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Introduction

In this paper we generalize some classical results on stability for autonomous
semilinear evolution equations to the fully nonlinear case.
The typical example we have in mind is the equation

ult, x) = d(u(t, x), u,(t, x), u (5, %), t=0, O0=x=<a, 0.1)
which will be studied by abstract methods, reducing it to the equation

W(t) = gu(®)), =0 ©.2)

where g: D — X is a regular function and D, X are Banach spaces with D con-
tinuously embedded in X.

Assuming that g(0) = 0, we will study stability, instability and saddle points
of the zero solution of (0.2) by means of a linear approximation. To treat also
some critical cases of stability, we will establish the existence of an attracting local
center manifold for equation (0.2).

Our treatment follows closely the methods used in the semilinear case (see
for instance [1], [4]), but extending these ideas is not trivial because of technical
difficulties due to the fully nonlinear character of problem (0.2).

The main assumption on g is that the operator A = g’(0): D — X generates
an analytic semigroup ¢ in X.

The usual method for studying the initial value problem by linearization,
namely

w'(t) = g(u(t)) = Au(t) + p(u@)), t=0,
u(0) = u,,

would be to solve the integral equation

0.3)

t
ut) = e ug+ [ M plu(s)) ds, 1=0
0
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in the space C([0, T]; D). This, however, does not work, in general, because the
convolution term is not sufficiently smooth.

This difficulty can be overcome by replacing X by a suitable interpolation
space Y between D and X, and using maximal regularity properties for the linear
problem (see [2]):

v'(t) = Ao(t) + h(t), t=0,

2(0) = vo. (0.4)

Then it is possible to obtain a local solution of (0.3) provided Au, belongs to ¥
and g is sufficiently regular (see [2], [5]). Nevertheless, we are not able to extend
to our case some of the usual properties of the solutions. In particular,

a) local estimates for the solution of problem (0.4), such as

| 4o®]y = C (”Avo I+ f 1Ol ds) ,

are not available; hence Gronwall’s lemma cannot be used;
b) we have, in general,

inf sup || 4 f =4 p(s) ds > 0

T>0 o<y<T

so that making the interval [0, 7} small does not help us in proving the local
existence of the solution;

¢) we are not able to prove existence in the large if an a priori bound on || Au(?)|y
is given: a stronger a priori estimate is necessary.

Section 1 contains preliminary results on linear problems in unbounded inter-
vals. In Section 2 we study linearized stability and instability of the zero solution
of (0.2). In Section 3 we prove that a local center manifold exists and we study
some of its properties of regularity and attractivity. Finally, in Section 4 we use the
center manifold to study two critical cases of stability, namely linearized sta-
bility and instability when 0 is a simple eigenvalue of 4 (while the remainder of
the spectrum has negative real part) and existence and stability of periodic solu-
tions of

w(t) = f( u(®)) (0.5)

under the classical Hopf bifurcation assumptions.
Some applications to parabolic partial differential equations and systems are
discussed in Sections 2 and 4.

1. Maximal Regularity for Linear Problems in Unbounded Intervals

Throughout the paper we assume that D and X are Banach spaces and D is

continuously embedded in X. The norm in X is denoted by ||+|. By X and D we
mean the usual complex1ﬁcatxon of X and D respectively. If 4:D— X is a

linear operator define A:D— X A(x + iy) = Ax + iAdy.
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We are here concerned with the problem

w(t) = Au(t) + h(t),

1.1
u(0) = 0, @D
where the linear operator A4:D — X satisfies the following assumption:
The resolvent set Q(A~) of A contains the sector
7
S=(eC;h 1o larg(h — J)| <O, JoCR, 0O¢ }73[
(1.2)

and sup |7 - Jo | IR, Az < + oo.

Then A generates an analytic semigroup & in X, not necessarily continuous at

t=0 (see [8]). Set A= sup{Rei; A€ a(A~)} and fix o > 1; then there exist
M>0 and N> 0 such that

N
el < Me™, || e |ron = ‘t—ewt vVi>0. (1.3)

We shall use the following notation: if Z is a Banach space and n€R we
denote by C,([0, + oo[; Z) (or C,(]— o0, 0]; Z)) the set of all f: [0, + o[> Z
(or ]1— oo, 0]— Z) such that ¢t—> €™ f(r) (or t—>e ™™ f(t)) is continuous and
bounded. These spaces are endowed with the norms:

[ fllc,q0,+ sotszy = sup " f(t) |1z,
120
1fllc,a-o0m2) = suplle”" fD)llz-
<0
We set also

CY[0, + oo[; Z) = {f: [0, + oo[ > Z; £, € C,([0, + oo[; Z)}.

Let us introduce the interpolation spaces that we shall use in the sequel: we first
consider the case o < 0 (o is given in (1.3)).
For «€]0,1[ we set

D 4(x, 00) = {x € X;sup &' | 4etx| < + 00},
£>0
"x"DA(a,oo) = Sup El—a ||Ae§Ax|| N
£>0

Dy 4 1,00) = {x € D; Ax € D 4(x, )},
[ %1 4ex+1,000 = | A% ||p 4x,00 -

For » = 0 we set D 4(x,00) = Dy_2,(xx, %), Da(x + 1,00) = Dy_24(>x + 1,00)
and
"x”DA(O‘,OO) = ”x”DA_Zw(rx,oo)a

"x”DA(fx-#-l.oo) = || x”DA_zw(zx+1,oo)'
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In the sequel, if no confusion ought result, we shall write || x|, and || x|/, instead
of [ X[lp o) 30 [ X|p 42 41,000- The closure of D in D (x, o0) will be denoted

by D4(«); it can be shown that
Dy(x) = {xeX; Elilgé"“Ae“ X = 0}.
We denote by Dy(x + 1) the closed subspace of Dy(x 4+ 1,00):
Dyx + 1) ={x€ D; Ax€ Dy(x)}.
Increasing, if necessary, the values of M and N that appear in (1.3), we may

assume

”etA ”L(Z) § Mewt \4 t 2 0,

(1.4

”A tAH S_A_r ot Vi>0
€ lLz) = te >

where Z is any of the spaces X, D4(B,0), D48 + 1,00), f€ 10, 1[.
Moreover for any €10, 1[\V ]1, 2[ and for any € R there exists C(z, ) = 1
such that for each x¢€ D4(f,o0) we have

1
Ca, B 1%1b 4, 68,00 = 1 %lip 48,00 = C(, B) 1%lp,, 6o (1.5)

Now we can state a theorem of existence and exponential decay for the solu-
tion of (1.1).

Proposition 1.1. Let A satisfy (1.2), and let M, N, be such that (1.4) holds.
Assume n + o <0, t€10,+ 0] and let he C([0, 7[; Dy(x)) be such that
sup [[e" h(t)|.. << + co. Then problem (1.1) has a unique solution

o<t

2

ut) = [ M h(s)ds, 0=t<r, (1.6)
0

and there exists K (1, w) > 0 such that

st<t

sup [€" u'()|ln + sup [[e" u()].y1 = Ki(n, ) sup € h(Dl..  (1.7)
o<i<rt o<t 0

In particular, if v = + oo and hc C, ([0, + oo[; D4(»)), then uc CX([0, + oo;
D (o) N C, ([0, + oo[; Da(x + 1)).

Proof. By [8, Th. 5.5], problem (1.1) has a unique solution u given by (1.6); u
belongs to C([0, T]; Da(x)) N\ C([0, T]; Dy(x + 1)) for any T€ 10,z[. Thus
we have only to prove estimate (1.7).
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We first assume o << 0, # = 0. Then for #¢ [0, 7[ we have
() iy = sup |8~ A% u() |
£>0

E-H—SA §4+t—s

t
¢ [ e T e * h(s) ds
1]

=< sup
£>0

(1.8)

o ) 1
< 227*N sup |A()|, s e ],
o Ossgr “ (S)” 51;%))6[ (§+S)2 S
22—zx
= N sup [|A@s)ll.,

1 -« 0<s<z

and the proposition is proved in this case. For general w and 5 set A;(¢t) = €™ h(2),
u,(t) = €™ u(t) so that

t
u(t) = [ 479D p(s)ds.
0

Now, by (1.8) we get, for t¢ [0, [,

2%

e u(®)lip gy 1,00 = Ni(n) sup [[e” ()b, o0

1 —«
where

Ni(p) = sup ¢ 1(4 + ) 4+ |0y
>
and the conclusion follows by (1.5). [

Proposition 1.2. Let A satisfy (1.2) and let M, N, ® be such that (1.4) holds. Let
ke C,(J— o0,0]; Dy(x)) with w — 5 << 0. Then the function

t
oty = [ "9 k(s) ds
belongs to C,(]— o0, 0]; Dy(x + 1)) and there exists K,(n,w) > 0 such that
I19llc,0- 001D 40+ = K207, @) [ kllc, 0~ 0,01 40 - 1.9)

Proof. Let us first consider, as before, the case w << 0, = 0. Then, arguing
as in Proposition 1.1., we find
2—«x

o) |arr = Nllhlca-ooipgen Y E=0. (1.10)

1l -«

For general w and 5 set k,(t) = e~ k(t), v,(r) = e~ " v(t) so that

t
0(t) = [ eI ke (s) ds.
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Now, by (1.10), we get

2—a

e v()llpy_,+1,00 =

—nt
=7 N) Sup lle™ k()b 4 _, 00

where N,(7) = sup? (4 — ) €47 |lx).
>0
By (1.5), the function f— e ™ v(¢) is bounded in Dy(x + 1,00). In order
to complete the proof we have only to remark that in any interval [T, 0]v
is the uniform limit in D (x + 1,00) of v,, where

t
v(t)= [ k(s)ds, neN, n=T,
and v,€ C([—T,0]; Dy(x + 1)) (see [8, Th.5.5D. O
In the sequel, since we deal with stability, instability and saddle points, we shall

need the usual splitting of the spectrum of A into two parts, and so we shall assume,
besides (1.2), that

o(A) = 6,(A) V 0,(4) with

- (1.11)
A = sup{Re ;1€ 0,(A)} < A, = inf {Re 1; 1€ 0,(4)}.
We shall denote by P, the projection operator
Py— [ RE, 4) a& (1.12)
2 — zni A ( s ) .

where C, is a suitable path around the bounded set g,(4). We set Py =1 — P,,
X, = Py(X), X,=PyX), |x|x, =Ilx[, Ixlx, =Ilx[], 4,=4/(DNX,):
DAX1—>X1, A2 —":A/XZ:Xz‘%Xz.

Then A,€L(X,; Dy(x + 1)) and Dy(x) =Dfx)NX{, Dylx+1)=
D« + )N X; with ”x”DAl(a‘) = [ %[[as ||x||DA1(zx+1) = || x|lat1- Let oy, @), w3
be such that

Z1<CO1<C()2<}L2<2.3<603
where A; = sup{Red;A¢€ az(ff)}. There are M,, Ny > 0 such that
N
I i < Mie™, [ 41€ " oz < —Fe™, 1> 0, (1.13)
where Z is any of the spaces X, D4,(8,o0), D4, (B + 1,00), €10, 1[. Moreover

there are M,, M; > 0 such that

€ l2cxsp b1y = Mae™, 1=0,
(1.14)

e lcuip sy = Mze™, = 0. 1.15)

€ loxy = Mpe®™, 10,

Finally we set

p = max{[| P |lip 4, x5 | P1lleco 4ean} - (1.16)
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2. Linearized Stability and Instability

We consider here the nonlinear problem:
w(t) = gu(®), =0,
w(0) = u,.

We first recall a theorem of local existence and uniqueness (see [2], [5]). We assume
that

@2.1)

g€ CY(D; X), A = g'(0) satisfies (1.2), g(0) =0

and g€ CY(Dy(x + 1), D4(x)) for some «€ 10, 1. 22)

We are interested only in solutions of (2.1) near 0; say in an open ball
B0, Ry) C Dy(x + 1) so chosen such that

i) For each x€ B(0, Ro), g'(x): Dy + 1)~ Dy(x) satisfies (1.2) with X
replaced by D 4(«x),

ii) sup 18" G |z 4to+1y:0 4eapy <+ 0.
lIxlly 1S Ro

Now we can state

Proposition 2.1. Assume (2.2). Then for any u,€ B0, Ry) C Dy -+ 1) there
exist T(up) > 0 and a unigue function u = u(:, up): [0, 7(uo)[ — B(0, Ry) such
that u belongs to C([0, T(uo)[; Da(x + 1)) N\ CY([0, ©(uo)[; Da(x)) and satisfies
(2.1). If, in addition, there are ¢ >0, K> 0, R, €10, Ro[ such that u(t, uy)€
Dyx + e+ 1) and |u(t,ug)l|ss1 = Ry, [[tt, io)as14. = KV 2€ [0, v(ug)l,
then (ug) = +oco. []

We now prove a theorem of stability.

Theorem 2.2. Assume (2.2) and suppose that A = sup {Re ;¢ U(Z)} < 0. Then,

if 4 A<0, thereexists r> 0 such that if uy€ Dy + 1) and ltollast = v,
the solution u(-, uo) of problem (2.1) is defined for all t = 0 and belongs to
C,([0, + oo[; D4l + 1)) N CY([0, +o0[; Dy(x)). Moreover

Jim || e” u(t, up)|lap1 = 0  uniformly with respect to u,.
We say that 0 is exponentially asymptotically stable in D4(x + 1).

Proof. Fix » > 1 such that % - & > 0 and (1.4) holds. Let G be defined by:
G: B0, R) C Cy([0, + oo[; Dy(e)) N C,([0, + o0; Da(x + 1))
= Cy([0, + oo[; D4(x)) & Da(x + 1),
Gu) = (&' — g(w), u(0))

where R << R,. It is easy to see that G is of class C'. Moreover, by Proposi-
tion 1.1, the linear operator

G'0)v = (' — Av, v(0))
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is an isomorphism. By the Implicit Function Theorem there exists r(5) such that
for |lup|l,.1 =7(n) problem 2.1 has a unique solution u€ C,([0, + oo[; D 4(x + 1))
N CX[0, + oof; D4(x)). Moreover, choosing ¢ > 0 such that 5 + o + &< 0
we have

Jim_sup {|€" u(t, o)l 15 Nttollas1 = 7y + &)} = 0.

In fact the Implicit Function Theorem implies uniqueness only for small solutions
of (2.1); however, uniqueness in the large follows from Proposition 2.1. []

Let us suppose now that a(,‘f) contains some point with positive real part.
In this case we can prove the following theorem of instability.

Theorem 2.3. Assume that (2.2) and (1.11) holdwith A, < 0 and A, > 0. ThenQ is
unstable in D (o + 1); that is, there exists a sequence {up,} C Dg(x + 1) such
that ug,— 0 in Do + 1) and

inf  sup [z, uon)llay1 > 0. (2.3)
nEN 1€10,7(uq,)

Proof. We shall prove the existence of v€ C§(]— o0, 0]; Dy(x)) N Co(]— oo, 0];
D4(x + 1)) such that

U, == g(U), v E.E 05

: : (24)
t_l)linw v(#)=0 in Dy(x -+ 1).

Then it will be sufficient to take uy, == v(—n), since u(t, uy,) = v(t — n) for
t€ [0, n).

To construct such a function let us consider the following integral equation:

o(t) = e x, + [ t =942 P (g(v(s)) — Av(s)) ds
ol 2.5)
+ [ 479 Py(g(v(s)) — Av(s)) ds = (Av) (¢)

where x, € P,(X).
Fix 0 < w; < w, so as to make (1.13) and (1.14) hold. We shall find a fixed
point of A in the set

Y, ={ve Cy(]- o0, 0]; Dyl + 1)); lle™" v(O) a1 = a,t =0} (2.6)

where # € Jo,, w,[ and a€ ]0, Ry[ are to be chosen later. Let us show that if
llx,|| and a are sufficiently small then A(Y,) C Y,. For any v€ ¥, in fact, Av
is continuous with values in Dy(x + 1) (see Proposition 1.2), and by (1.9),
(1.14) and (1.16) we have

M.
e (A8) O)llass = M, |1 x2]l + p [wz __2 7 + K, wl)] aL(a)
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with
L) = sup ') — Aluo+n04e0 0> 0. (2.7

9y 41

Thus [e™ (Av) () |la+1 = a, provided a and | x,| are sufficiently small. Further-
more for v,v€ Y, we have

_ M.
le™ ((Av) (1) — (A0) D) a1 = p [ - - Kalo, wx)] L(a)

Wy

“sup e (o(s) — v(9))llsr1, =0,
s£0

so that for a sufficiently small 4 is a contraction and so there exists a unique
solution v of (2.5) in Y,. It is easy to see that v satisfies (2.4). This concludes the
proof. [

We shall show now that 0 is a saddle point. To this end we need an assumption
slightly stronger than in Theorem 2.3, namely A; < 0. We shall prove existence
in the large of the solution of (2.1) for initial data lying on a stable local manifold
S C Dyg(x + 1), and existence in the large of a backward solution of (2.1) for
initial data u, belonging to an unstable local manifold U. We shall denote again
by u(t, uy) (1 = 0) the backward solution of (2.1), which exists by virtue of the
following theorem.

Theorem 2.4. Assume (2.2) and (1.11) with 2, << 0, 4, > 0 and fix 5€10, —A,[.
Then there exist r> 0, o > 0 and two continuous functions

h:BO,r)( X, > Dy(x + 1),
k: B(O,r) C Da( + 1) > Dl + 1),
such that, setting
U = {h(x,); x, € BO, r) C X,},

(2.8)
S = {k(x,); x; € B(0, r) C Dy (x + 1)},

we obtain the following conclusions:

1) Forany uy€ .S the solution u of (2.1) exists in the large; it belongs to
C,([0, + oof; Daoe + D) N CX([0, + ool; Du(@)); and [l€™ ult, uo)lus1 < o,
t = 0. Conversely, if uy is such that || Pyugllsi1 = r, u(:, up) € C,([0, + oof;
Dy(x 1)) and |e” u(t, up)||asy =0, t =0, then uy belongs to S.

i) For any uo€ U there exists a backward solution of (2.1) u¢c C,(]— oo, 0];
Dyl + D) N CY(] —00,01; D)) and |e™" u(®)ors] <o, 1 =0.
Conversely, if u, is such that | Pyuo| < r, and a backward solution u of (2.1)
exists and belongs to C,(]1— 00, 0]; Dy(x + 1)), with [le™™ u(t)| 1 = 0,
t = 0, then u, belongs to U.

iii) S (or U) is tangent to X, (or X,) at the origin, that is k (or h) is differentiable
at 0 with k'(0) =0 (or H(0) = 0).

We shall say that O is a saddle point in Dy(o + 1).
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Proof.
i) Let x, € D4 (x + 1); consider the integral equation

z(t) = e x, + ft =941 P [g(z(s)) — Ay2(s)] ds
° 2.9)

- jw 9P, [g(2(s)) — A,z(s)] ds = (II2) (t).
We will find a fixed point of /7 in the set
Y, = {ze Co[0, + ool Dalex + 1) sup [l€” 2 s = a}
for suitable a, 4, xy.
Fix oy, w,, 7 such that 1, < o; <0< w, <A1, and % + w; < 0. For any

z€ Y,, Ilz is continuous with values in Dy(x + 1) and for ¢+ =0 we have

le" (I2) (D lar1 = My || X1llutr + b(n) al(a)

where

b = p [+ Kulnro)|

and M,, L(a), K.(3, w,), M, are given, respectively, by (1.13), (2.7), (1.7) and
(1.14).
Moreover, for z,z€ Y, we have

le™((12) @) = (12) (D)) a1 = L(@) b(n) sup || €™ (2(8) = Z()) ot 1 -

Let ¢ > 0 be such that
L@ b(n) = . (2.10)

Then, for any a < ¢ and | x{]x1 , IT is a contraction of Y, into itself

a
< —
=M,

: since

and there exists a unique solution z of equation (2.9) in Y. Set r = 2—%—,
1

the mapping
B(O, r) C DAI(“' + I)X YQ*> Cn([o’ + OO[; DA(“ + 1))’

(x(,2) > 11z
is continuous, the fixed point z depends continuously on x,;. Then, setting k(x,)
= z(0) for ||x{|xs1 = r, we prove the first statement of i).

Now let ug be such that || Pyuollass = r. Then, if 7(uy) = + co and
u(:, uo) € Cy([0, + oo[; Dalex + 1)) with |u(, uo)lic,qo,+ col;p 4@+ = @, We have

Pou(t) = €2 Pouy -+ ft =Mz p,(g(u(s)) — Au(s)) ds.
b
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Therefore,
+oo

Py = — Of e Py(g(u(s)) — Au(s)) ds

so that #€ Y, is a solution of [fu = u with x; = P,;u(0) and then u, = k(x;)
€ S. This completes the proof of i); the proof of ii) is similar. In fact, the unstable
manifold has been constructed in the proof of Theorem 2.3, and /4 can be defined
by h(x,) = v(0), where v is the solution of equation (2.5).

iii) Let a <o, |[X1llas1
Then, by (2.10)

a
< —— and let z,, be the fixed point of /7 in ¥,.
2M, *

2, llcytto,+ solip g1y = 2M 1 [[ X1 [lass
so that

l&k(x1) — xtllag1 =

+ o0
Of e Py(g(z(5)) — Az,(s)) ds

a1
2M M,p
= —L Xt llat1-
="+ 1 (@) 1 x1[las1
Since lLlr(l) L(a) = 0 the conclusion follows. A similar proof can be given for 2. []

We finally remark that the results of Theorems 2.2, 2.3 and 2.4 can be easily
extended to yield stability and instability for arbitrary stationary solutions of

@.0.
Example. Consider the problem
u(x, t) = d(u(t, x), u,lt, x), u,(t, x)), t=0, x€][0,a],
ut,0) =u(t, ) =0, =0, (2.11)

u(x, 0) = uo(x), x€[0,n],
where

¢:R* =R, (p1, P2, P3) = ¥(p1, P2, p3) is of class C*
and ¢, p,,0)=0 Vp,eR.
We set ,(0,0,0) =¢; (i=1,2,3), X=C([0,=]) and
D = C([0, 7] = {u€ CX([0, 7); w0) = u(w) — O}

X and D are endowed with their usual norms. The function g: D— X, g(u) =
d(u, v, u”), bellongs to C*(D;X) and g'(0)v = ¢,0 + $5v7 YveD We
assume that 4 = g’(0) is an elliptic operator; that is,

¢;>0. (2.13)
Then A satisfies (1.2) (see [9]). For «¢€ 10, L[ we have (see [2], [6])
D () = FX([0, =]) = {u € B**([0, #]); u(0) = u(x) = 0},
Dy + 1) = b ([0, =]) = {u € B*+([0, a]); u(0) = u(z) = u”'(0) = v'(m) = O}

(2.12)
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where #*%([0, #]) is the closure of C!([0, #]) in the C?* norm. #**([0, #]) consists
of all the functions u: [0, ] - R such that

lim sup (y — )7 |u(y) — u(x)| =0.
0 0§x<};§ﬂ
Y=—X5T

H*3([0, =) is the set of the twice differentiable functions u: [0, z]—>R such
that " € B**([0, x]). Then it is easy to verify that g€ C*(H**%([0,x)]);
([0, =])). Since $(0, p,,0) = 0V p,, g belongs also to C*(D(x + 1), D ((«)).
The spectrum of 4 consists in the simple eigenvalues

=0 — K3k =1,2,..}.
We can apply Theorems 2.2, 2.3, 2.4 to get the following result.

Proposition 2.5. Assume (2.12) and (2.13) hold. Then

i) If ¢, <3, 0 is exponentially asymptotically stable in h3* ([0, 7]).
i) If ¢;> ¢, O is unstable in h3***([0, n]).
i) If ¢y > ¢3 and ¢, — k?¢3+0, k=2,3,..., 0is a saddle point in
RETA[0, 7). O

The critical case ¢, = ¢; will be studied in Section 4.

3. Center Manifold
Let us consider, as in Section 2, the initial value problem

W@)=g@) t=0, 61
u(0) = u,
where
g€ CY(D; X),g(0) = 0,8'(0) = 4: D— X satisfies (1.2)

(3.2)
and g€ C'(Dy(x + 1), Dy(x)).

Moreover, let R, be defined as in Section 2. We shall construct here a local center

manifold under the assumption that the points of the spectrum of A have nega-
tive real part with the exception of a finite number of eigenvalues which have
nonnegative real part and finite algebraic multiplicity. More precisely, we assume:

(1.11) holds,

ox(A) = {z1, ..., z} where zy, ..., z; are eigenvalues with finite algebraic
multiplicity, (3.3)

1, =sup{Rel;ic 01(A~)} < 0,
4, = min {Re A; A€ 0,(A)} = 0.
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For convenience we shall transform problem (3.1) into a system which is equi-
valent to (3.1) for small solutions, namely,

X'(8) = Ax() + f1(x(0), y(®),  x(0) = Xo,

, (3.4)
Y (@) = A:(t) + f2(x(2), (1)),  ¥(0) = yo,

where

Fui Dafo + DX X = Dg (o) ful 1) = Plg(x +v(2) y) ~ Ao,

S2iDyfo + DX X, = X, fr(x, ) = Pzg(x +y (%) y) -y (%) 42y;

g is a positive number to be chosen later, and y: X, - R is a C* function such
that
Ro
p) =1 for[xl=—5", 9x)=0 for x| =R,

O=ypx)=1. 3-3)
Clearly f; and f, have the same regularity as g.

Proposition 2.1 may be applied to system (3.4) to get existence and uniqueness
of a local solution for initial data (xo, ¥o) € Dg,(x + 1) X X,. In dealing with
the applications, we shall be interested in small solutions of problem (3.1); there-
fore it will be sufficient to consider system (3.4) for small p.

We shall find a finite-dimensional invariant manifold ¥ for system (3.4), and
we shall prove that it is attractive. Then the study of stability for system (3.4) will
be reduced to a finite-dimensional problem.

Theorem 3.1. Assume that (3.2) and (3.3) hold. There exists ¢, > 0 such that, if
0 < 04, there exists a Lipschitz continuous function y:X,—> D4 (x + 1) with
y(0) = 0, such that, if yo€ X, and xo = y(¥o), then the solution (x, y) of (3.4
is defined for all t =0 and x(t)=y(¥()) Yt=0.

Proof. We shall adapt the ideas from the semilinear case (see [4, Th. 6.1.2]). Fix
b> 0 and set \

Y={y:X;—> Dy(x+ 1);70) =0, |[7(WMllas1 = 0,
ly() = YD err = blly = ¥},

where ¢ > 0 is to be chosen later. Y is endowed with the topology of the sup
norm

[7llo = sup [[¥(Mllas1
y€X,

and it is closed with respect to this topology. Our goal now is to find a solution
of (3.4) in the form (p(3(?)), ¥(t)), for some y€ Y. We shall first solve the
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system
Z(t) = 4,2(1) + f2(y(z(1)), 2(1)), t€R,
3.7
z(O)
() = f e ”’lfl(y(Z(S)) z(s)) ds, y€Xs, (3.8)

and then we shall prove that y has all the required properties.
Concerning equation (3.7) we remark that for any p€ Y, the solution
z =z(t,y,7) is globally defined. Set now for ¢ > 0

of1
L = o ’
(o) = sup : I ox . 7) LD 4 (- 1D 4 ()
0 7]
_fi (x ’ _.Z_‘z' (x9 }") ’ (3'9)
ay LoD 0 || 6% LD 4,(x+1),X2)

' o

Clearly hn(a) L(e) = 0. Let us choose w, and w, such that 1, <o, <w, <O0.
Q—)

Using the Gronwall lemma we get, for t <0, y,y€X,, y,7€ 7%,

(x, y)” ;Y€ X, [yl = Roo, x€ Dy + 1), [ x)lats <e}

_;”t

1 -
1z(t y, y) — 26 3. VI = Mae™ Iy = Y|+~ 5 17 = 7l (3.10)

where
u =) = ML) (1 + b) — w,. (3.11)
Let us consider now equation (3.8). For y¢€ Y set
0
I = [ e fily(s, 3, 7)), 205, v, ) ds. (3.12)
We shall prove that I' is well defined, that I'(Y) C Y and that I'is a contrac-
f1 f1

tion if g is sufficiently small. Since £,(0, 0) = 0, (0 0)=0, (0 0) =0 we
have

If1Cr(zCs, p, ), 205, 7, V) I« = 0L(@) (1 + Ro) for s <0, y€ ¥, y€ X;.

Hence there exists go > 0 such that for p <, formula (3.12) is meaningful
and, by Proposition 1.2, [|(I) W ]ss1 = 0.
Now let y€ Y, y, Y€ X5, §= 0; then by (3.10)

11z, 3, 7)), 205, 3, 7)) — f1 (s, 3, vD)s 28, 75 YD) e
= ML (1 + b)e ™|y — ¥l
Choose ¢, €10, 0] such that for ¢ < p; we have
®; +u <0,
Ky(—p,0) My(L +b) L) < b
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where K,(—pu, w,) is given by Proposition 1.2 with 4 replaced by 4,. Then

1T =~ IO =01y — ¥l
so that I'(Y)C Y. Finally, let y,y€ ¥, € X;, s=0. By (3.10) we have

£ ((Gs, y, P, 2(s, ¥, ¥)) — Fr(z(s, 5 PD); 245, 3, y)) le
SL@Ee |y = 7lk- N
Therefore, choosing g, € 10, 0;] such that
L@ ko(—p, ) =%  for g<o,

we see that I" is a {-contraction and there exists a unique ﬁxed point y of I' in
Y. For any yo € X,, set xo, = y(yo) and

x(t) = Y(Z(t» Yos 7))3 y(t) = Z(t’ Yos 7)9 t = 0;
then

o o .
x(t) = _{o e £, (p(2(t + 5, Y0, V), 2(t + 5, Yo, V) ds

= et y0) + [ &M, 2(9) ds

so that x€ C([0, + oo[; Da(x + 1)) N CI([0, + oo[; Dyg,(x)) and (x,) is the
strict solution of system (3.4). [] '

In applications it is often necessary to use some properties of ». These will
be provided by the following theorem:

Theorem 3.2. In addition to the hypotheses of Theorem 3.1 assume that g€
CH(D (o + 1), D4(x)), k = 2. Then there exists g > 0 such that if ¢ < ¢, the
function v given by Theorem 3.1 is k — 1 times continuously differentiable and

y*=Y s Lipschitz continuous.

Sketch of the proof. The proof is similar to the preceding one, with the difference
that now we have to look for a ﬁxed point of the operator I" defined by (3.12) in
the set

={:X,— DAl(oc + 190 =0, [y =Z e,
PO < b h =1, .0k = LIEP0) = €O = belly = Y13

Since ¥, is closed in the uniform topology, it is sufficient to show that I" maps Y,
into itself if by, & = 1, ..., k are suitably chosen. The proof is straightforward
and relies on several applications of the Gronwall lemma and Proposition 1.2. []

We define now the center manifold for system (3.4):

V={x,EDa(x + DX Xps x =y} - - (3.13)
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Use of Theorem 3.1 reduces system (3.4) to the finite-dimensional equation

Z(t) = A:2(8) + (1)), (1)), =0,

(3.14)
2(0) = yo,
provided x, = ¥(yo).
We will show that V attracts the solutions of (3.4) for small initial data: more
precisely, if (x(¢), »(?)) is the solution of (3.4) in some interval [0, z[ and [ Xo]l.+1

is sufficiently small, then
[x(®) = y((O) Jas1 = ce™ | xo — yFla+1, YV 2E[O, 7[,

where @, € J4,, 0[ and the constant ¢ does not depend on x, and y,. Therefore
the study of the asymptotic behavior of the solutions of (3.4) will be reduced to
a finite-dimensional problem.

Theorem 3.3. Assume (3.2) and (3.3) hold. Then, for each w, € 1A, 0 there exists

4

e>0 such that for ¢ =9, Xo€ D+ 1), yo€Xo with |[xolls1 =557,
1

the solution (x(t), y(t)) of (3.4) satisfies
Ix(@) — (PO lavs = 2Mie™" | x0 — Yot YV EE[0,7[.  (3.15)
Here M, = M (w,) is given by (1.13).

Proof. Let ¢ < g,, where g, is given by Theorem 3.1, so that there exists a center
manifold for system (3.4).

First we shall show that, if ¢ and | xo||,4.; are sufficiently small, then
%) ]xr1 = ¢ for each t€]0,z[.

1
’ ’ < :

Let ¢° > 0 be such that L(p) = 0.0 0+ Ry where L(p) is defined
in (3.9) and K, is given by Proposition 1.1 with 4 replaced by 4;. Assume 0 <C
0 <0, lXollar1 = 7;‘)‘7, Yo € X5. To reach a contradiction, suppose that

1
I={te)0,z[; | x(#)]lxr1 > 0} is not void, and set 7, = inf]. Since

to
x(tg) = 4 xy + f elto=94s £(x(s), ¥(s)) ds
g
then
e = M | xollar1 + Ki(0, @y) S 1 Cx(s), YN Il

<2+ K00 (1 + R) L@ e < ¢

so that I is empty and the statement is proved. Now fix , € Jw;, 0] and set

L) =x(t) — y(p(t) = e L0 + L + L), 0=t<7 (3.16)
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where
' 0
L) = f M (s, £) ds, L(t) = e f e MipGs,ds, 0t<r,
0 — o0

and

ha(s 1) = £ (K(8), 7)) = Fulywls, 1)), wis, 1)),
ha(s, 1) = F(E©), 29) — Fulywls, 1), wEs, 1)

Here z(s) = z(s, yo, ) is the solution of (3.7) with y = yo, and w(s, ) =
z(s — t, (1), ») is the solution of

d
7 W 0 = Aow(s, 1) + fo(y(wis, 1), wis, 1)), sCR,
w(t, 1) = ().

Then the following estimates hold:

Iw(s, 1) = y©)|| = MoL(@) [ @72 L@)asrds, 0=s=<t<7, (3.17)

Iz(s) — w(s, ]| < MaL(0) | ¢~ E(0)lasr ds, s<0,0<1<7, (3.18)
(1]

where u = u(p) is given by (3.11) and w; + g << 0. (3.17) is an easy consequence
of the estimate |x(¢)|l.»; = @ and of the Gronwall lemma. In order to obtain
(3.18) it is. sufficient to observe that ‘

Z(S) - W(S, t) = (Z(S)’ - y(s)) + (y(s) - W(S, t))

= fte("")"kl(cr, t) do + fo 8~ fo(g, t) do
with o ‘
ks, 1) = fr(y(w(s, ), w(s, ) — f2(x(8), ¥(5))
kafs, 1) = foly(w(s, 1)), w(s, 1)) — fo(p(2(5)), z(s)) -
Then (3.18) follows by (3.17) and the Gronwall lemma. Therefore

()]l = ML + B) (L(0))? sf (1 8(0) lar1 do + L(@) 1 () las 1

.19
0ss=t<rm, (.19)

7))l < Mx(1 + b) (L(2))> Of () lagr1 do, SSO0=t<7. (3.20)
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Then, by (3.19) and Proposition 1.1, we have, for 0 < 1<,

i H‘) sup [le=* k()]

0ss<¢

e B = K (e, 252

= (@ sup €7 E8) st

M,(1+b)L
where ¢,(0) = K=o, (04 + 2)2) £ (1 + 222 0) and K, i given
by Proposition 1.1 with 4 = 4,. |1 + ]
By Proposition 1.2 and (3.20) we have also, for 0 = r << 7:

e D(O)lar1 = Ko ~p, 1) My sup [l ha(s, )]l
= cx(@) sup [l L) st
0ss=t

where ¢,(0) = Ky(—u(@), w) M, M,(1 + b) (L(p))* |0, + u(@)["* and K, is
given by Proposition 1.2 with 4 = 4,.

Let ¢”” > 0 be such that ¢, () + c,(0) <3 Vp€10,0”[. Then, for 0 <
e <po=min{p, 0,0’} we get, from (3.16)

lem EOMat1 = 2M1 [ O fs1, O=2<T,

and the assertion of the theorem follows. []

We now give the following definition of stability. A compact subset X C
B(0, Ry) C Dy(x + 1) is said to be uniformly asymptotically stable for the dyna-
mical system defined by (3.1) if
i) for any &> 0 there exists J. > O such that if dlSt (ug, 2) < 6 then

dist (u(t), L) =e, Vie[0,7(u)l;

ii) there is 8> 0 such that for any > 0 there exists 7,> 0 such that if

dist (o, Z) < 6 and ¢ < 7(ug), t=T,, then dist (u(2), 2) = s
Obviously, the distance must be understood in D,(x + 1).

We remark that if X' is uniformly asymptotically stable and if u, is sufficiently
close to X, then the orbit {u(z); ¢ € [0, T(uo)[} is bounded in Dy(x + 1). Unfor-
tunately this does not imply existence in the large of the solution in B(0, R,) C
Dy(x + 1) and we cannot conclude that ,lln; dist (u(t), 2) = 0. Nevertheless,
such a conclusion can be derived by Proposition 2.1 if the norm ||+[,, is replaced
By [ flesi—s 0< 6 <a+1. |

We shall now give another theorem on stability. -

Theorem 3.4. Assume (3:2) and (3.3) hold and that X C X, is a compact uniformly
asymptotically stable set for the dynamical system defined by (3.14), with ¢ < p.

Jor each ye X, ‘where M, is given by (1.13) and b is

Q
<
Assume also |y| < SMD
the Lipschitz constant of v. Then the set
Iy ={® € Dafa + D) X Xasy€ 2, x = y()}

is uniformly asymptotically stable for system (3 4).
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Proof. For ¢ >0, let I(Z,¢) = {y€ X,; dist(y, ) < &}. By known results (see
[4, Th. 4.2.1}] and [10]), for small ¢ there exists a Liapunov function Q:J(Z, ¢)
— [0, + oo[ such that

00) - QO =<1y =71 VnFEIS,e),
O(z(t, y, ) < e~" Q(y) for each ¢t = 0 such that z(t, y, ») € I(Z, ¢),
& (dist (v, D) < Q) < dist (7, ),

where «(') is a positive, continuous, increasing function and «(0) = 0. Let

e = . Following [4, Th. 6.1.4] we define a Liapunov function for system

e
8M.b
(3.4:

W5 9) = 00) + P 1% = YD lasr, YEIE e  X€Dy(x+ 1),
where p =1 is a constant to be chosen later. Then we have .
B (dist ((x, ), Z)) < W(x,y) < p(1-+ By dist ((x, ). Zy) . (3.21)

where the distance is in the norm of X,xD,(x + 1) (whibh is equiifalént to
the norm of Dy(x + 1)), and B-(&) = & + (1 + b) x~'(£). Using the Gronwall

inequality and (3.15), we find that, if [xplag1 = —2—%, ,
1
2t yo, ) — YOI = 1™ X0 — yO)loin - (B22)
where u v: v . " B -
2M  M,L ' ' , .
o = 2OME@ 1) Myt +5) £ os;
W3 — Wy .

w3 > sup{Re ;¢ a(A~)}, M, is given by (1.14). For ¢t = 0 we have
W(x(), y(t)) = Q(z(t, o, ) + [Q(1()) — QCz(2, yo, Y1+ p II x() — Y(y(t))”zx+1
For T=0 and ¢€ [T, 2T} we have, by (3.22) and (3 15)

W(x(t), ) = e_TQ(J’o) + [Clec’t + ZMIPew‘T] “xo PG a1+
Now fix T so that : ’
e 4

T < 1T < 1 —1¢,-T g_ —_— —c;T<
e 2%’ 2M1€ = 4 o (e )—— 2 201e ——4M1
and choose p so large that c;e*2T < —I;—; then

W(x(t), y@o) = 3 W(xo, Yo) Vi€ [T, 2T] (3.23)
Fmally, settlng i o ' ' . ‘

U={(x )€ DAl(fx + 1)><X2, yEIZ, 8, || x — 70’) ”zx+1 S Ez_—e_lc_’IT}
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we have, for (xo, yo) € U | olley1 = 5~ + byl S 57,

dist (W(T), 2) < |H(T) — 2T, yo, Y)|| + dist («(T, yo, ), X)
< ¢ €T | xg — Y las1 + &~ HQE(T, yo, ¥)))

§%+ a e Te)=se

and
—caT

I3(T) = 7O et S 26877 3 = p00) 1 < T

Therefore (x(T), »(T)) belongs to U, and we can repeat the previous argument to
get

W(X(t), y(t)) =2°" W(xO’ yo) Vic [nT, (n + 1) T]’ ne N’

— L 10g2
and so W(x(0),y@) <2 T * Wi(xo, yo). This, together with (3.21), implies
that X is uniformly asymptotically stable for system (3.4). []J

4. Applications to Critical Cases of Stability

We first consider stability of the zero solution of equation (3.1) when 0 is a

simple eigenvalue of 4 and no other point of the spectrum lies on the imaginary
axis. On the assumption (3.2), for any wu, € B(0, Ry) C Dy(x + 1) there exists
a unique u: [0, T(up)] = B(0, Ry) C D4(x + 1) that solves the initial value prob-
lem (see Proposition 2.1)

W(t)=gu@®), t=0,
“.1)
u(O) == uo .
The main assumption here is
(1.11) holds and 02(A~) consists in the simple eigenvalue 0. 4.2)

Then there exist &, #= 0 such that A&, = 0 and ¢, € X* such that P,x =
{x, ¢g> and (&g, o> = 1.

Theorem 4.1. Assume that (3.2) and(4.2) hold and moreover that g ¢ C*(D(x + 1),
D)) and

<g”(0) (£o, £0), o> = 0. (4.3)
Set

a = <g""(0) (o, £0, &o), $0> — 3<g”(0) (b0, AT 'P1g"(0) (b0, &0)), $0>. (4.4

Then, if a<<0, 0 is asymptotically stable in Dy(x + 1) and, if a>0, 0 is
unstable.
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Proof. As in Section 3, we consider the system
x'(1) = Ax(t) + fr(x(), 9(1)),  x(0) = xo,
Y(©) = fo(x(@), 1)),  ¥(0) = yo,

where f; and f, are defined by (3.5) (with 4, = 0), and x, = Pyuy, yo = Prutp.
Now we choose ¢ so small that the results of Theorems 3.1, 3.2, 3.3 are applicable.
We remark that if (x, ) is a solution of (4.5) and | ¥(?)|| = 4 oR,, then u(t) =
x(t) 4+ y(t) solves (4.1); conversely, if u is the solution of (4.1) and || Pu(t)||
= 1 0R,, then (P,u, P,u) is the solution of (4.5).

From Theorems 3.1 and 3.2 there exists a center manifold for system (4.5):

V={(x, )€ Da(x + 1)XX5; x = p(y)}

with y € C3(X,, Dy,(x + 1)).
By account of Theorems 3.3 and 3.4 our problem is reduced to studying the
stability of O for the scalar equation

Z() = fo(y(z(0), 2()) = p(z(®), 1=0. (4.6)

(4.5)

By (3.8) we get
1)
Y0 =0, »'0)= [e ™ Pg"0)ds= —A7'Pg"(0).

It follows that
p'(0) = 0, p”(0) = P,g"(0) = <g"(©) (-, ), o > &o,
P70 = Pg""(0) (, -, ) + 3P287(0) (-, ¥ (0) (-, ).
Since »'(0) =y "(0) =0, »”'(0) (&, &o, &o) = a & 0, the assertion of the theo-

rem follows easily. []

Remark 4.1. Under the assumptions of Theorem 4.1, for [lup|,y; sufficiently
small, the solution u(f, #,) is globally defined with values in Dy(x + 1 — #)
if 0<<n<<«x- 1. Moreover

Jim [t ) a1y = 0
(see Proposition 2.1). [

An example. Let us consider again problem (2.11) with the notations of the ex-
ample in Section 2. We assume (2.12) and (2.13) and we set

o¢ ¢ 03¢
i=_0’oa0’ i'=-—__—0’0!03 i'Z—O:OaOs
¢ op, ( ) % op; Op; ( ) P 0Op; p; Op: ( )
iLj,k=1,23.
We assume also

4’1 = 4’3 (4-7)
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so that (4.2) is satisfied. Set
2
Eo(x) = — sinx, 0=x=m,

(Pyu) (x) = % fn‘vur(y) sin y dy sin x.
[}

Now we have

2
g7(0) (6o, &0) (x) = P [(¢11 — 2043 + ¢33) 8in? x + 2(d12 — ¢23) sin x cos x],

0 x<m,
and (4.3) is satisfied if and only if
b= 2645+ 933 = 0. (4.8)
Let us assume, for simplicity, that
12 = $23. 4.9)

Then (4.4) reduces to

3
a = <gm(0) (50a fo, Eo), ¢o> = ‘2“7;(‘1’111 + 3¢133 - 3¢311 - ¢333)
1 .
+ —n_(¢122 - 4’322)-‘ ‘ (4-10)

Theorem 4.2. Let ¢ € CP(R3;R) satisfy. (2.12), (2.13), (4.7), (4.8), (4.9). Let a
be given by (4.10). Then, if a <0, 0 is asymptotically stable in h37**(0, ) and,
if a> 0, 0 is unstable. []

We wish now to study existence and stability for small periodic solutions of
the equation

u'(t) = f(A, u(t)) 4.11)
under the hypotheses

f4,0) =0, fe C'(]-1,1[xD; X) and 4 = £(0,0): D — X satis-

fies (1.2), ‘ ’
. N . 4.12)

47 are simple eigenvalues of A, 0,(4) = {+i, —i},

f€C(1—1, 1[X Dy(x + 1); Da()).

By standard arguments it can be shown that there exist R, > 0, 4,€10, 1[
such that for each A€ 1—24¢,40[ and x€ B0, Ry) C D(x + 1), the operator
S, x): Dy(x + 1) > Dy(x) satisfies (1.2) (with X replaced by D4(x)) and
sup {2 Xl 45+ 0.0 45 [4] < Aos | X[las1 < Ro} < + 0. Moreover there
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exists a continuously differentiable path 1—24, Zo[ = C, A — a(4) + iB(A), . such
that
x(A), PR ER,

x(0) = 0,5(0).= 1,
«(4) = if(A) are simple, 1solated eigenvalues of the operator A(l), where A =
54, 0).
The usual transversality assumption is
o’(0) == 0. (4.13)
Proceeding as in Section 3, we consider the system
xX'(@#).= A1 x(@) + f1(A, x(@), ¥(1))s  x(0) = x,,

i 4.18)
Yy (t) = Az)’(t) —|—f2(}.,'X(t), y(t))3 y(O) = Yo, )

where v
fi:1=L1[X Dy (& + DX Xy Dy (), 2, %, ) = Plf(}b,‘x' + 3 (%) ._y) — Ayx
f’_z': ]—1, I[XDAJ((x + I)XXZ**Xz,‘ ,

fz(l,x,y)=sz(l,x+w(Z) )—w(Q)Azy

and y:X,—>R is a C* function satisfying (3.5); ¢ is a positive number to be
chosen later.

We have now to generalize the results of1 Section 3 to the case of equations
depending on a parameter 1. This generalization is qulte standard and the proofs
will be only outlined.

Theorem 4.3. Assume (4.12) holds. There exists ¢ > 0 and a four times coritinu-
ously differentiable function y:]—p, §[><X2—>DA (« + 1), with 9(4,0)=0,
such that if ¢ < 9, ¥o€ X5, X0+ Y(4, ¥o), A€ 1—0, ol, then the solution (x,y) of
(4.14) is defined for all 1= 0 and x(t) =y, y@) Vt=0.

Proof. We shall use a standard device, setting

F=@, 13l =14] + 1y
and writing the first equation of (4.14) as

ORFRIORFACORIO)

where _ ,
A2y = 4,0 y) = (0, 4,);
falx, ) = (0, falhs X, ).

Furthermore writing

.f‘:l(xrj\") = (O,fl(l, X y))
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we get the following system, which is analogous to system (3.7)-(3.8):
() = A:2(0) + LOGW), X)),  1€R,
20) =3, (4.15)
yo) = _i e fiEO), H9) ds, F€1—hor holX X
We have to find the solution in the set
¥ ={y:1-Jo, Aol Xz > Da& + D3 75, 0) = 0, IyO) < o,

PPN =bi  h=1,23, [#90) =y < ba IV = ¥'[}-

Now the proof that such a solution exists is based on arguments used in the proof
of Theorems 3.1 and 3.2 and so it will be omitted. []

The proof of the following result is similar the proof of Theorem 3.3.

Theorem 4.4. Assume (4.12) holds. For |A|<<p,x0€ Dg(x + 1), y0€ X, let
(x(2), ¥(t)) be the solution of (4.14) in some interval [0,7[. Then there exist
0:€10,0l, ¢1,62> 0,0, <0, suchthat for o <oy, |A] <o and || xollat1 = 20
we have

%) — yA YO ar1 = c1e™ [[xo — YA yolllasr V€0, 7. O (4.16)
We now set
Vi={(x, )€ Da(x + DX X33 x = y(4, »)}
= {uo € Dyl + 1); Pastg = y(4, Pag)}

and assume that a compact set 2(1) C X, is uniformly asymptotically stable for
the dynamical system defined by the equation

Z'(t) = A,2(t) + f2(A, v, 2(1)), z(1)) = h(4, z(1)) 4.17)
for some A€ ]—p, o[ and o€ 10, g[. Then, setting
2y = {(x, ) € Da(x + D)X X35 y € Z(A), x = y(4, y)}

and arguing as in Theorem 3.4, we can see that if dist (X}(2), 0) is sufficiently
small, 2'(1) is uniformly asymptotically stable for system (4.14). Theorem 4.3
assures that ¥V, is attracting (for initial data near 0). Hence if (4.11) has a small
periodic solution u, then u(z)€ ¥, for each t. Qur problem is now reduced to
looking for small periodic solutions of (4.17). We have

he C4(]—Ql, QI[XXZ; X2)s h(ls 0) =0, hx(Oa 0) = AZ:
and upon setting

AR = hy2,0)
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we see that there exists g, € ]0,9,] and a continuously differentiable function
1-02, 02[ > C, A—&(d) + if(A) such that
&%, PMER,
M) =0, fO)=1,
&%) + iB(X) are simple eigenvalues of (,«f(&))~ .
It is easy to show that
«’(0) =0 < &'(0) &= 0.

Then to study existence and stability of small periodic solutions of equation (4.11),
it suffices to use the standard results for the two-dimensional case (see for instance
[7]). In particular, conditions (4.12) and (4.13) ensure that there exist small
periodic solutions of equation (4.17). More precisely, there exist g, > 0, ro > 0,
and C? functions A:]—0o,00[ >R, p:]—00, 0o[—>R, z: 1—04, oo[ = B(0, ro)
C C'(R; X;) with A(0) =0, p(0) = 2n, z(0) = 0, such that z(o) is p(a)-perio-
dic and not constant for ¢ 3= 0, and

%z(a) () = h(M(0), z(0) (£)), tER, o€ -0, ool. (4.18)

Concerning the stability of the orbit described by z(o), one can use the standard
methods of [7].
Now using Theorem 4.3 and 4.4 we get the following result:

Theorem 4.5. Assume that (4.12) and (4.13) hold. Then there exist o, > 0 and C*
Junctions A:]—0o, 0o >R, p: ]—0¢, o[ >R, u:]—0, 6o[ > C(R; Dy(x + 1))
N CY(R; Dy(x)) such that

0)=0, p0)=2=x u0)=0,
for o &= 0, u(o) is not constant and is p(o)-periodic, 4.19)

d
=7 40) (1) = f(Mo), u(0) (1)), tER, o€ ]—0o, ool

Moreover, if for some o€ oo, 00l the set X = {z(0) (£) = Pu(o) (t); tc R} is
uniformly asymptotically stable in X, for the dynamical system defined by (4.17),
then Xy = {u(o) (t); t€R} is uniformly asymptotically stable in D4(x + 1) for
the dynamical system defined by (4.11). []

Another approach to the study of existence of small periodic solutions of (4.11)
can be found in [3].
An Example. Consider the system
u(t, x) = ¢(4, u(t, x), (¢, x), u,{t, x)), t€R, x€]0,=],
vdt, x) = w(d, ut, x), v(t, x)), t€R, x€l[0,a], (4.20)
u(t,0) = u(t,n) =0, cR.
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Assume that
¢EC°°(]—1, l[sts]R’)’ 4’(}" 0)205

(4.21)
we C*(-1, 1I[xR%;R), 9@* 0 =0,

Choose
X = C([0, #]) ® C3([0, =),
D = C§([0, =])) & C¥([0, =),
and endow X and D with their natural norms. Setting
pamvinx o (1) [557
we can write system (4.20) in the form (4.11). Clearly f€ C*(]—1, 1[x D; X) and

moreover
o (5) =0 (0)= [ v ™

where
o¢ oy . .
¢l(}') - Eb—;(l, 0)9 1/)](2') - apj (A, 0), l = l. 2, 3, ] - 1, 2.
Assume

$1(0) 5= 0. (4.22)

Then, for |A| sufficiently small, the spectrum of A(Z) consists in the solutions of the
equations

£ — E(—K*$3(A) + v2(D) + $:(D) — k*y2(D) $3(4)
+ 92(A) $:(A) — 2D (D) =0, k=1,2,...
Hence, if ‘
$3(0) > 0, 4.23)
the operator 4 = A(0) -is elliptic and satisfies (1.2). Moreover, if
(¥20))* + ¢2(0) v:(0) = —1,

$3(0) = v2(0) + 4:(0),
then A satisfies (4.12). Finally, the transversality condition (4.13) is satisfied if

$3(0) = 93(0) + 1(0). 4.25)
For any «€]0,4[ we have

D4(x) = hg*([0, 7]) © C¥([0, =]),
Dy(x + 1) = K***([0, =) & CK([0, =)

429
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(#¥([0, =]) and A3*+*([0, #]) are defined in the preceding examples). Itis easy to
verify that

FECT(1-1, 1[X Dyl + 1); Du(x)) -

Then, if (4.21), ..., (4.25) hold, there exist periodic solutions of (4.20). In order

to

study the stability of the periodic orbits given by Theorem 4.5, one can use

the known results given in [7] for equation (4.17): one has to compute several
derivatives of the functions 4 and x, and this can be done using (4.15) and (4.17).

[\
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