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Introduction 

The systematic t reatment  o f  phase t ransformat ions  in cont inuous bodies 
leads, in a natural  manner,  to the study of  deformations whose gradients suffer 
j ump  discontinuities. Our  main results concern the stability o f  such two-phase 
deformations.  We define stability using the s tandard min imum energy criterion 
in conjunct ion with variations in deformat ion that  vanish on the boundary .  
We prove that  if  a two-phase deformation (with gradient F) is a local minimizer, 
then given any point  Po o f  the surface o f  discontinuity, the piecewise-homogeneous 
deformat ion corresponding to the two values F•  ofF(po )  is a global minimizer. 
As an additional consequence o f  stability we show that  the stored energy W(F)  
and Piola-Kirchhoff  stress S(F)  satisfy the classical M a x w e l l  relation 1 

W(F  +) - -  W ( F - )  = S ( F •  (F + --  F - )  

across the surface of  discontinuity. We show further that  the Eshelby conser- 
vat ion law 2 (which for smooth  deformations follows f rom the equilibrium equa- 

l This result, while long known in special circumstances, is, within this general 
framework, due to JAMES [1981]. 

2 Cf., e.g., ESI-IELBY [1975]. 
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tions) is no t  g e n e r a l l y  valid for two-phase deformations; it is, in fact, a necessary 
and sufficient condition that the Maxwell relation be satisfied, and is therefore a 
necessary condition for the stability of  the deformation. 

We consider two important examples of  the general theory: anti-plane shear 
and twinning. In the former case we restrict our attention to generalized neo- 
Hookean materials for which the stored energy has the form 1 

w ( F )  = w(~), ~, = I t  I; 

we show, as a consequence of stability, that w and the  corresponding shearing 
stress 

~(~) = w'( : , )  

obey the classical one-dimensional Maxwell relation 

w(y+) - w 0 , - )  = ~ ( y •  (y+ - ~,-).  

We show further that in such deformations the stress satisfies 

s ( F + )  = S(F-) 

and is hence continuous across the surface of discontinuity, and that, generally, 
S(F i )  and F • identified in a natural manner with vectors in R 2, are normal to 
the surface of discontinuity. 

We define twins to be piecewise homogeneous deformations with 

F + = Q F - H ,  

where Q is a rotation of 180 ~ and H is a symmetry transformation for the material. 
For completeness we give a proof  o f a  recent theorem of ERICKSEN [1981] which 
asserts that H must necessarily be a 180~ and that only two types of  
twins are possible: normal twins for which the axis ~ of  H is normal to the plane 
of  discontinuity; parallel twins for which d4 ~ is parallel to this plane. Using ERICK- 
SEN'S theorem we show that, surprisingly, twins automatically satisfy the Maxwell 
relation. We show further that neither normal nor plane twins are possible in a 
fairly general class of isotropic materials. 

This study was motivated by - - and  is to some extent based on--earl ier  work 
of JOHN BALL, JERALD ERICKSEN, and RICHARD JAMES. In addition, I acknow- 
ledge numerous valuable and informative discussions with MARSHALL SLEMROD. 
This research was supported by the Army Research Office and the National 
Science Foundation, and was, for the most part, accomplished at the Mathematics 
Research Center of  the University of  Wisconsin. 

1. Preliminary Definitions 

Throughout this paper M and N are integers ~ 1. We use the notation c �9 d 
and I cl for the usual inner product and norm on R m (or RN), and we write 

Unit (c) = c/l  c I . 

1 KNOWLES [1977]. 
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Let 
M N •  the space of N •  matrices, 

MN• N ---- {A E M N• det A > 0). 

We use the standard terminology of matrix algebra. In addition, 1 

A . B  : Ai~Bic ~ 

and, for A E M N• we write 

A - T =  (A- l )  T 

for the transpose of  the inverse. Further, c | dE  M N• denotes the tensor 
product of  c E R N, d E RM: 

(c | d)i~, = ci d~,. 

When N : M, 
det ( I  + c |  = 1 q- c .  d,  (1.0 

and, for c . d ~ = - - l ,  

( l - [ - c |  - 1 =  I - - ( 1  + c . d )  - l c |  (1.2) 

A set J Q  M N• is rank 1 convex if given any two matrices A,  B E J  
which differ by a tensor product, the line segment connecting A and B lies in J .  

Proposition. M~ • is rank 1 convex. 

Proof. Choose A, BE M~ • with B = A + c |  ( c @ 0 ,  d @ 0 ) .  Let 

~v~ : det (A + 2c | d) .  

Then 9~a>0  for 2 : 0 , 1 ;  we must show that 

~0a > 0 for 0 < 2 < 1. (1.3) 
In view of  (1.1), 

~ : (det A) (I + 2 d .  A - l c ) .  

Thus ~ is an affine function of 2 which is strictly positive at 2 : 0, 1 ; hence 
(1.3) is valid. [ ]  

Every F E M~ • admits the polar decomposition 

F = R U =  V R ,  

where R is proper orthogonal, while U and V are symmetric, positive definite. 
A matrix FE M N•162 is a similarity transformation if 

F = 2Q, 

with Q proper orthogonal and 2 > 0. Note that  

F r : ~.2F-I. (1.4) 

1 Here and in what follows we use the summation convention. 
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The most important applications correspond to M = N =- 3. We write 

q, = q,+ on ~ + ;  

(ii) # -  is continuous on ~ -  and 

�9 = ~ -  on ~ - .  

For convenience we define ~ (p )  for p E SP to be the pair {~+(p), r and 
write ~ (p )  E ~r to signify ~ : ( p )  E ~r Similar definitions apply to W + ~(p )  E ~ ' ,  
etc. 

Orth ~--the proper orthogonal group over R 3. 

By a rotation of 180 ~ we mean a matrix Q E Orth with 

Q2 : I, Q # I .  (1.5) 

In this case Q admits a representation of the form 

Q = 2 q |  tq]=l; (1.6) 

the vectors q and - - q  are called unit axial vectors for Q; the span of q is called 
the axis of  O. It  follows that 

Oq --  q, (1.7) 

and that any other vector with this property is parallel to q. 
Throughout  this paper & is a (possibly unbounded) closed, regular region in 

R M, while ~ :  are complementary subregions of ~ ;  that is, ~+  and & -  are closed 
regular regions with 

~ = ~ + ~ - ,  ~ + A  ~ -  = 0, 

and with surface of separation 

of class C a. Further, n : 6  c ---~R M denotes a normal vector field on 5e; to avoid 
ambiguities we assume that n coincides with the exterior unit normal to &-  
(Figure 1). 

Fig. 1 

Let ~ be a continuous function on ~ \ ~,~o. Then ~ has a jump ~seon- 
tinnity across ~9 ~ if there exist functions ~=~ on N=~ such that: 

(i) ~+  is continuous on N+ and 
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For  the remainder of  this section J :  ~ \  ,,~---~ ~f~ N •  is CL Then d i v J :  
,~ \ St ~ R u is the vector field with components 

eJi~ 
(div J)i - -  ~ p ~  �9 

We will need the following well known generalization of the divergence theorem. 

Lemma. Let J and V J  have jump discontinuities across 5r Then 

f .I- dA = f div J d V  + f [Jr+ - I -]  n dA, 
O ~  ~ 5 a 

provided ~ is bounded and v is the exterior unit normal to 8~.  

(1.8) 

To prove this lemma one simply applies the divergence theorem separately 
to ~ +  and ~ - ,  and then adds the resulting identities. 

2. Two-phase Deformations 

Henceforth J is an open subset of  M N• 
A two-phase deformation of & is a continuous function u : & - + R  N with 

the following properties: 

(i) u is C z on ~ + k )  9~-; 
(ii) Vu and V V u  have (at most) jump discontinuities across 6 r and Vu(p)  E J 

for all p 6 ~ .  

Here ~ •  are complementary subregions of ~ and 5 a is the corresponding surface 
of separation. 

As a consequence of  this definition the deformation gradient 

F =  Vu 

obeys the jump condition 1 

F+ : F -  q - f @  n (2.1) 

with f :  6~ --~ R N continuous; equivalently, 

Let 

F + = F - ( I +  a |  

a = (F- )  - 1 1 .  

v • = det F • 

(for M = N). Then (1.1) und (2.2) yield the simple relation 

(2.2) 

v + = v-(1 + a ,  n). (2.3) 

1 Cf,  e.g., TRUESDELL & TotYelN [1960], Eq. (175.9). KNOWLES • STERNBERG [1978], 
Eq. (3.19), give an interesting characterization of F-(F+) -~ for M = N = 2. 
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Let M = N ,  let P o E S :  be fixed, and write n = n ( p o ) ,  F • = F ~ ( p o ) .  
Then the tangent plane to 5 :  at Po is given by 

x = ( p :  ( p  - p o ) . n  = o).  

The deformation u maps the surface o f  separation 9~ into a surface u(5: )  in the 
deformed configuration u (~) .  The tangent plane to u(SQ at 

Xo = u(po)  

is given by 

g = {x : x --  x o = F+(p - -  Po), P E ,Y-} 

(note:  F+(p - - P o ) =  F-(p --Po) for  p E if '),  and the unit vector 1 

m = Unit  {(F~) -T  n)  (2.4) 

is normal  to g at Xo. 
To  verify this last assertion note first that, by (2.2), (2.3), and (1.2), 

v+(F +)-T n = v - (F - )  -T  n ,  (2.5) 

which yields 

Unit  {(F + ) - r  n} = Unit  {(F-) - r  n}, 

and (2.4) makes sense. Further,  for x E g there is a p E 3 r" such that  

m . ( x  - -  X o )  = m . F l i p  - -  Po] = ( P  - -  P o )  " ( F •  r m .  

Thus,  since 

and n is normal  to f ,  

and rn is normal  to g. 

n = Unit  ((F• r m} 

m - ( x  - Xo) = 0 

Hencefor th  m : 5 : - +  R M is defined by (2.4). 
We now return to the general ease with M and N not  necessarily equal. A 

pairwise-homogeneous deformation is a two-phase deformation u with F+ and 
F -  constants;  if F+ # F - ,  then u is nontrivial. 

Proposition. 2 Let u be a nontrivial pairwise-homogeneous deformation. Then 
the corresponding surface of separation is the union of parallel (hyper)planes inter- 
sected with 

Proof.  Suppose not. Then there exist p ,  q E 5 a such that n(p)~= n(q). By 
(1.2), 

(F+ - -  F - )  t = 0 (2.6) 

for  all t or thogonal  to n(p) or n(q) ;  since n(p) # n(q), the span of  all such t 
is R M. Hence F+ = F- ,  a contradiction. [ ]  

1 Cf., e.g., KNOWLES • STERNBERG [1978], Eq. (3.11). 
2 JAMES [1981], p. 149. 
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We say that u has homogeneous boundary-values if there exist constants 
F o 6 , f  and u o 6 R  N such that 

u(p) : Fop q- Uo for all p 6 ~ .  (2.7) 

The next result shows that even though the boundary-values of  a two-phase 
deformation are homogeneous, the deformation itself must, of  necessity, be com- 
plicated. 

Corollary. A nontrivial pairwise-homogeneous deformation o f  a bounded region 
cannot have homogeneous boundary-values. 

Proof. Let u be pairwise homogeneous with homogeneous boundary-values 
as in (2.7). We will show that ~ is unbounded. Assume, to the contrary, that 9~ 
is bounded. Let v denote the outward unit normal to ~9~. Then, by the divergence 
theorem, 

.f u | v dA = f Vu  d V =  f F+ dV  ~- .f F -  dV  ---- f Fo dV,  

with the last term obtained by taking u(p) = Fop k Uo for all p 6 ~ .  Thus, 
since F • and Fo are constants, 

Fo - -  ~F+ -k (1 - -  9) F - ,  

with ~ the ratio of  the volume of 9~+ to that of  ~ .  Let t be tangent to the (parallel) 
hyperplanes comprising the surface of  separation, ~9 ~ Then by (2.6), 

Fot = F+t : F - t .  (2.8) 

Since F+ ~ F- ,  it follows that F+ =~ F o or F -  ~ Fo. Assume the former. 
Then, since u is continuous up to ~9~, for any point p of ~9~ A ~ +  at which 
v(p) is defned, 

Fol = F+I (2.9) 

whenever l is tangent to ? ~  at p.  The relations (2.8) and (2.9) are possible with 
F o ~ F+ only if 79~ • 9~+ is a hyperplane parallel to 6: ;  this is clearly not 
possible for ~ finite. [ ]  

o 

Let u be a two-phase deformation. Let Po be a regular point (i.e., Po 6 ~ ,  
Po ~ ha). Then the affine function h : R M -->  R N defined (up to an unessential 
constant) by 

V h ~ F(po) 

is the homogeneous deformation corresponding to u at Po. 
On the other hand, choose Po 6 6 a, let ~7- be the tangent plane to 6: at Po, 

and write p above 5" for (p -- Po) " n(po) ~ O, p below J for (p -- Po) " n(po) 
0. Then the two-phase deformation h of  R M defined (up to an unessential 

constant) by 
[F+(po) for p above 9- ,  

Vh(p)  = | F _ ( p o  ) for p below ~" 

is the pairwise-homogeneous deformation corresponding to u at Po. 
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We work within the f ramework of  R M and R N to have results applicable in 
several cases o f  physical interest. Some examples are: 

(a) The general three-dimensional theory: 

(b) Plane strain" 

(c) Anti-plane shear: 

: ~/~3 • 3 M N : 3 ;  J =  + . 

M = N = 2 ;  f =  M 2• 

M : 2 ,  N :  1; 

As is clear f rom the Proposi t ion o f  Section 1, each of  the above examples 
corresponds to a set J that  is rank 1 convex. 

3. Hyperelastic Bodies. Stability 

Assume now that the region & is occupied by a hyperelastic body with C 2 

stored energy W: J • ~ -+ R. The derivative 

S(F, p )  : - ~  W(F,  p )  Sic ~ ~- ( 3 . 1 )  

then represents the corresponding Piola-Kirehhoff stress. For  the special case 
M : N it is sometimes more convenient to work with the Cauehy stress 

T(F, p)  : (det F) -~ S(F, p) F r. (3.2) 

We assume that  T(F, p) is symmetric: 

T(F, p) : T(F, p)T; 

this insures compatibil i ty with balance o f  moments.  
The following notat ion will be useful: C ~ ( ~ ,  R N) is the space o f  all C ~ func- 

tions g : ~r -+  R N such that  g : 0 outside a compact  subset o f  ~ ;  the support 
of  g is the closure o f  the set o f p  with g(p) ~ O; the no rm II g 11 is the supremum- 

no rm:  

[I gl[ = sup I g(P) l- 

Let u be a two-phase deformation of  ~ .  Then g is a variation o f  u if 
g E C ~ ( ~ , R  N) and u + g is a two-phase deformation.  

We will use two notions o f  stability: ~ 

t Here it is important to note that our definition of stability is weaker than that of 
JAMES [1981]; there the potential energy includes the dead loads associated with the 
surface tractions of the ground state, and the corresponding variations are not required 
to vanish on the boundary. 
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(1) u is globally stable relative to W if 

f W(F(p), p) dV~, <: f W(F(p) + G(p), p) dVp (3.3) 

for every variation g of  u, where G : Vg and ~ is the support of  g; 
(2) u is locally stable relative to W if (3.3) holds for all variations g of u with 

II gll sufficiently small. 

4. Consequences of StabiHty 

Throughout  this section u is a two-phase deformation of ~ .  The first theorem 
reduces the study of stability to the study of the stability of  homogeneous and 
pairwise homogeneous deformations. 

Localization Theorem. 1 Let u be locally stable relative to the stored energy W. 
Then: 

0) 2 for each regular point Po the homogeneous deformation corresponding to u 
at Po is globally stable relative to W(., Po); 

(ii) for each point Po on the surface of  separation the pairwise homogeneous 
deformation corresponding to u at Po is globally stable relative to IV(., Po). 

Proof. Let Po be regular, and without loss in generality take Po ---- 0. Let h 
be the homogeneous deformation corresponding to u at 0, and let g be a variation 
of h, so that g E C~(R M, R N) and 

H + G(p) E J (4.1) 
for all p E R  M, where 

H= Vh, G = Vg. 
We are to show that 

.f W(H, O) dV ~ f W(H + G, o) dV, 

where @ is the support  of  g. 
For each e > O  let 

(4.2) 

so that  

and 

g j p ) = e g ( + p ) ,  G , =  Vg,, (4.3) 

IIgA=ellgl[, G~(p) = G ( l p )  , 

: - f-p~ 

(4.4) 

1 For the validity of this theorem it suffices to have W continuous. 
BALL [1977], Thm. 3.1. Our proof of (i) follows that of BALL. Here it is of interest 

to note that assertion (i) is essentially the requirement that W(',po) be quasi-convex 
at F(po) (cf. MORREY [1952], BALL [1977]). 
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is the support of  g~. Then 

(4.5) 

L,(q) = F(eq) + G(q), 

and, since H = F(0), (4.1) implies that for e sufficiently small L~(q) E J for all 
q E ~ ,  and hence that F(p)+G,(p)EJ for all p E @ , ,  the support of  G,. 
Thus, for e small enough, g~ is a variation of u, and we conclude from (4.4)1 
and the local stability of u that 

f w(F(p), p) dVp <~ f W(F(p) + G~(p), p) dVp. 

1 
I f  we change the variable of integration from p to q = --~-p, we find, with the aid 
of  (4.5), that 

f W(F(eq), eq) dVq ~ f W(F(eq) + G(q), eq) dVq. (4.6) 

Letting e - +  0 in (4.6), we arrive at (4.2). 
Consider now case (ii) and let Po = 0 belong to the surface of separation 50. 

Let h be the pairwise-homogeneous deformation corresponding to u at 0, and 
let g be a variation of h, so that g E C~(R M, R N) and 

H(p) + G(p) E a r (4.7) 

for all p E R M. Let g, be defined by (4.3). Then for e sufficiently small, 

g, is a variation of u.  (4.8) 

For convenience, we postpone the verification of (4.8). 
Granted (4.8), it is clear that (4.6) is again valid. Further for each fixed 

q E ~ \ 3 -  
F(eq) ~ H(q) as e -+ 0, 

and, since the integrands in (4.6) are bounded on ~ uniformly in e, we may use 
Lebesgue's dominated convergence theorem to infer the desired inequality (4.2). 

We now turn to the proof  of  (4.8). By (4.5), it suffices to show that for e suffi- 
ciently small 

L~(q) E J (4.9) 

for all q E ~  (for then Ie(p)+G,(p)Ej  for all p E ~ ) .  
Note first that, by (4.7) and the properties of  H and G, there is an 0~ > 0 

such that 
H ( q ) + G ( q ) + M E J  for all qE RM and [ M I < ~ .  (4.10) 

Also, there is a p > 0  such that 

O~ 
]F~(p)  - -  F:~(O)I < ~ -  (4.11) 

for all p E ~  with I P I < ~ -  
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For each q E ~  let 

lq = the line through q perpendicular to 5 7". (4.12) 

Further, for ($ > 0 let 

% ---- (qE ~ :  Iq" nl < ~ Iq -- (q" n) hi) ,  

where n = n(0), so that ~ is a region in ~ between cones with apexes at 0 
(cf. Figure 2). Note that c~ may be empty for some ($, say ~ ~-- (~o(>0). When 
this is the case choose (~ = (~o. Otherwise choose ~ small enough that given any 
two points p, q E c~ with p E lq, 

0r 
J G(p)  - G(q) [ < - f .  (4.13) 

~ / 

:r / 

Fig. 2 

This is possible, since (7 is uniformly continuous on N, and since all such p, q 
have 

[ P -  ql = [ (P-  q)'nl--< 2j~l 8, 
where 

]~1 = sup (IPl : / ' E  e ) .  

We will work separately in ~ \ cr and cr Consider first ~ \ cr Let /2 
be a ball centered at O with radius eo > O sufficiently small that: given any 
P E/2 A (~  \ ~0), P E :~+ and p lies above ~d', or p E .~- and p lies below ~ .  
Thus for q E ~ \ cd~ and e < ro/l~ l, eq E O f~ (~  \ (d0) (cf. Figure 2) and 

IF(eq) - -  F+(0), eq E ~+ ,  
F(eq) --  H(q)  = (F(eq) F-(O), eq E 8 - .  

Thus, since 
L,(q) =- F(eq) - -  H(U) + H(q)  + G(q) ,  

we conclude from (4.10) and (4.11) (with p = eq) that 

L , ( q ) E J  whenever q E ~ k C d , ~ ,  e < e o / l ~ [ ,  (4.14) 

If  cr is empty the desired conclusion (4.9) follows from (4.14). Assume hence- 
forth that cd~ ~ 0. 
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Let/~ be the piecewise constant function--with jump discontinuity across 5 e -  
defined for p E ~ \ S e  by 

[r+(o), P E ~+,  
F(p) ~-- iF-(0), P E ~ - .  

By (4.5)2, for q E cg~, 

L~(q) = F(eq) -- ff(eq) + l~(eq) + G(q*) -5 G(q) -- G(q*), 

where q* is the intersection of lq (cf. (4.12)) with J .  Since H(q*) = {F+(0), F-(0)} 
(cf. the definition of a jump discontinuity), (4.10) implies that 

if@q) -k q(q*)  -k M E J 

as long as IM] < o~. Hence (4.11) (with p = eq) and (4.13) with p = q* imply 
that 

L,(q) E J whenever q E (g~ and e < O/I ~ I. 

Thus and by (4.14), (4.9) is satisfied for all sufficiently small e. [ ]  

Local stability has strong consequences concerning the stored energy and 
stress. The next result, which concerns the latter, is standard in continuum me- 
chanics; we present a proof  only for completeness. For convenience, we write 
S(F) for the function p F-> S(F(p), p);  a similar definition applies to W(F). 

Theorem. Let u be locally stable. Then u is equilibrated in the sense that 

div S(F) ---- 0 (4.15) 

at regular points of  ~ and 

S(F+) n ~- S(F-)  n (4.16) 
on 5 a. 

Proof. Let g E C~(~,  RM). Then eg is a variation for e sufficiently small and, 
since u is locally stable, 

f W(r  + e Vg) dV 
M 

has a local minimum at e = 0. Setting the derivative of this function equal to 
zero at e ~ 0  yields 

f S ( V ) . V g d V =  0, 

where we have used (3.1). On the other hand, since g has compact support, we 
may apply the divergence theorem (1.8) with N = 1 and J = S(F)Tg; the result 
is 

f [g. div S + S .  Vg] dV + f g.  [S+n -- S-n] dA = 0, 

where S = S(F), S ~ ~- S(F• Since gE ~ ( ~ )  is arbitrary, the last two 
relations clearly imply (4.15) and (4.16). [ ]  
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We  assume for  the remainder  of  the section tha t  

J is rank 1 convex. 

The elasticity tensor C(F, p) is defined by 

~S(F, p) ( ~s ,~] .  
c ( r ,  p )  - eF c,~j~ = TP~jd ' 

C(F, p) is strongly-elliptic if  

A . C(F, p) [A] = A,~C,~ja(F, t )) Aja > 0 

whenever  A E M u•  is a nonzero  tensor  product .  
The  next  result, due to KNOWLES & STERNaERG, 1 shows that  equi l ibrated 

two-phase deformations are not possible when the elasticity tensor is strongly- 
elliptic everywhere on its domain .  

Theorem. Let u be equilibrated. Choose p E 6e with F- (p)  ~ F+(p).  Then 
there is a matrix B on the line segment connecting F-(p)  and F+(p) such that C(B, p) 
is not strongly-elliptic; in fact, 

( f  | n) . C(B, p) [f Q n] : O, 

with f = t i p )  and n ~- n(p) as in (2.1). 

Proof .  By (4.16), 
~0(~) = ( / |  n ) .  S ( F -  + ~y | n), 

0 --< o~ _< 1, satisfies q0(0) : ~0(1). Thus,  in view of  the mean-va lue  theorem,  
there is a fl E (0, 1) such tha t  ~0'({3) = 0. But 

q J ( f l ) = ( f  |  C (B ,p ) [ y  Qn] ,  B =  F -  + flf Q n .  [] 

We say tha t  W(-, p )  is rank 1 convex at A E J if  

W(B, p) > W(A, p) + S(A)  . (B --  A) 

whenever  B E J and B - -  A is a tensor  product .  

(4.17) 

Convexity Theorem. Let u be locally stable relative to W. Assume that J is 
rank 1 convex. Then 

0) 2 for each regular point p, W(., p) is rank 1 convex at F ( p ) ;  
(ii) 3 W obeys the Maxwel l  relation 

W(F +) -- W ( F - ) =  S(F~:) �9 (F + - - F - )  on 5 a. (4.18) 

Proof .  In  view of  (i) o f  the localization theorem,  it suffices to prove  (i) for  u 
a globally-stable homogeneous  deformat ion  o f R  M and W = W(-, p )  independent  

1 [1978], p. 52. 
2 CORAL [1937], GRAVES [1939]. See also MORREY [1952], BALL [1977]. 
a JAMES [1981], Theorem 3. 
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o f p .  Let F = V u  and let a E R  N, e E R  M be arbitrary vectors with ] e [ =  1 
and F + a | e E J .  Without loss in generality take e in the 1-direction. 

Since J is rank 1 convex and open, there is a 6 > 0 such that 

F + 2 a Q e E J  for - - 6 ~ 2 ~  1 + 6 .  (4.19) 

Let W E C~~ R) and 9 E C~(R m-l, R) with supports ~v  and ~r respectively, 
satisfy 

- - 6 ~ V : ' ~  1 + 6, 0 = < 9 ~ 1 ,  

and let g~ E C~~ M, R N) with support 

/ 1 1 P : 7  , 

be defined by 

(11 g~(p) = e ~  --~'Pl 9(P2 .. . . .  pM)a. 

Then 
[ ~ 1 

Vg~(P) = 9' t-~-Pl] ~(P2 . . . .  pm) a | e -1- O(e) 

(uniformly in p) and, since J is open, it follows from (4.19) and (4.20) that 
F + Vg'(p) E J for all p E R ~. Thus g~ is a variation of u and, in view of the 
global stability of u, 

f w(r) dvS f W(F + Vg fp)) dr,,; 

(' ) changing the variable of integration f romp  to q = --e--p~, P2 . . . . .  p ~  , dividing 
by e, and letting e -+  O, we conclude that 

f W(F) dV < f W(F + ~o'(q,) ~o(q2,..., q~) a | e) dV,, 

Since this must hold for all C~-functions 9 and ~, consistent with (4.20), we may 
use a limiting argument (with 0%--> l) to conclude that 

f W(F) dq ~ f W(F + ~p'(q) a | e) dq (4.21) 

for all compactly-supported, continuous, piecewise-linear functions ~ consistent 
with (4.20)~. A function W with these properties is given by 

~ o = 0  on ( - - o % - - h )  kJ (l -- h, ~x~), ~ p ' = l  on (--h, 0), 

h 
~o'-- 1 - - h  on (0, l - - h ) ,  

with h > 0 small enough that (4.20)~ holds; for this choice of % (4.21) yields 

W ( F ) ~ h W ( F + a |  W F - -  1 - -  
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Writing the last term in the form 

(1 - h) W(F)  - -  hS(F) . (a | e) + o(h), 

dividing by h, and letting h -+ 0, we are led to (4.17). This establishes (i). 
Next, note that, by (i) (applied in the limit as 6 a is approached), for a general 

two-phase deformation, 

W(F+) ~ W(F-) + S(F-) . (y  | n), 

W(F-) > W(F+) - s (v+)  . (y  | n) 

(where we have used (2.1)), while (4.16) yields 

�9 s ( v + )  �9 ( y  | n )  = S ( F - )  �9 ( y  | n ) ;  

these relations clearly imply (ii). [ ]  

Trivially, the Maxwell relation (4.18) can also be written as 

W(F+) - -  W ( F - )  = S(F+) . ( f  @ n ) .  (4.22) 

Let M = N. Then the equilibrium equation can be expressed in terms of  the 
Cauchy stress (3.2). Indeed, by (2.4), 

S ( F - )  n = v •  T ( F  •  (F=~)-r n = v • [ ( F •  n[ T ( F  •  m ;  

thus, by (2.5) and (4.16), 

T ( F  +) m = T ( F - )  m .  (4.23) 

Next, let 
K = F+(F-)- I ,  

: det K = v+/v - .  (4.24) 

Then (2.1) and (2.4) imply that 

K -  I = ] ( F - ) - r n l ]  | m ;  

therefore, in view of (4.23), 

T(F+) . ( K  - -  I )  = T ( F - )  . ( K  - -  I ) ,  

and, by (3.2) and (4.24)~, 

S ( F - ) .  (F+ - -  F - )  = S ( F - )  (F-) r. (K -- I) ---- v -T(F- )  �9 (K -- I) 

= v - T ( F •  ( K  - -  I ) .  

We may therefore use (4.24)2 to rewrite the Maxwell relation in the form 

eeo(F +) - -  (o(F-)  = T(F:~) �9 ( K  - -  I ) ,  

with 
o)(F) = v -1 W ( F )  

the stored energy per unit deformed volume. 
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5. The Eshelby Conservation Law 

We assume throughout this section that the material is homogeneous (i.e., 
that W(F, p ) =  IV(F) is independent of p). 

A well known theorem of finite elasticity is the ESHELBu conservation law.1 
For u a sufficiently nice solution of (4.15) this theorem asserts that the functional 

8 , ( a / )  = f [W(F) v -- FTS(F) v] dA (5.1) 

satisfies 
8,,(ag) = 0 (5.2) 

whenever ag, with exterior unit normal v, is a bounding surface in ~ ;  that is, 

whenever ~r is the boundary of a compact regular subregion of ~ .  The verifica- 
tion of (5.2) follows from the divergence theorem and (4.15) upon noting that the 
0: h component of div [ W(F) I -- FrS(F)] is 

a W  ~2u i ~Sifl au i a2ui 
aFi 0 ape ape, ape ap~ ap~ ape S,~ = 0. (5.3) 

The above proof  requires that u have two derivatives inside ar a condition not 
satisfied when u is a two-phase deformation and the surface of separation, 5:, 
intersects the interior of the region ~ bounded by ar On the other hand, gu(ar 
is well defined in this instance, at least when d properly intersects 5e; that is, 
when 5 e divides ~ into complementary subregions. As we shall see, the Eshelby 
law now no longer holds in general: it becomes an admissibility condition for stable 
solutions. 

Theorem. Let  u be an equilibrated two-phase deformation o f  ~ .  Then the follow- 
ing two conditions are equivalent: 

(i) The Eshelby law g u ( d )  = 0 holds for  every bounding surface d in ~ which 
properly intersects the surface o f  separation. 

(ii) The Maxwel l  relation (4.18) is satisfied. 

Proof. Let ~r = ~ be as in (i). Further, let 

J = W(F) I -  FrS(F) .  (5.4) 
By (4.16), 

[J+ --  J-] n : ( W  + -- W - ) n  -- (F + - - F - ) T S •  (5.5) 

where 
W • = W ( F •  S • = S ( g •  

and, in view of (2.1), the last term in (5.5) is equal to 

(n |  S •  = [S • �9 (y  | n ) ]  n : I S  • �9 ( F +  - -  F - ) ]  n .  

Thus, since 

d i v J : 0  in ~ + U ~ -  

1 Cf., e.g., ESHELBY [1975]. 
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( c f  (5.3)), (5.1), (5.4), and the divergence theorem (1.8) imply 

e . ( ~ )  = f [W + --  W-  - -  S •  (F+ --  F-)]  n dA,  

and the equivalence of (i) and (ii) follows. [ ]  

17 

6. Anti-Plane Shear I 

Here N =  1 and 

j = M l x u  is identified with RM; 

thus the deformation gradient and stress are vectors 

F E R  M, S ( F , p ) E R  M, 

while the jump condition (1.2) and equilibrium condition (4.16) have the forms 

F+ - -  F -  : f n ,  
(6.1) 

S(F+) . n : S ( F - )  . n ,  
with f ( p )  E R .  

Remark .  To avoid confusion it should be emphasized that F and S are not 
the usual three-dimensional deformation gradient and stress. Indeed, in the three- 
dimensional theory the deformation has the form 

~I(P) : P;,  U 2 ( P )  ~--- P 2 ,  /~a(P)  : Pa + ~v(pl, P2), 

and the corresponding three-dimensional Piola-Kirchhoff stress S is a 3 • 3 matrix 

with S~12 : $21 = 0. For  our theory one defines u : ~v and 

F = v %  s = s32 ) .  

We confine our attention to generalized neo-Hookean materials 2 for which 

W(F, p )  : w(7, p )  (6.2) 
with 

7 =  IF[. 

We extend w(7, P) to negative values of  y by defining 

w(-7,  p) : w0,, p), 

and when convenient we suppress the argument p.  
In view of  the smoothness of  W, w(7 ) is C 2 on R ;  we define 

v(y) : w'(?). (6.3) 

1 C f  KNOWLES [1977] for a derivation of the basic equations (M : 2) starting from 
the three-dimensional theory. 

2 KNOWLES [1977]. 
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Let N E R  M have I N ] =  1 and choose 7 E R .  Then 

w(7) = W(TN), 

and differentiating this expression with respect to 7 at 7 : 0 we conclude, with 
the aid of  (3.1) and (6.3), that  

T(0) = S ( 0 ) - N .  
Thus,  since N is arbitrary,  

3(0) = 0, S(0) = 0. (6.4) 

More  generally, differentiating (6.2) with respect to F yields the relation 

F 
S(F) = z(7 ) - ,  (6.5) 

7 

and this in turn implies that  
[S(F) I = I r(7)[.  (6.6) 

Theorem. Consider anti-plane shear of a generalized neo-Hookean material. 
Let u be a locally-stable two-phase deformation. Then: 

(i) At each regular point p of  ~ ,  w(. ,p) is convex at 7 = 7(P);  i.e., 

w(7 + 2, p)  - -  w(7, p)  ~ 3(7, p)  ;t for all 2 E R .  (6.7) 

(ii) w obeys the Maxwell relation 

w(7 +) - -  w(7-) = ~(7 ~) (7 + --  7- ) .  (6.8) 

(iii) The stresses S(F) andz(7) and(for 1 S(F ~-) ~= O) the normalized deformation 
gradient F/7 are continuous across the surface of separation: 

S(F +) = S(F-) ,  

3(7 +) = ~(7-), (6.9) 

F + F -  

7 + 7 -  

(iv) For S(F • ~ 0 and F + ~ F-, S(F ~:) and F • are normal to the surface 
of  separation. 

Proof .  Let  p be a regular point  of  & and write F = F(p), ~, : 7(P). Then by 
(i) o f  the convexity theorem (in the present circumstances rank 1 convexity reduces 
to convexity) 

W(F + A) -- W(F) ~ S(F) . A for  all A E R M. (6.10) 
Write 

F = T N ,  INI = 1, 7 ~ 0 ,  
and take 

A = 2N.  

Then,  by (6.2), (6.4), and (6.5), (6.10) reduces to (6.7). 

I Note that, by (6.4), this implies F • ~ 0. 
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Consider next points on the surface of separation and write 

F ~: ----- y •  :L, IN J: ] = 1, ~'• = 0. 

Assume y• ~ 0. Since (6.7) also holds for y ----- ~,• if we take y ---- y -  and 
o~ ---- y -  -- y+, we are led to the inequality 

w(~,-) -- w(y +) _> T(V+) (y- -- 7/+). (6.11) 

On the other hand, (6.2), (6.5), and the Maxwell relation (4.18) yield 

w ( y + )  - w(7/-)  = r ( y + )  [7/+ - ( N + .  N - ) ~ , - ]  ~ r ( y + ) ( 7 / +  _ y - ) ;  

hence, by (6.11), 
w0 ,+) -- w(7/-) ---- z(7/+) (y+ -- 7/-). (6.12) 

Further, switching the roles of 7/+ and 7/- in (6.12), we conclude that (6.9)2 is 
satisfied, and (ii) follows. Note also, as a consequence of (6.6) and (6.9)2, that 

Is(F+)  [ = I s ( r - )  I- (6.13) 

We postpone, until later, the verification of (ii) for the case in which 7/+ or 7/- 
vanishes. 

At this point it is convenient to establish the following result: 

7/+ = 7/- implies F + = F- .  (6.14) 

This assertion is obviously true when 7/+ = 7/- ---- 0. For 7/+ : 7/- ~ 0, (6.1)2, 
(6.5), and (6.9)2 imply that 

F+ �9 n : F - .  n;  (6.15) 

in view of (6.1)1, this yields F+ ----F-. 
Our next step will be to establish (iii) in the special case ~ :  ~ 0. Let Q~: 

be the component of S(F • tangent to the surface of separation Sf. Then (6.1)2 
and (6.13) imply that 

IO+[ = IO-[. (6.16) 

Choose t tangent to 5 p. Then, by (6.1), (6.5), and (6.9)2, 

7/+Q+ �9 t = y + S ( ~ )  �9 t = ~ (y+)  F + .  t 

= ~(7/-)  F - .  t = 7 / - S ( F - )  �9 t = 7 / - 0 - .  t .  

Since this relation holds for all such t, 

7/+O + = 7/-q- ,  
and, in view of  (6.14), 

7/+ : 7/- or Q ~= = 0. (6.17) 

If  Q• --- 0, then (6.9)1 follows from (6.1)2; for 7/+ ---- ~-, (6.9)1 is a consequence 
of (6.14). Further, for S(F =~) ~ 0 (and hence ~(7/-~) ~ 0), (6.9)1 and (6.5) 
imply (6.9)a. 

Thus (ii) and (iii) are valid for ),• ~= 0. I f  7/+-----7/-= 0, then, by (6.4), 
the relations (6.9)2, (6.12), and (6.13) hold trivially. Assume that 7/- = 0, 7/+ =]= 0. 
Then (4.18), (6.2), and (6.4)2 imply that w(7/+) = w0'-). We therefore conclude 
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from (6.12), which is valid in the present circumstances, that ,(7 +) = O; hence, 
as 3 (7 -  ) = O, (6.9)2 and (6.13) are satisfied. We have shown that (6.9)2, (6.12), 
and (6.13) hold when 7 + or 7-  vanishes, and that, in these circumstances, S(F +) = 
S (F- )  ~ 0 (cf. (6.6)); thus (ii) and (iii) remain valid. 

Finally, (iv) is a direct consequence of (6.17) and (6.5). [ ]  

It is instructive to phrase the result (iv) in terms of the usual three-dimensional 

deformation gradient /~ = Vti (cf. the notation discussed in the remark at the 
beginning of the section). Choose a point p E 5P and let the coordinate system 
be such that n(p )  = (0, 1). Then 

at p,  where 

P ~ =  1 

\ a p ~ !  " 

Returning now to the general theory, we note the following interesting conse- 
quence of the last theorem. 

Corollary.  1 Assume that 3' ~ O, except possibly on a set o f  measure zero. Let  
u be a locally-stable two-phase deformation, and assume that the surface o f  separa- 
tion ~ is connected, and that F + and F -  never coincide. Then: 

(i) 7+ and 7 -  are constants; 
(ii) there is a scalar constant ~ and (for T(7 • ~ O) scalar constants u • 

such that 
S ( F  • ) = c m  , 

F • : ~ •  

Proof.  Let p, q E ~ ,  P 4= q. Then there is a C ~ cu rve  r : [0, 1] --> 5: with 
r(0) = p ,  r ( 1 ) =  q. If we take 7 • ----7• in the Maxwell relation (6.8) 
and differentiate with respect to o, we conclude, with the aid of (6.3) and (6.9)2, 
that 

d 
3'(y • (r(a))) -~a 7 • (r(a)) = 0 (6.18) 

for 0 _ ~ a _ ~  1. This yields 

d • 
l •  = ~--~y ( r ( a ) )  = 0 (6.19) 

for 0 ~ a _~ 1. To see this suppose, for example, that l+(ao) > O, Then l + > 0 
on an interval [~1, a2] with a2 > al,  and we conclude from (6.18) that 3'(7 ) = 0 
for all  y E Dq, 72], where y~ = 7+(r(a~)). Since Yz > 7~, this contradicts our 

1 SPEAR [1982]. 
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hypothesis that ~' @ 0 almost everywhere. In view of (6.19), 

; , •  = ~,:L(q), 

which implies (i), since p,  q q 5" are arbitrary. 
To prove (ii), note that, by (iv) of  the theorem, there is a continuous scalar 

function a~ on 6O such that 
S(F  •  = a n .  

In view of  (6.6) and (i), 

I s [ - - I s ( F + ) I  = I~(~+)1 - -  constant; 

hence, by continuity, o~ must be constant. A similar argument applies to F • [ ]  

7. Twins 

For  our discussion of twins we work within a three-dimensional f ramework 
and take 

M = N = 3 ,  J =  M 3• 

A twin 1 is a nontrivial pairwise-homogeneous deformation with 

F+ = Q F - H ,  (7.1) 

where Q, H E Orth with Q a rotation of 180 ~ Of course, F+ and F -  are still 
related through the jump condition (2.1) (or equivalently (2.2)): 

iv+ = F -  + y |  = F - ( I  + a |  
(7.2) 

f : F - a .  
The polar decompositions 2 

F • : R • U • : V •  • (7.3) 

yield the right and left stretch tensors U • and V • respectively, and the rotation 
tensors R • The eigenvalues of  U • (or equivalently V •  are the principal stretches 
corresponding to F • Finally, a twin is: normal if H is a rotation of 180 ~ with axis 
normal to the plane of separation 6O; parallel if H is a rotation of 180 ~ with 
axis parallel to 6 ~ . 

Theorem. 3 Twins  have the f o l l ow ing  propert ies:  

(i) det F + : det F- .  
(ii) The vectors a and f sat is fy  

a .  n = 0, f .  m = 0, (7.4) 

so that ( F - )  -1 F + is a s imple  shear. 

1 Cf. ER~CKSEN [1981]. See also EVANS [1912]; BOWL,S & MAcKENzIE [1954]; 
CHRISTIAN [1975], w 8; PARRY [1980]. 

2 C f ,  e.g., GURTIN [1981], w 6. 
3 The results (i)-(iii) are due to E~CKSEN [1981]. 
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(iii) The stretch and rotation tensors satisfy 

U + : HrU-H,  V + : QrV-Q,  R + : Q R - H ,  

and hence the principal stretches for F + coincide with those .for F-. 
(iv) Neither F + nor F-  can be a similarity transformation. 

Proof. Assertion (i) follows f rom (7.1) and the fact that  Q, H 6 0 r t h ,  while 
(7.4)1 is a consequence of  (i), (7.2)1, and (1.1). Let  u : [(F-)-rn1-1.  Then 
(2.2)2 and (2.4) imply 

f . m : u a . n : O ,  

which is (7.4)2. By (7.1) and (7.3), 

R +  U+ : ( Q R - H )  (HrU-H) ,  

V+R+ : (O V-Q r) (QR-H) ,  

and (iii) follows f rom the uniqueness of  the polar decomposition. 
Finally, suppose that  F -  or F+ is a similarity transformation.  Then by (7.1), 

bo th  F -  and F+ are similarity t ransformations with the same scalar multiple; 
hence [1.4) yields 

(F i )  r = 22(F• -1 ,  

and we conclude f rom (7.2) and (1.2) that  

(I  + n | a) (F-) r : 22(1 --  a @ n) (F-)  -1 . 

This yields 
n |  - - a Q n  

and a : n : 0 ,  a contradiction,  since F + @ F - .  [ ]  
To  state the next theorem succinctly we write (7.1), (7.2)1 as 

QFH : F(I  + a | n), F : F - .  (7.5) 

Compatibility Theorem.1 A twin must necessarily be normal or parallel. Further, 
the following compatibility conditions must be satisfied (for an appropriate choice 
o f  unit axial vectors q o f  Q and h o f  H): 

(i) for a normal twin: 

(ii) for  a parallel twin 

1 ERICKSEN [1981]. 

n = h ,  

q = Unit  (F - r  h),  

a -k 2h : 2F- lq / tF  - r  h i ;  

Unit  (a) = h ,  

q : Unit  (Fh ) ,  

[a[ n -- 2h = --2FTq/tFh[.  

(7.6) 

(7.7) 
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Proof .  Let  

By (1.2), (1.5), and (7.5), 
E = F -1  Q F .  

F =  Q F ( I  + a Q n )  H r ,  

(7.8) 

F -1 = H ( I - - a |  F -1  Q ,  

and thus 
E = H ( I - -  a | n )  = ( I  q- a | n )  H r . (7.9) 

Since H E O r t h ,  there is a vector  h such tha t  

H h  = h ,  H r h  = h, ]h I = 1. (7.10) 

Applying (7.9) and  its t ranspose  to h yields the relat ions 

(n . h) (Ha + a) = O, 
(7.11) 

( a  . h )  ( H n  + n )  : O. 

Our  next step will be to show that  

n - h  : 0 or a .  h = 0, but  not  bo th .  (7.12) 

Suppose tha t  
n �9 h : a -  h : 0. (7.13) 

Then,  since a . n = 0 ,  if  we compute  a .  Ea  and n .  E a  us ing(7 .9) ,  we find 
tha t  

n . H r a  = n �9 H a  = O. 

Thus, in view of  (7.10), (7.13), and the fact tha t  H E Orth,  the matr ix  of  H relative 
to the o r thonorma l  basis h ,  a / r a  l, n is diagonal  with 1, 1, 1 or 1, - -1 ,  - -1  a long 
the diagonal.  The  fo rmer  choice gives H = /,  which with (7.9) yields a | n ---- 0, 
a contradic t ion.  Thus  H has the fo rm 

H = 2h | h - -  I ,  (7.14) 
and (7.9) implies tha t  

( 2 h |  I ) ( I - - a | 1 7 4 1 7 4  I ) ,  (7.15) 

which again yields a | n : 0. Hence  (7.13) cannot  be valid: one of  n �9 h and 
a .  h is nonzero.  Suppose bo th  are nonzero.  Then (7.10) and (7.11) imply  tha t  

H h  : h ,  H a  : - - a ,  H n  : - - n .  

But since H is or thogonal ,  this can happen  only if a, n,  and h are mutual ly  or tho-  
gonal,  a contradict ion.  Thus  (7.12) is valid. 

By (7.12) the following two cases (or and (fl) are exhaust ive:  

(o 0 n . h 4 = 0 ,  a . h = 0 ;  

(fl)  n . h : O, a . h =~: O. 

Consider  first (00. Then  (7.11) implies H a  : - - a .  Thus,  since H is or thogonal ,  
H must  be a ro ta t ion  of  180~ hence (7.14) and  (7.15) are again valid. By (7.15) 
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and (~), 
a |  = ( n . h )  a |  

and n = •  Wi thout  loss in generality we may  assume that  (7.6)1 holds. In 
arty event,  we have shown that  (~) corresponds  to a normal  twin. 

Cont inuing with (o0, we note that,  by (7.8) and (1.6), 

E = 2F -~ q | Frq - I, 

while (7.9), (7.14), and (o 0 yield 

hence 

E : 2 h Q h  ~ - a Q n - -  I; 

2F - l  q |  = 2h | h + a |  (7.16) 

Acting upon  a with the t ranspose of  this equat ion tells us that  Frq and n are 
parallel  and hence, modu lo  a possible replacement  of  q by - - q ,  (7.6)2 is valid. 
Finally, if  we apply (7.16) to n and use (7.6)1,2, we arrive at (7.6)3. 

The  p r o o f  that  case (/3) corresponds to a parallel twin consistent with (7.7) 
is strictly analogous and can safely be omitted.  [ ]  

The relations (7.6)1,2 and (7.7)1,2 of  the compatibi l i ty  theorem display a cer- 
tain duality when rephrased in terms of  the unit normal  m to the deformed plane 
of  separa t ion (e l  (2.4)). The next result, which is a direct consequence of  (1.7), 
(7.4), (7.6), (7.7), and (7.10), makes  this duality explicit. 

Corollary. In the notation of  the compatibility theorem: 

(i) for a normal twin, 

(ii) for a parallel twin, 

n = h ,  H n : n ,  
(7.17) 

m : q, Qrn = m;  

Unit  (a) = h, Hn = - -n ,  
(7.18) 

Uni t  ( f )  - q, q m  = - m .  

Theorem. For a twin 

the axial vectors o f  H cannot be eigenveetors o f  U, (7.19) 

the right stretch tensor. Conversely, given a matrix F E J and a 180~ H 
consistent with (7.19), 1 there exist exactly two twins (one normal and one parallel) 
corresponding to the pair (F, H). Further, the theorem remains valid i f  H is replaced 
by Q, provided U is replaced by the left stretch tensor V. 

Thus F a similarity transformation is ruled out, as the corresponding U has every 
nonzero vector an eigenvector. 



Two-phase Deformations of Elastic Solids 25 

The proof  is based on the following 

Lemma. In the relations (7.6) or (7.7), the following are equivalent: 

(o~) h is an eigenvector o f  U; 
(fl) q is an eigenvector of  V; 
(7) a : 0. 

Proof (Lemma). We will prove only that, granted (7.6), (0~) r (7). The proof  
under (7.7) is analogous, as is the verification of  the implication (/3) r (9'). Thus 
consider (7.6). Since 

U - 2 h  
IF-Th] = I U-lh[ ,  F-~q _ i U_~hl,  

(7.6)3 implies that 

l a 2  J U-2hl 2 
- -  - -  1 .  

4 [ u - ' h  I" 

But by the Schwarz inequality, 

[ U - l h l  2 = I h .  V-Zh[ ~ ]V-2h], 

with equality when and only when, for some ~ E 1%, 

U - 2 h  : och, 

so that h is an eigenvector of U -2 and hence U. [ ]  

Proof (Theorem). Since twins are by definition nontrivial (a ~ 0), (7.19) and 
its analog for Q follow from the Lemma. 

Conversely, suppose that we are given F and H consistent with (7.19). Let 
n, q, and a be defined by (7.6) (or (7.7)) and let Q be the 180~ with axial 
vector q. Then by the Lemma, a =~ 0, and if we substitute (1.6), (7.14), and (7.6) 
(or (7.7)) into QFH, we recover F(I  + a | n). This establishes the existence of 
normal and parallel twins corresponding to (F, H). That these are the only twins 
follows from the necessity of (7.6), (7.7). 

The proof  of  the corresponding assertion for Q is strictly analogous. [ ]  

Thus far our results have been purely kinematical. We now consider a homo- 
geneous I material and assume, as is customary, that Wis invariant under observer 
changes: 

W(ZF) = re(F) (7.20) 

for all Z E Orth. We denote by f~ the symmetry group for the material: ~ is 
the subgroup of  all G E J such that 

W(FG) = W(F) (7.21) 

1 The assumption of homogeneity is made for convenience only. 
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for all F E J .  We assume that the material is a solid 1 in the sense that 

fg ~ Orth; 

if ~ = Orth, then the material is isotropie. 
Let F1, F2 E J .  We say that F1 and F2 are materially indistinguishable if 

W(AF~) = W(AF2) 

for all A E J ;  that is, if it is not possible to distinguish between F~ and F2 by 
measuring the stored energy in subsequent deformations. Letting F = AF~ and 
G = F~-IF2, and appealing to (7.21), we see that F1 and F2 are materially in- 
distinguishable if and only if 

F 2 : F i G  , G E fq. 

We say that the twin (7.1)is material if HE  ~. By use of the above ideas it is 
possible to give a more transparent definition of a material twin. Recall that if 
a body is deformed with deformation gradient F and then rigidly rotated, the 
combined deformation has gradient QF, with Q the orthogonal matrix correspond- 
ing to the rigid rotation. 

Proposition. 2 A nontrivial pairw&e-homogeneous deformation is a material 
twin i f  and only i f  there is a 180~ Q such that F + and Q F -  are materially 
indistinguishable. 

The relations (7.20) and (7.21) may be combined to give 

W(ZFG)  = W(F) (7.22) 

for all F E  J ,  ZE Orth, and G E f f ,  which, with (7.1), yields the following 

Proposition a. For a material twin, 

w(F+) : w ( v - ) ,  

so that the stored energy is continuous across the plane o f  separation. 

(7.23) 

By (7.22), 

d d 
S(F) . A = ~ W(F  q- o~A)I~=o : ~ W ( Z F G  + o~ZAG)1~=o 

= S ( Z F G ) .  ( Z A G )  ~- [ZrS(ZFG)  Gr] �9 A ,  

1 More generally one might allow nonorthogonal symmetry transformations, in 
which case a solid could be defined as having fr C Orth, where ~o is the component 
of I in ~ (NOEL [1982]). The corresponding theory of twins, for H r  Orth, appears to be 
quite complicated. 

2 ERICKSEN [1981], JAMES [1981]. 
3 Cf.  JAMES [1981]. 
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and, in view of  (3.2), the stresses obey 

S ( Z F G )  = Z S ( F )  G, T ( Z F G )  = Z T ( F )  Z r (7.24) 

for all F E J ,  Z E O r t h ,  and GEl# .  

For  an equilibrated twin, 

s = S(F ~) n,  t = T(F ~) m (7.25) 

represent tractions on the plane of separation, with s measured per unit area in 
the undeformed configuration, t per unit area in the deformed configuration. By 
(2.4) and (3.2), 

s and t are parallel. 

The eigenvalues of  the symmetric matrix T(F) are called principal stresses 
(for F); the corresponding eigenvector axes are principal axes of stress; the eigen- 
vector axes for the left stretch tensor V are principal axes of strain. 

Let us agree to call a twin admissible if it is material and equilibrated. 

Theorem. Consider an admissible twin. 

(i) I f  the twin is normal the tractions are parallel to the axis o f  Q and (hence) 
to m ,  and the axis o f  Q is a principal axis o f  stress for  F + and F- .  

(ii) I f  the twin is parallel the tractions are perpendicular to the axis o f  Q. 

Proof. By (7.1), (7.24)2, and (7.25), 

Q T ( F - )  Q T m  ~ T ( Q F - H ) m  = T ( F + ) m  ~ t .  

Thus, since Q ~ r  Q, we conclude from (7.25) and the assertions in (7.17) and 
(7.18) concerning Q that 

Qt = t for a normal twin, 

Qt = - t  for a parallel twin, 

which, with (7.17), yields the desired conclusions concerning Q and m. We have 
shown that for a normal twin, T(F ~) m is parallel to m ;  since m is parallel to 
the axis of Q, this axis is a principal axis of  stress. [ ]  

As is well known, for an isotropic material principal axes of strain are prin- 
cipal axes of stress. 1 If the converse is also true, so that principal axes o f  stress and 
strain coincide, we will refer to the material as regular. Isotropic materials that 
satisfy the Baker-Ericksen inequality 2 are regular. 

A twin is plane if for some choice of  coordinates both F + and F -  have the form 

1 Cfi, e.g., TRUESDELL & NOLL [1965], p. 143. 
2 Cf ,  e.g., TRUESDELL t~ NOLL [1965], p. 158. 
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in view of (2.1), (2.2), (7.6), and (7.7), in this instance 

a, n, f ,  m and the axes of Q and H lie in the 1, 2-plane. (7.27) 

Theorem. For a regular isotropic material  neither normal nor plane admissible 

twins are possible. 

Proof. Since the material is regular, we conclude from the counterpart of 
(7.19) for Q that 

the axis of Q cannot be a principal axis of stress (for F-) .  (7.28) 

By (i) of the previous theorem, (7.28) is violated when the twin is normal. 
Thus consider a plane, parallel twin. Since the material is isotropic, (7.24) 

with G = Z T yields 
T ( Z F Z  T) : Z T ( F )  Z T (7.29) 

for all ZE Orth. Let Z be a rotation of 180 ~ about the 3-axis. Then, by (7.26), 
Z F •  F +-, and (7.29) implies that T(F  +) and T ( F - )  have the form 

!) 
Thus, since m lies in the I, 2-plane, t = T(F • m does also. By (ii) of the last 
thorem, t is perpendicular to the axis of Q; thus, since m is perpendicular to this 
axis (eft (7.4)2 and (7.18)3), we conclude from (7.27) that t is parallel to m. Hence 
the span of  m is a principal axis of stress for F • In view of (7.30), the 3-axis 
must also have this property. It therefore follows from the Spectral Theorem 1 
and the symmetry of  T(F • that the line through 0 perpendicular to both m and 
the 3-axis is a principal axis of stress. But this line is exactly the axis of Q. Hence 
(7.28) yields a contradiction. Thus a plane, parallel twin is not a possibility. [ ]  

Theorem. An admissible twin automatically satisfies the Maxwe l l  relation 
(4.18). 

Proof. We will show that 

s . f  = 0; (7.31) 

this with (7.23) implies the desired conclusion (4.22). Consider first the normal 
twin (7.6). Since s is parallel to q, (7.6)2 yields ( F - ) r s  parallel to h. But for this 
twin, a .  h ---- 0; hence, by (7.2)3, 

s . f : s .  F - a  = a . ( F - ) r  s : O. 

Consider next the parallel twin (7.7). Since s �9 q = 0, (7.7)1,2 imply that s �9 F - a  
= 0, which is (7.31). [ ]  

Cfi, e.g., GURTIN [1981], p. 11. 



Two-phase Deformations of Elastic Solids 29 

References 

[1912] 

[1937] 

[1939] 

[1952] 

[1954] 

[1960] 

[1965] 

[1975] 

[1975] 
[1977] 

[1977] 

[1978] 

[1980] 

[1981] 

[1981] 

[1981] 

[1982] 
[1982] 

EVANS, J. W., The geometry of twin crystals. Proc. Roy. Soc. Edinburgh 32, 
416-457. 
CORAL, M., On the necessary conditions for the minimum of a double integral. 
Duke Math. J. 3, 585-592. 
GRAVES, L. M., The Weierstrass condition for multiple integral variation prob- 
lems. Duke Math. J. 5, 556-560. 
MORREY, C. B. Jr., Quasi-convexity and the lower semicontinuity of multiple 
integrals. Pacific J. Math. 2, 25-53. 
BOWLES, J. S., & J. K. MACKENZIE, The crystallography of martensite transfor- 
mations, I and II. Acta Metallurgica 2, 129-147. 
TRUESOELL, C., ~. R. TOUPIN, The Classical Field Theories. Handbuch der Phy- 
sik. III/1. Berlin G6ttingen Heidelberg: Springer. 
TRUESDELL, C., & W. NOLL, The Non-linear Field Theories of Mechanics. 
Handbuch der Physik. III/3. Berlin Heidelberg New York: Springer. 
CHRISTIAN, J. W., The Theory of Transformations in Metals and Alloys. An 
Advanced Textbook in Physical Metallurgy. Part I, Equilibrium and General 
Kinetic Theory. New York: Pergamon. 
ESHELBY, J. n., The elastic energy-momentum tensor. J. Elasticity 5, 321-335. 
BALL, J. i . ,  Convexity conditions and existence theorems in non-linear elasticity. 
Arch. Rational Mech. Anal. 63, 337-403. 
KNOWLES, J. K., The finite anti-plane shear field near the tip of a crack for a 
class of incompressible elastic solids. Int. J. Fracture 13, 611-639. 
KNOWLES, J. K., • E. STERNBERG, On the failure of ellipticity and the emergence 
of discontinuous deformation gradients in plane finite elastostatics. J. Elasticity 
8, 329-379. 
PARRY, G. P., Twinning in nonlinearly elastic monatomic crystals. Int. J. Solids 
Structures 16, 275-281. 
ERICKSEN, J., Continuous martensitic transitions in thermoelastic solids. J. Ther- 
mal Stresses 4, 107-119. 
GURTIN, M. E., An Introduction to Continuum Mechanics. New York: Academic 
Press. 
JAMES, R., Finite deformation by mechanical twinning. Arch. Rational Mech. 
Anal. 77, 143-176. 
NOLL, W., Private communication. 
SPEAR, K., Private communication. 

Department of Mathematics 
Carnegie-Mellon University 

Pittsburgh 

(Received December 15, 1982) 


