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Introduction 

In this paper we generalize some classical results on stability for autonomous 
semilinear evolution equations to the fully nonlinear case. 

The typical example we have in mind is the equation 

ut(t, x) = ~(u(t, x), Ux(t, x), Uxx(t, x)),  t ~ 0, 0 --< x --< z~, (0.1) 

which will be studied by abstract methods, reducing it to the equation 

u'(t) = g(u(t)),  t ~ 0 (0.2) 

where g : D -+ X is a regular function and D, X are Banach spaces with D con- 
tinuously embedded in 2(. 

Assuming that g(0) = 0, we will study stability, instability and saddle points 
of the zero solution of (0.2) by means of  a linear approximation. To treat also 
some critical cases of  stability, we will establish the existence of  an attracting local 
center manifold for equation (0.2). 

Our treatment follows closely the methods used in the semilinear case (see 
for instance [1], [4]), but  extending these ideas is not trivial because of technical 
difficulties due to the fully nonlinear character of  problem (0.2). 

The main assumption on g is that the operator A = g'(0) : D ~ X generates 
an analytic semigroup e tA in X. 

The usual method for studying the initial value problem by linearization, 
namely 

u'(t) : g(u(t))  : Au( t )  + ~p(u(t)), t ~ O, 
(0.3) 

u ( 0 )  = U o ,  

would be to solve the integral equation 

t 

u(t) = e ta Uo + f e (t-s)A W(u(s)) ds, t >= 0 
0 
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in the space C([0, T]; D). This, however, does not work, in general, because the 
convolution term is not sufficiently smooth. 

This difficulty can be overcome by replacing X by a suitable interpolation 
space Y between D and X, and using maximal regularity properties for the linear 
problem (see [2]): 

v'(t) = Av(t) + h(t), t >= O, 
(0.4) 

v(0) = Vo. 

Then it is possible to obtain a local solution of (0.3) provided Auo belongs to Y 
and g is sufficiently regular (see [2]. [5]). Nevertheless. we are not able to extend 
to our case some of the usual properties of the solutions. In particular. 
a) local estimates for the solution of problem (0.4), such as 

,,Av(t)[,v <:C (J, Avo,[r + / , [h(s) [ [ r  ds), 

are not available; hence Gronwall's lemma cannot be used; 
b) we have, in general. 

I '  r inf sup `4 f e ('-~)~ h(s) ds > 0 
T>O O < t ~ T  0 Y 

so that making the interval [0, T] small does not help us in proving the local 
existence of  the solution; 
c) we are not able to prove existence in the large if an a priori bound on [[`4u(t)][r 
is given: a stronger a priori estimate is necessary. 

Section 1 contains preliminary results on linear problems in unbounded inter- 
vals. In Section 2 we study linearized stability and instability of the zero solution 
of  (0.2). In Section 3 we prove that a local center manifold exists and we study 
some of its properties of regularity and attractivity. Finally, in Section 4 we use the 
center manifold to study two critical cases of stability, namely linearized sta- 
bility and instability when 0 is a simple eigenvalue of .4 (while the remainder of 
the spectrum has negative real part) and existence and stability of periodic solu- 
tions of 

u'(t) : f(2, u(t)) (0.5) 

under the classical Hopf bifurcation assumptions. 
Some applications to parabolic partial differential equations and systems are 

discussed in Sections 2 and 4. 

1. Maximal Regularity for Linear Problems in Unbounded Intervals 

Throughout the paper we assume that D and X are Banach spaces and D is 
continuously embedded in X. The norm in X is denoted by II" II- By )( a n d / )  we 
mean the usual complexification of X and D respectively. If  A : D --> X is a 

linear operator define A : D -+ X, A(x + iy) = Ax  + iAy. 
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We are here concerned with the problem 

u'(t) = Au(t) q- h(t), 
(I.1) 

u(0) = 0, 

where the linear operator A : D --~ X satisfies the following assumption : 

The resolvent set ~(.4) of  A contains the sector 

S={2EC;2=t  =20,[arg(2-20) l<0} ,  Z0ER, 0E -~-,z~ 
(1.2) 

and sup [2 - ;to[ [[R(;t, A)[IL<2~ < + o0. 
2ES 

Then A generates an analytic semigroup e tA in X, not  necessarily continuous at 
t = 0 (see [8]). Set 2 = sup {Re ;t; ;t E a(A)} and fix o9 > 2; then there exist 
M > 0  and N > O  such that  

N 
[I eta IlL<x> < Me~ ]l AetA IlL<x) < - -  e~ V t > O. (1.3) 

We shall use the following notat ion:  if Z is a Banach space and B E R we 
denote by Cn([0,-q-cx~[; Z)  (or Cn( ] -  e~, 0]; Z)) the set of  all f :  [0, q-o,~[---~ Z 
(or ] -  co, O] ~ Z)  such that  t -+ e"tf(t) (or t ~ e-ntf(t)) is continuous and 
bounded.  These spaces are endowed with the norms:  

I[fll%<t0,+ oot;z) -- sup 1[ entf(t)[Iz, 
t>O 

Ilfllcn(]- ~,0];z) = sup  11 e-ntf(t)Ilz. 
t~O 

We set also 

C~([0, -]- cx~[; Z)  ---- {f:  [0, + oo[---~ Z ; f , f ' E  Cn([0, q- cx~[; Z)}. 

Let us introduce the interpolation spaces that  we shall use in the sequel: we first 
consider the case ~o < 0 (o9 is given in (1.3)). 

For  ~ E ] 0 , 1 [  we set 

DA(0~, o 0 ) =  {xE X;sup~l-~llAe~AxlI~>o < + ~ } '  

II xll~A(~,,oo> = sup  ~1-~, II AeUAxll, 
~>0 

DA(o~ -t- 1, oo) = {x E D ; Ax  E DA(or oo)}, 

I[ x IlDa(~+l,~) = l[ a x  Iloac~,~) �9 

For  o9 ~ 0 we set Da(o~, cx~) = DA-2~o(c~, ~ ) ,  Da(o~ + I, o0) = D~_2o(o~ q- 1, oo) 
and 

[I x IIDA(~,oo ) = l[ X][DA_2o<~,,~), 
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In the sequel, if no confusion ought result, we shall write I[ x I[~ and 1] x 1[~+1 instead 
of  Ilxll~a(~.o~) and [Ixllo~(~+a,~). The closure of D in DA(or e~) will be denoted 
by DA(o0; it can be shown that 

DA(or = {x E X; lim ~1- ~ Ae~A x = 0}. 
~-~0 + 

We denote by DA(a + 1) the closed subspace of Da(a + 1, oo): 

DA(O~ + 1) = (xE D; A x E  DA(a)}. 

Increasing, if necessary, the values of M and N that appear in (1.3), we may 
a s s u m e  

[[ eta IlL(Z) ~ Me~ V t >= O, 
(1.4) 

[1 AetA IlL(z) ~ N e" t V t > O, 
--- t 

where Z is any of  the spaces X, DA(/3, oo), D.4(/3 + 1, cx~), /3 E ]O, 1 [. 
Moreover for any f ie  ]0, 1[ k} ]1, 2[ and for any ~ E R  there exists C(~,fl) ~ 1 
such that for each x E DA(/3, ~ )  we have 

1 
(1.5) 

Now we can state a theorem of existence and exponential decay for the solu- 
tion of  (1.1). 

Proposition 1.1. Let A satisfy (1.2), and let M,  N, ~o be such that (1.4) holds. 
Assume ~ + c o < 0 ,  r E ] 0 , + ~ ]  and let hE C([O, 3[; DA(oO) be such that 
sup [[e~t h(t)]l~ < + o0. Then problem (1.1) has a unique solution 

0 ~ t < r  

t 
u(t) = f e (t-s)A h(s) ds, 0 ~ t < ~, (1.6) 

0 

and there exists Kt(~, to) > 0 such that 

sup [[ent u'(t)[l~ + sup [lent u(t)[[~+l ~ Kl(B, ~o) sup [[W h(t)[[~. (1.7) 
0<s 0~t<~ 0_<_tCz 

ln particular, i f  ~ = + oo and hE C~([0, + oo[; DA(00), then uE C~([0, + oo[; 
DA(Or A C,([0, + ~ [ ;  DA(o~ + 1)). 

Proof. By [8, Th. 5.5], problem (1.1) has a unique solution u given by (1.6); u 
belongs to C1([0, T]; Da(~)) A C([0, T]; DA(o~ + 1)) for any TE ]0, 3[. Thus 
we have only to prove estimate (1.7). 
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We first assume co < 0, ~ / =  0. Then  for  

II u(t)I1~+1 = sup l[ ~1-~ A2eea u(t)1[ 
$ > 0  

sup ~ t - ~ f  Ae  2 . A e  2 h(s) ds 
~ > 0  0 ~ 

=< 

t E [0, T[ we have 

0.8) 

2 2-~ N sup I[ h(s)[l~ sup ds 
- -  o z ~ < ,  ~>o r (~ + s) 2-~" 

22-~, 
- - -  N sup  II h(s)[[~, 

1 - -  or 0 < s < r  

and the p ropos i t ion  is p roved  in this case. F o r  general  co and ~ set h~(t) = e ~t h(t), 
u l ( t )  = e ~t u(t) so tha t  

t 

ul( t )  = f e ('-*)(A+') hi(s) ds. 
0 

Now,  by (1.8) we get, for  t E [0, T[, 

2 2 - ,x 
[I e't u(t)lll)x+n(~+Loo) ----< 1 - or NI(~) sup I[ ent h(t)l[Da+,(~,~) 

where 

Nl(r/) = sup t [[(A + r/) e(a+n)tllL(X) 
t > 0  

and  the conclusion follows by  (1.5). [ ]  

P r o p o s i t i o n  1.2. Let  A satisfy (1.2) and let M ,  N,  co be such that (1.4) holds. Le t  
k E C , j ( ] -  ~ ,  0]; Da(o0) with co - ~ < O. Then the function 

v(t)  = / e <'-*)A k(s) ds 
- - o o  

belongs to C ~ ( ] -  cx), 0] ; Da(o~ + 1)) and there exists K2(~/, co) > 0 such that 

II v 14c~o- o~.ol;oA<~+,) =< K2(~,  co) II k Ilc~r oo,ol;oa(~)). (1 .9)  

Proof .  Le t  us first consider,  as before,  the case co < 0, ~ = 0. Then,  arguing 
as in Propos i t ion  1.1., we find 

2 2 -- cr 

Nl[h[IcoO-O~,ol;DA(~)) v t < 0. (1.10) I[V(t)[{~+l ----~ 1 -- 0~ 

F o r  general co and  r/ set k l ( t )  = e -'~t k(t) ,  v l ( t )  = e -qt v(t) SO tha t  

t 

vl ( t )  = f e (t-s)(A-O k l (s )  ds. 
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Now, by (1.10), we get 

22 - 
N2(O sup II e-nt k(t)IIDA_~(~,~) Ile-nt v(t)llDA-n (~+1'~) <= 1 -- o~ tZo 

where N2(~) = sup t ]I(A - ~) e(A-n)tI[L(X). 
t > 0  

By (1.5), the function t -> e -nt V(t) is bounded in Da(0r + 1, o0). In order 
to complete the proof  we have only to remark that in any interval [ - T ,  0] v 
is the uniform limit in DA(0r q- 1, oo) of  v,, where 

t 
v~(t) = f e (t-~)A k(s) ds, n E ~ ,  n ~: T, 

--n 

and v,E C ( [ -  T, O]; DA(~ + 1)) (see [8, Th. 5.5]). [ ]  
In the sequel, since we deal with stability, instability and saddle points, we shall 

need the usual splitting of the spectrum of Ainto  two parts, and so we shall assume, 
besides (1.2), that 

a(,4) = al(A) W a2(A) with 
(1.11) 

21 = sup {Re 2; 2 E a~(A)} < 22 = inf {Re 2; 2 ~ o '2(s  

We shall denote by P2 the projection operator 

I f R(~, .4) d~ (1.12) 
P2 -- 2:~i c~ 

where C2 is a suitable path around the bounded set a2(A). We set P1 = 1 - P2, 
x~ = e~(x) ,  x~ = e~(x) ,  [Ixllx, = Ilxl[, IIxllx= = Itxll, A~ = A / ( D A  X1)." 
D A X1--~ X1, A2 = A/X2 : X2---> X2. 

Then A2 E L(X2 ; DA(o~ + 1)) and DA~(o0 : DA(OO f~ X1, DA,(or -t- 1) : 
Da(o~ + 1)A )(1 with Ilxll~A~(~) = I[xL, IIxIIDA~(~+I) = IIxL+l. Let o h,  to 2, ~o3 
be such that 

21 ~091 ~ 0 9 2 < 2 2 < 2 3  ~ 0 3  

where 23 = sup {Re ;t; 2 E a2(,4)). There are M~, N, > 0 such that 

[[etA~[lL(z) ~ M t  e~~ [[Axe,A~I[L(z) <= N~ ---/- e ~ ' ,  t >  0, (1.13) 

where Z is any of the spaces X, DA~(fl, co), DA,(fl + 1, oo), fl E ]0, 1 [. Moreover 
there are M2, M3 > 0 such that 

e tA2 ~ M 2  eo~2t, t ~ 0,  L(X2;DA(O~+ I)) = = 
(1.14) 

tA2 II e IIL(x~) ~ M2 e'~ t <: O, 

II e'A~ L(x=;DA(~§ ~ M3 e'~ t ~ O. (1.15) 

Finally we set 

p = max {1[ Pz IIL(oA(~),x~), II P1 II,-C~A(~))}. (1.16) 
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2. Linearized Stability and Instability 

We consider here the nonlinear problem: 

u'(t) = g(u(t)), t ~ O, 
(2.1) 

u(0) = Up. 

We first recall a theorem of local existence and uniqueness (see [2], [5]). We assume 
that 

gE C~(D; X), A = g'(0) satisfies (1.2), g(0) = 0 
(2.2) 

and gE C~(DA(o~ + 1), DA(00) for some o~E ]0, 1[. 

We are interested only in solutions of  (2.1) near 0; say in an open ball 
B(0, Ro) C D,~(0~ -? 1) so chosen such that 

i) For each xEB(O, Ro),g'(x):DA(o~+l)-+D.4(o 0 satisfies (1.2) with X 
replaced by DA(o0, 

ii) s u p  ]Ig'(x)IIL(DA(~+I);DA(~) ) < Jr" ~ .  
[[xl[~+ 1 _ R o  

Now we can state 

Proposition 2.1. Assume (2.2). Then for any Up E B(0, Ro) C Da(o~ q- 1) there 
exist "r(Uo) :> 0 and a unique function u = u(., Up) : [0, Z(Uo)[ ~ B(O, Ro) such 
that u belongs to C([0, V(Uo)[; Da(o~ + 1)) {5 C1([0, V(Uo)[; Da(o0) and satisfies 
(2.1). If, in addition, there are e > 0, K >  0, R~ E ]0, Ro[ such that u(t, uo)E 
Da(or + e + 1) and Ilu(t, Up)L+1 =< Rx, Ilu(t, Uo)[]~+1+, ~ K V tE [0, Z(Uo)[, 
then Z(Uo)= +co .  [] 

We now prove a theorem of stability. 

Theorem 2.2. Assume (2.2) and suppose that 2 = sup {Re 2; 2 E a(.4)} < 0. Then, 

i f  r I + X <  O, there exists r > 0 such that i f  uoE Da(o~ + 1) and Iluo[l~+~ ___< r, 
the solution u(., Up) of problem (2.1) is defined for all t ~ 0 and belongs to 
Cn([0, + ~ [ ;  Da(o~ + 1)) A C~([0, + ~ [ ;  Da(o0). Moreover 

lim II e~t u(t, uo)ll~+l = 0 uniformly with respect to Up. 
t--> -roo 

We say that 0 is exponentially asymptotically stable in Da(o~ + 1). 

Proof. Fix co > ~. such that B + ~o > 0 and (1.4) holds. Let G be defined by: 

a :  B(o, R) C c~([o, + ~ [ ;  DA(oO) n C~([O, + ~ [ ;  D~(o, + 1)) 

-+ c~([o, + o~[; D~(~,)) �9 D~(~, + 1), 

a ( u )  = (u" - g (u) ,  u(O)) 

where R < Ro. It is easy to see that G is of  class C 1. Moreover, by Proposi- 
tion 1.1, the linear operator 

a ' ( o )  v =  (v" - A v ,  v(O)) 
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is an isomorphism. By the Implicit Function Theorem there exists 7(r/) such that 
for II u011~+~ =< ~(~) problem 2.1 has a unique solution u E C,([0, § ~ [ ;  DA(o~ + 1)) 
f~ C~([0, + cx~[; D.~(~)). Moreover, choosing e > 0 such that ~ /§  o § e < 0 
we have 

lim sup (ll ent u(t, Uo)L+~; II uoll~+l =< r(~ § e)) ---- 0. 

In fact the Implicit Function Theorem implies uniqueness only for small solutions 
of (2.1); however, uniqueness in the large follows from Proposition 2.1. [ ]  

Let us suppose now that a(A) contains some point with positive real part. 
In this case we can prove the following theorem of instability. 

Theorem 2.3. Assume that (2.2) and(1.11) hold with 2~ <~ 0 and 22 > 0. Then 0 is 
unstable in DA(~ + 1); that is, there exists a sequence (u0,) Q DA(o~ § 1) such 
that Uon-+ 0 in DA(Or + 1) and 

inf sup Ilu(t, Uo,)l[~+1 > 0. (2.3) 
nE N t ~ [O,z(UOn)[ 

Proof. We shall prove the existence of v E C~(]-  co, 0]; DA(O~)) {~ Co(] - ~x~, 0] ; 

DA(~ + 1)) such that 

v' = g(v), v ~ O, 

lira v(t) : 0 in DA(~ + 1). 

sufficient to take Uo, ~ v ( -n ) ,  since Then it will be 
t E [0, n]. 

(2.4) 

u(t, uo,) = v(t - n) for 

To construct such a function let us consider the following integral equation: 

t 

v(t) ~- e 'A2 x2 § f e (t-s)A" P2(g(v(s)) -- Av(s)) ds 
o 

+ / e ~t-s)A1 Pl(g(v(s)) - Av(s)) ds = (Av) (t) 
- - o o  

(2.5) 

where x2 E P2(X). 
Fix 0 < o h < o ) 2  

point of A in the set 
so as to make (1.13) and (1.14) hold. We shall find a fixed 

Y a = { v E C , ( l - ~ , O l ; D A ( o ~  § l ) ) ; l l e - ~ ' v ( t ) L + , ~ a , t ~ O }  (2.6) 

where ~ E ]~ol, o2[ and a E ]0, Ro[ are to be chosen later. Let us show that if 
IIx211 and a are sufficiently small then A(Ya) C Ya. For any vE Ya in fact, Av 
is continuous with values in DA(O~ § 1) (see Proposition 1.2), and by (1.9), 
(1.14) and (1.16) we have 

II e-n'  (Av) ( t )L+l  ~< M2 112211 + P ~ + K2(~, Ol) aL(a) 
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with 

L(~) = sup IIg'(Y) - A [IL(O,4(~+I).DA(~)), ~ > 0. (2.7) 
[lY[[c~ + 1 ~O 

Thus f[ e-nt (Av) (t)II~+l ~ a, provided a and 1] xz [1 are sufficiently small. Further- 
more for v, vE Y~ we have 

(t)) [1~+1 =<p [to2M2 + K2(~/, tol)] L(a) lie-, ,  ((A~) (t) - (A~) 

�9 sup II e-n~ (v(s) - -v(s))I[~+1, t "< 0, 
s ~ 0  

so that for a sufficiently small A is a contraction and so there exists a unique 
solution v of  (2.5) in Y~. It is easy to see that v satisfies (2.4). This concludes the 
proof. [ ]  

We shall show now that 0 is a saddle point. To this end we need an assumption 
slightly stronger than in Theorem 2.3, namely ;t~ < 0. We shall prove existence 
in the large of the solution of  (2.1) for initial data lying on a stable local manifold 
S Q DA(~ + 1), and existence in the large of  a backward solution of  (2.1) for 
initial data Uo belonging to an unstable local manifold U. We shall denote again 
by u(t, Uo) (t ~ 0) the backward solution of  (2.1), which exists by virtue of  the 
following theorem. 

Theorem 2.4. Assume (2.2) and(1.11) with 2x < 0, 22 > 0 andf ix  ~E ]0, -21[ .  
Then there exist r > O, Q > 0 and two continuous functions 

such that, setting 

h : B(O, r ) C Xz -+ DA(o~ + 1), 

k : B(0, r) C DA~(c~ + 1) ~ Da(or + 1), 

w = {h(x2); x2 E S(O, r) C x2},  

S = {k(xl); x, E S(O, r) C DA~(~ + 1)), 
(2.8) 

we obtain the following conclusions: 

i) For any Uo E S the solution u of(2.1) exists in the large," it belongs to 
Cn([0, + ~ [ ;  Da(o~ + 1))/5 C~([0, + oo[; DA(Or ; and lie nt u(t, u0)lI~,+x ~ O, 
t >= O. Conversely, i fuo is such that [IPlu011~+a _--< r, u(', u0)E C,,([0, + ~ [ ;  
Da(o~ + 1)) and Ilen'u(t, u0)l[~+l _--< 5, t => 0, then Uo belongs to S. 

ii) For any uoE U there exists a backward solution of  (2.1) uE Cn(] -  ~ ,  0]; 
Da(oc + 1))/q Ca(] - ~ ,  0]; DA(or and II e - n '  u(t)~+a[I _--< 5, t --< 0. 
Conversely, i f  Uo is such that II e2uo II =< r, and a backward solution u of  (2.1) 
exists and belongs to C~(]-  cx~, 0]; DA(c~ + 1)), with lie -nt u(t)ll~+~ _--< 5, 
t <= O, then Uo belongs to U. 

iii) S (or U) is tangent to X1 (or X2) at the origin, that is k (or h) is differentiable 
at 0 with k ' ( 0 ) = 0  (or h '(O)=O).  

We shall say that 0 is a saddle point in Dx(o~ + 1). 
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Proof. 
i) Let xt E DA~(~ + 1); consider the integral equation 

t 

z( t )  = e tA' x t  + f e (`-~)A~ Pl[g(z ( s ) )  - Alz(s)]  ds 

0 (2.9) 
+oo 

- f e( t- ' )A'Pz[g(z(s))  - A2z(s)] ds = ( /7z)  ( t ) .  
t 

We will find a fixed point o f / 7  in the set 

Y, = ~lzE Cn([0, + oo[; OA(or + 1)); sup Ilen'z(t)ll~+~ <= a] 
! t > 0  

for suitable a, 9, xl.  
Fix o9~, o92, ~/such that 21 < ogt < 0 < o~z < 22 and r / +  ~01 < 0. For any 

z E Ya, H z  is continuous with values in Da(o~ + 1) and for t ~ 0 we have 

where 

II e~' (/7z) (t)[l~+l ~ M~ [I Xl I1~+~ + b0/) aL(a) 

M2 o91)] b01) = p [ - - ~ - - ~  + KI(~, 

and M1, L(a), Kt07, o91), M2 are given, respectively, by (1.13), (2.7), (1.7) and 
(1.14). 

Moreover, for z, 2 E Y~ we have 

II ent((/7z) (t) - (/7~) (t))I1~+1 ~ L(a)  b(~) sup II e~S (z(s) - -z(s))[I~+l �9 
s ~ 0  

Let ~ > 0  be such that 

Then, for any a ~ ~ and 

and there exists a unique solution z of equation (2.9) in Ya. Set r = 
the mapping 

B(0, r) C Oa~(~ + 1)• r~-+  C~([0, + oo[; O~(~ + 1)), 

L(9) b(~) G �89 (2.10) 

a 
[[x~[l~+l ~ ~-~I '  H is a contraction of Ya into itself 

Q since 
2M1' 

(x,, z) --+/7z 

is continuous, the fixed point z depends continuously on xl. Then, setting k ( x l )  
= z(0) for [Jxl[[~+l ~ r, we prove the first statement of i). 

Now let Uo be such that ][Pluo[[~+l ~ r. Then, if Z(Uo) = + ~ and 
u(., uo)E Cn([0, + e~[; DA(o~ + 1)) with [lu(., UO)[ICn(W,+ooE;DA(O,+I)) ~ ~, we have 

t 

P2u(t)  = e tA" Pzuo + f e ('-s~A" Pz(g(u(s))  - Au(s) )  ds. 
0 
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iii) Let  a~Q, 
Then,  by (2.10) 

PzUo = - f e -`A" P2(g(u(s)) - Au(s))  ds 
0 

so that  u E YQ is a solut ion o f  Hu = u with x~ = P~u(O) and then Uo = k(xx) 
E S. This completes the p r o o f  o f  i); the p r o o f  o f  ii) is similar. In fact, the unstable 
manifold  has been constructed in the p r o o f  o f  Theorem 2.3, and h can be defined 
by h(x2) = v(0), where v is the solution o f  equat ion (2.5). 

a 
[[&[l~+l =< 2M1 and let zx~ be the fixed point  o f  H in Y,. 

[I zx~ lien(t0,+ oot;DA(~+ 0) ~ 2M1 [I xl ][~+1 
so that  

[]k(x~)-xll[=+l =11+o f~176 e -~A" P2(g(Zx~(S))--Azx~(S))ds ~+x 

< 2M~M~.___.____Zp L(a)  rl x,  I1~+1- 
~ o 2 + ~  

Since lim L(a) = 0 the conclusion follows. A similar p r o o f  can be given for  h. [ ]  
a---~-0 

We finally remark  that  the results of  Theorems 2.2, 2.3 and 2.4 can be easily 
extended to yield stability and instability fo r  arbi t rary stat ionary solutions o f  
(2.1). 

Example. Consider  the problem 

where 

u,(x,  t )  = 4,(u(t, x), ux(t, x), uxx(t, x)), t > o, 

u(t, O) = U(t, ~) = O, t ~ O, 

u(x,  O) = Uo(X), x ~ [0, M,  

x ~  [0, zd,  

(2.11) 

~b : l:t 3 --~ R,  (Pl,  P2, P3) ---> qb(Pt, P2, P3) is o f  class C ~~ 
(2.12) 

and 4~(0, P2, 0) ~ 0 V P2 E R .  

We set ~pi(0, 0, 0) = ~i (i = 1, 2, 3), X = C([0, z~]) and 

D = C02([0, z~]) = {u E C2([0, z~]); u(0) = u(n) = 13}. 

X and D are endowed with their usual norms. The funct ion g : D -+ X, g(u) = 
4~(u, u', u"),  bellongs to C~(D; X) and g'(0) v = 4~1v + 4~aV" u v E D. We 
assume that  A = g'(0) is an elliptic opera tor ;  that  is, 

4~a > 0. (2.13) 

Then  A satisfies (1.2) (see [9]). Fo r  o~ E ]0, 1[ we have (see [2], [6]) 

DA(o,) = ho~([O, zq) = {u~ h2~([O, ~l);  u(O) = u(~) = 0}, 

D , ( ~ ,  + 1) = hg~+:([0,  ~1) = { u ~  h2~+2([0, = 9 ;  u(0) = u(~)  = u"(0)  = u"(=)  ---- 0} 
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where h2~([0, 7r]) is the closure of C1([0, ~r]) in the C 2~ n o r m .  h2~([0, er]) consists 
of all the functions u : [0, zr] --~ R such that 

lim sup 
T~O O ~ x < y ~  

y--x~T 

( y -  x ) -Z~lu(y)  - u(x)t = 0 .  

h2~+2([0, 7z]) is the set of the twice differentiable functions u : [0, ~r] --~ R such 
that u"E h2~([0,~]). Then it is easy to verify that g E C~(h2~+2([0, zr]); 
h2~([0, ~])). Since ff(0,p2, 0) ---- 0 VP2, g belongs also to C~ + 1), Da(~)). 
The spectrum of A consists in the simple eigenvalues 

(2 k = t~ 1 --  k 2 ~ 3 ,  k ~ 1, 2 . . . .  }. 

We can apply Theorems 2.2, 2.3, 2.4 to get the following result. 

Proposition 2.5. Assume (2.12) and (2.13) hold. Then 

i) I f  ~bl < cb3, 0 is exponentially asymptotically stable in hg~+z([0, n]). 
ii) I f  rbl > ~b3, 0 is unstable in h2~+2([0, zr]). 

iii) I f  dp~ > ~b 3 and ~bl - kZ~b3 =k: 0, k = 2, 3 . . . .  , 0 is a saddle point in 
h2~+2([0 ,  Yr]). [ ]  

The critical case ~bx ----- ~b 3 will be studied in Section 4. 

3. Center Manifold 

Let us consider, as in Section 2, the initial value problem 

where 

u ' ( t ) = g ( u ( t ) )  t ~ O ,  
(3.1) 

u(0)=Uo 

gE C~(D; X) ,  g(O) ---- O, g'(O) ---- A : D ~ X satisfies (1.2) 

and g E C~(Da(Lx -}- 1), Da(~)). 
(3.2) 

Moreover, let Ro be defined as in Section 2. We shall construct here a local center 
manifold under the assumption that the points of the spectrum of A have nega- 
tive real part with the exception of a finite number of eigenvalues which have 
nonnegative real part and finite algebraic multiplicity. More precisely, we assume: 

(1.11) holds, 

o'2(h ) = (Z 1 . . . . .  Zk) where zl . . . . .  zk are eigenvalues with finite algebraic 
multiplicity, (3.3) 

21 = sup {Re 2; 2 E a1(.4)} < 0, 

22 = rain {Re 2; 2 E a2(.4)) =~ 0. 
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For convenience we shall transform problem (3.1) into a system which is equi- 
valent to (3.1) for small solutions, namely, 

x'(t) = Alx(t) + A(x(t), y(t)), x(0) = Xo, 

y'(t) = A2y(t) + f2(x(t), y(t)), y(0) = Yo, 

where 

: D~,(r162 + 1)•  D,4~(oO, f l ( x , y ) =  P ,g (x  + v ? ( 4 t  A \ 
y) -- Aix ,  

(3.4) 

f2 : DA,(O~ + 1)• X 2 , f 2 ( x , y ) = P 2 g ( x + ~ o ( y )  y ) - ~  (-Y-) A2y; 

is a positive number to be chosen later, and ~p : X 2 ~ ~:~ is a C ~ function such 
that 

<Ro 
W(x) ---- 1 for Itxll = 2 ' v(x) --- 0 for IIxlt ~ Ro, 

0 ~ ~p(x) ~ 1. (3.5) 

Clearly f l  and f2 have the same regularity as g. 
Proposition 2.1 may be applied to system (3.4) to get existence and uniqueness 

of a local solution for initial data (xo, yo)E D.41(0r + 1)• In dealing with 
the applications, we shall be interested in small solutions of problem (3.1); there- 
fore it will be sufficient to consider system (3.4) for small Q. 

We shall find a finite-dimensional invariant manifold V for system (3.4), and 
we shall prove that it is attractive. Then the study of stability for system (3.4) will 
be reduced to a finite-dimensional problem. 

Theorem 3.1. Assume that (3.2) and (3.3) hold. There exists 9~ > 0 such that, if 
0 <= ~1, there exists a Lipschitz continuous function Y iX2 --> Dal(cr + 1) with 
7(0) = O, such that, if Yo E X2 and xo = Y(Yo), then the solution (x, y) of (3.4) 
is defined for all t >= 0 and x(t) = y(y(t)) u t >= O. 

Proof. We shall adapt the ideas from the semilinear case (see [4, Th. 6.1.2]). Fix 
b > 0 and set I L 

where ~ > 0 
n o r m  

Y = {7 : X2 -~  D~,(cr + 1); y(O) = O, [17(Y)ll~+l ~ e, 

HY(Y) - Y(Y-)ll~+t ~ b [IY - Yl[}, 

is to be chosen later. Y is endowed with the topology of the sup 

11711oo = sup [[Y(Y)II~+a 
yEX2 

and it is closed with respect to this topology. Our goal now is to find a solution 
of (3.4) in the form @(y(t)), y(t)), for some 7 E Y. We shall first solve the 
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system 
z'(t) ---- A2z(t) § z(t)), t E R ,  

(3.7) 
z(O) = y, 

0 
~,(y) = f e-S'41fl(7,(z(s)), z(s)) ds, y E Xz ,  (3.8) 

- - o o  

and then we shall prove that 7, has all the required properties. 
Concerning equation (3.7) we remark that for any 7,E Y, the solution 

z = z(t, y, 7,) is globally defined. Set now for ~ > 0 

I ~ L(O ) = sup [[i t~x L(DA,(~ + l),oA~(~)) 

bf t  (x, y) , Of  2 (X, y) , (3.9) 
~X c~y L(X,,DA~(~)) L(DAL(C~+ I),X2) 

(x, y) L(x,~; y E x2, IlyH < Ro~, x E DA,(~ + 1), [[xll~+~ < o}- ~y = 

Clearly ~imoL(O ) = 0. Let us choose ~0~ and to2 such that 2t < col < 0~2 < 0. 

Using the Gronwall lemma we get, for t ~ O, y, y E 1(2, 7,, 7E Y, 

e - m  - -  1 
[[z(t,y, 7,) - z ( t , y , ~ t  [ <~ M2e-"t[[y - ~[I § 1 § II7, - ~lI~, (3.10) 

where 

At = At(0) = M2L(0) (1 § b) - ~o2. (3.11) 

Let us consider now equation (3.8). For 7' E Y set 

0 
(1"7) (y) = f e-SA' f~(7,(z(s, y, 7,)), z(s, y, 7,)) ds. (3.12) 

- -  o o  

We shall prove that F is well defined, that F ( Y )  Q Y and that F is a contrac- 

o) o , ~ ( 0 , o )  Owe tion if Q is sufficiently small. Since f~(O, O) = O, -~x (0, = ,~y = 
have 

Ilf~@(z(s, y, 7,)), z(s, y, ?))[1~ ~ oL(0) (1 + Ro) for s ~ 0, 7, E Y, y E Xz. 

Hence there exists 0o > 0 such that for 0 =< 0o formula (3.12) is meaningful 
and, by Proposition 1.2, [[(/'7,) (Y)[[~+I ~ 0. 

Now let 7,E Y,y ,  y E X 2 ,  S ~ 0 ; t h e n  by (3.10) 

Ilf,@(z(s, y, 7,)), z(s, y, 7,)) - f~(~,(z(s, ~, 7,)), z(s, y, 7,))I[~ 

G M2L(o) (1 § b) e - " '  I ly - y l l .  

Choose & E ]0, 0o] such that for 0 < ~ we have 

ob + A t <  0, 

/s oh) M2(1 + b) L(O) ~ b 
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where K2(-I~, o~) is given by Proposition 1.2 with A replaced by A~: Then 

1[(/9,) (y)  - (/~9') (~)ll~+x ~ b lly - ~lI 

so that -P(Y)C Y. Finally, let ~',~E Y, pEX2, s<=O. By (3.10) we have 

IIA(),(z(s, y, 9")), z(s, y,  9")) - A(-C(z(s, y, ~)), z(s, y, ~))II~ 

L(e )  e- '~ 119' - FIl~o. 

Therefore, choosing 92 E ]0, 91] such that 

t(9) k2(-bt, col) =< �89 for e =< 92 

we see t h a t / "  is a �89 and there exists a unique fixed point 9' o f / '  in 
Y. For any Yo E X2, set Xo ---- 9'CVo) and 

then 

x(t) = 9'(z(t, Yo, 9')), y(t) = z(t, Yo, Y), t ~ O; 

0 �9 

x(t)  = f e-'A'f~(9'(z(t + s, yo, ~)), z(t + s, YO, 7)) ds 
- - o o  

t 

= e '~  7)(yo) + f e(t-~)~A(x(s ), y(s)) ds 
0 

so that xE C([O, q- ~ [ ;  DA~(o~ -I- 1)) f~ C1([0, + c~[; Da,(o~)) and (x,y) is the 
strict solution of system (3.4). [ ]  

In applications it is often necessary to use some properties of),. These will 
be provided by the following theorem: 

Theorem3.2. In addition to the hypotheses of  Theorem 3.1 assume that g E 
Ck(Da(o~ q- 1), Da(or k >= 2. Then there exists 9k > 0 such that if  9 <= 9k the 
function 9" given by Theorem 3.1 is k - 1 times continuously differentiable and 
~(k-1) is Lipschitz continuous. 

Sketch of the proof. The proof is similar to the preceding one, with the difference 
that now we have to look for a fixed point of the opera tor /"  defined by (3.12) in 
the set . "  

Yk = {9' : X2 -+ DaL(or -r 1); 9'(0) -= 0, [19'(Y)II ----< 9, 

[19'(h)(y)l[ __--< bh, h ---- 1 . . . . .  k .  1,,l[~'(g-l)(y) - 9'(k-1)(~)11 =< bk IIY -- Yll}- 

Since Yk is closed in the uniform topology, it is sufficient to show that _P maps Irk 
into itself if bn, h = 1 . . . . .  k are suitably chosen. The proof is straightforward 
and relies on several applications of the Gronwall lemma and Proposition 1.2. [ ]  

We define now the center manifold for system (3.4):: . . . . .  

V = {(x, y) EDaI(~ + 1) • )(2 ; x = y ( y ) } . .  (3.13) 
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Use of  Theorem 3.1 reduces system (3.4) to the finite-dimensional equation 

z'(t) = Azz( t )  + fz(7(z(t)), z(t)),  t >~ O, 
(3.14) 

z(0) = Yo, 

provided Xo = Y(Yo). 
We will show that V attracts the solutions of (3.4) for small initial data: more 

precisely, if (x(t), y(t)) is the solution of (3.4) in some interval [0, z[ and 11 x011~+~ 
is sufficiently small, then 

1[ x(t)  - ~(y(t)) I1~§ =< ceO~t 11Xo - Y(Yo)[[~+1, V t E [0, z[, 

where 09~ E ]21, 0[ and the constant c does not depend on Xo and Yo. Therefore 
the study of the asymptotic behavior of the solutions of (3.4) will be reduced to 
a finite-dimensional problem. 

Theorem 3.3. Assume (3.2) and (3.3) hold. Then, .for each o91 E ]22, 0[ there exists 

~ > 0 such that for  ~ ~-~,  xoE DA,(oc-k 1), yoE X2 with IIx0/[~+1 < 
the solution (x(t), y(t)) o f  (3.4) satisfies = 2M1' 

Ilx(t) - ~(y(t))[[~+lt ~ 23111 e'~ IIx0 - 7(y0)L+x, V tE [0, z[. (3.15) 

Here M1 = M1(091) is given by (1.13). 

Proof'. Let ~ ~ ~1, where ~i is given by Theorem 3.1, so that there exists a center 
manifold for system (3.4). 

First we shall show that, if ~ and II x01l~+a are sufficiently small, then 
I[x(t)[[~+l ~ q for each tE [0, 3[. 

1 
Let Q' > 0 be such that L(0' ) <: 2K1(0, 091) (1 + Ro) where L(O) is defined 

in (3.9) and K1 is given by Proposition 1.1 with A replaced by A1. Assume 0 < 

, < O.__g_ < O, [[Xo][~+l = 2M1' YoC )/'2. To reach a contradiction, suppose that 

I =  (tE ]0,3[; []x(t)][~+l > O} is not void, and set to = infI .  Since 

then 

to 

x(to) = e '~ Xo + f e (t~ f (x(s ) ,  y(s)) ds 
0 

~ M1 [[Xol[~+l + / ( 1 ( 0 ,  o91) sup [[f(x(s), y(s))[[~ 
O~s~q.to 

< e  = 2 + Kt(0, 09,) (1 + Ro) L(~) e < 

so that I is empty and the statement is proved. Now fix co2 E ]oh, 0[ and set 

(( t )  = x( t )  -- 7(y(t)) = e TM ~(0) + 1 t (0  + 12(0, 0 _--< t < 3 (3.16) 
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where 
t 0 

I f ( t )  = f e (t-~)a~ hi(s,  t)  ds, I2(t) : e t'4' f e -~a' hi(s,  t)  ds, 
0 - - ~  

and 

Here 

h,(s ,  t )  = f l (X(S) ,  y(s))  -- f l ( y (W(S ,  t)),  w(s, t ) ) ,  

h,(s, t) = A (r(z(s)), z(s)) - A (r(w(s, t)), w(s, t)). 

z(s)  = z(s,  Yo, Y) is the solution of  (3.7) with y : Yo, 
z ( s  - t, y(t), y) is the solution of 

d 
-~s w(s, t )  : A2w(s ,  t)  -[- f e ( y ( w ( s ,  t)),  w(s, t)) ,  

w(t,  t)  = y ( t ) .  

Then the following estimates hold: 

t 

]1 w(s, t)  - y(s)[I ~ n2z(0)  f e ~<~ II r ds, 
$ 
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t 

Ilz(s) - w(s, t)ll ~ g2L(q) f e ~(~ [lr ds, 
0 

0 ~  t < ' r ,  

and w(s, t)  = 

s E R ,  

with 

t 0 

= f e O-~)a~ kl(a, t) da -F f e (s-~ k2(a, t) da 
0 s 

k l ( s ,  t) = f z ( y ( w ( s ,  t)),  w(s, t ))  - f z ( x ( s ) ,  y ( s ) ) ,  

kz(s ,  t )  = f2 (y (w(s ,  t)),  w(s, t))  - f2 (y (z ( s ) ) ,  z ( s ) ) .  

Then (3.18) follows by (3.17) and the Gronwall lemma. Therefore 

t 

I1 hx(s)Ik ~ M2(1 q- b) (L(o)) 2 f e "(~ II r d~ + L(O ) II r247 1, 

O < ~ s < _ t < r ,  
(3.19) 

t 

Ilh2(s)ll~ ~ g2(1 + b) (Z(e)) 2 f e ~(~-s) II ~(s)[l~+l d~, 
0 

s < ~ O ~ t < z .  (3.20) 

z(s)  - w(s, t)  = (z(s)  - y(s))  + (y(s)  - w(s, t ))  

where /z =/z(~) is given by (3.11) and to1 + # < 0. (3.17) is an easy consequence 
of the estimate IIx(t)ll~+1 < q and of  the Grortwall lemma. In order to obtain 
(3.18) it is sufficient to observe that 

s :< 0, 0 :< t -< 7, (3.18) 

0 ~< s --< t < 7, (3.17) 
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Then, by (3.19) and Proposition 1.1, we have, for 0 ~ t < ~-, 

( o9 ,~  2 ! ) s u p  Ile-~*hl(s)ll~ I[e~-~'t II(t)ll~+t =< gl  - o l ,  
O~s~_t 

el(e) sup lie . . . .  ~(s)l[~+l 
O~_s~_t 

M2(1 -~- b ) L ( o ) ~  . 
where c l ( e )=Kl ( ,O l , ( o l+A1) /2 )L (p )  1 +  [-~,Sr--~i ] a n a K l i s g i v e n  
by Proposition 1 ~1 with A = A i. 

By Proposition 1.2 and (3.20) we have als0, for 0 ~ t < z: ., 

lie -~ I2(t)[[~+l ~ K2(--/z, ~ol) MI sup lie us h2(s, t)[[~ 
s~o 

C2(Q) sup lie . . . .  ((s)ll~+t 
O~s<t 

where c2(e) = K2(- /z(e) ,o t )  M!M2(1 + b) (L(p)) 2 1091 +/z(e)[ -1 and K2 is 
given by Proposition 1.2 with A = A1. 

Let ~ " > 0  be such that c l ( Q ) + c 2 ( 9 ) < � 8 9  u 1 6 2  Then, for 0 <  
e < ~ = min{et,  e ' ,e"}  we get, from (3.16) 

lie - ~ '  r =< 2gx IIC(0)l[=+l, 0 < t < ~, 

and the assertion of the theorem follows. [ ]  
We now give the following definition of stability. A compact subset Z' C 

B(0, Ro) C Da(o~ + 1) is said to be uniformly asymptotically stable for the dyna- 
mical system defined by (3.1) if 

i) for any e > 0 there exists ~ > 0 such that if dist (Uo, 2 )  =< ~, then 
dist (uQ),S) <= e, u t E [0, Z(Uo)[; 

ii) there is ~ > 0  such that for any , > 0  there exists T , > 0  such that if 
dist (Uo, Z') ~ ~ and t < z(uo), t ~ T,, then dist (u(t), S)  <= e. 

Obviously, the distance must be understood in DA(o~ + 1). 
We remark that ifZ' is uniformly asymptotically stable and if Uo is sufficiently 

close to Z', then the orbit {u(t); tE [0, Z(Uo)[} is bounded in Dn(or + 1). Unfor- 
tunately this does not imply existence in the large of the solution in B(0, Ro) C 
Da(or + 1) and we cannot conclude that lim dist (u(t), 2') ---- 0. Nevertheless, 

t - -*  OO 

such a conclusion can be derived by Proposition 2.1 if the norm ]]'[1~+1 is replaced 
by 1['[I~+1-~, 0 < ~ < o r  

We shall now give another theorem on stability. 

Theorem 3.4. Assume (3:2) and (3.3) hold and that Z C X2 is a compact uniformly 
asymptotically stable set for the dynamical system defined by (3.14), with ~ <: 5. 

Assume also [[y]] < q for each y E S ,  where M1 is given by (1.13) and b is 
= 8Mlb 

the Lipschitz constant of  9~. Then the set 

Zv  = {(x, y) E Oa~(or + 1) • X2 ;y  E S, x = ~,(y)} 

is uniformly asymptotically stable for system (3.4). 
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Proof. For e > 0, let I(Z', e) = {y E X2 ; dist (y, 27) ~ e}. By known results (see 
[4, Th. 4.2.1}] and [10]), for small e there exists a Liapunov function Q:  I(27, e) 
--> [0, § oo[ such that 

IQ(Y) - Q~)I--< [ly - yll V y, y 6  I(~,,e), 

O(z(t, y, y)) <= e- t  Q(y) for each t ~ 0 such that z(t, y, y) E 1(27, e), 

(dist (y, X)) <= a(y) <= dist (y, Z'), 

where o~(.) is a positive, continuous, increasing function and c~(0)= 0. Let 

e < 8--M-~,b" Following [4, Th. 6.1.4] we define a Liapunov function for system 

(3.4): 

W ( x , y ) : a ( y ) + p l l x - y ( y ) l l ~ + x l  yEI(27, e), xEO.4~(or + l ) ,  

where p ~ 1 is a constant to be chosen later. Then we have .  '~ 

fl (dist ((x, y), -rv)) <= W(x,  y) ~ p ( l +  b) dist ((x, y), 27v) . (3.2!) 

where the distance is in the norm of 2"2 • D~(~  + 1) (whiCh is equivalent to 
the norm of DA(c~ + 1)), and fl-1(~) = ~ + (1 q- b) o~-1(~). Using the Gronwall 

0)a > sup {Re;t; 2E a(-4)}, 

inequality and (3.15), we find that, if Hx0I[~+l =< 
2 M 1 "  

: l[z( t, Yo, Y) - y(t)lI <= cie ~a I I x 0  - 7 ( Y o ) l l ~ + ~  (3.22) 

where: - . . . . .  

2M1/~3'L(e) .... 
c ,  - -  , c 2  = L ( e )  Ma(1 +:'b) ~ 0)a; :' " : " 

0 ) 3  - -  0)1 . . . .  

M 3 is given by (1.14). For t ~ 0 we have 

W(x(t), y(t)) = Q(z(t, yo, y)) q- [Q(y(t)) - Q(z(t, yo, y))] ~- p II x(t) - y(y(t))1[~+1. 

For T ~  0 and tE [T, 2T] we have, by (3.22) and i3115) 
i . : , ,  : 

W(x(t), y(t)) <= e - r  a(yo) + [cleC2t + 2Mlpe ~'r] [[Xo - Y(Y0)I'[~+1. 

Now fix T so that �9 

e e e-C2 T ~ Q e - r  ~ �89 2Mle~ �88 ~ e) < -2-' 2ct --  4M1 

and choose p so large that Cl e2c2r< p---" t h e n  
- - 8 '  

W(x(t), y(t)) <= �89 W(xo, Yo) u t E IT, 2T]. (3.23) 

Finally, setting 

U =  {(x, y) E Da,(~ + 1)•163 yE I(X,e); llx 2 :gJ(y)ll~+x:= < __~__~ ~-c~T~ 
2cl - . ' . '  
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we have, for 

and 

e 
(Xo, yo)~ u,  [Ixo[l~+~ < - - e - C ' r +  b Ilyll ~ zvll2 ' '77" ' 

= 2C 1 

dist (y(T), S)  ~ IIy(T) - z(T, Yo, 7911 + dist (z(T, Yo, 70, S )  

<= cl e ~'r I[Xo - 9'(yo)ll~+l + ~-I(Q(z(T,  Yo, Y))) 

E 
-~- + o~-l(e-re)  ~ e 

ee--C2T 
II x(T)  - 7(y(T)) [1~+1 ~ 2 n l e  ~ II Xo - 7(yo)I1~+ 1 --< 

16cl 

Therefore (x(T), y(T)) belongs to U, and we can repeat the previous argument to 
get 

W(x(t), y(t)) ~ 2 -n W(xo, Yo) Y t E [nT, (n + 1) T], n E ~ ,  

- -  T log2 
and so W(x(t),  y(t)) <= 2e W(xo, Yo). This, together with (3.21), implies 
that Z'v is uniformly asymptotically stable for system (3.4). [ ]  

4. Applications to Critical Cases of Stability 

We first consider stability of the zero solution of  equation (3.1) when 0 is a 
simple eigenvalue of  A-and no other point of  the spectrum lies on the imaginary 
axis. On the assumption (3.2), for any Uo E B(0, Ro) Q Da(or + 1) there exists 
a unique u: [0, r(Uo)] + B(0, Ro) Q DA(o~ + 1) that solves the initial value prob- 
lem (see Proposition 2.1) 

u'(t) = g(u (t)), t ~ 0, 
(4.1) 

u ( 0 )  = Uo. 

The main assumption here is 

(1.11) holds and tr2(,4) consists in the simple eigenvalue 0. (4.2) 

Then there exist ~o ~ 0  such that A~o----0 and ffoEX* such that P z x =  
(x, ~o) and (~o, ~bo) = 1. 

Theorem 4.1. Assume that (3.2) and(4.2) holdandmoreover that g E C*(DA(or + 1), 
D~(~)) and 

(g"(0) (~o, ~o), 4~o) = 0. (4.3) 
Set 

a = (g'"(0) (~eo, ~eo, ~o), 4~o) - 3(g"(0) (~o, A?lPlg"(O) (~:o, ~eo)), 4~o>. (4.4) 

Then, i f  a < O, 0 is asymptotically stable in DA(o~ + 1) and, i f  a > O, 0 is 
unstable. 
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Proof .  As in Section 3, we consider the system 

x'(t) = Alx(t)  + f~(x(t), y(t)), x(0) ---- Xo, 
(4.5) 

y ' ( t )  = f2(x( t ) ,  y( t )) ,  y(O) = Yo, 

where f l  and f2 are defined by (3.5) (with A2 ---- 0), and Xo ---- P~uo, Yo : P2uo. 
Now we choose ~ so small that the results of  Theorems 3.1, 3.2, 3.3 are applicable. 
We remark that if (x, y) is a solution of (4.5) and []y(t)[I ~ �89 0Ro, then u(t) = 
x( t )  + y( t )  solves (4.1); conversely, if u is the solution of (4.1) and llP2u(t)[[ 

�89 ~Ro, then (Plu,  P2u) is the solution of (4.5). 
From Theorems 3.1 and 3.2 there exists a center manifold for system (4.5): 

V : ((x, y) E DA,(cr + 1) • X2 ; x = 7(Y)) 

with y E C3(X2, DA~(o~ + 1)). 
By account of Theorems 3.3 and 3.4 our problem is reduced to studying the 

stability of 0 for the scalar equation 

z ' ( t )  : f2(7(z( t ) ) ,  z( t))  : r ( z ( t ) ) ,  t >: O. (4.6) 

By (3.8) we get 

0 

7'(0) ---: O, 7"(0)  : f e -sal Plg"(O) ds : - A T  IPIg"(O). 
- - o o  

It follows that 

v/(O) = O, r"(O) = e2g"(O) = (g"(0) (., "), r > ~o, 

r '"(O) = P2g'"(O) (', ", ") + 3P2g"(0) (', r"'(O) (', 9 ) .  

Since ~p'(0) = ~p"(0) = 0, W"'(0) (~:o, ~o, ~o) = a ~ 0, the assertion of the theo- 
rem follows easily. [ ]  

Remark4 .1 .  Under the assumptions of Theorem4.1, for tlu0ll~+l sufficiently 
small, the solution u(t, uo) is globally defined with values in DA(~ + 1 --r/) 
if 0 < ~ < ~ +  1. Moreover 

lim I[u(t, uo)l[~+l-n = 0 
t--~ + oo 

(see Proposition 2.1). [ ]  

An example. 
ample in Section 2. We assume (2.12) and (2.13) and we set 

Let us consider again problem (2.11) with the notations of the ex- 

We assume also 

i , j , k =  1,2 ,3 .  

r = Ca (4.7) 

8r 82r (o, o, o), Cu~-  83r r = Tp, (o, o, o), r - @----~pj @, apj @~ (o, o, o), 
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so that (4.2) is satisfied. Set 

,o(X) = r  x, O ~ x ~ ,  

(P2u) (x) = --~ f u(y) sin y dy sin x. 

Now we have 

2 
g"(0) (~o, ~o) (x) = -~- [(~11 - 2ff~3 + q~33) s in2 x + 2(q~2 - q~2a) sin x cos x], 

O ~ x ~ ,  

and (4.3) is satisfied if and only if 

~blt --  2qb13 § qb33 = 0.  (4.8) 

Let us assume, for simplicity, that 

412 = ~)23" (4.9) 

Then (4.4) reduces to 

3 
a = (g'"(0)(80, ~:o, ~o), q~o) = ~-~ (q~111 § 3~33 - 3~3H - q~333) 

1 
+ - -  (~bx22 - ~ 3 2 2 ) .  ( 4 . 1 0 )  7g 

Theorem4.2. Let r C~~ satisfy(2.12), (2.13), (4.7), (4.8), (4.9). Let a 
be given by (4.10). Then, i f  a < O, 0 is asymptotically stable in ho2+2~(0, ~r) and, 
i f  a > O, O is unstable. [] 

We wish now to study existence and stability for small periodic solutions of 
the equation 

u'(t) = f(2,  u(t)) (4.11) 

under the hypotheses 

f(2, 0) = 0, f E  C1(] -  1, I [ •  X) andA =f~(0,  0) : D---> X satis- 
fies (1.2), 

(4.12) 
-}-i are simple eigenvalues of .4, o'2(A ) = (+i, --i), 

f E  C5(] - 1, ![• § 1); DA(o0). 

By standard arguments it can be shown that there exist Ro > 0, /20 E ]0, 1[ 
such that for each 2 E ] -2o ,  20[ and x E B(0, Ro) ~ DA(o~ § 1), the operator 

fx(2, x) : DA(~ § 1) --~ Da(or satisfies (1.2) (with X replaced by DA(o0) and 
sup {llf~(2, X)IIL(~A~§ 12t < 20, IIxL+I < Ro) < + ~ .  Moreover there 
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exists a continuously differentiable path ]- ; t0 ,  2o[-+ C, ;t ~ off;t) + ifl(~), :such 
that 

~(0) = 0, r  1, 

oc(;t) ~ ifl(;t)are simpl e isolated eigenvalues of  the' operator A-(k), where A(;t) = 
L(;t, o). 

The usual transversality assumption is 

~'(0) =1 = O. (4.13) 

Proceeding as in Section 3, w e  consider the system 

x'(t) = A lx(t) + f l  (2, x(t), y(t)), x(O) = Xo, 
(4.14) 

y'(t) = A2y(t) + f2(;t, x(t), y(t)), y(O) = Yo, 
where 

A:]--I,I[xDA,(~+ I)• ;t,X + ~ .y --A~x 

j~: 1 - i ;  l[xDa~(o~ + 1)xX2 ~ X2, 

J~(;t, x, y ) =  P2f(;t, x q - ~ ( Y ) y ) - ~ o ( Y ) A z y  
, ' , 

and ~p:X2--~R is a C ~ function satisfying (3.5); ~ is a positive number to be 
chosen later. 

We have now to generalize the results of Section 3 to the case of  equations 
depending on a parameter 2. This generalizati~0n is quite  standard and the proofs 
will be only outlined. 

Theorem 4.3. Assume (4.12) holds. There exists "~ > 0 and a four times eotitinu: 
ously differentiable function >" : ] -5 '  ~[XX2-+ DA~(or q- 1), With >,(2, 0 ) =  0, 
such that i f  ~ <= 5, yo E )(2, Xo + >'(2, Yo), 2 C ] - 5 ,  ~[, then the solution (x, y) of  
(4.14) is defined for all t >= 0 and x(t) = >'(2, y(t)) V t >= O. 

Proof. We shall use a standard device, setting 

~ = (2, y); [1~[[ = I;tl + Iiyll 
and writing the first equation of  (4..14)as 

y ( t )  = d2~(t) + fz(x(t),  )(t)) 
where 

A2) " A2(;t,Y) = (0, A2y); 

�9 j2(x ,  j , ) ( o , A ( ; t ,  x, y ) ) .  

Furthermore writing 

f~(x,,~) = (o,A(;t ,  x, y)) 
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we get the following system, which is analogous to system (3.7)-(3.8): 

~:'(t) : .42z(t) q-/z(y(z(t)), ~:(t)), t E R ,  

~:(0) : j:, (4.15) 
0 

~,(~,) = f e- 'A']l(7(k(s)) ,k(s))  as, y E ] - 2 o , 2 o [ X X 2 .  
- o o  

We have to find the solution in the set 

jz = {~: 1-4o,  2o[X X2 --~ OA,(o~ -4- 1); 7'(2, 0) = 0, II~'(Y)II ----< e, 

II~,(h)(~)ll =< bh, h --= 1, 2, 3, [l~,O)(~) - ~,<3)(~')11 ==_ b ,  IIJ' - ~'l[}- 

Now the proof  that such a solution exists is based on arguments used in the proof  
of  Theorems 3.1 and 3.2 and so it will be omitted. [ ]  

The proof  of  the following result is similar the proof of Theorem 3.3. 

Theorem4.4. Assume (4.12) holds. For 12[ < ~,xoEDa~(0r q- 1) ,yoEXz let 
(x(t), y(t)) be the solution o f  (4.14) in some interval [0, z[. Then there exist 
QI E ]0, ~[, cl,c2 > O, co t< O, such that for ~ < O1, 121 < ~l and IIx011~+~ > c=o 
we have 

IIx(t) - ~'(~, Y(t))l[~,+l ~ c l e  ~ Ilxo - ~,(A, yo)[l~§ V t E [0, z[. [ ]  (4.16) 

We now set 

v~ = ((x, y) E DA,(~ + 1) • X2 ; x = ~,(~, y)} 

= {Uo E Z~A(~ + 1); P luo  = ~(Z, P~Uo)} 

and assume that a compact set Z'(2) C Xz is uniformly asymptotically stable for 
the dynamical system defined by the equation 

z'(t) = A2z(t) + ]'2(2, 7J(A, z(t)), z(t)) = h(2, z(t)) (4.17) 

for some 2 E ] - ~ ,  ~[ and 0 E ]0, ~[. Then, setting 

Z'v(2) = {(x, y) E Da~(o~ q- 1) x )(2; y E ~'Q.), x : ~,(2, y)} 

and arguing as in Theorem 3.4, we can see that if dist (~'v(2), 0) is sufficiently 
small, Z'v(2) is uniformly asymptotically stable for system (4.14). Theorem 4.3 
assures that V~ is attracting (for initial data near 0). Hence if (4.11) has a small 
periodic solution u, then u(t)E Va for each t. Our problem is now reduced to 
looking for small periodic solutions of (4.17). We have 

hE C ' ( ] - e l ,  e t [ •  Xg,  h(L 0) = 0, hx(0, 0) = A2, 

and upon setting 

d(a )  = hx(~, o) 
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we see that there exists 02 E ]0, Q1] and a continuously differentiable function 
] - ~ 2 , ~ 2 [ - + C ,  2--->&(2) + i/~(2) such that 

~(~), t~(~) E R ,  

~(0) = O, #(0) = 1, 

~(2)-r i/~(2) are simple eigenvalues of  (A~(2)) ~ . 

It is easy to show that 

o,'(0) + o ~ &'(0) #: o. 

Then to study existence and stability o f  small periodic solutions of  equation (4.11), 
it suffices to use the standard results for the two-dimensional case (see for instance 
[7]). In particular, conditions (4.12) and (4.13) ensure that there exist small 
periodic solutions of  equation (4.17). More precisely, there exist ao > 0, ro > 0, 
and C a functions 2:  ] - t ro,  tro[--->R, p :  ]-ao, ao[--->R,z: ]-ao, ao[-->B(O, ro) 
C Clff t ;  X2) with 2(0) = O, p(O) = 2~, z(O) = O, such that z(a) isp(a)-perio- 
dic and not constant for a =4= O, and 

d 
~ -z (a )  (t) ---- h(2(a), z(a) (t)), t E R ,  (rE l - ~ o ,  ao[. (4.18) 

Concerning the stability of  the orbit described by z(a), one can use the standard 
methods of  [7]. 

Now using Theorem 4.3 and 4.4 we get the following result: 

Theorem 4.5. Assume that (4.12) and(4.13) hold. Then there exist ao > 0 and C 3 
functions 2: ] - a o ,  ~ o [ ~ R , p  : ] - a o ,  ~o[ - + R ,  u: ] - a o ,  ao[-+ C(R;  DA(g + I)) 
/q CI(R;  D~(cr such that 

2(0) = 0, p(0) = 2z~, u(0) = 0, 

for a :#: 0, u(~r) is not constant and is p(a)-periodic, (4.19) 

d 
-d-7 u(~) (t) =f(a(~),  u(a) (t)), tER, ~E 1-~o, ~o[. 

Moreover, i f  for some aE ]O'o, ~o[ the set ~ = {z(cr)(t) = P2u(o)(t); tE R} is 
uniformly asymptotically stable in X2 for the dynamical system defined by (4.17), 
then Zv  -~ (u(a) (t); t E R }  is uniformly asymptotically stable in DA(or + 1) for 
the dynamical system defined by (4.11). [ ]  

Another approach to the study of  existence of small periodic solutions of  (4.11) 
can be found in [3]. 

An Example. Consider the system 

ut(t, x) = ~b(2, u(t, x), v(t, x), Uxx(t, x)), t E R,  x E [0, ~], 

vt(t, x) = V(2, u(t, x), v(t, x)), t E R,  x E [0, 7~], (4.20) 

u(t, O) = u(t, ~) = O, t E R .  
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~b E C~176 1, 1 [ x R  a; R), qb(2, 0) = 0, 

~o E C~(] - 1, I [ x R 2 ; R ) ,  ~p(2, 0) = 0, 
(4.21) 

Assume 

where 

~i(/~) = ~/(/%, 0), ~)j(2) : ~ j  (/~, 0), i = 1, 2, 3, j : 1, 2. 

Hence, if 

the operator 

ck~(0) =t= 0. (4.22) 

Then, for 121 sufficiently small, the spectrum of A(2) consists in the solutions of the 
equations 

~ - ~ ( - k % ( 2 )  + ~2(Z) + r - k ~ ( Z )  +~(~) 

+ v,~(,~) #,~(~) - r v,~(~) = o, k = 1, 2 , . . .  

~a(0) > 0, (4.23) 

A = A ( 0 )  is elliptic and satisfies (1.2). Moreover, if 

(~o2(0)) ~ + r ~,(0) = - 1, 
(4.24) 

r = ~o~(0) + r 

then A satisfies (4.12). Finally, the transversality condition (4.13)is satisfied if 

4~(0) :# ~0~(0) + ~i(0). (4.25) 

For any aE]0 , �89  we have 

Da(~x) : h~'([0, ~]) �9 C]([0, hi), 

Da(o~ + 1) = h~+z([0, z~]) G C~([0, z~]) 

x = c([o, =1) �9 c~([o, =1), 

D = Co~([0, =1)) �9 Co~([0, =]), 

and endow X and D with their natural norms. Setting 

((u)) = r  uvu,1 
f : ( ] - I , I [ •  f 2, v [~o(2, u,v) J 

we can write system (4.20) in the form (4.11). Clearly f E  C~(] - 1, 1 [ • D; X) and 
moreover 

A(2) ---- f~(2, 0) = 
v v Lv'~(2) u + ~(~ , )  v 
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(h2o~([0, ~]) and h2~+2([0, ~]) are defined in the preceding examples). I t  is easy to 
verify that  

f~  c~176 I[• + 1); D~(~)). 
Then, if  (4.21) . . . .  , (4.25) hold, there exist periodic solutions of  (4.20). In order 
to study the stability of  the periodic orbits given by Theorem 4.5, one can use 
the known results given in [7] for  equation (4.17): one has to compute several 
derivatives of  the functions h and x, and this can be done using (4.15) and (4.17). 
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