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I. Introduction 

There has recently been some renewed interest in formalizing the theory of 
chemically reacting systems. WEI (~ PRATER [l], for example, presented an ex- 
haustive analysis of the dynamics of closed chemical systems with linear con- 
stitutive laws under conditions of constant volume and temperature. More general 
studies of the mathematical structure of chemical systems include those of Ares 
[2, 3, 4], SELLERS [5], WEI [6, 7], SHAPIRO (~ SHAPLEY [8], COLEMAN (~ GURTIN [14], 
and BOWEN [15, 16]. In particular, WEI [6] proposed a set of axioms to characterize 
more general chemical systems. In doing so he lumped together conditions that 
result from the properties of constitutive equations (or chemical reaction rate 
expressions) with those that result from particular constraints imposed on the 
system. Thus he restricted his attention to systems constrained in such a way 
that the state of the system is determined completely by the amounts of the various 
chemical species. Systems constrained at constant temperature and volume or 
constant enthalpy and pressure, for example, would be in this category, but one 
constrained so as to lose heat at a rate proportional to its temperature would 
not. In addition, he assumed that the system is constrained so as to posess a 
Lyapunov function, a condition which will be seen to be still more restrictive. 
To clarify the situation it is necessary to study first the properties of the con- 
stitutive relations without regard to the boundary conditions and other constraints 
peculiar to a particular problem, and then, subsequently, to see how these prop- 
erties govern the dynamic behavior of constrained systems. 

In carrying out the above task, we will, however, restrict our attention to 
those systems which posess certain commonly encountered properties. Thus we 
assume our materials to be isotropic homogeneous single phases without memory. 
In addition, we assume that the processes of homogenization and chemical 
reaction are strictly dissipative, and that the Onsager relation is satisfied at thermo- 
dynamic equilibrium points. 

One form of constitutive law which is of special interest is that of polynomial 
rate expressions (see [4, 7]). The restrictions imposed on these by the above 
requirements are studied in a separate section where, in particular, it is shown 
what properties such an expression must have to be derivable from the law 
of mass action. 
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2. Thermodynamics 
The thermodynamic properties of our system may be described completely 

by one of the characteristic functions. For  convenience we choose the Helmholtz 
free energy per unit volume, a(T, c), as a function of temperature, T, and con- 
centration c = (cl, c2, ..., cN), where N is the number of chemical species present. 
Here the concentration cl is defined as the number of moles of the itla species 
per unit volume. The following thermodynamic identities are useful: 

0a 
0T - - s ,  (2.1) 

da 
0c =/~' (2.2) 

P = (/l, c)  - a (2.3) 

where s is the entropy density,/~ is the vector of chemical potentials, and P is the 
pressure. The bracket ( , )  here denotes inner product: 

N 

(x,  y ) =  ~. xi Yi. 
t=1 

An important restriction on the function a(T, c) is provided by the assumption 
that the process of homogenization is spontaneous or, in other words, that our 
single-phase system will be stable. This requirement can be expressed in various 
ways (see, for example, CALLEN [9]), but in our case the necessary and sufficient 
conditions become 

02 a ^ (2.4) 
0 T  2 < U  

and that the N x N partial Hessian matrix J be positive definite, where 

0 2 a  
J =  (2.5) 

Or, in other words, a(T, c) is a strictly concave function of T at each fixed c and 
a strictly convex function of c at each fixed T. 

One consequence of (2.5) is that the transformation (T, c) -~ (T, p) is one-to-one, 
so that (T, p) is also a complete coordinate system for the intensive thermo- 
dynamic variables. To see this, suppose, on the contrary, that at a particular 
temperature, T, there are two points, c and c", where/ t  = /P .  Then the function g, 
where 

g(T, c)=a(T, c)-(l~ ~ c) 
satisfies 

and 

0g 
ac _/~_/~o 

d2 g = j  
. 
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Expanding g in a Taylor series about the point c', and using the Cauchy form 
of the remainder, we see that 

g ( c " ) -  g(c') = ~,ffi2 j=l  ~ dcic3cjC32g[ (c~'-c')(c~'-cj)c. 

where c* lies somewhere on the line connecting c' and c". Since the matrix J 
is positive-definite, it follows that g(c")> g(c') unless e " =  c'. On the other hand, 
the expansion can be taken about c", in which case g(c")<g(c'), unless e' =c" .  
The two requirements together imply that e ' =  c". 

A further requirement for the function a(T, c) is provided by Henry's law, 
which states that as c i ~0 ,  p~(T, c),,~RTIn ci. This may be stated more precisely 
by defining the activity coefficient, ~(T, c), as 

Ti(T, c ) = 1  e~ , (r, c)/Rr (2.6) 
Ci 

where R is the gas constant. The statement of Henry's law then becomes that 
vi(T, c) is continuous and positive at points where c~=0. While equation (2.6) 
is really quite a strong condition (it provides a means for measuring R, for example), 
its main use for our purposes is to show that each component of/~ is unbounded 
from below (i.e., p i ~  - ~  as ci--*O). 

Another consequence of this principle is that as all the components of c 
approach zero simultaneously, the function/~(T, e) approaches the form 

#, = RT In {r,(T, O) c,} 
(2.7) 

=la* (T)+ RTln  c~ 

where p*(T)=RTln{~i(T,O)}. Equation (2.7) may be taken as the defining 
relationship for an ideal gaseous solution. 

Since the concept of an ideal gaseous solution is much used in chemical 
reaction theory, we pause for a moment to consider equation (2.7) in more detail. 
The characteristic function a(T, c) for a system that obeys (2.7) for all c can be 
shown to be 

a (T, c) = (/~* (T), c) - RT(  1, e) + R r(e ,  In e) (2.8) 

where 1 is the vector (1 . . . . .  1) and In c is the vector (In c~ . . . . .  In CN). Because 
of (2.4), the function/~*(T) is not arbitrary but must satisfy 

for all e. This is only possible if 

d2/~* <0 ,  i= 1, N.  (2.9) 
dT 2 ..., 

The matrix J =  d. #i for (2.8) is 
ocj 

21" 

j _ R T 6  , 
i j - ---~-  ij (2.10) 
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which is clearly positive-definite. Thus the particular a(T, c) given by (2.8) satisfies 
all the requirements. 

An additional property of (2.8) is that ~ is unbounded, so that its range for 
each T is the whole N-dimensional real space. This situation is generally true for 
non-ideal systems also and will be assumed here. 

3. Constitutive Laws of Chemical Change 

As stated previously, all intensive thermodynamic properties of our system 
are unique functions of the coordinates (T, c). We will assume that chemical 
reaction rates are functions of the same coordinates or, in other words, that the 
system posesses no memory (or hidden variable). Thus we denote the vector 
of generation rates per unit volume by f(T, c), which is to say that the number of 
moles of the i th species produced by chemical reaction per unit time per unit 
volume is ft(T, c). Because the mapping (T, c )~(T ,  I*) is one-to-one, we may 
alternatively describe the reaction effects by a function of (T,/~): 

r(T, /~)-=f(T, c). 

The most obvious condition required of chemical rate expressions is that 
of mass balance, which requires that the reaction rate vector be always orthogonal 
to the vector of molecular weights: 

(w , f (T ,  c))=-O, all T, c (3.1) 

where w=(w 1 . . . . .  w,) and wi is the molecular weight of the ith component. 
These are strictly positive: 

w i >0 ,  i=  1, 2 ... N .  (3.2) 

In addition, the reaction rate will be constrained by other stoichiometric condi- 
tions, so that the range of I(T, c) will be contained in some subspace, ~ ,  of R N 
which was termed by Axis [2] the "reaction subspace". Thus defining ~ to be 
the smallest subspace containing the range of f(T, c), we may state the mass 
balance condition by requiring that ~• contain at least one vector with all positive 
components. 

The structure of the reaction subspace has been studied in some detail by 
AxIS [2, 3], BOWEN [15] and SELLERS [5]. In the present work, however, we use 
only the property of ~ given above. The content of the second law of thermo- 
dynamics for chemical systems is expressed by the standard entropy inequality: 

(/~, r(T, ~))__< 0. (3.3) 

We will assume here that the inequality is strict whenever r(T, p):#0, or, in the 
terminology of COLEMAN & GURTIN [14], that chemical systems are strictly 
dissipative. It may be noted that expressing the reaction rate in terms of the 
coordinate system (T,/~) makes condition (3.3) rather easy to test. 

BOWEN [16] has considered a more general situation in which the chemical 
reaction rate also depends on the temperature gradient and the strain rate, in 
which case (3.3) must be replaced by a more complicated expression. Since we 
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are dealing only with isotropic systems, without memory, however, (3.3) is ade- 
quate. 

One more condition which we shall impose in chemical rate expressions is 
the Onsager reciprocity relationship. It is usual to express this in terms of in- 
dependent fluxes and affinities, but in our case it is more convenient to use an 
equivalent form: that the matrix B, where 

B =  ~r~ , (3.4) 
agj  

is symmetric at equilibrium. Here we require equilibrium in the classical sense 
of vanishing affinity, or, expressed another way, 

~ e ~  • (3.5) 

Thus we do not require (3.4) to hold at points referred to by BowEN [20] 
as weak equilibrium points, where 

r (T , /O=O,  
~ r 1 7 7  (3.6) 

We may alternatively express (3.4) in terms of the matrix 

using 
B = F J -  1. (3.7) 

4. Axiomat ic  Structure 

The foregoing considerations may now be summarized by a set of definitions 
and axioms. We let R N denote the N-dimensional real Euclidean space with inner 

N 

product ( , )  (i.e., if x, y e R  N, (x,  y)  = ~ (xi y~). Let ~ = { c :  c~R ~, cj_>_0; 
i = 1  

i =  1, ..., N} be the set of all concentration vectors, and let ~ '={T:  T~R 1, T>0} 
be the set of all temperatures. 

Definition4.1. A chemical system consists of a pair of functions, {a, f } :  

a: o~d'x r~ --, R 1 
f :  ~ x  ~r N 

which satisfy the following axioms. 

A0 (Regularity Conditions). a(T, c) is continuous in 3"x cg and has continuous 
0a 

second derivatives in the interior of ~176 The function p =  3c : ~'xr~-- 'RN 

is onto R N for each fixed Te~.. The function f (T,  c) has continuous first deriv- 
atives everywhere in ~ 'x  ~'. 
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A1 (Single-Phase Stability). For  each Te~,, a(T, c) is a strictly convex function 
d2a 

of c. Also, a (T, c) satisfies ~ < 0. 

A2 (Mass Conservation). Let ~ be the smallest subspace of R N containing the 
range of f(T, c). Then ~•  has an element with strictly positive components (Le., 
the vector of molecular weights). 

A3 (Irreversibility). The function(r: ~  given by a(T, c ) = ( p ( T ,  c), 
f(T, c)) is negative at any point (T, c) for which f(T, c) 40. 

A4 (Onsager Relation)*. Let J(T, c) = - ~ f  = ~ , 0 # ~  d2a and F(T, c)= ~ . 

Then the matrix B(T, c)=FJ -1 is symmetric at each point (T,c) where 
p(T, c ) e ~ ' .  (Note that J is positive-definite and, hence, invertible, because 
a(T, c) is strictly convex in e at each T.) 

In comparing the above set of axioms with those of WEI [6] one must bear 
in mind that his axioms refer not to the chemical system as defined here but to 
the dynamical system that results when one applies some set of constraints to it. 
One might, for example, assume the system to be constrained at constant tem- 
perature and volume, in which case the equation of change becomes 

c=f(T, e). (4.1) 

We may then compare the properties of the dynamical system (4.1) implied by 
axioms A 0 - A 4  with the axioms of WEI. Thus A2 implies W1 (W~I'S axiom 1) 
that mass be conserved. W2, the postulate that concentrations remain non- 
negative, is implied by the part of A0 that states that / t (T,  c) is onto R N, together 
with A 3 (this will be proved in the following section). Wr.l'S regularity condition, 
W3, is weaker than A0, only requiring that f(T, c) be continuous. We require 
the stronger condition so that A4 will make sense. The condition W4, detailed 
balance, actually implies A4. The reverse implication for the special case of mass- 
action kinetics will be demonstrated in Section 6. Finally W 5, the existence of a 
Liapunov function, is, for the dynamical system (4.1), given by A3, since in this 
case 

t] = </t, c> = <p(T, c),f(T, e)> <0  

so that a(T, c) is the required function. 

There are many other sets of constraints for which this correspondence can be 
shown, including constant T and P, constant H and P, constant U and V, etc. 
If we consider a more general closed system, however, A3 no longer implies the 
existence of a Liapunov function, and, in general, no such function exists. In the 
next section we shall study the properties of various types of closed systems. 

* While the requirement that the matrix B be symmetric at equilibrium is strongly suggested 
by the ONSAGER-CAsIMIR reciprocal relations for homogeneous systems as presented on 
pp. 123--124 of C. TRtW_.SDELL, Rational Thermodynamics, McGraw-Hill, 1969, it cannot be 
derived directly from them unless they are strengthened so as to cover not only strictly linear 
systems but also linear approximations in the neighborhood of equilibrium. 
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In particular, we will show for which class of closed system A3 does, in fact, 
imply the existence of a Liapunov function. 

Before proceeding, we first derive some of the elementary properties of 
chemical systems. Theorem 4.6 below was first discovered by BOWEN [16], and 
it is included here simply for completeness. His definition of strong equilibrium 
coincides with ours of thermodynamic equilibrium. The converse of this theorem, 
which has not appeared previously, will be demonstrated for the case of mass- 
action kinetics in Section 6. 

Definition 4.2. A regular equilibrium point of the chemical system {a, f} 

is a point (T, c)~3"xCg for which f(T, c)=0 and F(T, c)= ~ has rank P, 
where p is the dimension of ~.  

v ~ j  

~a 
Theorem 4.3. The mapping pr= d e :  5 x ~ R N  is one-to-one at each 

fixed T. See Section 2. 

Because of Theorem 3.3, we may use (T, p) as independent variables: 

r(T, p)=f(T, #r '  (l~)) . 

This somewhat simplifies the following theorem: 

Theorem 4.4. Let 8 =~ ' .  Then f(T, c) =0 for all c such that $(T, c)E8 (i.e., 
r(T, p)=O for all p~d~). 

Proof. If / ~ g ,  then (/l, r(T, !0)=0, since the range of r at fixed T is per- 
pendicular to 8. By axiom A3, this implies that r(T, I0 =0. 

Since the criterion/~e8 is the usual thermodynamic condition of equilibrium, 
we propose the definition: 

Definition 4.5. A thermodynamic equilibrium point of the chemical system 
{a, f }  is a point (T, c)e3"x c~ for which/~(T, c)e~. 

Then we have the theorem 

Theorem 4.6. Any regular equilibrium point is also a thermodynamic equilibrium 
point. 

Proof. Suppose (T, c ~ is a regular equilibrium point, and t~~176 c~ 
Then r(T, ! ~~ =f(T, c ~ =0, and tr =(po, r(T, po))=0. By axiom A3, a is always 
non-positive, so it must be a local maximum at (T,/l~ Since/~ ranges over all 
of R N (by A 1), this implies that 

d(l~,r(T,p))=O at (T,p~ 
for fixed T, or that 

( d la, r (T ~ !~~ + (po, B d p) = 0 (4.2) 

B= Ors where [I ~PJ l[ =FJ-1. Since (4.2) must be zero for arbitrary d/~, po must be a 

left null vector of B(T, I~~ Since J -1  is non-singular, /4o must be also a left 
null vector of F. The elements of 8 = ~• will be left null vectors of F, and, because 
of Definition 4.2, the dimension of the null space is just the dimension of ~• 
Thus 8 =~•  is the left null space of F, and poe~,. 
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The existence of equilibrium points is shown by the following theorem: 

Theorem 4.7. At any fixed temperature, T, there is a C l-differentiable submani- 
:old of thermodynamic equilibrium points in cg whose dimension is equal to that of 
8 =~• 

Proof. Let P~: RN-~I  be the orthogonal projection onto ~.  Then the set 
of thermodynamic equilibrium points consists of the solutions to the equation 
P~ o p (T, e) = 0. Consider the left-hand side at a fixed temperature as a mapping 

l 

from ~g into ~.  The Jacobian of this mapping has rank p, since I ~ = J  is non- 
I 

singular, and the mapping itself is of class C ~. Thus, by the implicit function 
theorem [12] we prove the assertion. Because of A2 the dimension of 8 is non-zero. 

In connection with Section 6, it will be useful to express the requirements 
of Definition 4.1 in terms of the function r(T, l~) rather than f(T, c). In this case 
axioms A 2 - A 4  no longer involve the function a(T, c). Thus we may make the 
additional definition: 

Definition 4.8. A function r(T, !1) will be called a valid chemical rate ex- 
pression if it satisfies the following conditions: 

A' 0 r(T,/~): ~q'x R n ~  R N has continuous first derivatives. 

A' 2 Let ~ be the smallest subspace of R N containing the range of r(T, I~). Then 
~ "  has an element with strictly positive components. 

A '3  The functiona: ~ ' x R N ~ R  1 given by a(T, #)=(g ,  r(T, la)) is negative 
at any point (T, ju) where r(T, !~)4:0. 

p ~ r i 
A 4 The matrix B(T, p)= ~ is symmetric whenever /~e~• Here we note 
that A 1 no longer appears. II o/~j II 

5. Trajectories of Closed Systems 

There is a class of dynamical systems connected with chemical systems. These 
are constructed by imposing certain constraints on the state variables. Contained 
in this class is the subclass of closed systems, which satisfy the differential equation 

= Vr(T, p)= Vf(T,  c) (5.1) 

where n is the vector of mole numbers (=  Vc) and V is the system volume. We 
assume that V ~ ,  where ~e'={V: V~R 1, V>0}. This may be written 

d =f(T,  c ) -  c --~-. (5.2) 

Equation (5.2) does not define the system completely, however. In addition, we 
must introduce equations for the time variation of T and V: 

g(T, V, c, t), (5.3) 

§  V, c, t), 
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where t is the time and h and g are scalar functions. Combining (5.3) with (5.2), 
we have the set 

1 
c=f (Y ,  c ) - c  .--~- g(T, V, c, t), 

l}= g( r ,  V, c, t), (5.4) 

7"= h(T, V, e, t) 

which will determine the system's trajectories. Equation (5.4) may be taken as the 
definition of a closed system. 

Definition 5.1. A dosed system associated with a chemical system {a, f} is a 
dynamical system whose trajectories are given by (5.4) for some pair of functions 
g(T, V, e, t) and h(T, V, c, t). 

We now consider some general properties of closed system trajectories. It will 
be useful to describe these through the coordinate set (T, V, n)=(T, V, Vc), 
since the equations of change, (5.4), are then somewhat simpler: 

h = Vf(T, n/V), 

(Z=g(T, V, n/V, t), 

~= h(7", V, n/V, t). 

(5.5) 

In particular, the projections of these trajectories into the point set Jff={n: n=Vc;  
ceC~, V ~ }  will be considered. Note that X is just the positive orthant of R N. 
We introduce the definition, due to WEI & PRATER [1]. 

Definition 5.2. A reaction simplex is the intersection of a hyperplane, per- 
pendicular to the space g, with the set ~ .  

The point set defined in this way is, in fact, a simplex, because the space 8 
contains a positive element (by A2), so that the intersection of each such hyper- 
plane with the positive orthant is bounded. These simplices have the following 
important property: 

Theorem 5.3. Each reaction simplex is an invariant set of the closed system 
(i.e., a trajectory that begins in a given simplex remains in it). 

Proof. Because of (5.1), h is always in Y~=8 • Thus the projection of n onto 
along ~ does not change with time. Now as a particular component of n, 

say n~, goes to zero with the others held constant, then ci~0.  Because of A1, 
/ z i ~ - o o ,  and because of A3, lim f~(T, c)>0. Thus the trajectory will never 

c~-'* 0 

leave the positive orthant once it is inside. This completes the proof. 

Theorem 5.4. For any reaction simplex 5ac ~ ,  and for each pair (T, V), there 
is one and only one point n~Sg for which (T, c)=(T, n/V) is a thermodynamic 
equilibrium point. 
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P r o o f .  Consider the function a(T, e)=a(T, n/V) varying over Se. Since V is 
fixed, the point c=n/V will trace out a simplex in c~. Because of AI ,  a(T, c) 
has a stationary point in c~, and because it is convex, a global minimum in c~. 

0a 
It has, thus, a minimum over the simplex in ~. Because # i = - ~ - . - ~  as 

c ~ 0 ,  this minimum is not on a boundary. Thus there is a point in the simplex 
0a 

for which a is stationary with respect to directions in ~ i.e., ~ =/ t  is _1_ to ~ ,  

or pe r  Since a is convex and 6 e is linear, this point is unique. 

We shall require the following lemma which, though slightly different from 
the commonly available Liapunov theorems, can be proved on very similar lines 
(see, for example, [17]). 

Lemma 5.5. Consider a dynamical system whose state, x, is a vector in R ~, 
and with trajectories given by 

k = ~ ( x ) .  

Suppose that there is an invariant set ~: that is compact, that q~(x) is continuous 
in J: and that there exists a (Liapunov) function ~P(x), with continuous first deriv- 
atives in 9:for which 

~(x )  = x i =  Y, ~ q,i(x) 
t=1 Xi  i = 1  17Xi 

is negative at every point for which ~p(x)~0. Then 

(i) The set ~ ={x: ~p(x)=0, x ~ }  is nonempty. 

(ii) Every trajectory whose starting point is in ~ remains eventually in every 
neighborhood of Yg (i.e., for every open set all containing .~, there exists a time 0 
such that x~all for all t >0). 

(iii) lim I~l =o along every trajectory starting in ~.  
t-~ oo 

Proof. Since ~(x)  is continuous over a compact set, it must have a minimum 
on the set. At this point, ~ > 0  along any trajectory remaining in ~ .  Thus tp(x)=0 
at this point, and hence, ~/' =0 at the point. Further, ~(x)  =0 if x~ L~. 

Since ~P(x) has a minimum and ~'(x) is non-positive, it is clear that for a 

given trajectory, x(t), ~ ( x ( t ) ) ~ 0  as t ~  oo. Thus for any e>0,  there exists a 0 
such that [~P(x(t))]<e for all t>O. We must show, in addition, that for any 
open set q/containing ~e, there is an e>0  such that x~q / i f  I ~(x)[ <e. Suppose, 
on the contrary, that there is a sequence of points in :Y, {x,}, such that I ~(x,)  [ < 1/n 
and x,~q/. Then, since ~ is compact and q/is open, the sequence has a convergent 

subsequence, with limit X o ~ .  Since ~ ( x ) =  i:-vxt~l --~--tp~(x) is continuous, 
(Xo) =0, and thus, Xo ~ ~ o q/, a contradiction. = 

Finally, since tp (x) is continuous, for any e > 0 there exists an open set q/-~ ~e 
such that I tp(x) I < e for all x~q/. Then by the previous statement lira I ~p(x(t))l =0. 
Note that i = ~p (x). t - .  
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Theorem 5.6. A closed system at constant temperature and volume has a unique 
thermodynamic equilibrium point in each reaction simplex. I f  there are no "weak" 
equilibrium points, every trajectory originating in the simplex converges to this point. 

Proof. By Theorem 5.4, the unique thermodynamic equilibrium point exists, 
and a(T, c) is stationary there. Since a(T, c) is strictly convex at fixed T, it is also 
a minimum at this point. Because of (4.7) and A3, 

da =lt~ ' dc \ <0 
dt _ - ~ - ) = ( l ~ , f )  �9 

Since the reaction simplex is compact (since it is of finite dimension, closed and 
bounded), and since a and f have the appropriate continuity properties (A0), 
the requirements of Lemma 4.5 are fulfilled. In this case, the set .~ consists of 
only one point, say, n*, and condition (ii) of Lemma 4.5 implies 

lim n (t) = n* 
t ---~ oO 

for any trajectory originating in the simplex. 

We may extend Theorem 4.6 to many other closed systems. A particularly 
useful class of closed systems includes those for which the constraints may be 
rearranged to the form 

v=  v(n), 
T= T(n) (5.6) 

where V(n) and T(n) are continuous functions of n. The essential feature of such 
systems is that the constraints applied to the chemical system in forming the 
closed system are integrable. The fact that these integral relationships may be 
rearranged to the form (5.6) is simply a useful regularity condition. By analogy 
with mechanical systems whose constraints are integrable, we refer to such 
systems as holonomic: 

Definition 5.7. A holonomic closed system is a closed system whose dynamical 
equations may be rearranged to the form 

h = VI(T, n/V), 

v= g(n), 

T=h(n) 

(i.e., to the form h=tp(n)) where g and h are positive continuous functions of 
n over the reaction simplex determined by the starting point. 

An example of a non-holonomic system is one confined at constant volume, 
but that exchanges heat with a cooling coil at constant temperature through a 
constant resistance. In this case, it is necessary to know the whole history of the 
trajectory to calculate the instantaneous value of temperature. 

One property of holonomic dosed systems is given by this modification of a 
theorem due to WEI [6]: 

Theorem 5.8. .4  holonomic closed system has at least one thermodynamic 
equilibrium point in each reaction simplex. 
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Proof. Since the system is holonomic, T and V are continuous functions of n 
in a given reaction simplex. By Theorem 5.4, there is a point n*(T, V) in the 
simplex for each T and V that is a thermodynamic equilibrium point. The function 
n*(T, V) will be continuous from 5 x ~  into the simplex 5 a because of the 
continuity of a(T, c). Thus there is a continuous mapping of 6 v into ~ given 
by n*(T(n), V(n)). Since Se is a closed p-cell, Brouwers' fixed-point theorem [10] 
states there is at least one fixed point of the mapping n* (n) that is clearly a thermo- 
dynamic equilibrium point of the closed system. 

Another subclass of closed systems is that which is adiabatic. An adiabatic 
closed system is one for which the entropy S, where 

aa  
S = - V 0--T-- (5.7) 

satisfies 
1 

= - T  (t ' ,  , i ) .  (5.8) 

From (5.7), the definition of S, we have 

0 2 a O# t3 a ~ ! t 
dS= -V--ff-T-~dT+[(--~-~-, e)---ff-~-]dV-(.-~-T--, dn) .  (5.9) 

Combining (5.9) with (5.1), (5.2), and (5.8), an alternative definition of an adiabatic 
dosed system is obtained: 

�9 r 
c=f --e--~-, 

( )[( )aa] 01, t, /: (5.10) or  r ' f  

02 a 02 a V 
OT 2 OT z 

where (:=g(T, V, c, t) remains arbitrary. If an adiabatic system is also holonomic, 
then the following theorem applies: 

Theorem 5.9. Any trajectory of a holonomic adiabatic dosed system remains 
eventually in every neighborhood of the equilibrium point set. 

Proof, If the system is holonomic, T and V are functions of n in a given reaction 
simplex. Then the entropy, S, is also a function of n. By (5.8), 

V 
S =  ---~- Q~,f)  (5.11) 

and by A3, S > 0  unless f = 0 .  The derivatives of S are continuous by A0. Thus 
- S  serves as the function 7-' in Lemma 5.5, which then establishes Theorem 5.9. 
Note again that the reaction simplex is compact. 

Clearly, Theorem 5.9 depends only on the exactness of the differential form 
1 

---T- (l~, dn) under the constraints of the dosed system. The physical significance 
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of this differential form is that it is the differential of the total entropy of the 
system plus surroundings due to the chemical reaction. In cases where this form 

1 
is exact, we may define a "total entropy" S* by the expression dS* = - T  (1~, dn) .  
This leads us to the following definition. 

Definition 5.10. A completely holonomic dosed system is a holonomic dosed 
1 

system for which the differential form - ~  (/~(T(n), n~ V(n)), d n )  (= dS*) is 
exact, and to the theorem. 

Theorem 5.11. Any trajectory of a completely holonomic closed system remains 
eventually in every neighborhood of the equilibrium point set. 

Proof. Same as for Theorem 5.9, with S replaced by S*. 

The class of completely holonomic closed systems may be characterized 
by the following theorem: 

Theorem 5.12. The constraints of any completely holonomic closed system may 
be expressed in one of the following forms: 

T =constant 
(i) =constant, 

{T =constant 
(ii) =P(V) ,  

/ S  ~ =S~ 
(iii) [ V = constant, 

(iv) / SO = 9r  (T, V) 
[ e  = -~0v(~, v) 

where 9 is some function of (T, V), and 9r ,  9v are its derivatives with respect to 
T and V, respectively. The function S o is defined as S* - S  O.e., T d S  ~ = - T d S -  
( tt, d n ) ). In any adiabatic case, S o =constant. 

Proof. Since the constraints are completely holonomic, S*, and hence S ~ will 
be functions of the state of the system. From the identity 

we see that 
dU= T d S - P  dV+ (g,  d n )  

dU = - TdS  ~ - P dV. 

(5.12) 

(5.13) 

Applying a Legendre transformation on T gives 

where 
dcp=S~ d T - P d V  

go = U + T S ~ . 

(5.14) 
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Clearly go must be a function of state, and this is only possible if one of the four 
conditions above is satisfied. 

The four possible forms can be condensed into one, 

S ~ = got(T, V), 
P=-gay(T, V), (5.15) 

by introducing the convention that if got=0, then T=constant,  and if gay=0, 
then V= constant. This is consistent with the definition go = U+TS ~ and results 
in the expression 

S * = S +  T [go- U] (5.16) 

for the Liapunov function S*. In using (5.16), one must be careful to adjust go 
by an additive constant so that go = U+ TS ~ is satisfied. 

Once the function go(T, V) in Theorem 5.12 is specified, the equations of 
change, (5.4), may be derived. Thus, from the definitions of P and S a, and from 
(iv) above, 

�9 1 �9 1 �9 [(a/* ) aall~,  P=-gorvT"-govvV=-lT-(Je, n)- -~-(Je ,  e) V+ -~T-,C ---~-~- 

�9 1 
S~ = gorr 1h+ gOTv l~'= - ~-- (/~,/s) - S, (5.17) 

�9 al~ aa �9 a p  

Combining with (5.2), we have 

c=f --c 

[ a~a go~] aa ,f) ---ff-T~q--~-~-J (Jc,f)+I(-~T-T ,C)---ff-~q-gorv](.all l~ aT T 

02~ 

[ /  a ,  ,C)__O~r_r +goTV]2+[ . a2cl ] --govv] gate] (J c, c) 
L\ aT 

( )[( ) "  ] a# /~ , f  c ~.= [(Jc'c)-Vgovv] aT T - -~-T ' ---~--T-+goTV (Jc, f )  

/ ap \ aa gOTv]2+ r a2a ] -govv] 

It may easily be seen that all the commonly encountered thermodynamic con- 
straints are included in Theorem 5.12, as well as many new ones�9 Thus the axioms 
of WEt do indeed apply to a wide range of cases. 

(5.18) 
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In the case of constant temperature and volume, the Liapunov function S* 
Va 

is just T " For this case, the function S* (n) is strictly concave, so that the 

thermodynamic equilibrium point is unique (Theorem 5.4). Thus the question 
arises as to under what other conditions S* (n) will be concave. A sufficient con- 
dition which, again, covers all the commonly encountered cases is given by 

Theorem 5.13. The Liapunov function, S*(n), of a completely holonomic closed 
system, is strictly concave if q~ (T, V) satisfies 

_ 02a 
qTTT>--- V - ~ ,  

r <<_O 

where tp(T, V) is the function that characterizes the system, as described in Theo- 
rem 5.12. 

1 
Proof. Since dS* = ---~- (l~, dn>, the Hessian matrix is given by 

t92S * 

OntOnj 
( O#,IT] _{@,IT~ Of" [@,IT~ O:~ (5.19) 

Onj /T,V,., \ OV ]r, .  On] \ aT ]v.. Ony 

where ~'(n) and ~'(n) are the functions that express the constraints (5.6). From 
(5.18), we see that 

aV [ - a2a "l 1 O/~ Oa O/~j /-9) 

[( > dnj dl~ da -]2 r . d2 a ] _gOvv] 7-f- [ -  v --~-~+q,..j [~  <J~, , c - - - ~ - + q ~ r v J  + c> 

(5.20) 

OT [-V <dc'c> ) _  al~ \ O a  7 1  aT T --~'C/----~--T-+q~TVJ--V -(Jc)j 
o n / = - F /  o. , \ Oa 1 r O2a 1 qgvv ] 

L\ 
Also, we have the identities 

( dl, ti/T t _ 1 bg~ = 1 
W / T , V , n ~  TV 3cj TV "Jij 

(OIa,IT~ 1 V cop, [OCk'~ 1 (Jc)i 
O V ] r, ,, = T z-s ~c-~k \-~--1,, = T V 

(5.21) 

aT 1~,. T \ 0 T  T " 
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Substituting (5.20) and (5.21) into (5.19), we find, after rearrangement, 

d 2 S . = ~ j ~  02S* i=1 =1 a n ~ j  dn~dn~ 

- -  TD - V - f f ~  +tpTTJ [(Jdn'dn><Jc'e)-(Je'dn)2] 

02a I 
+(_q~vv)f(_V_~T_2+tprr)_v(Jdn, dn>+ ( a,  OT 

['/att \ COo 9rvlZ__~(Jdn, 
+ = _  

[(O/~ \ cOa 71 (co,,) 
-2 --~--, ~/ - -~-+~~ or r ' an  

1 (. :} 
+--~-(Je,  e) COT T'P dn 

where D is the denominator, 

-~-,~--~-+~.. +[-v~--~+q, ,Tj  <Jc, c > - ~ .  , 

I- CO2a ] 
which is positive, since J is positive-definite, and [ - V - f f ~ + g r z J  and (-r 

are positive by hypothesis. Now because J is positive-definite, the bilinear form 
<J x, y )  is a valid inner product. Thus by the Schwarz inequality, 

( J dn, dn> <J c, c) > ( J c, dn> 2 , (5.23) 

so that the first term inside the braces of (5.22) is positive. The second term is 
dearly positive also. Using (5.23), we see that the sum of the last three terms is 
greater than or equal to 

JI(Olt l O a  -]2 
, c - - ~ - + ~ r v j  

1 ~ (Jc, dn) z 
[ . (Jc, C) 

[ (  ) Oa ( col~ lJ ,dn) (5.24) -2  --~-~- , c ---~-~-+ tprv d n ) 3T T 

+<Jc, c>(col, , )2] 3T T ,dn . 

The expression (5.24) may be considered as a two-dimensional quadratic form 

( CO/~ /a , d n )  The diagonal terms of the form in the variables (J c, dn) and COT T " 

are positive, and the discriminant can be seen to be zero. Thus (5.24) is also 
non-negative, and 

d 2 S* =<0. (5.25) 

, )2 l 7c , dn 

(5.22) 
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This shows that S*(n) is concave over the whole positive orthant. If n is con- 
strained to lie in a given reaction simplex, S*(n) will remain concave, because 
the simplex is linear. The equality in (5.25) can hold only if that in (5.23) holds. 
This requires that dn be parallel to c. In the reaction simplex, however, this is not 
possible, since dn~l ,  and e always has a non-zero projection in 8 = ~ •  for all c 
in the reaction simplex. Thus 

d 2 S* <0  (5.26) 

strictly, everywhere in the simplex. Thus, if the system is of type (iv) in Theo- 
rem 5.7, the theorem is proven. Using the convention that if q~r=0 then T=con-  
stant, and if q~v=0 then V=constant,  we may show that the theorem applies 
to all four cases in Theorem 5.7. Thus, suppose V=constant  (q7 v =0). Then 

OT \ OT 
= _ 82 a ] ,  (5.27) an, [- v-~+~oTr] 

02S * 1 jii .  t V [ 0 , ,  , ,) .  (.0~j - ~ } /  (5.28) 
On~Onj = -  TV r O2 a ] \--~--T T \ OT 1' 

[ -  V--~-~+ ~Orr 
.I 

and 

�9 / )'] d 2 S . = _  1 (Jdn, dn)4 V Ol~ p TV _ 02a q a T  T ,dn (5.29) 

1 
is clearly negative. Similarly, if T=constant  (Or =0), then 

oP (Je), 
~n, - [ < s e ,  e>- V~rr] ' (5.30) 

a~S * 1 { (Jc),(sc)j .];, (5.31) 
OntOn-----~- T ~  J~j (Jc, e)-Vq~rrJ 

and 

d 2 S*-- - 1 
TV[ (J c, c) - VfPTT] (5.32) 

�9 {(Jc, e) (Jdn, d n ) - ( J e ,  dn) 2 -  Vq~rr(Jdn ,dn)} 

which, by 5.23, is again negative. 

As a corollary of Theorem 5.13, we have 

Theorem 5.14. A completely holonomic closed system with only thermodynamic 
equilibrium points has a unique equilibrium point in each reaction simplex, and 
every trajectory beginning in the simplex approaches this point as a limit (i.e., 
remains eventually in every neighborhood of the point) if 

O2a 
q~rr> V -~-~, (5.33) 

~vv ~= O . 

22 Arch. Rational Mech. Anal., Vol. 38 
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Proof. The equilibrium set is non-empty because the system is holonomic 
(Theorem 5.8). This point is unique because S* must be stationary at thermo- 
dynamic equilibrium, and because (5.33) implies that S* is strictly concave over 
each reaction simplex. Theorem 5.11 then establishes the convergence of tra- 
jectories. 

6. Polynomial Kinetics and the  L a w  of  M a s s - A c t i o n  

Many kinetic rate expressions have the form of polynomials in concentration: 

Q N 
f(T, c)= E h~(T) H c),,. (6.1) 

~t=l j = l  

These arise theoretically by supposing the overall chemical change to be comprised 
of elementary reaction steps, each of which obeys the law of mass action. Consider, 
for example, the single elementary step 

N N 

X qi~s~,~ X q,p~ti (6.2) 
f = l  f = l  

where the q~ are the stoichiometric coefficients and the ~/~ are the symbols 
for the various chemical species. Then the law of mass action gives, for the rate 
of step (6.2), 

r.,=(qa-q.) [k'~t~(T)jO c,J'-k'a.(T) ~= c,J" ] (6.3) 

where q~=(qt~, q2~ . . . . .  qN~)r N. The requirement that (6.2) be a "balanced" 
equation is that (qp-q~)eal, which also follows from (6.3). This may also be 
written 

(q~, v)=(qp, v); all v e t .  (6.4) 

Thus we define an equivalence relation ~ so that q~,,~qp iff (6.4) is satisfied. 

In order to express the reaction rate in the coordinates (T,/0, we assume 
the system to be an ideal gaseous solution: 

-- #* (T)  /it 

ci=e ar e r r ;  (6.5) 

substituting (6.5) into (6.1), we have 

Q t 
r(T, I*)= ~ h~(T) e Rr <q"~> (6.6) 

r 

where 

h=(T) =h',,(T) e ~'~-O'''cr)>" 

Thus we arrive at the following definition. 

Definition 6.1. A polynomial rate expression is one of the form (6.6), where 
each q= is a non-negative vector, q==kqa if ~4=fl, and q~4=0; all c~. The rate ex- 
pression will be called valid if it satisfies Definition 4.8. 
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In case all the q~ in (6.6) are equivalent by (6.4), it can be seen that 

r(T,l~+v)=q~(v)r(T,l~); all / ~ R  N, v~$' ,  (6.7) 

where ~p(v) is the common value of e ~-y<~''v> for all ~. This turns out to be 

quite a useful property, and we suggest the following definition. 

Delinition 6.2. A kinetically homogeneous rate expression, r(T,/~), is one 
for which there exists a continuous scalar function q~: ~ '~(0 ,  oo) such that 
r (T, / l+v)=cp(v)  r(T, tO for al l /~eR N and all yeS.  

From Definition 6.2 it is clear that ~p(v+v')=cp(v)~p(v'), all v, v'e~f. Since q7 
is also continuous, we may take ~p(v)=e <w',> for some w~8. (See [15].) Also, 
in case the subspace ~f contains the constant vector 1=(1, 1 . . . .  ,11, kinetic 
homogeneity will imply ordinary homogeneity in c of order b for f(T, c), where 
b=(q , ,  11: 

f (T ,  Oc)=Ob f (T ,  c). (6.8) 

To see this, simply note that 

r (T , / l  + v) =f(T,  e *~/Rr c 1 e "~/Rr c2, . . . ,  e ~/~r c~). (6.9) 

Rewriting (6.3) in terms of (T,/~), r~p =(qB -q~), we have 

1 1 

[k~p(T) e -~- < "  "> - kB,(T ) e -R--~- <q' ">] (6.10) 

where k,a(T)=k'~a(T ) e ~-r <g~'~'(r)>. The condition of detailed balance requires 

that r~a vanish at equilibrium, regardless of what other elementary steps occur 
in the system. Since q~,~qa, then at any thermodynamic equilibrium point 
v, e <~'' "> = e <gp''>, by (6.4). Thus detailed balance requires that k ~  (T) =- k~ ~(T). 

Suppose now that many elementary steps occur between many "reactant 
sets" ql, q2 . . . . .  qe. The total rate may then be written 

Q Q 1 
r= ~ ~ k~p(T)(qB-q,)e -ay<a'''> (6.11/ 

where k~p(T)--O for any pair ~,/~ for which q~ ~qp does not hold. The expression 
Q 

(6.14) may be written more compactly if we define k~,(T) to be - ~2 k,p(T): 
p = l  

Q Q 1 

r---- F. ~ k~p(r)qpe ~ - < ' ' ' > .  (6.12) 
e = l p = l  

Thus we are led to the definition 

Definition 6.3. A reaction rate expression is said to be of mass action type 
if it is of the form 

Q Q 1 

r(T, #)=  ~ ~ k,p(T)qp e ~'~''(*''~> (6.13) 
~ = 1 # = 1  

22* 
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and if 
Q 

(definition of k~)  ~ k~a(T)-=0; all T ~ , ,  (6.14) 
p = l  

(mass balance) k, a (T) ~: 0 ~ q~ ~ qp, (6.15) 

(detailed balance) k,p(T)=-kp~(T); all T~o~,, (6.16) 

(non-negative rate k~p(T)>O if ~ f l ,  (6.17) 
constants) 

(positive stoichiometric 
coefficients) q l ,~0 ;  all i, a.  (6.18) 

Normally, the elements q~, will be integers, but we will not restrict them here. 
Also useful is 

Definition 6.4. A reaction rate expression satisfying all the requirements of 
Definition 6.3 except equation (6.17) will be called of pseudo mass action type. 

We are then led to some theorems: 

Theorem 6.5. Any valid polynomial rate expression may be decomposed into 
a sum of kinetically homogeneous polynomial rate expressions, so that at any 
thermodynamic equilibrium point each individual expression is zero and has the 

~ri 
property that B = ~ is symmetric. 

Proof. Because of Theorem 4.4, we have 
Q 1 

r ( T , v ) =  ~ h~(T)e~<~"V>=O; all v e 8 .  (6.19) 
r  

Using the equivalence relation ,-,, we collect the q~ into equivalence classes 
~ ,  k = 1, .. . ,  S. Then 

S 1 

e~_ ~_ <w<~. v> ~ h , (T )=0 ;  all w g  
k =  l r  k 

where w k is the common projection of the q~ in Sek onto o ~. Now the w (k) are all 
different, since otherwise two classes can be combined. Thus, since the exponentials 
are independent, 

h , ( T ) = 0 ,  k = l  . . . . .  S. 
G( E .,,~ k 

Since the h~ (T) are non-zero, this implies that there is at least one q 3 equivalent 
to a given q,. Now let 

1 

r(k)(T,l~)= ~ h~(T)e "-~<q''l'> 
Clearly, ~ ~ spk 

S 

r(r , /1)  = E r(k)( T,/~), 
k = l  

r(k)(T, v)--O; all v ~ g .  



Chemical Kinetics in Single-Phase Systems 337 

The matrix B(T,/O=l[ [IOri 110-~-#/l[ can be expressed at equilibrium by 

B(T, v)= ~ e ~-<w(~)''>B(k)(T); veg 
k = l  

where Btk)(T) = l] ~ h~,(T) qj, II. 

By axiom A'4, the matrix B(T, v); v~8, is symmetric. Thus 

B(T, v)-B*(T, v)= ~ e R-~- <,,,k),>(B(k)(T)_B(k ) *(T)} =0 .  
k = l  

Since the exponentials are independent, this implies that B(*)(T)=B(k)*(T) for 
each k. 

Theorem 6.6. Any kinetically homogeneous polynomial rate expression whose 
thermodynamic equilibrium points are regular is of pseudo-mass action type. 

Proof. Let r (T , /0=  )-', h~(T)e Then, by regularity, the rank of 
B(T, 0), where ~= t 

0 r~ Q 

is the same as the dimension of ~ .  Thus the only left null vectors of B(T, 0) are 
the elements of ~• By A4, B(T, 0) is symmetric, so the elements of ~ -  are also 
the only right null vectors of B(T, 0). Thus any vector u for which B(T, O)u =0 
satisfies 

(u ,  h ~ ) = 0 ;  ~ = 1 ,  . . . , Q  

since each h , e~ .  This implies that there exists a matrix S,k with the property 
N N r 

h,~(T)= E S,k(T)bk,(T)= E s~k(T) E hk#(T)qi#" 
k = l  k = l  # = 1  

This may be written 

where 

Further, 

Q 
h,(T)= Z k,o(T)qo (6.22) 

O = l  

N 

k,#(T)= ~ S,k(T) h,#(T). (6.23) 
k = l  

N N N 

k,~,(T)= ~, s,,(T)h,,(T)= ~, ~, s~i(T)S,k(T)b~,(T ). 
i = 1  i = 1  k = l  

Since bidT) =bk i(T), 
k,,(r)=k,~(T). 

Since h~(T)eg~; all a, T, 
Q 

(v, h~,(T))=-O= ~ k,p(T)(v, qp), 
#=1 

(6.24) 

(6.25) 
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and, since r(T,/~) is kinetically homogeneous, (v, q3) = (v, w); all ft. Thus 
Q 

k , , (T)=0 ;  all Te~.. (6.26) 
#=1 

Condition (6.15) is automatically satisfied because of kinetic homogeneity. 

Theorem 6.7. A rate expression of mass action type is valid. 

Proof. We have already assumed that ~• has a positive element, so it suffices to 
demonstrate A'3 and A'4. 

Rewriting (6.13), we have 
Q 

r(T, p) = ~ ~ k,p(T) (q , -  q,) (e <~'' "> - e <~"' io), (6.27) 
�9 = I  #>~ 

Q Q 

(/~, r(T,/~))= ~ ~ k,p(T)((qp,/~)-(q,,/~))(e ( ' ' ' '> - e ( ' " ' ) ) .  (6.28) 
~ = I # = I  

Since the function g is monotone, and since k,,B(T)>O, each term in the sum 
will be non-positive. A term will only be zero if either k,p(T)=0, (q,,  p)  and 
(qp,/~) = -  0% or (q,, /~) =(q~,/~). Thus (/~, r(T,/~)) =0 implies that r(T,/~) =0, 
and (/~, r(T,/~))<0 otherwise, so that A3 is established. Also, from (6.27), 

O r~ Q ] 
B(T,~)= ~ = ~ ~ k,a(T)(q~p-qt,)(qj, e<q"'> - q j a e  <'''~>) . (6.29) 

I II o/~j II I1~ =aa>, 

Again, if r(T,/~)=0, each term in (6.27) will vanish (since otherwise (6.28) will 
not be zero) so that each term in (6.29) will either vanish or be of the form 

- k,#(T) (q t , -  q~#) (q j , -  q j#) e<~' ~> (6.30) 

where (q,/~) =(q , , /~)  =(q#,/~). Since k,p(T) is symmetric by (6.19), the matrix 
resulting from the sum of terms of the form of (6.30) must be symmetric, so that 
B(T, IJ) is symmetric whenever r(T, l~)=0, establishing A4. 

Theorem 6.8. For a rate expression of mass action type, any thermodynamic 
equilibrium point is also regular. 

Proof. We will show that any thermodynamic equilibrium point of (6.13) is 
also regular. Thus we calculate from (6.13) 

and consider 

II,  ~ B(T, Or s e ~, k~pq~pqj~ 
= 1 . = 1  

Q t2 
B(T,O)= ~ X k, pq,pqj~ 

I p = l  

Suppose there is a u~t~ N such that B(T, 0) u =0. Then 

(6.31) 

(6.31)' 

Q Q 

~_, ~ k,a(T)qp(q,, u ) = 0 .  (6.32) 
�9 = I  p= l  
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Multiplying by n, we have 
Q Q 
~. ~ k~p(T) (qp, u) (q,, u) =0 .  (6.33) 

�9 = I  p = l  

Now because of (6.14), (6.16), and (6.17), the matrix K(T) = II k~p(T)11 is symmetric 
and negative semi-definite (see [11]). Thus the sequence (q~, u>; a = l ,  . . . ,Q 
must be a null vector of K(T). Therefore 

(2 
~, k~p(T) (qp, u> =0  (6.34) 

p = l  

for all a, so that <u, r(T,/~)>=0 for all /~eR N. This shows that if B(T, 0)u=0,  
then u~8. On the other hand, any element of g is a left null vector of B(T, 0), 
and by symmetry a right null vector of B(T, 0). Thus B(T, O) has rank equal 
to the dimension of 8 • = ~ ,  and (T, 0) is a regular equilibrium point. 

The expression r(T, I~) can be decomposed into kinetically homogeneous rate 
expressions because of Theorem 6.5. Also, because of (6.15), each of these will 
again be of mass action type. Thus 

8 

r(r, E r("(r, (6.35) 
k = l  

where 
1 <q., #> 

r(k)(T,p)= ~ ~. k~#(T)q#e R-y (6.36) 
�9 E ~ '  k # e . ~  k 

Note that fl is only summed over ~k because k~p(T)=0 if ~t~Aek and fleck by 
(6.1). Then we may write 

8 

B(T,v)= ~ e<W<~"'>B(k)(T,O); all v~8  (6.37) 
k = l  

where 
B(k)(T,O)=ll ~ ~] k~(T)qtBq~[[. 

~G.~'k BE 5" k 

Now because each Btk)(T, O) is symmetric and negative semi-definite, the null 
space of B(T, v) is just the intersection of the respective null spaces of the B •)(T, 0). 
But this is clearly equal to 8, so that B(k)(T, v) has rank equal to the dimension 
of ~ for all ve~f; i.e., for all thermodynamic equilibrium points. Thus any thermo- 
dynamic equilibrium point of (6.13) is also regular. 

Theorem 6.9. Given any kinetically homogeneous rate expression of mass action 
type, a matrix k~p(T) satisfying equation (6.13) may be calculated from equation 
(6.23). 

Proof. The validity of (6.23) depends on the regularity of the equilibrium point 
(T, 0). Since this is a thermodynamic equilibrium point, Theorem 6.8 implies 
that it is regular. 

Theorem 6.9 provides an answer to the following question: given a poly- 
nomial rate expression, test it to see if it is of mass action type, and calculate a 
matrix k~(T) satisfying (6.13). The procedure is first to decompose the rate 
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expression into its kinetically homogeneous parts, and then to use equation (6.23) 
to calculate k~,B(T ). If this is possible, the rate expression is established to be at 
least of pseudo-mass action type, and if it turns out that k~p(T)>O if ~t4=fl, 
the job is finished. If the matrix kap(T) satisfying (6.13) were unique, this would 
be all there is to it. It turns out, however, that there are, in general, many matrices 
k~p(T) satisfying (6.13) for a given rate expression, and that some of these do not 
satisfy (6.17), even though others do. Thus the fact that the matrix k~p(T) cal- 
culated from (6.23) contains negative elements with ct 4= fl does not rule out that the 
rate expression is of mass action type. 

It is interesting to note that even though the k,p(T) for a given rate expression 
is not unique, the result calculated from (6.23) is unique. The special property of 
k~p(T ) in (6.23) can be seen as follows: The rank of the matrix h~  

Q 

h,~(T) = ~ k,,p(T) q,p (6.38) 
P=I 

is equal to the dimension of ~ .  Thus the rank of any k,p satisfying (6.27) is equal 
to or greater than this quantity. 

On the other hand, equation (6.23) requires that the rank of our special 
k,,p(T) be less than or equal to that of B(T, 0) which, in turn, is equal to the 
dimension of ~ .  Thus the particular k~p(T) given by (6.23) is of minimum rank. 

Let p be the dimension of ~ .  Then k~,p(T) will have p independent columns. 
Q 

Since kc, p(T)=kp~,(T) and ~ k~p(T)=0; all ~, the number of independent 
l l , . l  

parameters in k,p(T), p, is given by 

p=(Q-1)+(Q-2)+...+(Q-fl) 
p(p+ 1) p(2Q-p- 1) (6.39) 

=PQ 2 2 

The non-uniqueness of k~p(T) 
for which 

Q 

m~p=O; 
#=1 

Q 

m~aqp=O; 
p = l  

If such a matrix is added to k~p(T), the vectors h,(T) in (6.22) will remain un- 
changed, and properties (6.24) and (6.25) will be unaffected. Matrices (6.40) 
will exist whenever there are sequences v~; ~ = 1, .. . ,  Q, for which 

Q 

v,,q~,=O (6.41) 
at=l 

arises whenever there exists a matrix m~p, 

all ~, 

m~,a=mp~,; all ~,fl .  (6.40) 
all 

i.e., when the vectors q~ ; ~=1 . . . . .  Q are not independent. Because the q~ are all 
equivalent, 

Q Q 

v~(q~,v)=(q~,v) ~ v~=O; v ~ 8 .  (6.42) 
~t= l  a t= l  
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Thus v~ also must satisfy 
Q 

v~= 0. (6.43) 
0 t= l  

The number  of independent q~ is just p + 1, where p is the dimension of the 
space, since the q~ must span ~ by (6.22), and since they all have the same 
projection in 8 by (6.7). Thus the number of independent sequences v~ ; ~ = 1 . . . . .  Q 
is equal to Q - p -  1. These form a basis in R e for vectors in R Q whose compo- 
nents, v~; ~=1 ,  ... ,  Q, satisfy (6.41). Let us denote the ith such sequence by 
vi~ ; ~ = 1 . . . . .  Q; i = 1, .. . ,  Q - p  - 1. Then, by (6.40), there exists a matrix t~ ~ such 
that 

Q-o-1 
m~p= ~, t~lvtp; ~,p=l . . . . .  Q. (6.44) 

i = 1  

But, since m~p=mp~, we may assume that there exists a matrix u~y for which 

Q-p-1 
t~i= E UijVj r 

j f t  
i = 1 . . . . .  Q - p -  1, ~ = 1, . . . ,  Q. (6.45) 

Thus 
Q-p-1 Q-o-1 

re, p= ~ ~ utjvj,v,p; ~ , f l = l  . . . . .  Q. (6.46) 
i = l  j = l  

Since m=p=mp~, u~ j=uje and 

Q-p-1 Q-p-1 
m~p= ~ ~ uij[vj~v~+vi~vjB], (6.47) 

i = I  j f i  

so that the matrices w~j=[v~ v~p+v~ vjp] form a basis for the matrices mffip. 
The number  of these is thus � 8 9  Thus the matrices k~p(T) that 
all have the same rate expression form a hyperplane of dimension �89 (Q - p  - 1)(Q - p )  
in a space of dimension �89 - 1), whose coordinates are the elements of k~(T) 
above the diagonal  The degree of freedom of this hyperplane is then 

1 Q(Q _ 1)-21-- (Q - p -  1)(Q -p)= p(2Q -P-2 1) -p,  (6.48) 

which agrees with (6.39). Thus we see that the number of independent parameters 
required to specify a mass action reaction rate expression at a given temperature 
is just p. The matrices k~p(T) corresponding to a given rate expression fill out, at  
each temperature, a hyperplane of dimension �89 1)-p. This may be stated 
as a theorem: 

Theorem 6.10. Of the variables k~p(T) appearing in a kinetically homogeneous 
rate expression of mass action type, only p of those are independent, where 

p(2Q - p -  i)  (6.49) 
P--  2 ' 

and where p is the dimension of ~ ,  and Q is the number of reactant sets. The matrix 
k~p(T) for a given kinetically homogeneous rate expression is unique if and only if 
p - - Q - 1 .  
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One question that remains unanswered is under what conditions an expression 
of pseudo-mass action type will satisfy A'3 of Definition 4.8. It is clear from 
Theorem 6.7 that the positivity of the off-diagonal elements of k~p is a sufficient 
condition, but it clearly is not necessary in cases where the k~p are not unique, 

Q(Q-1) 
since the allowable values of k~p fill out a hyperplane in R 2 . In general, 
there must be a set of p linear constraints that the k~p must satisfy for a given rate 
expression to be equivalent to one with all positive off-diagonal k~p. We have not 
established, however, that this condition is necessary for A'3 to be satisfied. 
In order to clarify somewhat the nature of these unanswered questions, and also 
to illustrate the ideas of this section, we now consider a concrete example. 

Suppose that our system contains three species, denoted A, B, and C, and 
suppose that these undergo all bimolecular isomerization reactions: A + B ~ A + C, 
,4 + C ~ C+ C, etc. Then the subspace 8 contains only scalar multiples of (1, 1, 1). 
The quantities qt~ defined by (6.13) and vl~ defined by (6.41) may be written as 
follows: 

Reactant Set ~ ql~ q2~ q3~ Vl~ V2m V3~ 

A + A  1 2 0 0 1 1 0 
A + B  2 1 1 0 - - 2  0 0 
A + C  3 1 0 1 0 - - 2  0 
B + B  4 0 2 0 1 0 1 
B + C  5 0 1 1 0 0 - - 2  
C +  C 6 0 0 2 0 1 1 

It may be noted that all six q~ are equivalent, so that (6.13) will be kinetically 
homogeneous. Since in this case, p =2 and Q =6, the matrix k,p will not be unique. 
In fact; 

Q ( Q -  1) = 15 
2 

while 

p ( 2 Q -  p -  1) = 9, 
P 2 

so that any set of equivalent k~a matrices will fill out a six-dimensional hyperplane 
in the 15-dimensional space. The basis set of matrices m~a for generating this 
hyperplane can be calculated from the vi, according to (6.47). Thus we let 

with the result 
m(iJ)_v. o t p -  i~l)j~-Djetl)|~ff 

l 1 - 2 0  1 0 0 /  
- 2  4 0 - 2  0 0 

0 m(ll)=~p 0 0 0 0 0 
1 - 2  0 1 0 ' 
0 0 0 0 0 
0 0 0 0 0 0 /  

(6.50) 
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(lo_2oo i) 0 0  0 0 0  
- 2 0  4 0 0 -  (22) 

" '~ -=  o o o o o ' 

0 0  0 0 0  
1 0  - 2 0 O  

o o o o oi) 0 0 0 0 0 
__(33)__ 0 0 0 0 0 
' " ~ P - | 0  0 0 l - 2  ' 

\ oo 4 
0 0 1 - 2  

-- 0 4 0 0 - ~  

_ ( 1 2 ) _  - 2  4 0 - 2  0 
' " ~ P - - t  1 0 - -2  0 0 ' 

~ 0 1  0 0 O 0  
- 2  0 1 0 

(6.51) 

(0 O0 120i) 0 0 0 - 2  4 - 2  
_ . a ~ _  0 0 0 0 0 
' " ~ # -  1 - 2  0 2 - 2  ' 

- 2  4 0  - 2  0 
1 - 2  0 1 0 

0 0 0 1 - 2  s l i )  0 0 0 0 0 0 
2 rn,23) =~ 'p  0 0 0 - 2  4 - 

1 0 - 2  0 0 
- 2  0 4 0 0 

1 0 - 2  1 - 2  

It can be verified easily that the addition of any arbitrary linear combination 
of the above six matrices to a given k~  will not change the value of the reaction 
rate expression calculated from (6.13), nor will it affect properties (6.14), (6.15), 
(6.16), or (6.18) (note that q~,~qp for all c~, fl in this case; i.e., the expression (6.13) 
is kinetically homogeneous). We may readily introduce negative values of k~a, 
however, so that (6.17) may be violated without altering the final rate expression, 
(6.13). In fact, we may introduce zeros into the k~a matrix in at least six places 
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in the upper triangle. This has been done in the two examples following: 

klt q- k12-t-�89 (-- k24-t- k26-- ks4-l- k ~s) 
0 

kla-- k12"l- k24-- k26-l- k34-- k36 
k14-l-�89 k34) 

kls+ kl~-- k24-- k:. 
kx~+ �89 k~) 

0 k13--k12-l-k24--k26-{-k34--k36 

k22 dt- k12-~- k24- k26 k23-~- k12-- k24 ~- k26 
k23-~ k12-- k24--~ k26 k33-l- k12-- k24-i- k26-- 2k34-l- 2k36 

0 0 

k25-- k12 4- k24 4- k26 k35 -- kl2"l'- k24 --  k26 -'1"- 2ks4 
0 0 

k14-.~-�89 
0 
0 

k44+�89 k2e-- k34+ k56) 
k45-- k26-]- k34-- ks6 

k46+�89 

kl 5 .4. kl 2_  k24_ k34 k16-l- �89 (k26 -[- k36) 

k25-- k12-[- k24-~ k26 0 
k35-- k12dl- k24-- k26-~- 2k34 0 

k45 -- k26- l- k34-- k56 k46-~ �89 (k26-1- k$6) 

kssW k]2--k24+ kz6-- 2k34q- 2k56 0 
o k~+�89 

(6.52) 

kl l - -  k14 -- k16 --1- �89 (k25 + k35) 

k12 -.I- 2k14-- �89 k35 ) 

k13 + 2 k16 --  �89 (k2s q- k35) 
0 

kls q-�89 q-k3s) 
0 

k12 + 2k14-- �89 (k25-1- k35) 

k22-- 4 k14"}- k23"}- k25-l- k35 
0 

k24.-l- 2k14--�89 k35) 
0 

k26+�89 

k13 -{- 2k16-- �89 (k2s + k35) 
0 

k33--4k16-l- k23 q- k25-l- k35 
k34+�89 

0 

k36 -[- 2 k16 --  �89 (k25 -[- k25 ) 

0 

k24-~- 2k14--�89 k35) 
k34+ �89 + k3s) 

k44 --  k14 -- k46-1- �89 (k23-]" k35 ) 

k 45 -{- 2 k 46-- �89 ( k23 -l- k35) 
0 

kls + �89 + k35) 
0 
0 

k4s+ 2k4~--�89 
k55-- 4 k 46-.[- k23-l- k25 -{.- k35 

k56 "[- 2k46--�89 

0 

k26+ �89 + k25) 
k36+ 2k16--�89 (k23 q- k25) 

0 

k56+2k46--�89 
k66-- k16 -- k46-l- �89 (k23-1- k25, 

(6.53) 

In both (6.52) and (6.53), it is clearly shown that the transformed k,p may have 
negative off-diagonal components, even though the original matrix had only 
positive off-diagonals. In this particular example, it is a simple matter to test 
whether a given k~p matrix is equivalent to one with non-negative off-diagonal 
components. Thus we may verify that the following nine linear combinations of 
dements are invariant over a given hyperplane (Le., under arbitrary additions 
of the basis matrices (6.51)): 

z l = k 1 2 + k l s + 2 k 1 4 ,  

z 2 = k24 -t- k34 -I- 2 k14 , 

z3=k13+k15+2k16, 
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Z 4 ---- k36 -[- k26 + 2 k16, 

Z 5 = k34 -I- k45 -t- 2 k46 , (6.54) 

Z 6 = k56 -I- k26 -t- 2 k46 , 

zv=k25  + kas + 2 k l s  , 

zs=k23+kas+2k34,  

29 ---- k23 + k25 + 2 k26.  

I t  also may be verified that these are independent combinations. Thus a given 
k,~ will be equivalent to one with non-negative off-diagonal components if and 
only if Zl through z9 of (6.54) are non-negative. While this condition is clearly 
sufficient for A'3 to be satisfied, it is not obvious that it is also necessary. We also 
note that knowledge of Zl through z 9 is sufficient to determine the entire rate 
expression. Substituting the given qt~ in (6.13), we have 

r A= -(k12 + k13 + 2kls + 2k14-t- 2k16) X2 +(k 12 -k24 -k25 -k26 )  X,4 X8 

-F (k  I 3 - k34 - k35 - k36) XA X c  -[- (k24 q" k34 -t- 2 k,4 ) X 2 

+ ( k 2 5  -t- ka5 + 2  k l s )  XaXc- t - (k36  + k26 -1- 2k16) X 2 , 

rB = (k12 q- k l s  -t- 2 kx,t ) X 2-1- (k24 - k12 - k23 - k26 ) X A X B 

+(k23+kas+2ka4)XAXc-(k24+k45+2k14+2ka4+2k46)X 2 (6.55) 

+ (k4s - k56 - k3 s - k15) Xa Xc + (k56 + k26 + 2 k46) X 2 , 

rc = (k l a  + k15 + 2 k16) X 2 +(k2a + k25 + 2  k26 ) X.4 X a 

+ ( - k~ 3 - k23 - k34 + k36) XA Xc + (k34 + k4s + 2 k46 ) X 2 

+ ( k 5 6 - k 4 5 - k 2 5 - k l s )  X a X c - ( k 3 6 + k s 6 + 2 k 1 6 + 2 k 2 6 + 2 k , t r ) X  2 

where x~ = e "'/RT. 

Alternatively, this may be expressed in terms of the zi of (6.54): 

r.4 = --(Zx + za) xZ + (zl - z2 - �89  +�89 - �89 z9) X a X1j 

-~'(Z3-- Z4--�89 Z7--�89 Z8"Jt-�89 z9) X A Xc~t- Z2 X2-- Z7 XBXc-~ Z4 X 2 , 

I'B= Z 1 X2"i-(-- ZI -[- Z2-[-�89 Z7 --�89 Zs--�89 z9) X A XB-[- Z8 XA Xc--(Z2-I" Zs) X 2 , 

+ (z s - z6 - �89 z7 - �89 z 8 + �89 z9) Xn Xc + z6 x2, (6.56) 

rc= Z3 X2-~- Z9 X A XB + (-- Z3 -I- Z4-I-�89 Z7 --�89 Za --�89 z9) X A Xc + Z5 X 2 

-~-(-- Z5"}- Z6--�89 Z7-I-�89 Z 8 --�89 z9) XB Xc--(Z4.-]- z6) X 2. 

We now show how the above kinetically homogeneous expression may be de- 
composed into elementary steps. First, the 3 • 3 matrix B(T, O) is calculated: 

b:l = - (Z l  + Z2 + Z3 + Z4 + ZT) , 

b~ 2 = b21 = Zl + Z2 "[- �89 dr- ZS --  Z9),  

bl3=b3, =za+z4+�89 - za + Zg), 

b22 = - (zl + z2 + z5 + z6 + za), (6.57) 

b23--- b32= Zs + Z6 q-�89 ZT q- Za q- Zg) , 

b 3 3 =  - (z3 -]- z4 --I- z5 -1- z6 -Jr- z9) .  
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Then the matrix s~ ,  satisfying 
N 

hi~-- ~" S~k bki, 
k = l  

must be found. This can be written 

(6.58) 

h,=Bs,.  

If we denote the "na tura l  inverse" of B by B-1  (see [13]), then 

s~=B -1 h~. 
Then, by (6.23), 

k,p=<h,, sp> = <h=, B -1 hp>. 

The natural inverse of B is given by 

B_ 1 1 
9(b12 b13 + b12 b23 + b13 b2a) 

/-(bx2+4b23+b13) -bt2+2b23+2b13 
�9 |-b12+2b23+2b13 -(bx2+b23+4bla) 

\ 2b12+2b23-b13 2b12-b23+2bia 

and, f rom (6.56), the h~ are given by 

(6.59) 

(6.60) 

(6.61) 

2b12-t-2b23-b13 ~ (6.62) 
2bt2-b23+2b13 ] 

- ( 4  b12 + b23 + b13)] 

hl~ h2~ h3~ 

1 - -  (7,1 "Ji- z 3 )  z I z 3 

2 (Zl--Z2--�89189189 9) (--gl.Jt-z2.-[-�89189189 z 9 
3 (Z3--Z4--�89189189 Z 8 (--Z3"~Z4-~-�89189189 

4 Z 2 --(Z2"}-Z$) Z5 

5 Z 7 (ZS--Z6--�89189189 (--Z$"|-Z6--�89189189 

6 Z 4 Z 6 --(Z4"JrZ6) 

(6.63) 

Substitution of (6.57) into (6.62), and then, substitution of (6.62) and (6.63) into 
(6.61), yields the k~p matrix of minimum rank (which, in this case, is equal to two). 
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