ~ and [Vu]P-l~..~lor t,.,~. L e m m a  1 .4 .  u p -  1 E ~, ,  Joe ~ t l x  
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Proof .  Here  the difficulty comes  f rom the fact that  perhaps u r L~or 
Let  0 < 7 < (p - -  1)/p; as uC W~;,~(B~), we have by the chain rule (1 + u)VE 

l,p P W;oc(BR) and 

V((1 4- u) ~) y( l  4- u) ~-~ Vu in P ' = L~oc(BR). (l .16) 

Now taking 6 = p --  1 - -  py  in (1.13) we get V((1 + u) ~) E Lfo~(BR). We have 
y < (N --  l) (p --  1)/(N --  p);  hence (I 4- u) ~ E L~or Let 0 be the gradient 
of  (1 + u) ~ in D'(BR). Then 

0=W(1 4- u) "/-I Vu 4- y~ o~ D r oo. 
[rl~m 

Defining ~o~ as in Lemma 1.3, we get 

<0, v,~>= E ~162 f~,(1 + u y - ' V u w ,  d x =  - f ( l  + uy'Vw, dx; 
Ir]~_m B R B R 

hence, for  small e, f rom (1.9), 

N-- 1 -- (N--p)~' \ 
trl ~m ~:2 -, =< C [[(1 + u) 7-1 Vu LPWm2) o~ 4- e p-I ) .  

F r o m  the choice of  y we get o~ r = 0 u lrl ~ m. Hence (1 4- u)~E W~o~c(BR). 
Now we can adapt  the p roo f  o f  [3] to (1 4- u)~: for  any k ~> 0, ~ > 0, we verify 
easily, since y < 1, that 

pk,~(1 4- U) ~ pkV,(k+c,)V_kV((1 4- tat) v) a.e. in BR. (1.17) 

Let  0 < R be fixed. By use o f  the injection o f  W~(Ba) into L N/(N-1)(Be) , t h e r e  

is a ~ = ~(N, p) such that,  for  large k, 

][P,,~(1 + u)ItLN/( N_ 1)(Be) 

Hence f rom (1.16) 

Hpk,~(1 + u)HLN/(N__ I)(Be) 

if  ~ < 1 .  

G c t1V(Pkv,(k+ ~,)v_k~,(( 1 + u) v) IIvr 0 �9 

_ k~ f IV((1 4- uy) [ dx, G (k  "@ 06) ? BQA{k<u<k+~} 

< 1)'-~ f lv~l dx, 
= (k 4- ((k 4- ~)~ - -  k y) Bo~{ .<k+~} 

G - -  f IVu/dx, 
0(. B~f~{k<u<k+o~} 

Then we deduce from (1.4) and [3] the estimates 

meas ({u > k} f~ Be) <= Ck NO-p)I(N-p), 

meas ({]Vu] > k} A Ba) ~= Ck N(I-p)I(N-1), 

(1.18) 

(1.19) 

where C = C(N, p, q), and hence the conclusion. [ ]  
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In the case p ----- N we have to make some restrictive hypothesis:, 

0 t N t Proposition 1.1. Let R > O. Assume that u E C (B'R), Vu E Ljoc(B~), A2vu E 
D (B'R), and Llo~(B~) in the sense of ' ' 

u>=0,  ANu ~ O a.e. in B R.  (1.20) 

Then u v E L~oc(BR) for any r > O, I Vu I .~ E Z~o~(B~) for any ~ E (0, N). 
Moreover, i f  lim u = +0% then there are a g EL~(S2) and a f t  >= 0 such that 

X---~O 

--ANU = g + fl go in D'(BR). (1.21) 

Proof. Let g ( x ) =  --ANU(X), a.e. in B R. Proceeding as in Lemma 1.2 and 
using the fact that 

cap B, = r  1 - N ,  
N 

(see [19]) we get instead of (1.9) the estimate 

min u(x) <= C1 + C2 [Log tr[ V a E (0, R.12). (1.22) 
Ixl = a  

Now the weak Harnack inequality is available for any y > 0; hence (1.9) is 
replaced by the estimate 

f u ~' dx ~ C a  N i Log a ]~ (1.23) 
Ba 

for any small a, where C = C(7, N, p, u), and hence u~'E L[oc(BR). Now con- 
sider u k = min (u, k) for any k > 0. Then a theorem of LINDQVlST & MARTIO 
[14] tells us that uk is super p-harmonic in B~ and satisfies, for any Xo E B'RI2 
and O < r < 9 <  ]Xo], 

f Vuk N B~xo~lT-+--~ dx <= (NI(N -- 1))N~ON_I(Log(o/r)) ~-N. (1.24) 

By Fatou's lemma we get the same estimate for u. For  any ~ E (0, R/3) we 
recover the annulus tr/2 < Ix ] <  3~/2 by n balls B3~/4(x3 with ]xi [ = tr, and 
make r = 3~14, 0 = 7~r/8; hence 

f ax < c, (1.25) 
a/2 < Ixl < 3 o / 2  

and C does not depend on or. Now for any ~ E (0, N), by the H61der inequality, 

f iVul~a x 
~/'2 < [xl <3~/ '2 

Vu ~,IN 

S 
\ ( N - - v ) I N  

(1 + u) ~'N/(N-~) dx} 
/ 
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hence from (1.23), for small a, 

2 f IVUI~'dx<=CaN-~'ILoga["" 
o/ <1x1<3o12 

By summation we get IVul~ L L ( ~ ) ,  with the estimate 

f I Vu I ~' dx <= Ca N-~' [Log a 7 (1.26) 
Bo 

for small a, where C = C(N, p, 7), 7 E (0, N). 
Now consider again the proof  of  Lemma 1.1. The estimate (1.26) does not 

allow us to go to the limit in (1.7) as e goes to 0 for fixed n. Assume now that 
lim u(x) = -}-cx~. Then, for fixed n, we get for e small enough 
x'-~O 

f , (n + I -- u) Ir VulN-' IV~,I d x =  O, 
{ u < n +  IjAB2e 

and hence we get the conclusions of  Lemma 1.1 with p ----- N. In Lemma 1.3 
we can replace (1.14) by 

f IVulN-'dx <= Ca I t o g a l  N-~ , (1.27) 
Ba 

f rom (1.26); hence (l.15) is replaced by 

fl2e-r ~ C i Log e jU-~, (1.28) 
Irl~m 

which proves that fl, ~ 0 when ]r I ~ 1 ; hence we get (1.21), with fl ~ 0 from 
(1.3). [ ]  

Remark. The estimate (1.23) is optimal because for the N-harmonic function 
= Log( l / Ix [ ) ,  a -N  ILoga[  -~ f ~ d x  has a limit different from 0 as e - ~ 0 .  

B~ 
Nevertheless the estimate (1.26) is not optimal, as a 7-N f [U~l~dx has a limit 

Bo 

as e --~ 0, for any 7 < N. We could go to the limit in (1.7), had we proved an 
estimate of  Uu in MPoc(BR). 

Now we return to equation (0.1). Let # be the fundamental p-harmonic func- 
tion in RN/{0): 

j CN,. Ix I(P-N)/(p-1) for 1 < p < N,  (1.29) 

p(x) --- [ CN Log ( l / Ix  [) for p = N, 
where 

p - - 1  
CpN" -- N- -p"r 'N~ "~- l / (p-  1), CN = ( N ~ N )  - I ( /N--  1) . 

Theorem 1.2. Let p and q be real, l < p <= N, p -- l < q < Q1, p - 1 
q <  +oo i f  p : N ,  and R > O .  Let uCC~ with VuELfoc(B'R) be a non- 
negative solution o f  the equation 

Apu + u q = 0 (1.30) 
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r ! in D (B'R). Then one o f  the two following possibilities must occur: 

(i) lim u(x) exists and the extended u is a solution o f  (1.30) in D'(BR); 
x-+O 

(ii) there is an o~ > 0 such that lim u(x)/l~(x) : or and u satisfies the equation 
X---~O 

Apu q- u q -J- o~ p-I ~o = 0 (1.31) 

in D'(BR). Moreover we have the estimates 

lim /xl u~---- offNogN) -I /~p-~ ~i, (1.32) 
x-~0 

x i / l x l -+~  i 

and for  any O < [x[ < r < R, 

- - C  ~ u - -  or ~ C(1 -}- I x ]  ( N ( p - 2 ) + p - ( N - p ) q ) [ ( p - I ) )  

i f  p < N, q =~ (U(p -- 2) + p ) / ( U -  p),  

- - C  ~ u --  cq~ ~ C(1 + ILog [xll) i f  p <~ N, q = (U(p --  2) -+- p ) / ( U - -  p),  

- - C  <: u -- o~tz <: C i f  p = N ,  (1.33) 

with constants C = C(N, p, q, r, u). 

Proof .  Equation (1.30) can be written in the form 

Apu + du " - I  = 0 (1.34) 

�9 t r t with d = u q+l-~" By hypothesis the distribution Apu in Bj~ belongs to Llor 
hence from Lemma 1.2 and Proposition 1.1 we have u~'EL~or for any 
7 c ( 0 ,  Qa) if p < N ,  for any ~ , > 0  if p = N .  Since q < Q a  if p < N ,  we 

rN/(P-~tu  ~ In that case we can apply SERRIN'S can find a ~ > 0 such that d E ~-1or ~--'RJ. 
results [20]: either the singularity is removable and u can be extended as a solu- 
tion of  (1.30) in D'(BR), or there are Ca and C2 > 0 such that 

Ca/~t(x) <= u(x) <= C2/~(x) near 0. 

In that case from Theorem 1.1 or Proposition 1.1 there is a fl > 0 such that 

d~u + u q + t3 ~o = 0 

in D'(BR). GUEDDA & VERON [12] prove by scaling that there is an ~ > 0 such 
that lim u(x)/l~(x)= 0r Now as in [12] we get (1.32) and (1.31). Let us prove 

x-+0 
(1.33). For  any e > 0  there is an a > 0  such that u ~ ( 0 c - - e ) #  in B~. Let 
0 < 9 < m i n ( 1 ,  R). We have - -ApU>~--Ap((o~--e)#)  in B~, and u - -  
(a -- e )#  => --oq~(Q) for I x l  = From the maximum principle applied in any 
annulus b <  [ x [ < p  with b < a ,  we get 

u ~ (o~ - -  e) # - -  ~ / t (e  ) in B~. 

Letting e to go 0 we get 

u >: oqz - -  oq~(~) in B ~ .  



304 M.-F. BIDAUT-VERON 

N o w  there are a K > 0 and an a > 0 such that  u ~ K/z in B~' and for  Ix [ = 0. 
Fo r  any e > 0 there is a unique radial  funct ion u. such that  

Apu~ § (K#) q = 0 in B~, 
(1.35) 

l i m # - ~ u  = lim/~;-lUr = 0r q- e, u~(~) = k ,  
r-+O r-+O 

with k = max  u; it is given explicitly by 
Ixl =e 

i - s I + M j  

u.(r) = 

+ ( ~ + e )  CN f s  -1 1 +N~ f tu- ' (Log(1/ t))qdt  n-1 ds i f p  = N,  
r 0 

where M,, N, have finite limits as e ~ 0. We get easily the estimates in Be: 

]u, - -  (o~ q- e )# ]  ~ C(1 q- rN[z g+') if  p <  N and q =4= (N(p -- 2) q-p ) / (N- -p ) ,  

[u~ - -  (o~ q- e) / ,  I ~ C(1 q- [Log r[) if  p < U and q = (U(p - -  2) q-p ) / (N- -p ) ,  

[u~ - -  (o~ -k e)/*] =< C if p = N.  

F r o m  the m a x i m u m  principle we get u =< u~ in Bs Letting e go to 0, we get the 
est imates (1.33) with other  constants  C. [ ]  

We end this section with a theorem concerning the exterior problem,  proved  
in the radial  case in [12]; see also Section 4, Theorem 4.3. 

Theorem 1.3. Assume l < p ~ N , p - -  l < q < Q 1 ,  ( p -  l < q < - t - c , o  if  
p =  lV). Let OR = {XER u l I x [ >  R} and let uE C~ with VuE L~or 
be a nonnegative solution of  equation (1.30) in D'(f2R). Then u ~ O. 

Proof .  F r o m  TOLKSDORF [21] we have u C CI(OR), as U q E LI~c(OR)- F r o m  
(1.30) we have dpu E L2oc(OR), --dpu ~ 0 a.e. in OR. Suppose that  u does not  
vanish identically on O;  then u is positive everywhere in OR, by the strong maxi-  
m u m  principle (see [23], Theo rem 5). Let  ~ E R  and n E N  be fixed, with 
R < 9 < n. By minimizat ion  we construct  a sequence (U,,~)k~r~ of  radial functions 
satisfying Un,o ~ 0, and for  any k ~ 1, 

--~pUn,k = I Un,k--1 [q--I Un,k_l f o r  0 < I x [ < n ,  

U.,k(X ) ---- m for  Ix I = ~, (1.36) 

u.,k(x ) = 0 for  I xl = n, 

where m = m i n u > 0 .  F r o m  [23] we have u , ~ > 0  for  ~ <  I x I < n ;  f rom 
Ixl =~ 

the classical m a x i m u m  principle we get 

un, k =< u.,k+ 1 =< u for  0 < Ix[ < n. (1.37) 
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Now from (1,36) and (1.37), (r N - I  ](Un.k)r ]p-2 (U~,~),)kE ~ is equicontinuous on 
[p, n]. Hence u,, k converges in C~([Q, n]) to a radial function u~ such that 

0 < u , . k ~ u , ~ u  for 0 <  [ x [ < n ,  (1.38) 

and 

- -Apu, ,  = ~ for ~ < [x I <  n, 

u,,(x) = m for I x [ =  ~, 

u,,(x) = 0 for [xl = n. 

(1.39) 

Consider now the sequence (u.)nerT and let n go to infinity. From (1.38), (1.39), 
by extraction of a diagonal sequence, there is a subsequence (u,)verr converging 
in Ciloc([9, -kcx0) to a nonnegative radial function v; then v satisfies 

--Apv = v q f o r 0 < ] x l ,  
(1.40) 

v(x )  = m for lxl = e. 

From [12] or from Section 4 such a solution cannot exist; hence we get a contra- 
diction. [ ]  

2. First Properties in the Radial Case 

From now on, N, p and q are reals such that N > p  and q > p - -  1 > 0 .  
We study the equation 

F1--N( rN-1 lU, I "'2 u A  + lul ~-1 u = 0,  (2.1) 

for a function r > 0 ~ u(r) .  
Multiplying the equation by u, we get an energy function, used for nonnegative 

u in [17]: 

= _ _  lul ~§ E ( r )  ]Ur ]P + _ _  (2.2) 
p' q + l '  

which is nonincreasing: Er = - - ( N -  1) lu~ IP/r. 
Now remembering the change of variables introduced in [9], [12], for p < N, 

let 

u(r)  = O(x), x = r(P-N)/0'-l); (2.3) 

then 

where 

(P-l~xolOla-,o=o, (IOxl "-2 0x)x + ~,-~--z--~_ p /  (2.4) 

a = - - p ( N  - -  1)/(N -- p). (2.5) 
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This is the Emden-Fowler equation when p : 2 and q is rational. Multiplying 
by 0~ we get another energy function: 

nonincreasing since 

[ p  - -  1 ~P  lOl 
Fp(x) = [0;, ]----~p + [-~---~_ p )  x q -T- 1 '  (2.6) 

[ p -  l ~p  ~ _ ,  10[ q+l 
(Fp) x : ~-~--~ pJ  ~Tx q + 1" 

When p = N we replace (2.3) by 

u(r)  = O(x), 

and get 

x = - -Log  r,  (2.7) 

([0~} N-z Ox) x + e -Nx  IO[ q - '  0 = 0; 

the energy function is n o w  

FN(x ) - -  _ _  

nonincreasing since 

(2.8) 

(FN)x = - - N e  -Nx  10 [q+l. 

Proposition 2.1. For any ro > O, Uo, u, E I"4 we have local exis tence and 
uniqueness o f  a solution u of(2.1) such that u(ro) = Uo, Ur(ro) = u , .  Each solution 
has a unique extension to (0, + ~ ) .  

Proof. We write (2.1) as a system (ur, Vr )= f ( r ,  u, v), where 

, - -N 2--p ) 
f ( r , u , v )  = r T=T-~ [ v f - l v ,  - - r  N-1 ]u[q- lu  . 

Because f i s  continuous for r 4= 0, we get local existence from Peano's theorem. 
Because the energy functions E and Fp are nonincreasing, each solution has an 
extension to [ro, +oo)  and (0, ro]; hence to (0, +o0).  Obviously we get uniqueness 
when p :< 2 and q ~ 1. If  not, we get the uniqueness of the zero solution when 
Uo = u, = 0 from the behavior of  E and Fp ; when Uo = 0 # u, or ul = 0 # Uo, 
we compare directly two solutions as in [12]; we use the local Lipschitz properties 
of the functions tv+ Itl q - '  t, t ~  It[ (2-~')/(~-') t in (0, + ~ )  to get uniqueness. 

In the following sections we use essentially the classical change of  variables 
that reduces (2.1) to an autonomous equation (see [9] [12]): let 

t~ : p / (q  q- 1 - -  p),  u(r) = r - n w ( t ) ,  t = - -Log r; (2.10) 

IOxt N 
q- e -Nx 10[ q+' , (2.9) 

N '  
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then (2.1) takes the equivalent forms 

([w, + 6wlP-2 (wt + Ow)) t - -  ( N - -  6q) Iwt + Ow[P-Z(wt + t)w) q- i w l q - ,  w : 0, 

(2.11) 

I w t + O w f - E ( ( p - -  1) w t t - - ( N - - O ( q + p - -  1 ) )w t - -O(N- -Oq)w)  

+ Iwl ~ - '  w = 0. (2.12) 

Now let 

y(t)  : - - r  0+1)(p-I) l ur [p-2 ur; (2.13) 

then we write equation (2.11) as an autonomous system in two unknowns w and y: 

wt : - ~ w  + lY [(2--p)/(p--l) y,  

Yt : --]w] q-1 w + ( N - -  ~q) y .  
(2.14) 

Now we give two energy functions for this system. We set 

A = N - - O ( q +  1) = ((N -- p) q -- (N(p -- 1 ) + p ) ) / ( q +  l - - p ) ,  

B = N - -  tgq = ( ( N - -  p )  q - -  N ( p  - -  1))/(q+ l - - p ) .  
(2.15) 

Proposition 2.2. For any (w, y) E 1% 2, 

fyl~ 
V(w, y) - -  p,  6wy --  A - -  

lyJ~" 
W(w, y) = - -  - -  p '  

and V(t) : V(w(t),  y(t)),  W(t )  : W(w(t) ,  y(t)).  Then 

let 

~.-, [wl.+, 
p Iwf+  q+------i-, 

1 I i w l q + l  
Bwy + A [al 7 - ~  B q----~-- +~ 

q +  1 [y]v + q +-----i-' 

(2.16) 

where 

Vt(t ) = AX( t ) ,  Wt(t ) = A Z ( t ) ,  (2.17) 

X =  (lOwl" -:  - y) fyl  - :  y) >= 0, 

z = ( w - 1 8 y l � 8 8  'By)(jwl"-' w -  By) >= O. 

Proof. From [1], one can obtain a Liapunov function L of an autonomous 
system x t = f (x ,  y), Yt = g(x, y), such that f ( x ,  y) = 0 is equivalent to y = 
h(x), by 

y X 

Z,(x, y) = f f ( x ,  t) dt --  f g(t, h(t)) tit; 
h(x) 0 

hence we get (2.16) and (2.17) by computation. [ ]  
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Remark. The sign of  X and Z is due to the monotonicity of  the functions 
t~--, It] ~-1 t for 0~ ---- 1/(p - -  1) and 0~ = q. The existence of  a certain symmetry 
for system (2.14) relative to q and 1/(p -- 1) and the link between the two energy 
functions will be pointed out in Section 4. 

Remark. When p = 2, the function V is the energy function obtained by 
FOWLER [9] by multiplication of equation (2.11) by wt; and X =  w 2. 

Remark. The constant solutions of  (2.11): w ~ 0, 
w ~ •  where 

~. = (Op- 1B)l/(q+ 1 -p ) ,  

and, when B is positive, 

(2.18) 

are essential in this study; they correspond to the particular solutions of (2.1) 
in form of  a power of  r : u ~ O ,  u ~ J z 2 r  -~. 

3. Behavior of Radial Solutions near the Origin (p < N) 

In this section and up to Section 6 we suppose p < N. The critical values 
Q1, Q2 given in (0.3) appear naturally from Proposition 2.2 as A = 0 when 
q = Q 2 ,  B = 0  when q = Q 1 .  

Here we study the behavior of  solutions u of  (2.1) near r = 0; this means 
the behavior of  solutions w of  (2.11) near t = +oo .  In Theorems 3.1, 3.2, 3.3, 
we extend the results of  [12] relative to nonnegative solutions and q < Q2 and 
FOWLER'S results [8] [9] to the general case. 

Proposition 3.1. Let (w, y) be any solution of  (2.14). I f  q <~ Q2, or i f  w is 
nonnegative, then (w, y) is bounded near 4 - ~ .  

Proof. The case w ~ 0 is classical; see [12] [17]. Now suppose q =< Q2. 
F rom (2.12) we have A =< 0, and hence the function V defined in Proposition 2.2 
is a nonincreasing one; hence for any to <= t < + o %  

ly(t ) Ip" 6p-1 l w(t) Iq+l < V(to). (3.1) p, Ow(t) y ( t ) 4 - l A I - 7 1 w (  t) f 4- q +  1 = 

From the Young inequality we get 

Iw(t) l q+l 6" [ J~w(t)'P<= V(to); (3.2) 
q - } - I  p 

hence w is bounded, as q > p --  1 ; then y is bounded from (3.1) as p > 1. [ ]  

Proposition 3.2. Suppose Q 4= Qz. Let w be any solution of(2.11) bounded near 
4 - ~ .  Then lim w t = O ,  w has a limit : at + ~ ,  and 

: ( l :  ] q+1-p --  ~ ' - I B )  = 0. (3.3) 
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Proof. From Proposition 2.2 the functions V and W are monotone. They have 
(finite) limits at q-c~. Indeed, if not, then lyl t-~+~ q - ~ '  and from (2.14) 

wt l  ~ +oo,  which is impossible. Now we have A =[: 0 from (2.15); hence 
t - +  + oo 

from (2.3) the functions X and Z are integrable on any interval [to, + ~ ) .  We can 
suppose w ~ 0. Hence [w(t) I + ]y(t) I > 0 for any t E R from Proposition 2.1. 

Suppose that p ~ 2 .  For  any 1 < 9 ~ 2 ,  there is a c o such that 

( l a l ~  - [ b ] e - Z b ) ( a - - b ) ~ : % ( a - - b ) Z ( l a l  + Ibl) ~ (3.4) 

for any a a n d  b E N  such that ]a[-}- [b] > 0 -  Hence for any t > : t o ,  

X(t )  ~ e~w2(t) (0 ]w(t) I + [y(t)],/Co-l))~o-2); (3.5) 

now (0 ]w(t) l + ly(t)[~/("-I))2-p is bounded in [to, +oo) ,  hence wtEL2((to, +oo)) .  
Now from (2.14) w t and Yt are bounded and 

w t t =  --Owt + lY ](2-p)!(,-~) yt/(p _ 1), 

hence wtt is bounded. Then wt ---> 0 classically [9] [11]. Now the w-limit set 
t--*- + co 

is connected, and from 2.16 

= I p lim V lim (]wlq+l/(q + 1) -- BS  "-1 ]w] /p); 
t--> + ~  t ---> + 

hence w has a limit Y at - t -~ .  From (2.14) we get 

lim y---- 0P- '  ]g[P-2Y, lim y t - - - - - [ f l " - X f + B O P - ' l f l p - 2 f ,  
t ~ + e o  t - + +  oo 

and hence Yt ~ 0 and E satisfies (3.1). 
t-->- + ~ 

1 
Suppose now that p > 2, and hence - -  + 1 < 2. Then from (3.4) with 

q 
1 

= - - +  1, for any t > : t o ,  
q 

• -~ (3.6) 
Z(t )  ~ cey2(t) ([w(t) I a -+- ]By(t)])q 

As above we get Yt E L2((to, +cx~)) and 

y ,  = --(q --  1)tW[ q - 1  W t -~ ny,; 

hence Ytt is bounded, Yt --> 0, y has a limit, and by (2.14) so does w. We 
conclude as above. [ ]  t-++~ 

Remark. When p > 2, wtt is not bounded. We can also prove that wt 

using the H61der continuity of w t (see [10]) instead of the function W. 

---> 0 
t - + +  

Now we consider three cases~ according to the value of q. 

Theorem 3.1. Suppose q > Q2. Let  u be any solution of  (2.1), with u ~ O. 
Then we have three possibilities near the origin: 
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(i) u ~ •  -~ ,  
(ii) u is regular at 0 (limoU---- o~ @ 0'limr-ir-+0 ]UrIP-2Ur= --]0r o~/N), 

(iii) r ~ u is not bounded and u oscillates, intersecting the curves r~--> :jz2r -~ 
infinitely many times. 

P r o o f .  F r o m  (2.15) we have B > 0 and so w ~- 4-2 are solutions of  (2.11); 
also A > 0, and so the energy functions V and W are nondecreasing.  

Consider  first a noncons tan t  solution w bounded  near  t = + o o .  Then f rom 
Propos i t ion  3.2, we get lira w = 0 or  zk2. Now the characteristic equat ion of  

t-~ + 
the l inearization of  system (2.14) in (2, (62) p - l )  is 

t 2 - -  A t  + pB/(p  - -  1) ---- 0 (3.7) 

(see [12]); hence this point  is completely  unstable.  Then,  as w is not  constant ,  we 
have l im w ~ -0 .  As a consequence we get l im W =  0, because l im wt = 0 

t---> + oo t--->- + oo t---~ + o~ 

f rom Proposi t ion 3.2. Hence  W is not  positive: for  any real t, 

Ip'  1 I 

lY'~! B w ( t ) y ( t ) +  AB~-s T lY(t) q IV+I "~ lw(t) l q+ l<  + 1 = 

and so 

L - I  •  
A B  q q ly(t)l  a ' <-- w ( t ) y ( t ) .  (3.8) 

q + l  

I f  w(t) = 0 for  some t, then y( t )  = 0 f rom (3.8) or  (2.16), which is impossible 
f rom Proposi t ion  2.1. Hence  w has a constant  sign, for  example w > 0. F r o m  
(3.8) there is a e > 0  such that,  for  any t, 

]wt(t ) 6- ~w(t) l ~ cw(t)  q/Cp-a). (3.9) 

We conclude as in [12] that  w t + Ow > O, and e~ is bounded  near  infinity. 
As it is nondecreasing,  there is an o~ > 0 such that  lira eOtw : ~;  hence 

t - + +  co 

l im u : ~. Since ur is bounded  near  r : 0 by (2.2), we get, by  integrat ion o f  
r ---~0 

(2.1), lim r -~ lUrf  -2 U,----- --[0r q-~ a /N;  hence u satisfies (ii). 
r - ~ 0  

Consider  now a solution w unbounded  at  + 0 0 .  Then f rom Proposi t ion  3.1, 
w does not  have a constant  sign for  large t. As I wl + l wt 1>  O, there is an in- 
creasing sequence t n ~ + 0 0  such that  w(t,) ---- O, wt(t,) @ O, w > 0 on (t2,, 
t2 ,+0 ,  w <  0 on (t2n+l, t2n+2). At  any ex t remum s of  w, we have f rom (2.12) 

( p  - -  1 )  Wtt(S ) = O2--Pw(s) ( 2 q + l - - p  _ _  ]W(S)[q+l--p),  (3.10) 

and 

[w(s) [q+~ ~ - t  
V(s) --  - -  - -  B ]w(s) [P. (3.1 1) 

q + l  p 

Since w is unbounded,  there is a sequence o f  ext rema a ,n-+ + o o  such tha t  
W(am)--> +00 ,  and so V(an)---> 6-00 f rom (3.11); then, because of  mono ton -  
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icity, l im V = +cx~. Let  s k be an ex t remum of  w in (tk, tk+ Z); then I w(sk)[ ---> + o 0  
t---> -b tm 

f r o m  (3.11), and so Iw(s~)] > 2 for  large k ;  f rom (3.10), w has a m a x i m u m  at  
Szn and a m i n i m u m  at  Sun+l. Hence  s k is unique in (t k, tk+1). The  curve w oscillates 
a round  the axis w = 0, intersecting the lines t ~-> 4-2 twice on each interval 
(t k, tk+~) for  large t. The  curve u oscillates a round  the axis u = 0, intersecting 
r~--> 4-2r  -~  twice. I t  has a unique ex t r emum on each arch, as y has  a unique 
Zero ak in (t k, tk+l)  (since y(tk) " y ( t k+ l )<  0 and Yt(~k)" W(~k) < 0). [ ]  

Remark. I f  l im w = 0, we cannot  linearize the system (2.14) when p > 2 
t---~ -t- oo 

or q < 1. Tha t  is why we take another  way:  we use the energy funct ion W to 
find a differential inequali ty (3.9) in w, which gives the behavior  at  -kc~.  

Theorem 3.2. Suppose Q1 < q < Q2. Let u be any solution of (2 .1 ) ,  u ~ 0. 
Then we have three possibilities near the origin: 

(i) u ~ 4-  2 r -  ~, 

(ii) u is regular at 0 ( l i m u  = or =~0, l i m r  -~ lurlP-2ur = --[o~[q-~oc/N) 
\r-+O r ~ O 

(iii) r~U ~ o  4-2 (with reu nonconstant). 

Proof .  F r o m  (2.15) we have  B > 0, and  so w = q-2 are constant  solut ions:  
also A < 0, and  so V and W are nonincreasing functions.  F r o m  Proposi t ion  3.1 
any solution w is bounded  near  -koo. F r o m  Proposi t ion  3.2 we have l im w = 0 

t - + +  oo 

or 4-2. N o w  f rom (3.7) the point  (2, (62) p - l )  is asymptot ical ly  stable;  thus the 
case l im w = 4-2 is possible for  noncons tan t  w. 

t - +  q-  oo 

I f  l im w = 0 ,  then l im W = 0 ,  and hence W i s  not  negative:  for  any  
t - >  + oo t---> + ~ 

real t, 

ly(t )Jp' B�88 q 1 [ w ( t ) [ ~ + l > 0 .  
p, B w ( t ) y ( t )  - -  IAI q -}- 1 [y(t) ]  7 + 1  + q q- 1 = 

Now,  f rom the Y o u n g  inequality,  

( i )  ( 
�89 B~ IA[ q +  1 2B\q  [w(t)[ q+l" 

qp, ly(t)r p - ' - v  ly(t)l++'~ I+~T ) q ' 

as p ' >  1 +  1/q and l im y ( t ) = O ,  there is a c ~ 0 ,  such that ,  for  large t, 
t - -~-b  0o 

w satisfies an inequali ty of  type (3.9). Hence  we conclude as in T h e o r e m  3.1 tha t  
l im e ~t w = c~ =4= 0 and u is regular.  [ ]  

t---~ + eo 

Remark. This p r o o f  rests on the inequali ty B > 0, that  is q > Q~. I f  B < 0, 
we have necessarily tlimoo w(t) = 0 f rom Propos i t ion  3.2, bu t  we cannot  use the 

functions V and W to conclude the proof .  The  l inearizat ion is not  avalaible in 
the general case, and so we use an energy me thod  in the change of  variables (2.3). 
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Theorem 3.3. Suppose q < Q~. Le t  u be any solution of(2.1) ,  u ~z O. Then 
we have two possibilities near the origin: 

(i) l i m r  (N-p)/~-I) u ---- 7' =~ 0, 
r - ~ - 0  

(ii) u is regular at O. 

Proof.  We study the behavior  o f  the funct ion 0 defined in (2.3) near + o o .  
Since the energy function Fp is a nonincreasing and nonnegative function, it is 
bounded  near + o o .  Hence 0 x and x ~ ]olq+l are bounded  f rom (2.6). N o w  
integrating (2.4) we get for  any x >-- 1, 

tp 1 
fx t ~ 101 0 dt - -  I 0x(1)l , - 2  0A1). J Ox I Ox + Vv  --  pI 

NOW X a IOl q = O ( x  ts/(q+l)) and tr + q + 1 = q - -  QI < 0, and so the integral 
is convergent  and 0~ has a limit 7 at + o o .  I f  y =~ 0, then lim x -1 0 ---- ~, and 
u satisfies the condit ion (i) o f  the theorem, x-~+o~ 

I f  ~ = 0, then by integration o f  (2.3), for any x > 0, 

+ o o  

[ P - -  I ~ P :  t ~ t o I q - l O d t ;  (3.12) IOxl -= Ox = p!  

hence 0 x = O(x ('~+q+ 1)/(P-O(q+ ~)). Suppose that  0 x is not  integrable. Then for  any 
k > 0  such that  0 x = O ( x  -k )  we have k=< 1; if k =  1, then for any e > 0 ,  
0 = O(xO at infinity. Hence f rom (3.12), taking e <  Q~/q, we get 0x = 
O(x (q~-~176 and get a contradict ion with e < p Q J N q .  Hence k < 1 and 
f rom (3.12) we have Ox = O(X--(qk--(a+q+l))/(P--1)). Let ko = [tr + q -j- 1 ]/ 
( p - -  1)(q + 1) and kn+ ~ ---- (qk~ --  (tr + q + 1) ) / (p - -  1) for any nEI~ .  Then 

k n < 1, kn >= ko; this is impossible because q > p - -  1. Hence 0x is 

integrable, 0 has a limit at -t-oo and xN/(N-P)Ox has a limit f rom (3.12). Then u 
has a limit 0~ and r - l /~  r has a limit at the o r ig in ;we  have o~ =t= 0 f rom (2.3) 
as u ~ 0 ,  and hence u is regular. [ ]  

We end this section by the study of  oscillating solutions in the case q > Q2. 
The technique o f  the p roo f  is essentially due to MCLEOD, NI & SERRIN [16]. 

Theorem 3.4. Let  q ~ Q2 and u be an oscillating solution near the origin. 
Let  (rn)ne N be the nonincreasing sequence o f  zeros o f  u in (0.1] and (~n)neN be the 
sequence o f  its extrema (rn+ 1 ~ On ~ rn). Then there are constants Cl, c2, ca > 0 
such that 

l+~-aur(r~) c2, (3.13) lim Onu(Q~): c~, lim r n ----- 
n-->- + oo n--,.- + oo 

lim (r~+ 1 - -  r~) : e3, (3.14) 
n . .+  -t- oo  

where 

0 6 - -  

p ( N  - -  1) (N - -  p) (Q, - q) 
(p - 1) q + 2p - 1 ' fl = (p - 1) q -1- 2p - 1 - -  1 - ~/~. (3.15) 
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Proof. We make the change of  variables, as q =~ Qz, 

u(r) = r-%(~), 7 = r e, (3.16) 

where 0~ and fl are defined in (3.15). We get a nonautonomous system of  two equa- 
tions to study near v = + c o :  

/)  

T 

Z 
f l Z  v = - - [ / ) 1  q - I  /) - -  0 ~ - - .  

T 

(3.17) 

We consider a kind of energy function: for ~r >= 1, let 

then 

v z  Ivl  q+'  H(7) : + ~ n + 1 ; (3.18) 
v q +  

T2H~ = --owz. (3.19) 

Hence, from the Young inequality, 

< Izl"' + 2, '- '  [~,,1" < H + 12,xvip Iris+' z~ I H ' I =  2p' - q q- 1; (3"203 

since q > p - -  1, we get 

75 [H,[ ~ H -t- K, (3.21) 

where K=(20~)Pap ~. Then e l / ~ ( H + K ) i s  a nonincreasing and nonnegative 
function and it has a limit at infinity; hence H has a limit M at infinity. Now v 
and z are bounded from (3.18) (3.20), and hence 

lim -q- = M. (3.22) �9 ~+~ ~ - 7 f  

From Theorem 3.1, rau is not bounded near 0; hence by (3.15) (3.16) ~% is not 
bounded at +c o .  

Suppose that M = 0 .  Then lira z----- lira v-----0, and there is a v 0 > 0  

such that [vz[<l for ~ > % .  Then 75[H~l<o~, and so 71H[<o~,  and 
from (3.18), 

I z V +  I,,I ~+' _-< 2m~,/% 

hence, from (3.19), 

I H~] G 0ff2mo0t/T ~+2, 

m = q + l + p ' ;  

1 1 
l - - - - - - - ~  

q + l  p "  

and 

[ HI ~ ~x(2mLx)t/Tt+ 1. 
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By induction we deduce easily the estimates for  any integer k 

Iz[" + ]vl < (2m0~,~) l+ '+ ' ' '+ 'k ,  

I H 1 ~ off2rn00t +...+tk/7:x +l+...+,k. 

Now we go to the limit as k--> §  for any fixed ~ ~ %;  hence 

izlp' + ivlq+ _< (2moqr) o(q+l) 

since 

(1 - -  l) -1 = 6(q + 1). 

This is impossible because z~ is not  bounded.  Hence M :> 0. Returning to u 
in (3.22) we get f rom (3.16), (3.17), 

(I r'+ - urJP Ir uj +' i 
lim �9 p, Jr = M >  0, 

and hence (3.13). At  last, f rom (3.17) (3.22), 

lim + ----- M.  

Let  z'~ = r~; we deduce that  

(M(q+ 1)) 1 ](q n- 1) 

f ~,,+, - -  Vn--> c - 2fl (p'(M-- Ivl~+'/(q + 1))) 'Iv' 
0 

and hence (3.14). [ ]  

4. Behavior o f  the Solut ions near Infinity ( p  < N )  

We study the behavior  o f  solutions u o f  (2.1) near  r --~ §  which means 
the behavior  o f  solutions w o f  (2.11) near  t = - - ~ .  We could have repeated 
the study o f  Section 3 by use o f  the energy functions V and IV, but we prefer to 
introduce a new change o f  variables; it reduces the analysis to the former  one 
when Q > QI ; it also offers an interest in itself and shows the symmetry between 
w a n d y ,  V a n d  W, q a n d  1/(p--  1). 

Proposi t ion 4.1. Let q ~ Q1. Let u be any C ~ function on (0, +~)> and 

Ft (s )=--r  N- ' lur lp -zu , ,  s - -  I / ' ~ ' '  (4.1) 

where 

= ( N - - p )  (q - -  Q1) / (q  + 1 ) ( p  - 1); 

then equation (2.1) reduces to 

(4.2) 

s~-N(s  N - '  lfi~ f - z  fis), + tfi] q - '  fi = O, (4.3) 
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where 

and 

= 1 -k l/q, -~ = 1/(p --  1), ?7 = ~ q- N/~,q, (4.4) 

u(r)  = - - l r  1 f r - :  vs T~-' [~s I ~--~ ~s. (4.5) 

Moreover, let ~, "if, y, A, B and the energy functions V and W associated to N, p,  
q, ~, as ~, w, y, A, B, V, W are associated to N, p, q, u: 

= P/(q q- 1 -- p), ~(s) = s -~ (~ ) ,  ~ = --Log s (4.6) 

}(~) = _ s(g+,);(ff- 1) [fi, i~- 2 fi~, (4.7) 

.d = N -  g(~ § 1), Y =  A~- g~ (4.8) 

V(~) = I~ !~' ~N; -- pA 6~- '  J~ IP -~- q +---------i- L~ [q+l (4.9) 

w ( ~ ) -  ~, ~;+21BI~ B q-"-~-t-1 [~1~ +q-+-l '= (4.10) 

Then we have the relations 

N(v) = ]~]-~ }(~) = I~l-CO+" ~w(t), (4.11) 

F(~) - -  I,,I -~ (~+"  w( t ) ,  ~ ( ~ )  = I,,I - ~ + "  v(t). (4.12) 

Proof. We get the proposition by computation, using the relations 

--  1 = ( N  -k v)/rq, ~, + (p --  N) / (p  -- 1) ----- - - ( N  -k v)/q, 

= ( N - - 6 q ) / ~ = O q - -  1 = ( q q -  1) 6 / p ' = ( q q -  1 ) ( p - -  1 ) / ( q - - p - k  1), (4.13) 

s  --A/v, ~ =  ~/,. [] 

Remark.  Equation (4.3) has the same form as (2.1). Even if N is an integer, 
need not be. Because N > p  we get N > ~  when ~ > 0 ,  that is q > Q 1 ;  

then s goes to 0 as r goes to + ~ .  Hence we get the following results. 

Theorem 4.1. Suppose q >  Q2. Le t  u be any solution of(2.1), u ~ O. Then 
we have three possibilities near + ~ :  

(i) u = -4-;tr -~, 
(ii) u is regular at + 0 %  that is 

lim r ( N - - P ) / ( P - - O U  = e -~- O, lim r(N_~)/(p_~)U~ __ p -- N r-++~ r~+~o p -  1 c, 

(iii) rau --~ 4-2 (with r~u not constant). 
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P r o o f .  F r o m  Proposi t ion 4.1,  our  analysis is reduced to studying ~ near  s = 0. 

Let  Q~ = N(~ - -  1 ) / ( i f - - ~ ) ,  Q2 --- (-~(p - 1) + ~)/(_A 7 - / 5 ) .  F r o m  (4.4) we get 

N = (N  - -  p) (q + 1)/((N --  p) q - -  N(p  - -  1)) = ( N  - -  p) / (p  - -  1) v, 

O t = 1/Qt = ( N -  p ) / N ( p -  1), (4.14) 

Q2 = ((N - -  p) (q + 1) - -  N(p  --  1))/N(p --  1); 

hence ~ = 1/(p - -  1) > ~)l, and q > Q2 is equivalent to ~ < {~2. Hence  f rom 

T h e o r e m  3.2 we conclude that  either ~ ~ • 2s-z ,  where -2 = @ ' -  1 (N--  6?1)) 1/(~+ 1 -y),  

and hence (i) f rom (4.1) or  (4.5), by use of  the identity ~~ = (26)P-~; either 

l im ~ f i - - •  and hs z is not  constant ,  and (iii) follows; or  l i m f f = a ,  
s - +  + o o  s - > O  

l i m a  -1 l~ls[p-271s = - - ]og lq -1  o~/N, and hence (ii) follows by use of  (4.14). [ ]  
s - + 0  

T h e o r e m  4.2. Suppose Q~ < q ~ Q2. Let  u be any solution of(2 .1) ,  u ~ 0. 
Then we have three possibilities near + o o :  

(i) u =-- 4-~r  -~,  
(ii) u is regular at + ~ ,  

(iii) r~u is not bounded and u oscillates, intersecting the eurves rw-~ •  -~  
infinitely many times. 

Proof .  N o w  we have ~ > Q2; applying Theorem 3.1 to fi we get the con- 
clusions by returning to u. [ ]  

T h e o r e m  4.3. Suppose q <= Q~. Le t  u be any solution of(2 .1) ,  u =~ O. Then, 
when r--> + o o ,  r~u is not bounded and u oscillates, intersecting the curves r~-> 
-br  -~  infinitely many times. 

Proof .  Here  we use the change of  variables (2.10) and consider w near  t = 
- -o~.  N o w  V and W are nonincreasing functions. Suppose that  w is bounded  at 
--cx~. I f  V -~  + c o  or W -+  + ~ ,  then lYt -~  +cx~ f rom the Young  

t - +  - -  ~ t - +  - -  o o  t - +  - -  o o  

inequali ty in (2.16); hence f rom (2.14) Iwt] --~ + 0 %  which is impos-  
t--+ - -  o o  

sible. Hence  V and W have (finite) limits at  - -oo .  As in Proposi t ion 3.2 we 
conclude tha t  l im wt = 0 ,  { = l im w exists and E ( /  Iq+1-P - -  6P-I  B) = 0, 

t - - >  - -  cxa t - - ~  - -  oQ  

and hence E = 0  because B ~ 0 .  Then lim V =  lim W = 0 ,  and hence V 
t - - - ~ - -  ~ t - - + - -  o o  

and W are not  positive. F r o m  the Young  inequality we get 

Iw] +l* o ~  l Y ! f - - 6 w y  - A 6  p - '  IwlP + q +  1 

i w 
- -  p q + l '  
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which is impossible as B ~ 0 and w ~ 0. Hence w is not  bounded  near --cx~. 
As in Theorem 3.1 we prove that  w oscillates a round  the axis w = 0, intersecting 
the lines t~--> -q--2 infinitely many  times, and hence the conclusion follows. [ ]  

As in the preceding section we can specify the oscillating solutions. 

Theorem 4.4. Le t  q < Q2 and u be an oscillating solution near + ~ .  Le t  
(r~),~r~ be the nondecreasing sequence o f  zeros o f  u in [1, +o0) ,  and let ( ~ , ) , ~  be 
the sequence o f  its extrema (r~ < ~, < r~+1). Then the estimates (3.13) and (3.14) 
hold. 

Proof.  In  the change of  variables (3.16) we have now fl :> 0, and hence 
"r ~ + o o  as r ~ q-c~, so that  the p r o o f  o f  Theorem 3.4 holds. [ ]  

5. Global Behavior (p  < N)  

Here we show all the possible connexions f rom r = 0 to r = + ~  and 
prove their existence. 

Theorem 5.1. Let  q > Q2. Then, to within exchange o f  u and --u,  each solu- 
tion u ~ 0 o f  (2.1) has one o f  the following forms: 

(i) u ~ 2r-~,  
(ii) u is regular at 0 (with r-~olim u = ~ > 0), u is positive on (0, q-c~) and 

l im r~u = 2, 
r - ->  -~- o o  

(iii) u oscillates near 0 and lim rau = 2, 
r-->-- oo 

(iv) u oscillates near 0 and is regular at q-oo {with lira r (N-P) /~- l )u  = c >  0) .  
k r - ~ + o o  

All  o f  these solutions exist (for each o~ and c > 0). 

Proof.  The funct ion t ~ t q is locally Lipschitz-continuous on (0, + c o ) .  F r o m  
[12] we conclude for each o~ > 0 local existence near the origin o f  a regular solu- 
t ion u such that  lim u = ~. Using the same result for the funct ion ~ defined 

r---~ 0 

in Proposi t ion 4.1, we get for each c > 0 local existence near q-cx~ o f  a solution u 
such that  lim r (N-p)/(p-~ u = c. Moreover  we have local existence near q-cx~ 

r---> -}- o o  

of  a u such that  lim r~u = 2; indeed from(3.7)  the point  (2, (62) p-~) is asymptot i-  
r---~ + o o  

cally stable at --cx~. 
Consider  first a solution u with lim u = ~ > 0; then lim w ~- lim wt = 0 

r - - -~0  t - -~  + ~ t---~ + c o  

and hence lim W =  0. N o w  W is nondecreasing, hence W =< 0, and w > 0 

on R (see the p r o o f  of  Theorem 3.1). F r o m  Theorem 4.1, either lim r~u = 2 
t - + q -  o o  

and hence u satisfies (ii), or  lim r ( N - p ) / ( p -  1) u = C and hence lim w e  - B t / ( p -  1)  = C; 
r---~ q -  c o  t - - > - -  o o  

then lim w =  0, lim y = 0 ,  f rom (2.16) and hence lira W = 0 ;  t h e n W a n d  
t - - > - -  c o  t - - -~ - -  ~ t - + - -  oo  

w are identically zero f rom (2.16) and (2.17); this is a contradiction.  
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Consider  now a solution u = u c such that  l im r ( N - p ) / ( p - I )  U ---~ C ~ 0 ;  then ~-~+~ 
f rom T h e o r e m  3.1, by  contradict ion,  u oscillates near  0, and hence u satisfies (iv). 
M o r e o v e r  f rom uniqueness w : w~ is characterized by t l i m  we -Bt/O'-l) : c. 

N o w  for  any solution w o f  (2.11), t~-> w(t + K)  is still a solution of  (2.11) and 
hence 

w c ( t ) = w ~ ( t  + ~ - - ~  Log  c ) .  (5.1) 

We now prove  the existence of  solutions u satisfying (iii): as w~ oscillates near  
-t-oo and is positive near  - - ~ ,  let (t~)~rr be the nondecreasing sequence o f  zeros 
o f  w I (t n -+ +oo) ,  and a~ = lwlt(t~)I. Since V is a nondecreasing function, 
(a~)~N is a nondecreasing sequence and ao > 0 f rom uniqueness. F r o m  Propo-  
sition 2.1, there is a solution w o f  (2.11) such that  w(0) = 0, wt(O ) = a/2. Then 
by construct ion there is no c ~= 0 such that  l im w e  - B t / ( p - I )  -~- C, as w cannot  

t-->- - -  O0 

be a t ranslate  o f  w~. Hence  f rom Theorem 4.1 the corresponding solution u satis- 
fies necessarily r~u --~ 2. []  

Remark .  We find again in Theorem 5.1 (ii) the existence of  positive solutions 
u C C1([0,-}-c~)) called "g round  states",  proved by FOWLER [9] when p = 2 
and by NI & SERRIN [17] in the general case by a shooting method.  

Remark.  The  functions wc defined by (5.1) associated to the solutions u~ regu- 
lar at  + c o  ~ + o o  { l im r (N-p)/(p-~) u~ = c) are the Emden  functions relative to the case 

q > Q2 in t roduced by FOWLER [9]. We have f rom (5.1) the relation 

uc(r ) = c--O- 1)~/a u~(e-(p-  J)/B r).  (5.2) 

Theorem 5.2. Let  Qt ~ q ~ Q 2 .  Then, to within exchange o f  u and --u,  each 
solution u ~ 0 o f  (2.1) has one o f  the following forms:  

(i) u ~ 2r -6 ,  
(ii) u is regular at 0 (with ,-,olim u = 0~ > 0) and oscillates near + o %  

(iii) l im rOu = 2 and u oscillates near +o0 ,  
r--->O 

(iv) l im rOu = 2, u is positive in (0, +oo)  and regular at + o 0  
r-q-O 

with l im r ~N-p)/r u = c > 0) .  
r--.~-t- oo 

Al l  o f  these solutions exist (for each o~ and c > 0). 

Proof .  By the change o f  variable (4.1) we are reduced to study global solutions 

ff with ~ > 52. Hence  f rom Theorem5.1 ,  either ff - -  ,~s - ~  and hence u ~ 2 r -~ ;  

either ~ is regular  at  s = 0, positive, and  l im ~6~ = 2 and hence u satisfies 
s---> § o c  

(iv). Either  ~ oscillates near  s = 0 and l im s~u = 2 and hence u satisfies (iii), 
s---> + c ~  

or  ff oscillates near  s = 0 and is regular at  -}-cx~, and so u satisfies (ii). All the 
solutions exist f rom Theorem 5.1. [ ]  
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Remark .  We find again in Theorem 5.2 the nonexistence of  ground states 
proved in [12], [17], since any solution u regular at 0 necessarily oscillates at +oo .  

Remark .  The solutions u ~ regular at 0 ~,~o(lim u ~ = o~) are associated to the 

functions w ~ characterized by tli+moo wae 6 t=  o% oscillating near --oo. They are 

the Emden functions relative to the case Q~ < q < Q2. We have the relations 

w~(t) : w l ( t  - -  ~-~ Log o~), (5.3) 

u~(r) : o~ul(o:/Or). (5.4) 

Theorem 5.3. Let  q < Q1. Then, to within exchange o f  u and - -u .  each solution 
u ~ 0 o f  (2.1) has one o f  the following forms:  

(i) u is regular at 0 ~,-~o{lim u : o~ > 0) and oscillates near + o 0 ,  

(ii) lim r (N-p)/(p-I) u ---- ~, > O, and u oscillates near +oo .  
r---~ O 

Al l  o f  these solutions exist  ( for  each o~ > 0 and ~ ~ 0). 

Proof. Theorems 3.3 and 4.3 state that all the possible solutions have either 
the form (i) or the form (ii). Local existence of the two solutions near the origin 
is proved in [12]; hence the global existence from Proposition 2.1. [ ]  

6. The Critical Cases (q ----- Q1, q = O2) 

In the case q ---- Q2 we can describe the global behavior of the solutions di- 
rectly, as the energy functions V and W are constant. 

Theorem 6.1. Suppose q : Q2. Then, to within exchange o f  u and - -u ,  each 
solution u ~ 0 o f  (2.1) has one o f  the following forms:  

(i) u ~- 2r -~ ~ 2r (p-N)Ip, 
(ii) u is positive in (0, -boo) regular at 0 and +o0 ,  and is given by 

1 ( p -  l ~ p - z  )(p-N)/p 
u = c r plO'-I) + - ~  \ N  - -  p] CP~/(N-P) , C > O, (6.1) 

(iii) u & positive in (0, -}-oo), intersects the curve r ~ 2 r -  ~ infinitely many  times 
and oscillates between two curves r~--~ ar -~, rF--~ br -~ where a and b 
satisfy 0 < a < 2 < b. 

(iv) u oscillates in (0, +oo) ,  intersects the curves r~-~ q-2r -~ infinitely many 
times and oscillates between two curves r~-~q-br -~ where b satisfies 
0 < 2 < b .  

Al l  o f  these solutions exist. 

Proof. The existence of particular solutions of the form (6.1) was shown by 
FOWLER [9] for p = 2, for general p by GUEDDA & VERON [12]. 
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Let u -k 0 be any solution of (2.1) and w, y be defined by (2.10) and (2.13). 
F rom (2.15) and (2.18) we have A = O, B = 6 -= (N  --  p)/p, 2 ---- ~ .  In particular 
V = W and V is constant from (2.16): there is a K E R  such that 

l y(t) ]"' I w(t) I q+l 
p, (~(wy) (t) + q +------i-- = K, u t E R .  (6.2) 

F rom the Young inequality we get 

lw(t)lq+l I~w(t)f ~ K, V t E R .  (6.3) 
q + l  p 

Hence (w, y) is bounded on R, and thence r e u is bounded in (0, +oo) .  For  any 
K E R ,  let 

Ixl q+' 
epK(X ) = K -f for any x E R .  (6.4) 

p q + l  

( N  - -  p i N - l ~  
Then, on (0, 2), 4~r increases from K to (bx(2) ---- K + (q + 1); on 

\ P / 
(2, -koo), ~b K decreases from ~br(2 ) to --oo.  Since dpzc(w(t)) ~ 0 on R, we have 
necessarily (#K(2) >= 0; hence 

/ N  --  p \ N -  1 / 
U ~ U m = - -  k T )  / ( q  + 1). (6.5) 

Now if w has a limit f (at •  then 

lY(t) I f / I  q+' 
~d y( t )  + ---> K 

p '  q + l  

because y is bounded; since the ~o-limit and o~-limit sets are connected, y has a 
limit, and so does wt. Then wt ~ 0 and hence d ---- 0 or d ---- 4-2 from (2.12). 
I f  t e l = 2 ,  then from (6.2) 4~x(2)~--0 and hence K = K  m. I f  d----0 then 
K = 0. Now let us discuss the value of K: 

I f  K----Kin, then necessarily [ w ( t ) [ =  2 for any t. Thus w ~  z~2 and u 
(or --u)  has the form (i). 

/ f  K = 0, 4~o has three zeros: 0, + b o  with 

bo ---- ( N / ( N -  p))(N-P)/P2 2 = ((q + 1)/p) l/(q+l-p) 2, (6.6) 

--bo < --2 < 0 < 2 < bo. (6.7) 

Now w has a constant sign: if there is a to C R such that W(to) = 0, then from 
(6.2) y(to) ~ 0 and hence wt(to) = 0; this is impossible as w -k 0 from Propo- 
sition 2.1. Hence w is strictly monotone near :ko% for w(t) ---- bo at any extremal 
point. Then from above w decreases to 0 as t---~ +oo .  From [12] we deduce 
that eetw iS bounded at + 0 %  while u is regular at 0. By uniqueness, proved in 
[12], u has the form (ii). 
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I f  K,n < K <  0, then ~b K has four  zeros -4-aK, q-bx on R,  with 

--bo < - -bx  < - - 2 <  --ax < 0 < a x <: 2 < br < bo, (6.8) 

as ~bx(bo) = K; then f rom (6.3) w has a constant  sign and w (or - -w) satisfies 
ax <= w(t) <: bg for  any real t. Now w is not  monotone  for  large [ t I, as it has 
no limit. At  any ext remum t of  w we get 4,K(t) = 0 f rom (6.2) and hence w(t) : ax 
or  bx, and Wn(t) ~ 0 f rom (3.10). Hence there is an increasing family (t,),~ z of  
e x t r e m a o f w w i t h  lim t n : - ? ~  and lira t n : - ~ ; w  oscillates on R a n d  

n - - ~  q -  e o  n---)- - -  o o  

r~u oscillates on (0, + c o )  between ax and b K, and hence u satisfies (iii). 

I f  K > 0, 4~K has two zeros -4-bx, with 

--bK < --bo < - - 2 <  0 < 2 < bo < bx, (6.9) 

and w is not  mono tone  for  large [t [. Hence there is an increasing family (t,)nE z 
with t, . . . .  ~ ,  t, - ~ + ~ ,  o f e x t r e m a o f w .  As above we get W ( t n ) = •  x. 

n - - ~ - -  o o  n--~-  -}- ~ 

Then w oscillates on R between - -bx  and br, r~u oscillates on  (0, §  between 
- -br  and bx, hence u satisfies (iv). 

Solutions of  the forms (iii) and (iv) do exist. More  specifically, let any a E (0, 2) 
and t o C R ;  f rom Proposi t ion 2.1 there is a solution w of  (2.11) such that  
W(to) = a, wt(to ) = 0; the corresponding solution u has the form (iii). Let  any 
b E ( 2 ,  + o o )  and t o C R ;  there is a solution w of  (2.9) such that  W(to) = b, 
wt(to) = 0. If  b = bo, u has the form (ii); if  b < b0, u has the form (iii); i f  b > bo, 
u has the form (iv). [ ]  

Remark. The functions u o defined in (6.1) are regular at + o o  

{ 1 [ p -  1 ~p--l\p--N 
,,-~+~[ lim r (N-p'`(a-') u c = c) and at 0 ( ! im u = ~ ---- ~-~- ~ - - ~ _  p )  ) p c ' - P ] .  

The functions wc associated to uc are the Emden functions relative to q ---- Q2. 
They  have a unique ext remum equal to bo. We have the relations 

p ( p -  1)T 
wc(t) = w, t +  "~ Z p Log ej ,  (6.10) 

Uc(r ) = cl--PuI(C--P(P--1)/(N--P)r). (6.11) 

Now we consider the case q = Q~. 

Theorem 6.2. Suppose q = Qx. Then, to within exchange of  u and --u, each 
solution u z~ 0 has one o f  the following forms: 

(i) u is regular in 0 /lira u = 0~ > 0) and oscillates near +cx~, ~r-~O 
( ~ p _ ~ I N - - P ~ P - I l I [ P  

(ii) lim r ILog rl  lip u <~-1)/(N-~> = and u oscillates 
,~o ~ p -  1/ / 
near ~-oo. 

All of  these solutions exist (for each ~ ~ 0). They intersect the curves rF-~ •  -~ 
infinitely many times. 
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Proof.  F r o m  Theorems 4.3 and 4.4 we know the behavior near q - ~  o f  any 
solution u. V~RON & GUEODA [12] have described the behavior near 0 o f  any 
positive solution, in the form (i) or  (ii). F r o m  [12] and Proposi t ion 2.1 we have 
for  each ~ > 0 the existence o f  solutions u ~ regular at 0, with lim u ~ = o~. As 

r ' + 0  

in Theorem 5.2, Remark,  the functions u ~ and the Emden functions w ~ relative 
to u ~ satisfy the relations (5.3) and (5.4). N o w  let w be any solution o f  (2.11). 
Suppose that  w does not  have constant  sign near q-cx~. Then there is an increasing 
sequence (v,),~rT o f  zeros o f  w, with 7o ~ 1 and ~:,-+ §  N o w  the energy 
functions V and W are nonincreasing, and 

W(t) lY(t) IP" q---Iw(t)  Iq+a Iwt(t) + Ow(t)lP q- --Iw(t)lq+~ 
p' q §  p' q q - 1  

F r o m  Proposit ions 3.1, 3.2, we have lim wt = lim w =  0, as B =  0, and 
t - + + ~  t - + +  oo 

hence lim W = 0 and lim wt(v,) = 0. The Emden function w ~ oscillates near 
t - + + ~  n---~ + ~ 

- -00  and is positive near q-c~;  let ( t , ) , ~  be the nonincreasing sequence o f  its 
zeros (t, -+  - -c~)  and an = ]w~(t,)1. As W is a nonincreasing function, (a,),~z~ 
is a nondecreasing sequence, and ao = w~(to) > 0 f rom uniqueness. On (to, q-~x~), 
w ~ has no zero;  let s be the maximum point  o f w  I on (to, + ~ ) ,  unique f rom (2.12), 
and M - ~ w a ( s ) .  N o w  there is a k E ~  such that  

l wt(t) 1 <= ao/2, Iw(t) l < )14/2 u t ~ T X, 

and we can suppose Wt(l:k) > O. Let w have its maximum in (~'k, rk+l)  at s,, and 
M k = w ( s k ) .  Because M > M k  and lim w l = 0 ,  there i s a  a > s  such that  

t---~-] cx~ 

wl(a) = M k and w~(~r) < 0. Let  us compare  w to a translate o f  wl: 

-w(t) = w~(t -- s k + ~r) V t E R;  

we have 

- w) (sk) = 0, ( ~  - w), (s~) < 0, ( ~  - w) ( r ~ + 0  > 0 ,  

and hence there is ~rkE(Sk, ~rk+l) such that  (-~-- w) (ak) = 0 ;  then there are a 0 
and a ~r E (Sk, ak) such that  

~ ( 0 )  = w(r) ,  ~ , ( 0 )  = wt(r). 

By uniqueness we get 

w(t) : -w(t -- ~ + O) u r E t~; 

this is impossible since ~ is positive near §  
Hence any solution w of  (2.11) is o f  one sign near + ~ ;  then the function u 

associated to w, or  - -u ,  has one o f  the forms (i) (ii). 
Finally we prove the existence o f  solutions o f  the form (ii): for  any 0o E R 

there is a solution w o f  (2.11) such that  w(Oo) = O, wt(Oo) = ao/2. Then w cannot  
be an Emden  solution; the function u associated to w cannot  have the form (i), 
and so it has the fo rm (ii). [ ]  
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7. Case p = N 

In this section we consider the case p = N >  1 with q > p - -  1. P ropo-  
sition 2.1 is still true. We have now A < 0, B < 0 for  any q. 

Theorem 7.1. Let  p = N >  I, q > p - -  1. Then, to within exchange o f  u and 
--u,  each solution u ~ 0 o f  (2.1) has one o f  the following forms: 

(i) u is regular at 0 ~r-~o/lim u = o~ > 0) and oscillates near + o %  

(ii) ! im ~ tLog r I u = 7 > 0 and u oscillates near +oo .  

A l l  o f  these solutions exist ( for each or > 0 and 7 > 0). 

Proof .  The  behavior  near  0 and the existence o f  regular  or  singular posi t ive 
solutions is p roved  in [12]. N o w  consider any  solution u o f  (2.1) and funct ion w 
associated to u by  (2.10). Because A < 0, Proposi t ions  3.1, 3.2 hold. Because B < 0, 
Theo rem 4.3 holds and u oscillates near  + c o .  N o w  to study the behav ior  near  0 
we use the change of  variables (2.7). Since the energy funct ion F u defined in (2.9) 
is nonincreasing,  it is bounded  near  + 0 %  hence 0 = O(eNXl(q+l)). 

By integrat ion o f  (2.8) we get, for  any x ~ 1, 

I Ox I s - 2 0 x  + f e - n t  ]01 q - ,  o dt = IO~(1)I N-20x(1) ;  
1 

the integral is convergent ,  since e - s x  10 [q = O(e-Nx/<q+l)), and hence 0 x has a 
limit 7 at + o o .  

I f  7 :4:  O, then l im x- lO = y and hence u satisfies (i). I f  y = 0 then by  
x--~- + oo 

integrat ion o f  (2.8), for  any x > O, 
+ o o  

IOxlN-2Ox = f e-N'lOlq-tOdt, (7.1) 
x 

and  0 x = O(e-n'x!(q+1)). Then  0 x is integrable,  0 has a limit o~ at  + o o  and eU'XOx 
has  a limit f rom (7.1); then r-1/r has a limit, and!imoU r = 0. We  have  

or for  if o ~ = 0  then u ~ 0  f rom (2.2); h e n c e u i s  regular.  [ ]  
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