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Introduction 

In recent years there has been a lively interest in and discussion around the 
notions of  entropy and absolute temperature, and the proper  content of the 
Second Law of  Thermodynamics. With very few exceptions (most notably 
C. TRUESDELL and M. ~ILHAV'I'), that  interest has not encompassed the First 
Law as well. The idea that every thermal system has a state space and an energy 
function exactly balancing the heat and work exchanged with the exterior in every 
process is simply taken as obvious, not  requiring serious logical scrutiny, and not  
worthy of  second thought. This is done in spite of difficulties in explaining what 
the "proper"  state space of  a system is, and in reducing heat to notions inherited 
from other physical theories. In some cases, the First Law is considered a mere 
tautology, equivalent to a definition of heat, disregarding the idea that heat, 
urdike work and energy, is not  a simple scalar quantity but should be specified 
together with the temperature at which it is received. 

However, the principle of  conservation of energy is not the only idea normally 
associated with the First Law. The existence of  a mechanical equivalent of  heat, 
the interconvertibility of heat and work in cycles, or the impossibility of perpetual 
motion machines of  the first kind are also thought to be part of  this Law. My 
main purpose here is to study the delicate interplay between these notions, in the 
context of  a formal theory based on axioms of  simple physical content. Within 
this theory there is a natural definition of  energy which does not directly involve 
a balance equation. It is therefore possible to consider energy conservation as 
an additional restriction on energy, and relate it to other properties of  thermal 
systems. Tb_e results suggest that in some cases energy may satisfy an inequality 
expressing a loss of energy instead of  the usual balance equation. 

This paper is organized as follows: first we briefly review notions adapted 
from [1 ], and originally introduced by SERgIN in [2]. After introducing a statement 
of  the First Law (its weak version), the existence of  the quantity I call energy is 
proved as a corollary, together with an energy inequality and gmHAVq'S weak 
First Law for cycles. In  the first part of  this paper the notion of  state is used in- 
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formally, and simply for purposes of illustration. In the second part, state spaces 
are examined, briefly but rigorously, and their construction based on the primitive 
notions of this theory is described. Energy conservation is then shown to follow 
from a reversibility assumption and the weak First Law. We compute lower 
bounds for energy, and study reversible ideal systems, to show that their theory 
is a consequence of the weak First Law, as far as energy is concerned. Finally we 
introduce a second statement of the First Law (its strong version), which allows 
a slightly unorthodox idea of energy conservation to be considered. Here energy 
conservation is shown to be equivalent to accessibility both in the past and in 
the future of states of arbitrarily small energy. 

1. Basic Definitions 

Thermodynamics has been applied to a great variety of thermal systems, all 
to some extent modelled using mathematical concepts. Naturally, if the Laws of  
Thermodynamics are to be phrased independently of the particular details and 
assumptions made for specific examples of thermal systems, we must begin by 
abstracting a common core of notions and properties shared by all such examples. 
It is now quite clear that these revolve around the concepts of process, heat 
(as a measure on a universal hotness manifold) and work. Moreover, since the 
First Law treats heat independently of the temperature at which it is absorbed, 
we may regard here heat and work as merely numbers to be associated with each 
process of any thermal system, once units and a sign convention have been 
chosen for these quantities. Thus we regard a thermal system $ as simply a set of  
processes, denoted by P(5), and two functions Q, W : P ( $ ) ~  R, respectively 
the heat and work functions of $ (R denotes the set of  real numbers). Our sign 
convention is such that if P is a process of  S, then O(P) and W(P) are, respectively, 
the heat absorbed and the work produced by g during P. To illustrate these ideas, 
if g is an ideal gas and we restrict our attention to its homogeneous processes, 
then P(S) is essentially the set of, say, piecewise smooth paths in the (T, V)-plane 
and, for each P E P(S), O(P) and W(P) are given by line integrals of differential 
forms q = c(T, V) dT + ~1(T, V) dV, w = p(T, V) dV along the given path. 

It is evident that each time a process P is applied to a given system S the 
supply of processes immediately available to S changes correspondingly. In the 
example above, once the ideal gas follows a path ending at a particular point 
(T', V'), only those processes which begin at the same point (T', V') Can be applied 
to it. From an abstract point of  view, we may say there is a binary relation IF(g) 
in P(S), called here the follow relation, such that (P, P ')  E IF(S) if and only if 
P '  can be applied tO $ immediately after P is completed. In such a case we say 
that P" followsP, or P precedes P'. Observe also that if (P, P ')  E IF(S) then we 
should regard the temporal concatenation of  P and P' ,  denoted by PP', and 
called P followed by P', as another process in P($). In other words, there is a 
binary operation in P($) whose domain is precisely the relation IF(S). It is true that a 
a process P of a system $ is normally pictured as a path in a state space, leading 
the system from some initial state ix to some final state y, and P '  is assumed to 
follow P if and 'only if P '  starts at state y. But in reality the notion of  state is 
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superfluous and unnecessary at this Stage, and accordingly will be omitted. Later 
in this paper I shall return to it, and discuss simple conditions on the follow rela- 
tion allowing the introduction of a state space in a straightforward manner. 

Each process P takes place in a specific time interval I C R. In particular, 
if PP' takes place in the time interval I ---- [to, t2], thert evidently there is tl E I 
such that P and P '  take place respectively in [to, t~] and [q, t2]. With this idea 
in mind, the additivity o f Q  and W with respect to time is evidently expressed by 
the equations Q(PP') = Q(P) q- Q(P'), and W(PP') = W(P) + W(P'), valid 
whenever P '  follows P. The above observations are summarized in the following 
formal definition: 

Definition 1.1 (Thermal system). A thermal system 5 is a triple (?(5), Q, W), 
where P(5) is a set and Q, W : P ( 5 ) - +  R are functions. In addition, 

1. there is a binary operation defined on a subset F(5) of P(5) • P(5), denoted 
by juxtaposition, and  associative in the sense that (PP ' )P"  and P(P'P") are 
defined and equal if and only if PP' and P'P"  are both defined. 

2. if (e, e ' )  E F(5) thert 

Q(PP') = Q(P) + Q(P') and W(PP') = W(P) -? W(P'). 

Our discussion should be interpreted as involving thermal systems in a fixed 
set U, which is the universe of systems under consideration. Note also that, strictly 
speaking, the functions Q and W are functions of two variables, namely 5 E U 
and P E P($), but their dependence on $ will never be explicitly indicated'. It  
is convenient to introduce for any given P E P(5) the sets Foll (P) and Pred (P), 
respectively the sets of followers and predecessors of P, naturally given by: 

Folt (P) = (P'  E P(5): (P, e ' )  E IF(5)), 

Pred (P) = (e '  E P(5): (e ' ,  P) E/F(5)). 

The set Foil (P) should be thought of as the future cone of 5 when P is completed. 
Analogously, Pred (P) is the past cone of 5 when P starts. I shall always assume 
that both Pred (P) and Foil (P) are non-empty, but this assumption, although 
natural, is made merely for the sake of simplicity. Note also that when a state space 
is given one normally expects Foll (P) and Pred (P) to be determined by, respec- 
tively, the final and initial states of 5 when P is applied to it. 

The operation of combining two given thermal systems 5, and 52 so as to 
form a third and composite system 5, @ 52 is a fairly standard device for 
constructing thermodynamical arguments. The system 51 �9 52 must be thought 
of as a kind of disjoint union of 51 and 52, so that its operation really consists in 
operating 51 and 52 independently of each other, merely adding up their exchanges 
of  heat and work with the outside world, but not changing the family of processes 

1 To compare the definition above with that used by COLEMAN • OWEN in [6], 
observe that (topological considerations aside) Q and W are actions, but the word 
"process" is used in [6] in a different way. In particular, P(5) does not correspond to 
the set of "processes" in the sense of [6], denoted there by / / ,  but to the set H ~ 27. 
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available to each individual system. It is of course possible that 51 @ 52 ~ ~-~ 
for some pairs of thermal systems St and 52 in U, so this operation will be introduc- 
ed here as a definition, following [2]. 

Definition 1.2 (Compatible thermal systems). Let 51 and 52 be two thermaI 
systems in U, and for convenience denote the pairs (P,Q) in P(51)xP(52)  
by P G Q. We say St and 52 are compatible if there is a third system 5 in U, 
denoted by St �9 52, and such that: 

1. P(St | 5~) = P(St) • P(S~), 
2. For  all P1 �9 P2 in P(5~ G 52) we have Q(Pt G P2) : Q(Pt) + Q(P2) 

and W(P,  @ Pz) = W(P1) q- W(P2). 
3, (PI @ P2) (e~ �9 P~) = (PIP~) �9 (PzP~) if and only if the right-hand side 

is defined. 

The equalities in 2. and 3. above are not strictly rtecessary for the arguments 
presented in this paper. In reality, these equalities can be replaced by inequalities 
similar to, but stronger than, those used in [2]. Moreover, the inequalities actually 
needed naturally depend on the axiom chosen as the First Law. Note in passing 
that 51 �9 52 does satisfy the conditions in definition 1. 

Before proceeding with a discussion of the First Law, it is convenient to recall 
a number of  additional notions defined in [1] and [2], which play an important 
role here as well. Classical thermodynamical arguments repeatedly use the notion 
of  cyclic process, or cycle. From an intuitive point of  view, these are processes 
which can be replicated an arbitrary number of  times, both before and after them- 
selves. This description is easily turned into a precise definition. 

Definition 1.3 (Cycles). P E P(5) is a cyclic process, or a cycle, if and only if  
there are sequences {,on} in Pred (e)  and {W} in Foll (P) such that Q(P~)= 
Q(P") = nQ(P) and W(P~) = W(P ~) = nW(P). 

The set of all cyclic processes of 5 is denoted by Pc(5). Note that the above defi- 
nition, similar to that used in [2], does not require the processes Pn and Pn to be 
exact replicas of P. 

Finally, and again following [2], 1 shall say that a process P in P(5) is weakly 
reversible if there is another process P '  in P(5) such that Q(P) = - Q(P') and 
W(P) = - W(P'). In this case, P '  is called a weak reversal of  P. I f  P is a cycle, 
also P '  is required to be a cycle. 

2. The Weak First Law 

At the most elementary level, the First Law is supposed to state that no 
machine is capable of producing work out of nothing. In fact, and independently 
of  the way this Law might be phrased in a formal treatment of  Thermodynamics, 
this is probably the way a scientist would try to explain its content to a non- 
scientist. Clearly, the use of the word "nothing" in the statement above is meant 
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to exlude both a supply of heat, and any possible changes in the internal state of  
the machine. This latter condition (that there be no change in internal state) 
can be dealt with by requiring the machine to operate in a cyclic process. Once 
this is recognized, the idea above becomes the following statement: 

I f  PE Pc(5) and W(P)> 0, then Q ( P ) >  0. (2.1) 

In words, a system operated in a cycle and doing work must absorb heat. This 
statement was introduced by M. gILnAVq, and will be refered to as the Weak First 
Law for Cycles (WFLC). In spite of its qualitative content (note that the units 
of heat and work are clearly arbitrary), it can be used to derive the existence of  
Joule's constant J (the mechanical equivalent of heat), and to prove the existence 
of internal energy for a wide variety of  thermal systems, including the reversible 
ideal systems of classical thermodynamics. It should be noted, however, that 
~ILrIAVq himself never considered this to be a complete statement of the First 
Law, proposing instead: 

If  P E Pc(5), then W(P) > 0 if  and only if Q(P) > 0. (2.2) 

This is called the Strong First Law for Cycles (SFLC). Observe that the spirit of  
(2.2) is quite different from that of (2.1). According to our conventions of sign 
for Q and W, (2.1) really expresses the idea that work cannot be created out of 
nothing, while (2.2) adds to it the notion that heat cannot be destroyed (at least 
in cycles) without the production of work. 

Leaving aside for the moment the question of the existence of cycles with 
Q(P) > 0 and W(P) <= O, one may still regard both (2.1) and (2.2) as incomplete, 
simply because neither one says anything applicable to processes which are not part 
of a cycle. It is certainly possible to think the First Law should contemplate nothing 
but the properties of cyclic processes, but that will not be the position taken here. 
My main objective is precisely to explore different statements of the First Law, 
stronger than (2.1) but possibly weaker than (2.2), without reference to cycles 
but at same time phrased as prohibitions against certain types of perpetual motion 
machines. To understand the kind of statements I have in mind, consider the 
following three examples, necessarily expressed in somewhat vague terms, and 
organized from strongest to weakest: 

It is impossible to build a machine which, once set in some arbitrary, butfixed, 
initial configuration, will be capable of producing arbitrarily large amounts of 
work, 

1) without using arbitrarily large amounts of heat, or 
2) without using some heat, or 
3) while producing arbitrarily large amounts of heat. 

I find it difficult to doubt any of these statements. Moreover, the clear absence 
of any reference to cycles makes them, in my opinion, closer to actual empirical 
evidence. 

To give a precise form to these thoughts, one must understand how the simple 
ideas listed in the preceding section can be used to formalize its various elements. 
The setting up of a machine, i.e., a system 5, in some arbitrary initial configuration, 
dear ly  corresponds to the choice and execution of a given process P E P(5). 
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Once P is completed, the system can be operated by choosing any one of  the 
processes in Foll (P), that is, any one of the possible alternatives in the future 
cone of 5 at the time P is completed. Naturally, there are a number of  logically 
equivalent ways of  expressing the indicated impossibilities, but it is interesting 
to begin with essentially literal translations of the alternatives above. In each case, 
P E F(5) is a fixed process of 5, and (Pn} ~ Foil (P) is a sequence of followers 
of  P. These translations then become 

(2.3.1) I f  W ( P , ) - - > q - ~  then Q(P,)-- ->+~,  or 

(2.4.1) I f  W(P,)---~ + cx~ then Q(P,) > 0 for all sufficiently large n, or 

(2.5.1) There is no sequence {P~} such that W(P~)---~ + cx~ and Q(P~)---~ - ~ .  

The statements above are in turn equivalent to: 

(2.3.2) There is a function F o : F(5) •  --~ R such that if P '  E Foil (P) then 

Q(P') <: q ~ W(P') ~: Fo(P , q). 

(2.4.2) There is a function F 1 : F(5) --> R such that if P '  E Foil (P) then 

Q(P') ~ 0 ~ W(P') ~ Fa(P). 

(2.5.2) There is a function F2 : F(5) -+ R such that if P '  E Foil (P) then 

Q(P') ~ -F2(P)  or W(P') ~ F2(P ). 

Statements (2.3.1), (2.4.1) and (2.5.1) are clearly pairwise equivalent to (2.3.2) 
(2.4.2) and (2.5.2), and it is apparent that (2.3) ~ (2.4) ~ (2.5). (Note in particu- 
lar that we can take FI(P) : Fo(P, O) and F2(P ) : min (FI(P), 0}). However, 
and perhaps more surprisingly, one can also prove (2.3) and (2.4) from (2.5), given 
some additional and very mild hypotheses. 

It is also interesting to compare these statements, and those of ~ILHAV~', 
from the point of  view of symmetry in the roles of Q and W. Quite clearly, the 
only statement invariant under the change Q --~ W, W--~ Q is SFLC. Naturally, 
any statement involving Q and W can be made symmetric in these functions, if 
one simply restates it interchanging Q and W. As an example, if one starts with 
WFLC, i.e., 

I f  P E Fc(5), then W(P) ~ 0 ~ Q(P) ~ O, 

the resulting symmetric statement is 

If  P 6 Pc(S), W(P) ~ 0 ~ Q(P) ~ 0 and Q(P) ~ 0 ~ W(P) ~ O, 

which is of  course SFLC. However, if a similar procedure is applied to any of  
the statements (2.3)-(2.5), the end result is obviously wrong on physical grounds: 
it is indeed quite possible for a system started in a given state to absorb arbitrarily 
large amounts of  heat without ever producing work. On the other hand, since our 
conventions of  sign for heat and work are different, one can also argue that a 
statement really treats heat and work in the same manner only if it is invariant 
with respect to the change Q --* - W and W - ~  - Q. From this point of view, 



General First Law for Thermodynamics 371 

(2.5) is the only statement which treats heat and work equally, although theories 
based on any of the other alternatives lead to conclusions which are also symmetric 
with respect to this latter change of  variables. 

To a large extent, the choice of  a basic axiom for a theory among all physically 
realistic possibilities is essentially a matter Of personal taste. Naturally, one prefers 
to start with the weakest and physically most obvious assumption, so I shall 
take (2.5.1), refered to as Weak First Law (WFL), as my Axiom L For  clarity, 
let me restate it here: 

Axiom I (Weak First Law). I f  5 E LI and P E P(5), there is no sequence {Pn} ---- 
Foil (e)  such that W(Pn) --* + oo and Q(Pn) ~ - oo. 

In any case, we shall see that the price one pays for using (2.5) as a basic 
axiom is really very small (in terms of  additional hypotheses), as compared to 
either (2.3) or (2.4). Again let me point out that Axiom I does treat heat and work 
equally, and expresses an idea firmly grounded on our experience: it is impossible 
to build a machine capable of producing simultaneously arbitrarily large amounts 
of  work and arbitrarily large amounts of heat. At the same time, this axiom simply 
ignores any possible prohibitions concerning the destruction of  heat and work, 
a point to which I shall return after exploring its main logical consequences. 

3. The Work-Heat Inequality and Energy 

The results derived in this section involve in an essential way Joule's constant 
J (the mechanical equivalent of heat), which must be introduced by assuming 
the existence of  a definite special system in LI. There is a certain degree of  freedom 
in the properties assigned to this special system, but the simplest possibility cor- 
responds to the following axiom: 

Axiom H. There is a system $ E U with a weakly reversible cycle R E Fc(~) 
such that W(R) ~- 0 and Q(R) 4= O. 

Let R' be a weak reversal of  R. Since W(R')  = - W(R), we can suppose with- 
out loss of generality that W(R) ~ O. I f  we denote by R -n the process (R') n, 
it is clear that, for any integer n E Z, R n E Foil  (R) kY Foil (R'), W ( R  ~) = nW(R)  
and Q(R n) = nQ(R). Naturally, Joule's constant J is defined by J ---- W(R)/Q(R),  
but to insure that Q(R) and J are both positive we need a version of W F L for 
cycles. 

Lemma 3.1. There is no cycle P with W(P) > 0 and Q(P) < O. 

Proof. Let {pn} ~_ Foil (P) be the sequence mentioned in definition 1.3. I f  
W ( P ) >  0 and Q ( P ) <  0, it is obvious that W(P n) = n W ( P ) - + o o  and 
Q(Pn) = n Q ( P ) ~  - 0% contradicting WFL. QED. 
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Note that the same kind of  argument applied to either (2.3) or (2.4) immediately 
produces ~ILHAVq'S WFLC as a corollary. Note also that if either one of  these 
statements is chosen as a basic axiom then the condition Q(R) ~ 0 in axiom II 
becomes superfluous. In fact, this condition on J is precisely the price we pay 
for using the weaker statement (2.5), if we disregard the slightly different versions 
of definition (1.2) which are strictly required in each case. 

The next argument is applicable to any thermal system compatible with ~. 
Its conclusion is both a strengthening of (2.3)-(2.5) and a generalization of the 
inequality W(P) ~ JQ(P),  proved by ~ILHAV~" for cycles. 

Theorem 3.2 (Work-Heat Inequality). I f  S & compatible with J and P E P(5), 
then Sup (W(P')  - JQ(P'):  P '  E Foil (P)) < cx~. 

Proof. I f  (P~} is a sequence of  followers of  P and (mn} is a sequence of integers, 
then P~ q) Rmn is a sequence in Foil (P ~9 R) kJ Foil (P q) R') with 

W(Pn @ R"n) : W(P~) + m~ W(R) and Q(P~ �9 R m~) : Q(Pn) + mnQ(R)" 

Hence, if the integers m~ can be chosen such that 

W(P~) + mAW(R) > n and Q(Pn) + m~Q(R) < - n ,  (3.3) 

then W(P~ G R ran) --> oo,  Q ( e n  @ Rmn)---> - ~ and 5 G J violates WFL. It 
is clear that (3.3) is equivalent to 

mn > (n - W(P~))/W(R) and m n < - ( n  + Q(P~))/Q(R), 

and hence there is a sequence of integers m~ satisfying (3.3) if and only if 

- ( n  + Q(P~))/Q(R) - (n - W(P~))/W(R) > 1 for all n. 

Since W(R) = JQ(R),  the inequality above can be written as 

- - J ( n  + P(en) )  - (n - W(P,,)) > W ( R ) ,  

which is the same as W ( P n ) -  J Q ( P . ) >  (1 + J ) n  + W(R). It is therefore 
obvious that S q) ~ violates WFL if the set (W(P')  - JQ(P'):  P '  E Foil (P)} 
is urtbounded above. QED. 

If  P is a cycle, it is clear that 

W(P) - ]Q(P) > 0 ~ W(P n) - jQ(pn)  ___> _~_ 0o, 

and so the preceding theorem implies 

Corollary 3.4 (Work-Heat inequality for cycles). I f  P E Pc(S) is a cyclic process 
and S is compatible with ~ then W(P) ~ JQ(P).  In particular, W(P) > 0 o  
Q(P) :> O. 

Finally, this theorem also shows that both (2.3) and (2.4) are simple conse- 
quences of  (2.5), given our auxiliary axiom II. 

Corollary 3.5. I f  P E P(S) and (Pn} C= Foil (P), then W(Pn) ---> -k oo ~ Q(Pn) 
"-~ -~ ~ and Q(P,~)--~ - c x ~  W(p,,)--~ - ~ .  
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In words, the generation of  arbitrarily large amounts of  work (heat) does 
require arbitrarily large amounts of  heat (work). 

The supremum of  the set (W(P' )  - JQ(P'):  p" E Foil (P)} is obviously an 
important quantity associated with the system 5 when P is completed. The next 
definition, although different from classical ideas, certainly gives it a most natural 
name. 

Definition 3.6. The function E: F ( 5 ) - + R  given by 

E(P) = Sup {W(P') - JO(P'):  P '  E Foll (P)} 

is called the energy of  5 at (the conclusion of) P. 

Normally, energy is introduced after a specific state space has been chosen for 
the thermal system under consideration, and one simply assumes that if P takes 
the system $ from state x to state y then the obvious balance equation holds, i.e., 

JQ(P)  - W(P) = E(y) - E(x).  (3.7) 

Even ignoring the fact that no state space has yet been mentioned, we see 
that our situation here is markedly different. We are committed to a definition 
of  energy which, although natural, does not mention any possible balance 
equations. It is of  course possible to regard Foil (P) as equivalent for all practical 
purposes to the final state of  5 when P is completed, but it is possible to obtain 
a property of  E comparable to (3.7) without introducing states. Observe first that 
any follower P'  of  a fixed process P must satisfy the obvious inequality W(P')  - 
JQ(P' )  ~ E(P). I f  we now fix both P and P '  and consider the  definition of E(P') 
we easily obtain: 

Theorem 3.8 (Energy inequality). I f  P '  E Foil (P), then 

JQ(P' )  -- W(P' )  >= E(P') - E(P). 

Proof. I f  R is a follower of  P ' ,  then P ' R  is a follower of  P, and as noted above we 
have: 

W(P'R)  -- JQ(P 'R)  <= E(P). 

Since JQ(P 'R)  - W(P 'R)  : JQ(P' )  - W(P')  + JQ(R)  - W(R), this can also 
be written as 

W(R) -- JO(R)  <= E(P) + JQ(P' )  - W(P')  for all R e Foll (P') .  

It follows immediately from the definition of  E(P')  that 

E(P') ~ E(P) + JQ(P' )  - W(P') .  QED. 

To compare the preceding result with (3.7), we interpret P and P '  as labels for 
(respectively) the initial and final states of  5 associated with P '  (but note that 
E(P') and E(P) really depend only on Foil (P')  and Foil (P)). Hence (3.8) corre- 
sponds to an inequality like 

JQ(P' )  -- W(P')  >= E(y) -- E(x),  
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and thus clearly expresses the fact that energy Cannot be created. As might be 
expected f rom our initial axioms, the question of its possible destruction is left 
essentially open. However, if P is a weakly reversible cycle it is easy to see that we 
must  have JQ(P) = W(P), by applying (3.4) to a weak reversal of  P. Hence, the 
value of  J can be obtained f rom any system compatible with ] and satisfying 
Axiom II. Another  simple but important  case where a balance equation can be 
obtained f rom the Weak First Law will be discussed in the next section. 

4. State Spaces 

Applications of  Thermodynamics always involve a choice of  a p roper  state 
space, to serve as domain for functions like energy and entropy. This choice is 
neither trivial nor  obvious, except in the simplest cases. As an example, observe 
that  in the case of  a continuum, where its processes are regarded as paths in a 
certain function space, this space is not the state space used, which generally cor- 
responds to fields of  local states. I f  one does not wish to resort to simple faith, 
it is clearly important  to find conditions guaranteeing the existence of "useful" 
state spaces, and rules for their construction from the structural elements already 
in the theory. 

Normal ly  a state space structure is pictured as a set of  states ~ ,  together 
with functions i, ] : P(5) ~ R,, where i(P) and f (P)  are the states of  5 when P 
respectively, starts and ends. Such structures can be used to specify the follow 
relation, if one assumes that P '  follows P if and only if ](P) = i(P'). However, 
the existence of a state space with this property clearly represents an additional 
requirement on the follow relation, in principle absent from definition (1.1). 
My purpose here is to determine conditions on a thermal system 5 equivalent 
to the existence of  such a state structure, and to prove a simple uniqueness result. 
Let me begin with a definition borrowed from [2]: 

Definition 4.1 (State structures). A state structure for a thermal system 5 is a triple 
(~,  i ,]),  where ~ is a set and i , f :  P(5) ~ $2 are functions. These functions must 
satisfy the condition: 

I f  P '  follows P, then i(P') = f (P) .  

The structure is called deterministic if it satisfies: 

P '  follows P if and only if i ( P ' ) =  f (P) .  

The elements of  Q are called states, and $2 is a state space. Naturally i(P) and 
](P) are called, respectively, the initial and final states of  5 when P is applied to 
it. Since by assumption each process P has at least one follower and one predecessor, 
we have i(P(5)) = f(P(5)),  and I shall also assume for simplicity that both i and 
f are onto. As an example of  a (non-deterministic) state structure one can take 

= R, and i(P) and ](P) respectively equal to the initial and final time instants 
of  the duration of  P. 



General First Law for Thermodynamics 375 

Naturally, a state structure is only useful from the point of  view of the First 
Law if the energy hypothesis (see [2]) is satisfied, i.e., if  there is a function U: ~--> R 
such that for any process P one has at least: 

J Q ( P ) -  W(P) ~ U ( J ( P ) ) -  U(i(P)). 

It  is quite clear that the particular example of  a state structure given above cannot 
be particularly useful, since it seems unlikely that the energy of  a system will 
depend only on time. Moreover, the consideration of  very simple examples shows 
that without added assumptions about a given thermal system it is impossible 
to prove the existence of  a state structure satisfying the energy hypothesis. 

To see how the existence of  a deterministic state structure can be used to prove 
the energy hypothesis, note that in this case one always has 

Foil (P) = {P' E P(S): i(P') = f(P)}.  (4.2) 

In particular, if  x = ](P), then 

Sup {W(P') - JQ(P'): P 'E Foil (P)} = Sup {W(P') - JQ(P'): i(P') = x}. 

I f  we now define U: s ---> t t  by U(x) = Sup {W(P') - JQ(P'): i(P') = x), the 
preceding equation becomes: 

e ( e )  = v (y (P) )  for all P E P(S). 

The energy inequality can be rewritten as 

J Q ( P ' ) -  W(P')>= U(y(P'))- U(](P)), (4.3) 

where the reference to P can be eliminated by noting that J(P) ---- i(P'): In sum- 
mary, we have: 

Theorem 4.4. The energy hypothesis holds for any deterministic state structure 
(s i, f ) ,  with a state energy function U : ~ --> R,  given by 

V(x) = Sup { w ( P )  - sO(e) :  i(P) = x). 

Observe that (4.3) can be obtained independently of  the assumption of  deter- 
minism, and would hold for every system, if we simply let 12 ---- {Foll (P): P E P(5)} 
and define ] :  P(5)---> O by f (P)  = Foll (P). The difficulty in obtaining (4.4) 
from (4.3) resides solely in defining the function i in such a way that i(P') = J(P), 
for every predecessor P of  P ' ,  while maintaining inequality (4.3). 

Before establishing conditions for the existence of a deterministic state struc- 
ture, let us settle the corresponding uniqueness problem. 

Theorem 4.5 (Uniqueness). Let (,(2*, i * , f* )  and (s i , f )  be two state structures 
for a system 5, and assume (s i* , f*)  is deterministic. Then there is a surjection 
oh* : s ---> ~ such that oh* o i* = i and ~b* o f*  = f .  In particular, ~2 is isomor- 
phic to a quotient set of  s I f  (Q, i , f )  is also deterministic, the function cb* is a 
bijection, i.e., ~ and ~*  are isomorphic. 
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Proof. We begin by showing that 

f * ( P )  = f * ( p ' )  ~ f ( P )  : f ( P ' ) .  

Choose a follower P "  of  P, and note that 

i * (P" )  = J*(e) = y*(P ' )  and f ( P )  = i ( P ' ) .  

Since (/2*, i * , f * )  is deterministic, we conclude that  P "  is also a follower of  P ' ,  
and hence f ( P ' )  = i (P")  = J(P).  In particular, the relation qb* o ]*  = f defines 
~*. To check that  if* o i* = i, consider any process P, and suppose P "  is now 
one of  its predecessors. I t  follows immediately that  

ep* o i*(P)  : ok* o J * ( P " )  = i(P).  

I f  (/2, i , f )  is also deterministic, then naturally there is a surjection q~:/2 ~ / 2 *  
such that  qb o i : i* and qb o f = ]* ,  and qb is clearly the inverse of  qb*. QED. 

Note that a "s ta te"  i n / 2  correponds to a set of states in /2*. Typically, the 
reduction of -(2* onto a smaller quotient set /2 would result f rom discarding 
state variables which are irrelevant for the calculation of U. 

I t  is (unfortunately) very easy to show that  an arbitrary thermal system $ 
need not have a deterministic state structure. In fact, f rom (4.2) one gets: 

Lemma 4.6. I f  S has a deterministic state structure (/2, i, f )  then 

Foll ( e ' ) / 5  Foll (P")  @ ~ ~ Foil (P ' )  = Foll ( e " )  for all e ' ,  P "  E P(S). 

Proof. I f  P E Foll (P ' )  A Foil (P")  then f ( P ' )  = f ( P " )  = i(P), and hence 

Foil (P ' )  = Foil (P")  = {Q E P(S): i(Q) = i(e)}. QED. 

In words, if a system has a deterministic state structure then any two 
processes with a common follower have exactly the same followers. The same idea 
can also be expressed by saying that {Foil (P): PE  P($)} is a partition of P($). 
I t  is also easy to see that  the condition in the preceding lemma guarantees the 
existence of  a deterministic state structure. Suppose the system 5 satisfies 

Foil ( e ' ) / ~  Foil (P")  ~ 0 ~ Foil (P ' )  = Foil ( e " )  for all e ' ,  e "  E P($), (4.7) 

and define /2* and f *  : P ( $ ) ~  .Q* by 

/2* = {Foil (P): PE  P(S)} and y*(e) = r o l l  ( t ) .  

Note that if P '  and P "  are both predecessors of  P then (4.7) implies Foil (P ' )  = 
Foil (P").  Hence we can define i* : P(5) ~ / 2 *  by setting 

i*(P)  = f * ( e ' )  if P follows P ' .  

In particular, (/2", i * , f * )  is a state structure for 5, and P E i * ( P ) .  To verify 
that (/2", i * , f * )  is a deterministic structure, note that if i * ( P ) = f * ( P ' )  then 

P E  i * ( P ) ~  P E J * ( P ' ) ~  P E  Foil (P'),  i.e., P follows P ' .  
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The above results are partially summarized in: 

Theorem 4.8. 5 has a determin&tic state structure (.(2, i, f )  if  and only i f  it satisfies 
(4.7). In this case there is a bijection ~b: O-->{Fol l (P) :  P E  P(5)} such that 
~b o f ( e )  : Foil (e)  and ~b o i(P) : Foll (P'), for any P '  ~ Pred (P). 

The existence of  a deterministic state structure is, as we just saw, equivalent 
to (4.7). It is interesting to note that this condition can also be phrased in terms of  
predecessors, as follows: 

Pred (e ' ) /~  Pred ( e " )  ~ 0 ~ Pred (P')  = Pred (P")  for all P ' ,  P "  E P(S). 

(4.9) 

Consider the set of future cones . (2*= {Foil(P):  P E  P($)} and the set of  
past cones f2** ---- {]?red (P): PE  P(S)}. If  a system 5 has a deterministic state 
structure (Q, i ,J) ,  b o t h / 2 *  and O** are partitions of P($). Moreover, there is a 
bijection ~p : /2* ~ O** given by 

~p (Foil (P)) = Pred (P'), where e '  E Foil (e) .  (4.10) 

In other words, each future cone uniquely determines a past cone, and each 
past cone uniquely determines a future cone. This unambiguous association is 
possible because every process in Foll (P) has the same predecessors, and every 
process in Pred (P') has the same followers. A state in a deterministic structure 
is simply a label for such a pair of cones. The Weak First Law as stated here 
refers only to a future cone, but it should be noted that the Second Law (as stated 
in [1]) refers to a past cone. 

Given states x and y in Q, it is sometimes necessary to consider the set of  states 
accessible from y, and the set of  states from which x is accessible. I f  (/2, i, f )  is 
deterministic and P satisfies i(P) = x and f(P)----- y, these sets are respectively 
given by 

F(y) = y(Foll (P)) and P(x) = i (Pred (P)). 

As already noted, in this case we may define a state energy function U by 

U(x) = Sup {W(P) - JQ(P): i (e)  = x}, (4.11) 

and every process P E P($) satisfies 

J Q ( P ) -  W(P)>= u( f (e ) )  - u(i(P)).  (4.12) 

Combining (4.4) with (4.8), we conclude that WFL and the additional condition 
(4.7) imply the energy hypothesis, irL a state space/2 which is unique up to an iso- 
morphism. Naturally it may be possible and convenient to replace s by one of 
its quotient sets without losing (4.12), but such a procedure should be explicitly 
described, if one wants to understand the connection between the resulting 
energy inequality and WFL. 

Assuming (/2, i ,y )  is a state structure for which the energy hypothesis holds, 
let us now consider the problem of proving balance equations for energy. As 
mentioned before, there really is no hope of  proving a form of the energy conser- 
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vation principle valid for all processes. However, and as we know from the ex- 
ample of  entropy, there is absolutely no difficulty in proving balance equations 
if we restrict ourselves to reversible processes. Note that the definition below 
involves a f i x e d  state structure. 

Definition 4.13 (Reversible processes). P is reversible (with respect to a given state 
structure) if there is a weak reversal P '  of  P with i (P) ---- f ( P ' )  and f ( P )  = i(P').  
In this case (P, P ' )  is called a reversible pair. 
I f  (P, P ' )  is a reversible pair, f rom the inequalities 

J Q ( P ) -  W(P)  ~ U(f(P))  - U(i(P)) and 

J Q ( P ' ) -  W(P ' )  ~ U( f ( e ' ) )  - U(i(P')) 

we immediately obtain the energy balance equation 

J Q ( P ) -  W ( P ) =  U ( i ( P ) ) -  U(i(P)).  (4.14) 

In other words, the Weak First Law implies energy conservation in the presence 
of  a form of  reversibility, and in this case for very simple reasons. Apar t  f rom 
everything else, this suggests that WFL is all we need to recover the classical theory 
of  reversible systems. 

5. Lower Bounds for Energy 

In some cases, it is possible to compute the greatest lower bound of  U directly 
f rom the definition of  energy. Let g be a system with a deterministic structure, 
and assume that every process P E P(5) is reversible, and hence satisfies the ba- 
lance equation 

J O ( e ) -  W ( P ) :  U ( f ( P ) ) -  U(i(P)).  

I f  this equation is combined with (4.11), we obtain 

U(x) = Sup {U(x) - U ( y ) : y E F ( x ) }  : U(x) -- Inf{U(y):yEF(x)}. (5.1) 

I t  is therefore obvious that 

Inf  (U(y): y E/F(x)) ---- O, for all x E ~ ,  (5.2) 

and, in particular, 

the infimum of U over all of  .Q is also O. (5.3) 

The above results can also be easily proved in a slightly more general context. 
Instead of  assuming that all processes of  5 are reversible, suppose only that for 
every P E F(5) there is a reversible process R E P(5) with the same initial and 
final states (such processes are normally used to compute entropy changes). In 
other words, if x ~ i(P) and y : f ( P )  then there is a reversible process R with 
x : i(R) and y : f (R ) .  In this case, 

W(P)  - J Q ( P )  ~ U(i(P)) - U(i(P)) : W(R)  - JQ(R) .  
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Clearly, U(x) can be computed using only reversible processes (strictly speaking, 
one reversible process for each state y in IF(x)) and, 

U(x) = Sup ( W ( R )  - JQ(R) :  i(R) = x,  R reversible). 

In particular, statements (5.1)-(5.3) hold without alterations. 
I f  we do not assume any reversibility, (5.1) must be rewritten as the inequality 

V(x)  ~ U(x) - Inf (U(y): y E IF(x)), 
yielding 

Inf { U(y) : y E IF(y)} ==_ 0. (5.4) 

For the systems usually considered in continuum mechanics, it is always possible 
to choose processes starting at x, of arbitrarily short duration, and for which 
W - J Q  is arbitrarily close to zero. Hence the energy of these systems must be 
non-negative. In such cases (5.4) evidently implies both (5.2) and (5.3). 

These observations suggest the correctness of our definition for U. This 
definition eliminates in all cases the ambiguity reflected in the presence of an 
arbitrary additive constant in the energy function, and provides a natural greatest 
lower bound for this function, at least in the cases mentioned above. Moreover, 
it gives an easily understandable physical interpretation to energy. From a slightly 
different point of view, however, these same observations also suggest that the 
principle of energy balance is less simple than it seems, and may be inextricably 
linked to accessibility conditions. 

To clarify this latter comment, suppose there is some function V:.Q--~ R 
satisfying the balance equation 

J Q ( P )  - W ( P ) =  V( / (P) )  - V(i(P)),  for all P E P(5), 

and define I(x)  ---- Inf{V(y): yE IF(x)). Applying the definition of U, we obtain 

U(x) = V ( x ) -  I n f { V ( y ) : y E I F ( x ) }  = V ( x ) -  l ( x ) .  

It is evident that if IF(x) ----- /2 for all x E/2 then I is constant in /2 and U is 
conserved as well as V. But if accessibility is not perfect we only have 

y E IF(x) ~ IF(y) C= F(x)  ~ l (y )  >= I (x) ,  

with the energy loss reflected in the energy inequality for a process going from x 
to y precisely equal to I(y)  - I(x).  

In other words, when an attempt is made to define energy in a natural and 
unambiguous way, one immediately recognizes that the question of its conserva- 
tion cannot be settled by the usual argument involving the "path independence" 
of the quantity . IQ(P) - W(P) ,  and the lack of  a general balance equation for 
energy does not seem to be such a negative feature of the theory. 

6. Classical Ideal Systems 

It is interesting to apply the ideas already discussed to a classical ideal system, 
both as a simple illustration of the theory and as a check that it does contain 
elementary results among its corollaries. To be specific, consider a system consisting 
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of  a fixed mass of  a given gas, to be modelled by a triple 5 = (P(5), Q, W). 
Naturally, we make no attempt to include in P(5) all processes which may actually 
be available to the given physical system. Either by ignorance, technical incapacity 
or simplifying choice we always work with restricted classes of  processes, and the 
classical theory of  ideal systems is no exception to this rule. 

Suppose first that P(5) contains only the homogeneous processes of  the ideal 
system under consideration. As we know, these processes can be identified with 
the piecewise smooth functions P: [a, b] --~ Z, where [a, b] is an interval in the 
real line (the duration of  P), and Z is an open connected subset of R n. There are 
continuous differential forms q and w defined in Z such that Q(P) and W(P) are 
(respectively) the line integrals of  q and w along P([a, b]) with the obvious orienta- 
tion. I f  P '  : [a', b'] --~ Z is another homogeneous process, then P" follows P if  
and only if b = a' and P(b) = P'(a'),  in which case PP' is the concatenation 
(or pasting) of the functions P and P' .  It is clear that P is a cycle if P(a) = P(b), 
that is, if  P([a, b]) is a closed curve. To see that any homogeneous process P is 
weakly reversible, it suffices to consider the process P '  : [b, 2b - a] --~ Z given 
by P'(t) -~ P(2b - t), and to use elementary properties of line integrals. 

Clearly, the set (Foll (P): P homogeneous}, i.e., the set of  all future cones in 
P(5) is isomorphic to Z •  ---- {(~, t): ~ E Z, t E R}, since the homogeneous fol- 
lowers of  P:  [a, b] -+ Z are determined by ~ = P(b) and t ---- b. In particular, 
there is a deterministic structure (/2", i*,]*) with /2*--- -Z•  

According to (4.11), we can compute U: 12*---~R by 

U(tr, t) = Sup (W(P) - JQ(P): P homogeneous, i*(P) ---- (tr, t)}. 

Since line integrals are independent of  the parametrization used to describe the 
path of  integration, U is independent of  t, and hence the state space /2* can be 
replaced by the non-deterministic space /2 = Z ,  with 4~:/2*-->/2 given by 
4)(a, t) ---- a. It is easy to see that with this simplification every homogeneous 
process becomes reversible, and writing u(tr) instead of  U(tr, t), (4.14) implies that 

J q -  w is exact, with potential u .  

Moreover, (5.3) implies that U has infimum 0, and therefore 

u is the unique potential of  Jq - w with infimum 0. 

I f  P(5) is enlarged so as to contain all processes which have homogeneous pre- 
decessors and homogeneous followers and, in addition, we assume that (4.7) 
holds for 5, it is still possible to show (as done after (5.3)) that U is the energy 
of  5. However, we can only prove that energy is conserved in all homogeneous 
processes in P(5). 

7. The Strong First Law and Energy Conservation 

As I said before, WFL expresses only the impossibility of  producing heat and 
work out of  "nothing",  disregarding completely the question of  their destruction. 
Hence one may feel WFL is incomplete as an expression of the First Law, with 
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its incompleteness reflected in the lack of a general energy balance equation. It 
is therefore important to investigate the consequences of statements forbidding 
as well the absorption of arbitrarily large amounts of heat and work by a given 
system. 

To state WFL we considered the future of a system after a given process has 
been completed, and placed upper bounds on the heat and work the system might 
produce in that future. Quite clearly, we can only place upper bounds on heat and 
work absorption if we look at the past of the system before one of its processes 
can be started. I f  we choose to believe that it is impossible to sink arbitrarily large 
amounts of heat and work into a system if its final state is fixed, the First Law 
might be phrased as 

Axiom 1'. Strong First Law (SFL). I f  5 E U and P E P(5), then 

- there is no sequence (Pn} C= Foll (P) such that W ( P , , ) ~  + c~ and Q(Pn) 
--~ - oo and 

-- there is no sequence {Pn} ~_ Pred (P) such that Q(Pn) --> + ~ and W(P~) 
- - ~  ~ ~ .  

Note that the second half of this statement is obtained from the first half by ex- 
changing heat and work, and simultaneously exchanging past and future. In 
spite of  this symmetry, it is undoubtedly true that SFL is less convincing than 
WFL, carrying with it an element of Optimism entirely absent from the original 
statement. Once this latter axiom is assumed, however, one easily gets in addition 
to those results already proved a new set of theorems which are their mirror 
images. 

T h e o r e m 7 . 1 .  I f 5  is compatible with $ and P E P($), then 

Sup {JQ(P') - w(e ' ) :  P '  E Pred (P)} < oo. 

I f  one applies the preceding result to a cycle P, the inequality in (3.4) is immediately 
reversed: 

Corollary 7.2.  I f  P 6 Pc(S) is a cyclic process and 5 is compatible with $ then 
JQ(P) ~ W(P). Hence for any cycle P 6 Pc(g) we have JQ(P) : W(P). 

In particular, SFL implies ~mr~Av';"s SFLC, and hence the irtterconvertibility 
of heat and work in cycles. The definition of E can certainly be copied, but it 
produces another energy function. 

Definition 7.3. The function E*: P(5) --> R is given by 

E*(P) ---- Sup {JQ(P') - W(P'): P '  6 Pred (P)}. 

The inequality corresponding to (3.8) is now 

Theorem 7.4. I f  P'  E Pred (P), then E*(P) - E*(P') ~ JQ(P')  - W(P'). 
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Given a deterministic state structure for 5, we can write 

E * ( P )  = U * ( i ( e ) )  ---- Sup ( J Q ( P ' )  - w(e'): y(e') = i ( e ' ) } .  

In words, E* should be associated with the ini t ial  state of  5 when P is 
applied to it. In terms of processes, one must compare E(P)  with E*(P ' ) ,  when 
P '  follows P. Naturally, if (7.4) is combined with (3.8) using a deterministic 
state structure one simply obtains two inequalities which do not yield any general 
balance equations: 

U * ( f ( P ) )  - U*( i (P) )  ~ J Q ( P )  - W ( P )  ~ U ( f ( P ) )  - U( i (P) ) .  (7.6) 

Note in passing that interconvertibility of  heat and work in cycles is weaker than 
energy conservation, and requires a smaller set of  axioms to hold. 

I t  is very tempting at this stage to try to argue that U ---- U*, so that (7.6) 
can be turned into a balance equation for a single energy function. But the fact 
remains that U and U* are computed using two entirely dif ferent  classes of  pro- 
cesses, and nothing in the axioms used this far requires these functions to be the 
same. We can certainly prove the equality U = U* for some systems, but always 
at the expense of assumptions which in one way or another express symmetry 
between past and future. 

To see this in detail, suppose first that all  processes of 5 are reversible. In this 
case, since 

U*(x)  = Sup { J Q ( P )  - w ( e ) :  f ( P )  = x} ,  

U(x)  = Sup {W(e) - J o ( e ) :  i ( e )  = x} ,  

and the two sets at right are identical, we obviously have U = U*. Moreover, 
for such a system SFL follows from WFL. In a sense, there is no difference be- 
tween its past and its future, these being mirror images of  each other. In particular, 
F(x) ---- P(x) for all x in /2. 

I f  there are irreversible processes in P($), the existence of U* can be established 
only if SFL holds. In this case, balance equations can be obtained for all processes 
P for which i (P )  is accessible f romf(P) .  In fact, if i (P )  = f ( P ' )  = x and f ( P )  = 
i (P ' )  = y ,  (7.6) applied to both P and P '  yields 

U*(y)  - U*(x )  = J Q ( P )  - W ( P )  = U(y)  - U(x)  ~- W ( P ' )  - J Q ( P ' ) .  

Phrased in a slightly different way, this becomes 

Theorem 7.7. I f  SFL holds and IF(x) = P(x) f o r  al l  x in /2, then U = U* and 
energy  is conserved  in every  process .  

Proof. We simply observe that the sets { J O ( P )  - W ( P ) : f ( P )  = x )  and {W(P) 
- J Q ( P ) :  i (P)  = x )  are once again identical. QED. 

I f  P(x) 4 Y(x )  for some x E -Q, SFL does not imply U = U*, and we must 
accept the existence of  two energy functions for the system 5. This naturally intro- 
duces unexpected difficulties irt any discussion about  energy conservation, since 
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it becomes necessary to consider two different balance equations! A natural way 
to avoid this latter difficulty is to define energy conservation as a relation between 
U and U*: 

Definition 7.8. Energy is conserved if  and only if U ----- U*. 

When energy is conserved for a given system S, then evidently S has for all 
purposes a single energy function satisfying a balance equation for every P E P(S). 
However, it is easy to verify that even if both U and U* always satisfy a balance 
equation it does necessarily follow that energy is conserved in the sense of (7.8). 
As it turns out, the simplest necessary and sufficient conditions on U and U* 
equivalent to (7.8) again involve specific lower bounds for these functions, which 
apart from everything else should definitely be considered as accessibility condi- 
tions. These are as follows: 

Theorem 7.9 (Energy conservatior~). I f  SFL holds for  5, then (7.8) is equivalent 
to Ia f  (U(y): y E P(x)} = Inf  (U*(y): y E IF(x)} ---- 0 f o r  all x E t2. 

ProoL Fix x E Q and suppose y E P(x). There is then a process P with i (P) ---- y 
and f ( P )  = x, and hence 

U(x) - U(y) <= J Q ( P )  - W ( P )  <= U*(x), for all y E P(x).  

A similar argument produces the inequality 

U*(x) - U*(y) <= W ( P )  - J Q ( P )  <--_ U(x), for all y E IF(x). 

I f  U = U* then clearly both these functions satisfy general balance equations, 
and the two left inequalities above are equalities. Hence 

U(x) - Inf (U(y) :  yE  ?(x))  = U*(x), 

and 

We conclude that if 
-----0. 

and 

U*(x) - Inf{U*(y):  yE  IF(x)} = U(x).  

U = U* then Inf{U(y):  y E  P(x)} = Inf (U*(y) :  y E  IF(x)} 
If  we don' t  assume U = U* the inequalities above yield 

U(x) - Inf{U(y):  yE P(x)} =< U*(x), 

In this case it is 
imply 

U*(x) - Inf{U*(y):  y E IF(x)} =< U(x).  

obvious that Inf  { U(y): y E P(x)} = Inf { U*(y): y E IF(x)} = 0 
U = U*. QED. 

The content of the statement above should not be overlooked. Even if SFL is 
assumed, energy conservation is not automatic, and is in fact equivalent to an ac- 
cessibility condition. In reality, U = U* holds if and only if every state is ac- 
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cessible from states of  arbitrarily small U, and can access states of  arbitrarily 
small U*. In the case of perfect accessibility, i.e., when P(x) ---- IF(x) = /2, for 
all x ~ / 2 ,  then U =  U* and i n f U = 0 .  

8. Conclusions 

It is possible to set up a simple axiomatic framework where different inter- 
pretations of  the First Law can be precisely phrased and compared. When this is 
done, one recognizes without difficulties that, as far as this Law is concerned, the 
theory of  reversible processes is a consequence of  a simple axiom (the Weak 
First Law), which forbids the simultaneous generation of arbitrarily large quan- 
tities of heat and work. Such an axiom also provides a definition of energy with 
a clear physical interpretation, free from the traditional ambiguity concerning 
arbitrary additive constants, and applicable to all thermal systems which can be 
fitted into a very general model, without special assumptions about either rever- 
sibility of  processes or accessibility of states. At the same time, this axiom allows 
energy losses in irreversible processes, a conclusion obviously violating one of the 
basic hypotheses of Physics. 

If  energy conservation is to be regarded as a general property of all thermal 
systems in the context of an axiomatic theory, it must clearly be reduced to axioms 
of compelling physical evidence. Such a task is harder than it might appear. An 
attempt in this direction was made here, by exploring another natural (but less 
convincing) assumption, the Strong First Law. In this case, energy conservation 
fails only for a special class of irreversible processes, precisely when a certain 
accessibility condition also fails. 

Regardless of  the axioms chosen to express the First Law, there is always an 
intriguing connection between energy conservation for a given system and forms 
of symmetry between its past and its future. I f  this connection is real, it suggests 
that SFL itself may simply be a consequence of  WFL and reversibility, not a 
general physical law. At least from an aesthetic and philosophical point of view, 
that is a very interesting possibility, leading to a simple and convincing version 
of  the First Law, unexpectedly much closer to the Second Law than it is usually 
conceived. 
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