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Abstract

We consider the equation div(|VulP™2Vu)+ |ul? 'u=0 for p<N,
0<p—1<gq. We study the isolated singularities and the behavior near in-
finity of nonradial positive solutions when g << N(p — 1)/(N — p), and give a
complete classification of local and global radial solutions of any sign, for any g¢.

0. Introduction

In this article we study essentially the doubly nonlinear equation in a regular
domain 2 of RV:

Au+ |u@u=0, ©.1)
where p< N, ¢>p — 1> 0, and 4,u is the p-Laplace operator:
A = div (|Vu[P~2 Vu). 0.2)

When p =2, equation (0.1) has been intensively studied. When N > 2,
two critical values N/(N — 2) and (N + 2)/(N — 2) appear. The first studies
in the radial case are due to EMDEN; then FOWLER [7] [8] [9] gave existence results
and a full classification of the global radial solutions in RY or R¥/{0}. Recently,
Ni, McLEoD & SERRIN [16] give other methods to study equations of such a kind,
using Pohojaev type identities and new techniques for oscillating solutions. In
the nonradial case, the study of positive solutions near the origin is made by
Lions [15] when ¢ << N/(N — 2), AviLEs [2] when g = N/(N — 2); then GIDAS
& SpruUCK [11] give local and global results when g << (N + 2)/(N — 2); CAFFa-
RELLI, GIDAS & SPRUCK [6] have just extended them to the critical case g =
(N + 2)/(N — 2). Nothing is known when g is greater.

In the general case p > 1, the first results in the radial case for positive solu-
tions are due to Ni & SERRIN [18] who pointed out the existence of the critical
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values
Q1=Np—D/(N—-p), @,=(Np-—1)-+p/N—Dp), (0.3)

when p << N. Then GUEDDA & VERON {12] studied the global existence and the
behavior near the origin for radial positive solutions and ¢ << Q,. They ob-
tained some results also in the nonradial case when ¢ << Q, under conditions of
majorization or integrability of # near the origin.

In this paper we study first the isolated singularities and the behavior near
infinity in the nonradial case, when p << N and ¢ << Q;, or when p = N. Then
we prove an exhaustive description of all the radial solutions of the equation,
regular or singular near 0 or infinity, without any condition of sign, for any value
of g.

In Section 1 we deal with the nonradial case. We extend the results of BREzis
& Lions [5] and Lions [15]. Our first result is the following:

Suppose p<< N and 0¢ . Let u be a continuous nonnegative function, p-
superharmonic in 2/0}, with |Vul|? and Au locally integrable in £2/{0}. Then
u~le MNP, [VulP~'e MPXN-1(Q) and u satisfies

_Apu =g -+ ﬂ 50’ (0'4)
in the sense of distributions in Q, where g¢ Ll (2), =0 and 8, is the Dirac

mass at the origin.

Then we deduce from [12] and [20] conclusions about singular solutions of
equation (0.1):

Suppose p << N and q << Q,, or p= N. Let u be a nonnegative continuous
solution of (0.1) in 2/{0}. Then either u is regular in Q2 or there is an « > 0 such
that :
lim u(x)/u(x) = o, 0.5)

where u is the fundamental p-harmonic function in RN ; and u satisfies (0.4) with
g=1u" and f=0o"""1.

Moreover we give estimates of u — u extending those of [15].
Concerning the exterior problem, we prove the following:

Suppose p<<N and q= Q,, or p= N. Then any nonnegative continuous
solution u of (0.1) in an exterior domain |x|> R is identically zero.

This result was known for radial ¥ from [12].

In the other sections we study the radial case. Equation (0.1) takes the radial
form

PN P ), (= 0, ©9)

for the function r = x|+ u(r).
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In Section 2, we verify that any solution is defined in (0, +o0) or [0, 4o0)
and give equivalent forms of the equation. The most useful change of variables,
u(r) = r~?@t1=Py(t) with t = —Log r, reduces the equation to an autonomous
one. We write it as a system:

we=—pw[(@ +1—p) + |y[GP=Dy,
yo=—w" w4+ (N—pgilg +1—p)y.

We give two energy functions fundamental for the study.

In Section 3 we study the behavior of any solution near the origin when
p<N, and g is not critical. The energy method appears to be more effective
than phase plane techniques used in [12]. We also give properties of oscillating
solutions with the technique of [16], extending the former results [9].

In Section 4 we study the behavior near infinity (p << N, ¢ not critical). We
make another change of variables which reduces the study to the former one when
g is greater than Q,: let u(s) = —r¥"! |y, [P~ 24, with s=r""fy, v=(N — p)

s

(g —0)/(p —1D(g+ 1); then E-IPNS =0, and (0.5) is reduced to

©.7

SR (@ PR A, + 5 E =0, 0.8)

where p = (¢ + 1)/q, g = 1/(p — 1); N =p + Nfvg need not be an integer.
Note in particular that when ¢ =1 and p < 2, equation (0.1) reduces in the
radial case to a semilinear elliptic equation with linear principal part.

In Section 5 we study the global regular or singular solutions (p << N, ¢ not
critical): what connexions are possible, what connexions do exist. The classifica-
tion is similar to the one of FOwLER [9].

In Section 6 we study the global behavior in the critical cases ¢ = @4, 4 = Q,.

In Section 7 we study the case p = N.

1. Non-Radial Results

Let N> 1 be an integer. Set Bg(x) ={yecR" ||y — x| < R} for any
x€RY R> 0, and By = By(0), By = Bg/{0}. Our main result is the following:

Theorem 1.1. Let 1 < p<<N and R> 0. Assume that uc C%Bg), Vue€
Ly (Bg), Au€ Ll (Bg) in the sense of D'(Bg), and

u=0, Au=0 ae in Bg. (1.1)

Then u?~'¢ MYN=PX(Bg), [Vu[P~t € MNN=1(By), and there are a g€ Li,(Bg)
and a =0 such that

—Au=g-+ 88, in D'(Bg). (1.2)

This result has been proved in [5] by linear methods when p = 2. In the
general case we use nonlinear techniques introduced by SERRIN [19], [20], TRU-
DINGER [22], also used in GIDAS & SPRUCK [11}], and the study of equations with
second member in L', given for p = 2 by BENILAN, BREZIS & CRANDALL [4],
and for p==2 in [3]. We prove Theorem 1.1 in four steps.
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Lemma 1.1. Let g(x) = —A,u(x), a.e. in Bg. Then g€ Ll (By) and for any
NnEDBR), 09 =1, 5(x) =1 near x =0,

[en?dx = [ |VulP™2Vu V() dx. (1.3)
Bp Bp

Moreover, for any ¢ <R, there is a c,> 0 such that

[VulPdx=cx VYk=0, Va>0. (1.4
BNk <u<k+a}

Proof. From the definition of g we have

fg(b dx = .“Vu|"’_2 VuVedx, (1.5)
BR BR

for any ¢ € W'*(Bg) with compact support in Bg. Set p, ,(t) = min ((t — k)*/
&, 1) forany r=20 and k=0, x> 0. Let 0<<p<<R and &<Cp/2. Let
7€ D(Bg) be such that 0= =<1, 9(x)=1 on B, and { =§&n, with
EECPBR), 0=E 1 E()=01if |x|<e &(x)=1 if |x|>2e |VE|Z
C/e. Then the function ¢ = (1 — p; ,(u)) £ is admissible in (1.5), and we get

1
[e( — pe) Zdx+— [ |t VufPdx
Bp & {

k<u<k+ o}
= [ = Pes@) [VulP2Vu V(D dx.  (1.6)
BR
Taking first « = 1 and adding the equalities for integer k=0, 1,...,n, be-

cause X, (1 — pei(D)) = (n+ 1 — 1) we get
k=0

[ g+ 1—wifde+ | |Z. VulPdx
{u<n+1} {u<n+1}
= [ (+1—w|[VulP2VuV(y) dx
{u<n+1}
+p f (n+1—u|l VulP~1|VE,| dx. 1.7
{u<n{1}\B,,

Now for any real />0 we have n+ 1 —u(x) > (n+ D) Ah{(h + 1) ae. in
{ n-+1

u<< m}, hence, dividing by »n 4+ 1, we show that

h 1
—_— {Pdx + —— . VulP dx
h+1{<£1 d n+1{u<nf+1}l |
*SEF1

< (1 .
{u<n+1} n+1

) (Tl TR p [ (e Tup Ve ax

{u<nt1)NBy,

= f (1 — ’—1%) [VulP=2Vu V(5P) dx
{u<n+1}

+@—0p" [ |t VulPdx+ 7 [ |VEFdx,
{” 1} BZE

<n-+
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for any > 0, by the Hélder inequality. Now choosing an adequate 8, we get

h
— Pdx + 57— L Vul? dx
ht 1{u<2f1:}g 2('1%'1){“"*1}l |
<

f (1 — n—i—f) IVulP=2VuV(n?) dx + c(n =- 1?1 CPeN 77,

{u<n+1} !

where ¢ = ¢(N, p). Now we make successively ¢ — 0, n— +-00, h— 4 oco. With
Fatou’s lemma we get gn”€ L'(Bg) and it satisfies (1.3); hence g€ L'(B,),
g€ Ll (Bg). Moreover we have, for any integer n,

|VulP dx < 2(n + 1)B£ |Vulp=H V() dx. (18)

{u<n-- I}K\BQ

Now take any k=0, >0 in (1.6). Then from (1.6) and (1.8),

1 A
— [ C.iVulpdx

{k<u-k<a}

< [|Vulp U IN@ldx+p [ [VuPTl|VE, dx

BjR {u<k +a}NBy,

N-p 2=l
< f!Vu|”"’ lv(ﬁp)! dx + ¢Ce * (f!Vu!f"l !V(np)l dx) P
BR 8

R

where ¢ = ¢(N, p, k,x). As ¢ —>0, we get (1.4).

Remark. The estimate (1.4) is the keystone in proof of estimates in Marcin-
kiewics spaces for equation —A,v = f€ L'(By), v€ W{P(Bg); see [3]. Here we
need also some estimates of u; this is done in next lemma.

Lemma 1.2. For any y€(0,Q,), w” € L}, .(Bg) and thereisa C = C(y, N, p, u)
such that, for any small o,

— 7

I ' (1.9)

N-N-»
Jwde < Co *-
Bl’

Proof. Here we use a test function ¢ introduced by SERRIN [19] to estimate
the minimum of u on spheres of radius ¢, and then the weak Harnack inequality.
Let C, = 2|I|n=a13(/2 u(x) and u=u— C,. For any fixed o€ (0, Rf2), set

m(o) = lmi:n #(x). Suppose first that m(o) > 0 and define

0 if 6 < ix|<R/2and u(x) =<0, orif x| = R/2,
(@) (x) =qulx) if 0 < u(x) < m(o) and o < |x| << R/2,
m(e) if u(x) > m(o) and o < !x| < R/2, or if [x| < o;
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then (o) € Co(Bg) N\ W'P(Bg). We take ¢ = v(6) — m(o)n in (1.5), where
is chosen as in Lemma 1. We get

[ [Vu [P=2Vu V(u(o)) dx + [ &(m(o) — v(0)) dx = mlo) K,
Bp Bp
where K does not depend of o:
K= [|Vulp2VuVydx + [g(1 —1)dx.
Bp Bp
As g(m(o) — v(0)) = 0, we get as in [19]

mio) K= f [Vul|P=2Vu V(0(0)) dx = J |V(v(o))|F dx
Br BR

N — p\»-!
= m(g)* cap B, = m(0)’ vy ( ) a¥r,
P p—1
where wy is the volume of the unit ball in RY; hence, dividing by m(s) > 0 and
returning to u, we conclude that
boN

lIrlxin ux) < C, + C,067"! Vo€ (0,RD2), (1.10)

x|=a
where C; and C, do not depend up o. Suppose now that m(c¢) =< 0. Then (1.10)
is trivial,

Now u is a weak supersolution of the p-Laplace equation in Bg; hence from

[22] it satisfies a weak Harnack inequality; for any y € (0, @,), there isa C =
C(N, p, y) such that, for any ball B;,(xo) C Bk,

ty
—Nly < C mi
0 ( u, dx) = C min u(x).
Bl{(xu) ! Bylxo)

Then there is another constant C = C(N, p, ») such that, for any o€ (0, R/2),
1fy
o= Ny ( J udx) < C min u(x). (L.11)
Jo/4<|x|<50/4 fxl=a

Indeed we recover the annulus by n balls B,(x;) where ¢ = 7¢/24, |x;| =0,
|x; — x;_1] < o, u(x0) = ;“4“:‘}, u(x), and n is independent of ¢; we prove easily

that, for any i=1,...,n,
1/7 - 'I
@"””( S dx) = Clwp)" ulxo),
Byolxs)

and hence we get (1.11). Now we get immediately, with another constant C,

1fy
g~ N ( [ dx) < C|n]1i~n u(x) VYoe(0,R/3). (1.12)

By

Then (1.9) follows from (1.10) and (1.12).
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Lemma 1.3. The function u satisfies equation (1.2).

Proof. First we estimate |Vu|?~! near the origin. Let o << R and 6> 0 be
fixed. For any ¢ <C ¢ we have

Vu
VulP~tdx = -
B-[I ulP~ldx B[‘(l T W)@

px1 L
< ]Vu]” dxl? (1 4 w)@+Dr=1 gy P
K (1 + u)&—ﬁ-l 3

Now from (1.4) we get

-1
i (1 -+ u)(f5+l)(p—-l)/p dx

|Vulp T |Vul? pied 1
N Wi R S -
[(1+ )o+1 z (1+ua+1dx=ce]§0(l+k)a+1<+°°'

k=0 k<u<k+1nB,
(1.13)

Take & <<p/(N—p); then (6+ 1)(p— 1)< Q,; hence by Lemma 1.2,
[Vu|P~1 € L} (Bg) and from (1.9) there is a C, such that, for small o,

[ |Vu [P=1 dx < Cyo' ~ON=P)r (1.14)

BU
Now since |Vu|P~2Vue L}, (Bg) we can define the distribution
T=—div(|Vu|P~>Vu) —g in D'(By).
Then, as in [5], we have T= 3 B, D" d,. Let p€ D(Bg) such that (—1)

rl<m

(D) (0) = B, for every |r|=m, and w.(x) = y(x/e). Then
Toyy = 3 fre" = [|[Vul">VuVy, dx — [gy, dx.
Br

Irl<m Bp

As g=0, we get from (1.14), for small e,
S, BleTr = Cpe NP, (1.15)

ri€m
Now (6(N — p)/p) <1; hence B, =0 when [r|= 1. Finally, for any 5¢
D(Bg), 0 =% =1, 5(x) = 1 near the origin, we have
L™y =Bo= [|Vul"2VuV(y?)dx — [ gn’dx,
Br

Br

and hence f, = 0 from (1.13). ]

Remark. The estimate (1.14) is not optimal. We prove in the next lemma that
we can take 6 =0 in (1.14).

Lemma 1.4. v?~' € M{YN"P(BR) and |Vu|?~' € MYN=D(By).
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Proof. Here the difficulty comes from the fact that perhaps u ¢ L} .(Bg).
Let 0 <y < (p— Ip; as uc WL%Bg), we have by the chain rule (1 + u)”¢
WisX(Bg) and

V(A 4wy =y +u"'Vu in L{(Bp). (1.16)

Now taking 6 = p — 1 — py in (1.13) we get V((1 + u)’) € LE, (Bg). We have
y < (N—1(p— DN — p); hence (1 -+ u)’¢ LL(Bg). Let 6 be the gradient
of (1 4+ u)” in D'(Bg). Then

0=y(1+uy ' Vau+ ¥ « D .

rl<m
Defining y, as in Lemma 1.3, we get

Gpy= 3 a7e™ + [yl +wy ™' Vuyp,dx = — [(1 4wy Vy, dx;
BR ) BR

lri=m
hence, for small ¢, from (1.9),

” - Nolp—1y | N—1— =2
> afeTT = C([[(I + wy’ Vu”LI,(BR/z)s pip—1) 4 ¢ =1 )

rlsm
From the choice of y we get &, =0 V |r| < m. Hence (1 - u)’€ WLL(Bg).
Now we can adapt the proof of [3] to (1 -+ «)”: for any k = 0, « > 0, we verify
easily, since y << 1, that

Dol +u) = pk?,(k+4x)7~k7’((l 4+ u)’) a.e. in Bp. 1.17)
Let o << R be fixed. By use of the injection of W{'(B,) into LN™W~1(B), there
is a ¢ = ¢(N, p) such that, for large £,

| 2ie, (1 + u)”LN/(N‘l)(BQ) =c “v(pky’(k+a)y_k'y((1 + u)) ”L‘(BQ)~

Hence from (1.16)

c

1P + Dl miv-1g ) = Fray— % f V(1 + w))]| dx,

ByNk<u<k-+a}

cy f
(k -+ D77 ((k + o) — K7) ByN{K<u<k-+a}

A

|Vu| dx,

A
?lm

|Vu|dx,

BNk <u<k+a}

if « < 1. Then we deduce from (1.4) and [3] the estimates
meas ({u > k} N\ B)) < CkNU~PIWN=p), (1.18)
meas ({|Vu| > k} N\ B,) < CkNU-PIN=D, (1.19)

where C = C(N, p, 0), and hence the conclusion. []
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In the case p = N we have to make some restrictive hypothesis:

Proposition 1.1. Lez R> 0. Assume that u€ C°(By), Vu € LY (Bg), Ayuc€
LY (BR) in the sense of D'(BR), and

u=0, Ayu=0 a.e. in Bg. (1.20)

Then W € LL(By) for any y> 0, |Vul’ € Lb(Bg) for any y€ (0, N).
Moreover, if lin(l) u= —+oo, thentherearea gc LY () and a f = 0 such that
X! .

—Ayu=g+ B8y in D'(Bg). (1.21)
Proof. Let g(x) = —Ayu(x), a.e. in Bg. Proceeding as in Lemma 1.2 and
using the fact that '
cap B, = wy(Log(R/o))! Y,
N

(see [19]) we get instead of (1.9) the estimate

min u(x) < C; + C, |[Loge| VY o€(0, R2). (1.22)

|x|=0
Now the weak Harnack inequality is available for any » > 0; hence (1.9) is
replaced by the estimate

fu” dx < Co" |Logo (1.23)
B, .

for any small o, where C = C(y, N, p, u), and hence u* ¢ L (Bg). Now con-
sider u, = min (4, k) for any k> 0. Then a theorem of LiNDQVIST & MARTIO
[14] tells us that u, is super p-harmonic in By and satisfies, for any xq € By
and 0<r<g<|xl

/

Br(xo)

v N
1 +"’; dx < (NJ(N — D)N wy_;(Log (/r))! . (1.24)
k

By Fatou’s lemma we get the same estimate for w. For any o€ (0, R/3) we
recover the annulus o/2 < |x| << 30/2 by n balls By,(x;) with |x;| =0, and
make r = 3¢/4, p = 70/8; hence

Vu

134 u

’Ndx <c, (1.25)

0/2<|x|<30/2

and C does not depend on o. Now for any y € (0, N), by the Holder inequality,

|Vul” dx

of2<|x| <30{2

<

Vu ¥IN ( W-9IN
dx (1 + wyNI&=n dx) ;
1 + u’N ) a/2<f!]~<3a/2

<a/2<|x| <30/2
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hence from (1.23), for small o,

[Vul? dx < Co¥~7 |Logal .
o2 <|x| <3062

By summation we get |Vu|' € Li,.(Bg), with the estimate

[1Vu? dx < Ce¥~7 |Loga|’ (1.26)
BO'

for small o, where C = C(N, p,»), y€ (0, N).

Now consider again the proof of Lemma 1.1. The estimate (1.26) does not
allow us to go to the limit in (1.7) as ¢ goes to 0 for fixed #. Assume now that
Li_l}(l) u(x) = Joo. Then, for fixed n, we get for £ small enough

n+1—w |, VulN"1 |V, |dx =0,

{u<nf13NBy,

and hence we get the conclusions of Lemma 1.1 with p = N. In Lemma 1.3
we can replace (1.14) by

f|Vu|N*’dx§Ca|LogalN“, 1.27
‘BO‘
from (1.26); hence (1.15) is replaced by
> pETT=ClLoge[N!, (1.28)
lrlsem

which proves that #, = 0 when |r| = I; hence we get (1.21), with § =0 from

1.3). 0O

Remark. The estimate (1.23) is optimal because for the N-harmonic function

u=Log(l/|x]), e™" |Logo|™” f 4" dx has a limit different from 0 as ¢ — 0.
BU

Nevertheless the estimate (1.26) is not optimal, as o” ¥ [ IVul’ dx has a limit

as ¢— 0, for any y << N. We could go to the limit in (1.7), had we proved an
estimate of Vu in M (Bg).

Now we return to equation (0.1). Let 4 be the fundamental p-harmonic func-
tion in RV/{0}:

Cn, |X|0~MIC-D  for 1 < p< N,
ul(x) = S -2
lCyLog(l/lx)  for p=N,
where
p—1 ~ 1/~ CIuN=
Cp,N = N — p(NCON) e 1)’ CN = (NwN) N D,

Theorem 1.2. Let p and q be real, 1 <p<N,p—1<q<Q;, p—1<
g<-+oo if p=N, and R>0. Let uc C%Bg) with VucLl,(By) be a non-
negative solution of the equation

A+ u? =0 (1.30)
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in D'(Bg). Then one of the two following possibilities must occur:
@ lil‘l('l) u(x) exists and the extended u is a solution of (1.30) in D'(Bg);
x> .
(ii) thereis an x > 0 such that limo u(x)/u(x) = x, and u satisfies the equation
x>

Apu + 1 + a? 18, =0 (1.31)
in D'(Bg). Moreover we have the estimates
}‘lj;% 'x |(N—l)/(P—1) uxi — “(NwN)—I/(p—l) Eia (1.32)
jilxl—>g;

and for any 0 <|x|<r<R,
—C=<u—op= C(l + |x|ME—D+r—N-nl—1y
if p<N, g (Nlp— 2+ p)/N—p),
—C=u—axp=C(l+ |Log|x|}) #p<N, qg=Np—2)+p)N—p,
~C=Zu—ap=<C ifp=N, (1.33)
with constants C = C(N, p, q, r, u).

Proof. Equation (1.30) can be written in the form
Au+dr~1=0 (1.34)

with d = u?*!~?, By hypothesis the distribution 4,4 in B belongs to LZ.(Bx);
hence from Lemma 1.2 and Proposition 1.1 we have "¢ Ll (Bp) for any
y€(0,0,) if p<N, forany y>0 if p=N. Since ¢<< Q, if p<< N, we
can find a > 0 such that de LY/®~%(B,). In that case we can apply SERRIN’S
results [20]: either the singularity is removable and « can be extended as a solu-

tion of (1.30) in D'(Bg), or there are C; and C, > 0 such that
Ciu(x) = u(x) =< Cou(x) near0.
In that case from Theorem 1.1 or Proposition 1.1 there is a 8> 0 such that
Aju+ v+ 6,=0

in D'(Bg). GUEDDA & VERON [12] prove by scaling that there is an « > 0 such
that lin& u(x)/u(x) = «. Now as in [12] we get (1.32) and (1.31). Let us prove

(1.33). For any &> 0 there is an a> 0 such that u = (x — &) 4 in B,. Let
0<o<min(l,R). We have —Au=—-A,(x—¢epu) in Bg, and u—
(x — &) = —au(g) for |x|=p. From the maximum principle applied in any
annulus b < |x| <g¢ with b<<a, we get

u=(x—e)u—aulg) in B,
Letting ¢ to go 0 we get
u = oy — o) in Bg.
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Now there area K> 0 and an a> 0 such that ¥ < Ku in B, and for |x|= .
For any &> 0 there is a unique radial function u, such that

A, + (Kuf* =0 in B,,

. » . (1.35)
lim u=11_1)1(1)y,"1u,=oc—|—e, ulo) =k
with k = max u; it is given explicitly by
e 1=N Nop oy 1
k—l—(zx—l—e) Cprspl(l-i—Ms Pl)”_lds if p<N,

ur) =
) s 1
k+(x+e)Cy [s! (1 +N, [ tN‘l(Log(l/t))th)N“l ds ifp=N
r 0

where M,, N, have finite limits as ¢— 0. We get easily the estimates in B,:

|ty — (o + ) | < C(L+ r¥ue*") if p< N and g = (N(p — 2) + p)/(N — p),

|4, — (x +&)u| = C(1 + [Logr|) if p< N and g = (N(p — 2) + p)/(N — p).
lu, —(x+eu|=C if p=N.

From the maximum principle we get u < u, in B,. Letting £ go to 0, we get the
estimates (1.33) with other constants C. []

We end this section with a theorem concerning the exterior problem, proved
in the radial case in [12]; see also Section 4, Theorem 4.3.

Theorem 1.3. Assume 1 <<p<N,p—1<g<@Q;, (p—1<qg<<+oo if
p=N). Let 2z ={xcR"||x|> R} andlet ue C°(2g) with Vue L (2z)
be a nonnegative solution of equation (1.30) in D'(2g). Then u=0.

Proof. From TOLKSDORF [21} we have u¢€ C(£2y), as u?¢ L (£2z). From
(1.30) we have A,uc L (2z), —A4,u=0 ae. in 25 Suppose that u does not
vanish identically on £2; then u is positive everywhere in {2, by the strong maxi-
mum principle (see [23], Theorem 5). Let p€R and rn€N be fixed, with
R << ¢ < n. By minimization we construct a sequence (1, . )iy of radial functions
satisfying u,,=0, and for any k =1,

— Ay = e [T Uy for o< |x|{<n,
U, (x)=m for |x|=op, (1.36)
U, (x)=0 for |x|=n,

where m = min u > 0. From [23] we have u,, >0 for ¢ < |x|<n; from
=e

the classical maxxmum principle we get

Upp Sty =u  for o< |x|<n. (1.37)



Equations of Emden-Fowler Type 305

Now from (1.36) and (1.37), (*¥~ ' |(4,), P~ (U, 1) )kex IS €quicontinuous on
[p, n]. Hence u,; converges in C'([g, n]) to a radial function u, such that

O<wu,=u,=u foro<|x|<n, (1.38)
and '

—Au, =ul for o< |x|<n,
u(x)=m for [x|=p, (1.39)
u,(x)=0 for |x| =n.

Consider now the sequence (u,),cy and let n go to infinity. From (1.38), (1.39),
by extraction of a diagonal sequence, there is a subsequence (,),.y converging
in Cl(lo, +°0)) to a nonnegative radial function v; then v satisfies

—Ap=v? for o< |x],
(1.40)
ux)=m for x| =p.

From [12] or from Section 4 such a solution cannot exist; hence we get a contra-
diction. []

2. First Properties in the Radial Case

From now on, N, p and ¢ are reals such that N=p and ¢ >p— 1> 0.
We study the equation

PN PR ), + [ult =0, @1

for a function r> 0+ u(r).

Multiplying the equation by u, we get an energy function, used for nonnegative
u in [17]:

|w [P !
E(r) =% ,

which is nonincreasing: E, = —(N — 1) |u, |?/r.

Now remembering the change of variables introduced in [9], [12], for p << N,
let

2.2)

ur) = 0(x), x = re-MeE-b; (2.3)
then

p—1
N—p

r4
(16,1772 6,), + ( ) x° 617716 =0, (2.4)

where

o= —p(N— D/N — p). 2.5)
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This is the Emden-Fowler equation when p = 2 and g is rational. Multiplying
by 6. we get another energy function:

_ 16 =1y 161
F(x) = '3 +(N—p) x PR (2.6)

nonincreasing since

p__l r o 9q+1
(Fp)x:( ) 1| | .
N—p qg+1

When p = N we replace (2.3) by
u(r)==0(x), x= —Logr, 2.7
and get
(10:V"20, + e ™ 0]~ 6 = 0; (2.8)
the energy function is now

10, 1"
NI

Fy(x) = =5+ eV 0o+, 29

nonincreasing since
(Fy)y = —Ne Nx |glat],

Proposition 2.1. For any ro >0, ug,u; € R we have local existence and
unigueness of a solution u of (2.1) such that u(ro) = uo, u,(ro) = uy. Each solution
has a unique extension to (0, +oo).

Proof. We write (2.1) as a system (u,, v,) = f(r, u, v), where

N 2
o =G ).

Because f'is continuous for r == 0, we get local existence from Peano’s theorem.
Because the energy functions E and F, are nonincreasing, each solution has an
extension to [ry, +o0) and (0, r,]; hence to (0, 4+o0). Obviously we get uniqueness
when p = 2 and g = 1. If not, we get the uniqueness of the zero solution when
uo = uy = 0 from the behavior of E and F,; when uo = 0 % uy or u; = 0 = u,,
we compare directly two solutions as in [12]; we use the local Lipschitz properties
of the functions #+> [¢[971 ¢, t—>|¢|@~P/=D¢ jn (0, +00) to get uniqueness.

In the following sections we use essentially the classical change of variables
that reduces (2.1) to an autonomous equation (see [9] [12]): let

d=pllg+1—p), ulr)=r°wt), t=—Logr; 2.10)
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then (2.1) takes the equivalent forms

(|w, + 0w [P=2 (w, + ow)), — (N — Oq) |w, + dw|P~2(w, + dw) + |w|T"'w =0,

(2.11)
[w, + owlP™2((p — D) wy — (N — 8(g + p — 1)) w, — (N — dg) w)
+ [wlitw =0. (2.12)
Now let
Wty = —r@rDE=D |y [p=2 4 (2.13)

then we write equation (2.11) as an autonomous system in two unknowns w and y:

W, = —bw + |p|@PIE-D 5
(2.14)
Yo= =Wl w (N —dq9)y.
Now we give two energy functions for this system. We set
A=N—-904g-+1)=((N—p)g—Np—1)+p)g+1—Dp), @15
B=N—2ég=((N—p)g— Np—D)/g+1—p). '
Proposition 2.2. For any (w, y)€R?2, let
i oo~ ! [wler!
V(w, y) = == — dwy — A—— |w? :
v, ) == wy oW+
, (2.16)
W )_IJ"” Bwy + 4 B\%*IB q ’ l%+I+IW|Hl
and V(t) = V(w(2), y(t)), W(t) = W(w(z), )(t)). Then
V() = AX(t), W)= AZ(), 2.17)

where
2-p
X=([ow[f~% 6w — ) (5w — [y|p! y) =0,

Z=(w— ]ByF-IBy)(]wlq_l w— By) = 0.

Proof. From [1], one can obtain a Liapunov function L of an autonomous
system x, = f(x, y), ¥, = g(x, »), such that f{x,y) =0 is equivalent to y =
h(x), by

v = (f: Syt — [ (e, ()

hence we get (2.16) and (2.17) by computation. []
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Remark. The sign of X and Z is due to the monotonicity of the functions
t— |[t]*" 1t for &« = 1/(p — 1) and « = g. The existence of a certain symmetry
for system (2.14) relative to g and 1/(p — 1) and the link between the two energy
functions will be pointed out in Section 4.

Remark. When p = 2, the function V is the energy function obtained by
FowLER [9] by multiplication of equation (2.11) by w,; and X = w?.

Remark. The constant solutions of (2.11): w=0, and, when B is positive,
w= -1 where

A = (P 1B)la+1-») (2.18)

are essential in this study; they correspond to the particular solutions of (2.1)
in form of a power of r:u=0, u= 4+ir %

3. Behavior of Radial Solutions near the Origin (p << N)

In this section and up to Section 6 we suppose p << N. The critical values
0., Q, given in (0.3) appear naturally from Proposition 2.2 as 4 =0 when
qg=0Q,, B=0 when g =0,.

Here we study the behavior of solutions u of (2.1) near r = 0; this means
the behavior of solutions w of (2.11) near ¢ = +oco. In Theorems 3.1, 3.2, 3.3,
we extend the results of [12] relative to nonnegative solutions and ¢ << Q, and
FowLER’s results [8] [9] to the general case.

Proposition 3.1. Let (w, y) be any solution of (2.14). If q= Q,, or if w is
nonnegative, then (w, y) is bounded near —+oo.

Proof. The case w = 0 is classical; see [12] [17]. Now suppose g = Q,.
From (2.12) we have 4 < 0, and hence the function V defined in Proposition 2.2
is a nonincreasing one; hence for any fy = < 400,

P Ot O
T ow(t) y(1) + IAiT [w(t)? + WESE = V(t). 3.1
From the Young inequality we get
w@ [ W@ .
P 0 ” = V(); (3.2)

hence w is bounded, as ¢ > p — 1; then y is bounded from (3.1) as p> 1. [

Proposition 3.2. Suppose Q == Q,. Let w be any solution of (2.11) bounded near
~+-oco. Then tliJrrn w, =0, w has a limit £ at 4o, and

£(|£|7+17 — 6°~1B) = 0. (3.3)
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Proof. From Proposition 2.2 the functions ¥ and W are monotone. They have
(finite) limits at +oo. Indeed, if not, then |y| . —+> +oo, and from (2.14)
w,| e +o0, which is impossible. Now we have A == 0 from (2.15); hence
from (2.3) the functions X and Z are integrable on any interval [#,, +o0). We can

suppose w == 0. Hence |w(t)| + |y(r)| > 0 for any t€R from Proposition 2.1.
Suppose that p = 2. For any 1<<g = 2, there is a ¢, such that

(lal*™2a— |b|P72B) (@ — b) = c,(a — b)* (|a| + B2, 3.4)
for any @ and b€R such that |a| + |b|> 0. Hence for any ¢ = t,,
X(t) = c,wi(t) (8 [w(t)| + [y(0) [~ D)E=2; (3.5)

now (& |w(t)| + |p(®) [V~ D)?*~7 is bounded in [f,, +-0), hence w,€ L2((o, +o0)).
Now from (2.14) w, and y, are bounded and

W, = —Ow, + Iy](Z«p)/(p—I) y/(p — 1),

hence w,, is bounded. Then we T 0 classically [9] [11]. Now the w-limit set
is connected, and from 2.16

lim V= tliin (Wit g+ 1) — BS*~ 1 iwlP[p);

t>4oc
hence w has a limit £ at +oo. From (2.14) we get
xlifrn y=06""1|£|P2¢, tliinmy, =—|tp e+ B L2,

and hence Ve, 0 and ¢ satisfies (3.1).
' 1
Suppose now that p > 2, and hence —q— -+1<C2. Then from (3.4) with

1
Q=?+1, for any ¢ = 1o,

1
Z(6) 2 30 (1w 7 + [By) )T . 3.6)

As above we get y, € L*((t,, +°0)) and
Yu=—(@—1) \W‘lq—l w, + By,;

hence y,, is bounded, y, — 0, y has a limit, and by (2.14) so does w. We
conclude as above. [] e

Remark. When p > 2, w,, is not bounded. We can also prove that w, T 0
using the Holder continuity of w, (see [10]) instead of the function W.

Now we consider three cases, according to the value of g.

Theorem 3.1. Suppose q> Q,. Let u be any solution of (2.1), with u==0.
Then we have three possibilities near the origin:
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G u= +ir2°,

(i) u is regular at O (lin(l)u = o« =+ 0,lim r P, = — |t a/N),
r-> r—>
(iii) r° u is not bounded and u oscillates, intersecting the curves r> --ir™°
infinitely many times.

Proof. From (2.15) we have B> 0 and so w= 44 are solutions of (2.11);
also 4> 0, and so the energy functions V and W are nondecreasing.

Consider first a nonconstant solution w bounded near ¢ = +oco. Then from
Proposition 3.2, we get tiiglm w = 0 or --A. Now the characteristic equation of

the linearization of system (2.14) in (4, (64)*7") is
—At+pBl(p—1)=0 (3.7

(see [12]); hence this point is completely unstable. Then, as w is not constant, we
have lim w = 0. As a consequence we get, hm wW=0, because 11m w,=0

t-> + o0
from Proposition 3.2. Hence W is not posmve for any real ¢,
t 4 t g+1
290 b (t)y(,)TABq o PO <,
and so
BT Ly [ < o) 500 (38)
g+1"” = W R '

If w(t) = 0 for some ¢, then y(t) = 0 from (3.8) or (2.16), which is impossible
from Proposition 2.1. Hence w has a constant sign, for example w > 0. From
(3.8) there is a ¢ > 0 such that, for any ¢,

lwlt) + dw(t)| < ew()? D, (3.9
We conclude as in [12] that w, - édw > 0, and e*w is bounded near infinity.
As it is nondecreasing, there is an « > 0 such that lim e®*w = &; hence
11_r)% u = «. Since u, is bounded near r =0 by (2.2), we get by integration of
2.0, limr- Yu, P72 u, = — |« 971 «/N; hence u satisfies (ii).
Consider now a solution w unbounded at +-oo. Then from Proposition 3.1,
w does not have a constant sign for large t. As |w| + |w,|> 0, there is an in-
creasing sequence 7, — -~co such that w(z,) = 0, w,(z,) =0, w>0 on (&,
tryi1)s W< O on (f2,41, byp2)- At any extremum s of w, we have from (2.12)
(p — Dw,(s) = *Pw(s) Q112 — |w(s)|77177), (3.10)
and
|w(s) |q+1 or—1

o=

Bw(s). (3.11)

Since w is unbounded, there is a sequence of extrema o, — +oo such that
w(g,,) = -+oo, and so F(v,)— oo from (3.11); then, because of monoton-
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icity, t_l)iJrrnm V = +oo. Let 5, be an extremum of w in (#, ., ;); then |w(s,)| = +oo
from (3.11), and so |w(s,)| > 4 for large k; from (3.10), w has a maximum at
85, and a minimum at s,,..;. Hence s, is unique in (¢, #, ;). The curve w oscillates
around the axis w = 0, intersecting the lines ¢+ 41 twice on each interval
(%, t;,..y) for large ¢. The curve u oscillates around the axis # = 0, intersecting
r— +4Ar~?% twice. It has a unique extremum on each arch, as y has a unique
zero oy in (#, ty1) (since p(f) - Wt y1) <O and y,(a) - wigp) < 0). [J

Remark. If lim w = 0, we cannot linearize the system (2.14) when p > 2

r—>+oo
or g << 1. That is why we take another way: we use the energy function W to
find a differential inequality (3.9) in w, which gives the behavior at +oo.

Theorem 3.2. Suppose Q, << g << Q,. Let u be any solution of (2.1), u==0.
Then we have three possibilities near the origin:

() u=+2r°
(i) u is regular at 0 (limu = o + 0, lim A —[le"”‘zx/N),

(i) r’u = A (with r’u nonconstant).
r=>

Proof. From (2.15) we have B> 0, and so w= -1 are constant solutions:
also 4 < 0, and so ¥V and W are nonincreasing functions. From Proposition 3.1
any solution w is bounded near +oc. From Proposition 3.2 we have 11m w=0

or +2. Now from (3.7) the point (4, (62)"~') is asymptotically stable thus the
case hm w = -1 is possible for nonconstant w.

If 11m w=20, then lim W =0, and hence W is not negative: for any

real tt—> —+ o t—> 4 00
)7 3, Lo, o
T B0y — 4] BT | ()l *‘q‘j;l—%o-
Now, from the Young inequality,
_ 1 1 g+1
(387 11 = ol ™) o s (14 27 RO

as p’>1-1/g and t—1>iI-|]-]oo ¥(t)=0, there is a ¢=0, such that, for large ¢,

w satisfies an inequality of type (3.9). Hence we conclude as in Theorem 3.1 that
Jim e w=0u=+0 and u is regular. []

Remark. This proof rests on the inequality B > 0, thatis ¢ > Q. If B<C 0,
we have necessarily , liin w(z) = 0 from Proposition 3.2, but we cannot use the

functions ¥ and W to conclude the proof. The linearization is not avalaible in
the general case, and so we use an energy method in the change of variables (2.3).
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Theorem 3.3. Suppose q << Q. Let u be any solution of (2.1), u==0. Then
we have two possibilities near the origin:

(i) £]—>mo rN=D)e~-1) 4, y = 0,
(ii) u is regular at 0.

Proof. We study the behavior of the function 0 defined in (2.3) near +cc.
Since the energy function F, is a nonincreasing and nonnegative function, it is
bounded near +oo. Hence 6, and x°|0[t! are bounded from (2.6). Now
integrating (2.4) we get for any x =1,

— 1\ =
0720, + (F=) [ lole 0 a1 = 16,02 5,0).

Now x°{0|7= O(x"“"Y) and ¢+ g+ 1=4¢g— Q,; <0, and so the integral
is convergent and 0, has a limit y at 4-oo. If y =0, then hm x 1=y, and
u satisfies the condition (i) of the theorem.

If » =0, then by integration of (2.3), for any x> 0,

16,7726, = (ﬂ)p +f°° 1° 16171 6 dr; (3.12)
* * N — D x ’

hence 0, = O(x+a+D/P=D@+D)  Qyuppose that 6, is not integrable. Then for any
k> 0 such that 6, = O(x~*%) we have k < 1; if k = 1, then for any &> 0,
6 = O(x*) at infinity. Hence from (3.12), taking &<< Q,/q, we get 6, =
O(x4*~20/(P=1) and get a contradiction with & < pQ,/Ng. Hence k < 1 and
from (3.12) we have 6, = O(x~@k~C+HarD@=D) Tet k, = |¢+ g+ 1}/
(p—1)(g+1) and k,.; = (gk, — (6 + g+ 1))/(p — 1) for any n€ N. Then
k<1, k,= (p—q——l) ko; this is impossible because ¢ > p — 1. Hence 0, is

integrable, 6 has a limit at +oco and x"®~?0_has a limit from (3.12). Then u
has a limit o and r~"®~Yy_ has a limit at the origin; we have « == 0 from (2.3)
as u#==0, and hence u is regular. []

We end this section by the study of oscillating solutions in the case g > Q,.
The technique of the proof is essentially due to McLEoD, N1 & SERRIN [16].

Theorem 3.4. Let q> Q, and u be an oscillating solution near the origin.
Let (r,),en be the nonincreasing sequence of zeros of u in (0.1] and (p,),ey be the
sequence of its extrema (r,.; << p,<<r,). Then there are constants c,, ¢, c; > 0
such that

Er-fl:loo 0au(0,) = ¢4, l,imoo r':+“‘ﬂur(rn) = €2, (3.13)
Bmoo (rfo —r®y = c;, (3.19)
where
N—1 N — —
n( ) g = N—p(Q:—9q) s (15)

T p—Dg+2p—1° p—Dg+2p—1
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Proof. We make the change of variables, as ¢ &= Q,,
u(r) =r=%v(x), v=r", (3.16)

where & and § are defined in (3.15). We get a nonautonomous system of two equa-
tions to study near 7 = +o0:

Bv, = 0‘% +|z]ePie—D o,

i (3.17)
Bz, = —|v]"" 1o — x—.
We consider a kind of energy function: for 7 =1, let
Hey = 2 P (3.18)
then
?H, = —avz. (3.19)
Hence, from the Young inequality,
12|H1§I21, + 277 owlP < H + 200 — i |‘Hl; (3.20)
q+1
since ¢>p — 1, we get
v |H|=H+K, 3.21)

where K = (2x)?° p°. Then e'*(H 4+ K) is a nonincreasing and nonnegative
function and it has a limit at infinity; hence H has a limit M at infinity. Now v
and z are bounded from (3.18) (3.20), and hence

|z | v
Hm(p, +q+]) M. (3.22)

From Theorem 3.1, r°x is not bounded near 0; hence by (3.15) (3.16) % is not
bounded at oo,
Suppose that M = 0. Then hm z= lim v=0, and thereisa 7,>0

>+ 00 T4 00

such that |vz| =1 for =17, Then 7? |H,|<«&, and so 7|H|=<«, and
from (3.18),

[z[P" + ||t < 2mafr, m=g+1+p';
hence, from (3.19),

1
|He| = a@ma)lfe'™?, 1=+

and
|H| < a2mo)[t' 1.
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By induction we deduce easily the estimates for any integer k
|27+ lvlq+1 < (2moc/‘r)1+l+"'+’k,
|H| < “(Zm“)l+...+11f/.[1+l+...+1k_
Now we go to the limit as k— ‘oo for any fixed 7 = 7,; hence
|z + 0|7 < 2mayr)®@tD
since
(I =07 =dg+1).

This is impossible because 7% is not bounded. Hence M > 0. Returning to u
in (3.22) we get from (3.16), (3.17),

(IrH—u—ﬂu’ ]P ‘rzxuiq+1
r g+1
and hence (3.13). At last, from (3.17) (3.22),

i (525

lim

r—>0

)= w>o0,

Let 7, = r?; we deduce that

Mg+ 1)@

Tpt1 — Tp > C= 25

dv
(P'(M — [v|"H (g + D)’

and hence (3.14). [J

4. Behavior of the Solutions near Infinity (p << N)

We study the behavior of solutions u of (2.1) near r = oo, which means
the behavior of solutions w of (2.11) near t= —oo. We could have repeated
the study of Section 3 by use of the energy functions V and W, but we prefer to
introduce a new change of variables; it reduces the analysis to the former one
when Q > @,; it also offers an interest in itself and shows the symmetry between
wand y, V and W, g and 1/(p — 1).

Proposition 4.1. Let ¢ == Q,. Let u be any C* function on (0, +00), and

us) = —r""u P2y, SZ%, “4.1)

where

v=MN—-p)@—0J/g+D-—-1; (4.2)

then equation (2.1) reduces to

SN g P2 n), 4 fu e =0, 4.3)
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where
p=1+1s 7=1/p—1), N=p+ Npy, (44)
and
u(r) = —|p[N"2psN"1 |7 P25, 4.5)

Moreover, let 8, w, ¥, A, B and the energy functions V and W associated to N, D,
q,u, as 6, w,y, A, B, V, W are associated to N, p, q, u

§=p/g+1—p), us)=s %), v=—Logs (4.6)
Hz)y = —sTHOIE=D [ P2, 4.7)
A‘:ﬁ—a’@+1), B=N—4g (4.8)
V(z) = '2'5, — Wy — ap VWP 4+ ———— [wi! 4.9)
y g-+1
W 2 e R B
— — q —- q

Then we have the relations

w@) = [0 p(0), 3@ = |7 ew(), (4.11)
V) = |v| 2@ D W(r),  W(z) = |v]| %D V(). (4.12)
Proof. We get the proposition by computation, using the relations
N—1=N-+wpg v+(p—Nip—1D=~N+9q,
S=(N—38q)p=208q—1=(+Dop' =@+D@—DIg—p+1), 413)
A= —Ap, B=24ép. [

Remark. Equation (4.3) has the same form as (2.1). Even if N is an integer,

N need not be. Because N> p we get N> p when »>0, thatis ¢> Qy;
then s goes to 0 as r goes to +oo. Hence we get the following results.

Theorem 4.1. Suppose q > Q,. Let u be any solution of (2.1), u==0. Then
we have three possibilities near +-o0:

() u= +4r~ ",

(i) u is regular at +-oco, that is

] — N
lim r&=PIe=Dy — ¢ L0, lim -0, %

C
r—++4oo r—+4 o0 P — 17

(i) rPu —> A (with r’u not constant).
r—»-+ 00
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Proof. From Proposition 4.1, our analysis is reduced to studying u near s = 0.
Let Q; = N(p — D/(N —p), Q; = (N(p — 1) + p)/(N — p). From (4.4) we get

=(N—p@+DI(N—pg—Np—1D)={N—plHp— 1,
0, = 1/Q, = (N — p)/N(p — 1), (4.14)
0, = ((N—p)(g + 1) — N(p — )/N(p — 1);

hence g = 1/(p — 1) > Q-l, and ¢ > @, is equivalent to g << 0,. Hence from
Theorem 3.2 we conclude that either # = - As~3, where 4 = (8"~ (N — 6g)) /@ +1-7,
and hence (i) from (4. 1) or (4.5), by use of the identity Pi= (A0)"~!; either

lim us® = 41 and us® is not constant, and (iii) follows; or limu =,

§—> -+ 00 §->0

lin(l) 5741, )P~ 2 u, = —|x[T"' /N, and hence (ii) follows by use of (4.14). []

Theorem 4.2. Suppose Q, << g << Q,. Let u be any solution of (2.1), u=£= 0.
Then we have three possibilities near +oo:
Q) u=+ir %
(ii) u is regular at oo,
(iii) r°u is not bounded and u oscillates, intersecting the curves rvs --ir—°
infinitely many times.

Proof. Now we have g > éz; applying Theorem 3.1 to u we get the con-
clusions by returning to u. []

Theorem 4.3. Suppose q = Q,. Let u be any solution of (2.1), u==0. Then,
when r—> -oo, r°u is not bounded and u oscillates, intersecting the curves r+>

+r=¢ infinitely many times.

Proof. Here we use the change of variables (2.10) and consider w near ¢ =
—oo, Now V and W are nonincreasing functions. Suppose that w is bounded at
—oco. If V. — +oo or W —> oo, then \»| > Foo from the Young
inequality 1n (2 16); hence from 2.14)  |w,| . —_>oo —|—oo which is impos-

sible. Hence ¥V and W have (finite) limits at -—oo. As in Proposition 3.2 we
conclude that lim w, =0, /= lim w exists and (£19F P — 271 B) = 0,

1= — o0

and hence /= 0 because B=0. Then hm V= hm W =0, and hence V
and W are not positive. From the Young mequahty we get

| ‘4+1

p,
bl owy — A6 1wl +

0=
P g+1

|w1q+l

P
B@n—lm ,
p HES
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which is impossible as B <0 and w==0. Hence w is not bounded near —oo.
As in Theorem 3.1 we prove that w oscillates around the axis w = 0, intersecting
the lines ¢+ 4-4 infinitely many times, and hence the conclusion follows. []

As in the preceding section we can specify the oscillating solutions.

Theorem 4.4. Let g << Q, and u be an oscillating solution near --oc. Let
(r,).en be the nondecreasing sequence of zeros of u in [1, +00), and let (p,) ey be
the sequence of its extrema (r, << g, << r,,1). Then the estimates (3.13) and (3.14)
hold.

Proof. In the change of variables (3.16) we have now f§> 0, and hence
T—> oo as r— +oo, so that the proof of Theorem 3.4 holds. []

5. Global Behavior (p << N)

Here we show all the possible connexions fromr =0 to r= +oco and
prove their existence.

Theorem 5.1. Let g > Q,. Then, to within exchange of u and —u, each solu-
tion u=E0 of (2.1) has one of the following forms:

() u= a2,

(i) u is regular at 0 (with ]insu =a> 0), u is positive on (0, +o0) and

_I)iﬁr_nco réu =12,

(iii) u oscillates near 0 and liwa réu =1,

(iv) u oscillates near 0 and is regular at oo (with _lggrnoo pOV=PIC-Dy — o> 0) .
All of these solutions exist (for each « and ¢ > 0).

Proof. The function ¢+ ¢? is locally Lipschitz-continuous on (0, +o0). From
[12] we conclude for each « > 0 local existence near the origin of a regular solu-
tion # such that lin(l)u = «. Using the same result for the function # defined

in Proposition 4.1, we get for each ¢ > 0 local existence near 4o of a solution u
such that lim r@&W=?/-U 4 — ¢ Moreover we have local existence near +oco

ofau suci;‘:il:t Jim r’u = 1; indeed from (3.7) the point (4,(82)” ') is asymptoti-
cally stable at —oo,

Consider first a solution u with 11_{13 u =& > 0; then t}jinw W= ’liglw w,=0
and hence t_l)ijrn& W = 0. Now W is nondecreasing, hence W =0, and w> 0
on R (see the proof of Theorem 3.1). From Theorem 4.1, either rLiTw rPu=2
and hence u satisfies (ii), or r_l)igrnoor‘N —P@P-Dy — ¢ and hence t_l)ilnoowe_"”(” D=y
then t_l)i_l:nw w =0, ,_l,ilnw y =0, from (2.16) and hence t_l)iinm W= 0; then W and

w are identically zero from (2.16) and (2.17); this is a contradiction.
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Consider now a solution # = u, such that lim r®¥=?/¢=Dy —¢> 0; then

r—>-+4oo
from Theorem 3.1, by contradiction, u oscillates near 0, and hence u satisfies (iv).
Moreover from uniqueness w = w, is characterized by lim we Z/¢=D — ¢,
t—>—00

Now for any solution w of (2.11), 7 w(t + K) is still a solution of (2.11) and
hence

w(t) = w, (t—l— ? ; ! Log c). (5.1)

We now prove the existence of solutions u satisfying (iii): as w, oscillates near
~-o0 and is positive near —oo, let (¢,),x be the nondecreasing sequence of zeros
of w; (t,— +o0), and a, = |w,(z,)]. Since V is a nondecreasing function,
(a,)yex 1S a nondecreasing sequence and @, > 0 from uniqueness. From Propo-
sition 2.1, there is a solution w of (2.11) such that w(0) = 0, w,(0) = a/2. Then
by construction there is no ¢ #=0 such that Jim we BP—1 — ¢ a5 w cannot
be a translate of w,. Hence from Theorem 4.1 the corresponding solution u satis-
fies necessarily r’u LA O

Remark. We find again in Theorem 5.1 (ii) the existence of positive solutions
u€ C'([0, +00)) called “ground states”, proved by FOwLER [9] when p =2
and by N1 & SErrRIN [17] in the general case by a shooting method.

Remark. The functions w, defined by (5.1) associated to the solutions u, regu-
lar at +oo ( lim rN-PIC=D 4y — ¢) are the Emden functions relative to the case

r—>-+ o0

g > Q, introduced by FowLER [9]. We have from (5.1) the relation
u(r) = ¢ @=DB g (== NIB py, (5.2)

Theorem 5.2. Let O, << q << Q,. Then, to within exchange of u and —u, each
solution u==0 of (2.1) has one of the following forms:
() u=air?
(i) u is regular at 0 ( with liné Uu=u«x> 0) and oscillates near oo,
(iii) li_r)% r’u = ) and u oscillates near oo,
(iv) li_{% r’u = A, u is positive in (0, +00) and regular at +oco
(with lim p®&-Pe=Dy — > 0).

r—- oo

All of these solutions exist (for each o« and ¢ > 0).

Proof. By the change of variable (4.1) we are reduced to study global solutions

u with g > Q—Z. Hence from Theorem 5.1, either # == As—% and hence u= Ar~%;

either u is regular at s = 0, positive, and 1i£31 % = A and hence u satisfies
S oo

(iv). Either u oscillates near s = 0 and ligl s% = 2 and hence u satisfies (iti),
Riacd oC

or # oscillates near s = 0 and is regular at oo, and so u satisfies (ii). All the
solutions exist from Theorem 5.1. []
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Remark. We find again in Theorem 5.2 the nonexistence of ground states
proved in [12], [17], since any solution u regular at 0 necessarily oscillates at +-oo.

Remark. The solutions «* regular at 0 (ling = zx) are associated to the
r—
functions w* characterized bylliJrrn w*e* = &, oscillating near —oo. They are
-+ 00
the Emden functions relative to the case Q, << ¢ << Q,. We have the relations

w*(t) = wi(t — 6 Log o), (5.3)
w(r) = ou(s'°r). (5.4)

Theorem 5.3. Let q << Qy. Then, to within exchange of uand —u, each solution
u=E0 of (2.1) has one of the following forms:

() u is regular at 0 (lim U=o> 0) and oscillates near oo,
F>
(ii) lim r®=pie=0y — 5 > 0, and u oscillates near +oco.
r—r

All of these solutions exist (for each o> 0 and y > 0).

Proof. Theorems 3.3 and 4.3 state that all the possible solutions have either
the form (i) or the form (ii). Local existence of the two solutions near the origin
is proved in [12]; hence the global existence from Proposition 2.1. []

6. The Critical Cases (¢ = Qq, ¢ = Q,)

In the case g = Q, we can describe the global behavior of the solutions di-
rectly, as the energy functions ¥V and W are constant.

Theorem 6.1. Suppose q = Q,. Then, to within exchange of u and —u, each
solution u==0 of (2.1) has one of the following forms:

() u=Ar—%=jr-Mir,
(ii) u is positive in (0, 4-00) regular at 0 and +-oo, and is given by

1 p— 1\2-1 (p—N)lp
m el s LR o o, e

(iii) u is positive in (0, ++o0), intersects the curve rv—> Ar~? infinitely many times
and oscillates between two curves r ar~%, rr>br=° where a and b
satisfy 0<<a<<A<b.

(iv) u oscillates in (0, -+00), intersects the curves rr> J-Ar
times and oscillates between two curves ri> -br—°
0<<i<h.

All of these solutions exist.

—% infinitely many

where b satisfies

Proof. The existence of particular solutions of the form (6.1) was shown by
FowrLer [9] for p = 2, for general p by GUuEDDA & VERON {12].
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Let u==0 be any solution of (2.1) and w, y be defined by (2.10) and (2.13).
From (2.15) and (2.18) we have 4 = 0, B = 6 = (N — p)/p, A = &°. In particular
V =W and V is constant from (2.16): there is a K€R such that

Iy lwn) "+
— d(w =K, ViteR. 6.2
P G TOR e o 3 6.2
From the Young inequality we get
g+1 P
W@ W@ _ VicR. ©63)

g+1 p
Hence (w, y) is bounded on R, and thence r® u is bounded in (0, 4+o0). For any
KeR, let
IxV |x[+!

Ox(x) = K+ —— P

for any x€R. (6.4)

N — p N—1
Then, on (0, ), ¢ increases from K to ¢,(J) = K +( ) / (g + 1);

(4, +00), ¢x decreases from ¢x(4) to —oo. Since ¢x(w(r)) =0 on R, we have
necessarily ¢x(1) = 0; hence

N—-p N—-1
>K = —
K=K, (p ) [@+ . 6.5)
Now if w has a limit ¢ (at 4-c0) then
IK)P et
— 0 y(t) + T - K

because y is bounded; since the w-limit and «-limit sets are connected, y has a
limit, and so does w,. Then w,— 0 and hence /=0 or £ = 41 from (2.12).
If || =4, then from (6.2) ¢x(4) =0 and hence K=K,,. If /=0 then
K = 0. Now let us discuss the value of K:

If K=K, then necessarily |w(f)] =41 for any f. Thus w= 41 and u
(or —u) has the form (i).

If K= 10, ¢, has three zeros: 0, +5b, with
= (N/(N — p))N=PP* } = ((g + 1)/p)fe+1-P 2, (6.6)
—by << —A << 0 << A< b,. 6.7)

Now w has a constant sign: if there is a 7, € R such that w(#y) = 0, then from
(6.2) ¥(t,) = 0 and hence w,(t,) = 0; this is impossible as w =0 from Propo-
sition 2.1. Hence w is strictly monotone near 4-oo, for w(t) = b, at any extremal
point. Then from above w decreases to 0 as ¢— -}-oco. From [12] we deduce
that ew is bounded at +oo, while u is regular at 0. By uniqueness, proved in
[12], u has the form (ii).



Equations of Emden-Fowler Type 321

If K, <K< 0, then ¢; has four zeros +a, +b; on R, with
_b0<_bK<_l<_aK<0<aK<l<bK<b0’ (6.8)

as ¢g(bo) = K; then from (6.3) w has a constant sign and w (or —w) satisfies
ax = w(t) < by for any real r. Now w is not monotone for large |#|, as it has
no limit. At any extremum # of w we get ¢x(¢) = 0 from (6.2) and hence w(?) = ag
or by, and w,(¢) &= 0 from (3.10). Hence there is an increasing family (z,),cz of
extrema of w with hm t, = +oo and 11m t, = —oo; w oscillates on R and

r’u oscillates on (0 —|—oo) between ax and bK, and hence u satisfies (iii).

If K> 0, ¢4 has two zeros 4-bg, with

—by < —by < —A<O0< A< by < by, (6.9)
and w is not monotone for large |#|. Hence there is an increasing family (2,),cz
with ¢, - —00, 1, . +oo, of extrema of w. As above we get w(?,) = by

n—>— 00 -4 o0

Then w oscillates on R between —by and by, r’u oscillates on (0, +o0) between
—by and by, hence u satisfies (iv).

Solutions of the forms (iii) and (iv) do exist. More specifically, let any a € (0, 2)
and 12, €R; from Proposition 2.1 there is a solution w of (2.11) such that
w(to) = a, w/ty) = 0; the corresponding solution u has the form (iii). Let any
be (A, +oo) and t,€R; there is a solution w of (2.9) such that w(t,) = b,
w{t;) = 0. If b = by, u has the form (ii); if b << by, u has the form (iii); if b > b,,
v has the form (iv). [J

Remark. The functions u, defined in (6.1) are regular at J-oo

—1I\p—N
( lim F@&=P=D —c) and at 0 {limu = & = _l__(p— l)p p_l’—cl_l’ }
r—>+ 00 r—>0 N N——-p

The functions w, associated to u, are the Emden functions relative to ¢ = Q..
They have a unique extremum equal to b,. We have the relations

p(p —1)

w, () = wy (t + Log c) (6.10)

ur) = ¢'~Pu, (c“’(” —DiN ‘p)r). (6.1

Now we consider the case g = Q,.

Theorem 6.2. Suppose q = Q,. Then, to within exchange of u and —u, each
solution u==0 has one of the following forms:

(i) u is regular in 0 (liilg u=ox> O) and oscillates near oo,
N—p (N —p
rp \p—1

p—I\1/p
(ii) lim r |Log r[!/P yfle=DIN-1) — ( ) ) and u oscillates
r—~>0

near —+oo.

All of these solutions exist (for each « > 0). They intersect the curves ri>4r~°

infinitely many times.
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Proof. From Theorems 4.3 and 4.4 we know the behavior near +oco of any
solution #. VERON & GUEDDA [12] have described the behavior near 0 of any
positive solution, in the form (i) or (ii). From [12] and Proposition 2.1 we have
for each « > 0 the existence of solutions #* regular at 0, with hm u=uw As

in Theorem 5.2, Remark, the functions »* and the Emden functlons w” relative
to u* satisfy the relations (5.3) and (5.4). Now let w be any solution of (2.11).
Suppose that w does not have constant sign near +oo. Then there is an increasing
sequence (7,),ey of zeros of w, with 7, =1 and 7,—> +oo. Now the energy
functions ¥V and W are nonincreasing, and

b’(t)fp (W@ [T Jwdt) + dw(@) [P [w() [T
T R

From Propositions 3.1, 3.2, we havetliin w, = tligrn w=0, as B=0, and
— (=] — o0
hence ) liJrrn W =0 and liEl w,(r,) = 0. The Emden function w! oscillates near
> -} 00 n— -+ oo
—oo and is positive near +oo; let (¢,),cy be the nonincreasing sequence of its
zeros (t,—> —oo) and a, = |w!(t,)|- As W is a nonincreasing function, (a,),cx
is a nondecreasing sequence, and a, = w!(t,) > 0 from uniqueness. On (¢,, +o°),

w' has no zero; let s be the maximum point of w! on (¢,, +o0), unique from (2.12),
and M = w'(s). Now there is a k¢ N such that

W(t) =

WD) = aof2, |wE)|< M2 Vit=ng,

and we can suppose w,(z;) > 0. Let w have its maximum in (7, 74,) at s, and
M, = w(s;). Because M > M, and lim w' =0, thereisa o> s such that

1> 00

wl(o) = M, and w!(¢) < 0. Let us compare w to a translate of w!

wit)y=wit — s, +0) ViecR;

we have
W—w(s)=0, W—w),(s)<0, W—w @+1) >0,

and hence there is o, €(sy, 7, ;) such that (w —w) (o,) =0; then there are a 0
and a 7€ (s, 0,) such that

w() = w(@), w(0) = w(D).
By uniqueness we get
wit)=w(t—1+60) VreR;

this is impossible since w is positive near +oo.

Hence any solution w of (2.11) is of one sign near -+oo; then the function u
associated to w, or —u, has one of the forms (i) (ii).

Finally we prove the existence of solutions of the form (ii): for any 6,€R
there is a solution w of (2.11) such that w(6,) = 0, w,(0,) = ao/2. Then w cannot
be an Emden solution; the function u associated to w cannot have the form (i),
and so it has the form (i)). [J
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7. Case p=N

In this section we consider the case p= N> 1 with ¢> p — 1. Propo-
sition 2.1 is still true. We have now A << 0, B<< 0 for any gq.

Theorem 7.1. Let p = N> 1, g > p — 1. Then, to within exchange of u and
—u, each solution u==0 of (2.1) has one of the following forms:

(1) u is regular at 0 (hm u=o0> 0) and oscillates near 4o,
(i) 11m [Logr|u=1y> 0 and u oscillates near +oo.

All of these solutions exist (for each « >0 and y > 0).

Proof. The behavior near 0 and the existence of regular or singular positive
solutions is proved in [12]. Now consider any solution u of (2.1) and function w
associated to u by (2.10). Because 4 << 0, Propositions 3.1, 3.2 hold. Because B<< 0,
Theorem 4.3 holds and « oscillates near --oo. Now to study the behavior near 0
we use the change of variables (2.7). Since the energy function Fy defined in (2.9)
is nonincreasing, it is bounded near 4-oco, hence 6 = O(eN¥/@+D),

By integration of (2.8) we get, for any x =1,

16, V72 0, + fxe‘N’ 101771 0.dr = [0,(1) V72 6,(1);
1

the integral is convergent, since e™™* [§|? = O(e~"*@* 1) and hence 6, has a
limit y at o0,

If y 4=0, then lil}:l x~10 =y and hence u satisfies (i). If y = 0 then by
integration of (2.8), for any x> 0,

+ o0
16,V-20, = [ e~ |6e=1 0 dt, (.1)

and 0, = O(e~N*@+1) Then 6, is integrable, 6 has a limit x at oo and €V'*6,
has a limit from (7.1); then p— = Dy, has a limit, and limu, = 0. We have

o0, for if « =0 then uw=0 from (2.2); hence u is regular O
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