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Introduction 

After a long history of special theories of diffusion and chemical reactions, 
TRUESDELL [1957] established the basic thermomechanical balance laws for mix- 
tures, 1 and BowEN, 2 MOLLER [1968], and TRU~DELL [1968] proposed workable 
forms for the second law. Using this framework together with the COLEMAN-NOLL 
[1963] interpretation of the second law, MOLLER [1968] 3 developed a theory of 
non-reacting fluid mixtures, 4 and BOWEN [1969] established a general theory for 
mixtures of chemically reacting elastic materials. 5 

In this paper I discuss chemically reacting, but inviscid, fluid mixtures. Among 
the new results I establish are the following: 

(i) The stress-diffusion matrix is symmetric. The stress diffusion matrix is 
that matrix whose (~,/3) entry is the derivative of the stress vector of constituent 
with respect to the velocity of constituent ft. 

(ii) When the diffusion velocity u, of constituent ~ is small, the diffusive 
energy flux is approximated by its classical counterpart ~lL, p,u,, where/~, is the 
chemical potential and p, the density of ~. 

(iii) The elasticity matrix corresponding to a strong equilibrium state is sym- 
metric. This matrix plays a crucial role in the linearized theory and in wave prop- 
agation studies. 

(iv) When the diffusion velocities and the gradients of density and temperature 
are small, and when the underlying state is one of strong equilibrium, to within 
second order terms the heat flux depends only on the temperature gradient and 
the diffusion velocities, and the mass supply (due to chemical reactions) depends 
only on the chemical potentials. 

For  convenience, I omit smoothness hypotheses; it will be clear from the con- 
text what these ought to be. 

1 See also NACHBAR, WILLIAMS, & PENNER [1959], KELLY [1964], and GREEN & NAGHDI 
[1969]. 

2 See TRUESDELL [1969] (Footnote on p. 88). 
3 Thermodynamic theories were put forth before 1968 by ERINGEN 86 INGRAM [1965], GREEN & 

NAGHDI [1965, 1967], CROCHET 86NAGHDI [1966, 1967l, GREEN & STEEL [1966], Mills [1966, 
1967], BOWEN [1967], INGRAM 86 ERINOEN [1967], and ATKIN [1967l. As MOLLER [1968] and 
TRUESDELL [1969] have pointed out, all of the above theories suffer from serious defects. 

4 See also DUNWOODY 86 MOLLER [1968], GREEN & NACm3I [1968], DORIA [1969], CRAINE, 
GREEN 86 NAGHD1 [1970], and DUNWOODY [1970]. 

S See also BOWEN & WI~SE [1969l, GREEN 86 NAGHDI [1969], BOWEN & GARCIA [1970]. 
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1. Preliminary Definitions. Terminology 

Throughout this paper IR, IR +, and ,e" denote, respectively, the reals, the 
strictly positive reals, and the vector space associated with three-dimensional 
Euclidean space. Given a (second-order) tensor S, S r designates its transpose and 
sym S = �89 (S + S r) its symmetric part. We denote the tensor product of two vectors 
u and v by u | 

The mixtures we study will have N constituents; for convenience, we identify 
the set of constituents with the set {1, ..., N}. Further, the letters 0e and/~ will 

N 

always denote constituents, and we write ~ f~  and ~ f~  for ~ f~. We use the follow- 
ing notation: , �9 = 1 

p~ is the mass density of constituent 0~, 

v~ is the velocity of ct. 

In addition, we write 

p=~p~ ,  P~ 
C o l : - -  , 

P (1.1) 

p is the total mass density, c, the concentration of ~, v the velocity of the mixture, 
and u, the diffusion velocity of cc Clearly, 

2c =1, (1.2) 

Since we are dealing with a fluid mixture, it is more convenient to work with the 
spatial description of any given motion. Thus a motion is specified by prescribing 
v=(x, t) and p~(x, t) as functions of spatial position x e ~  and time t; here 
denotes a fixed region of space occupied by the mixture during some time interval. 

We write grad and div for the spatial gradient and spatial divergence, i.e., the 
gradient and divergence with respect to x holding t fixed. Given a scalar field 
f ( x ,  t) and a vector field f (x ,  t), we define the material time derivatives f (x,  t) 
and. f  (x, t) through 

f = ~ t  + ( g r a d f ) . , ,  f =  ~-~-ft + ( g r a d f )  v; (1.3) 

we then have the identity 

grad ~/= grad f +  (grad v) r grad f .  (1.4) 

2. Basic Laws 

For the basic laws of our theory we postulate the following: 

balance of mass for each constituent 

~+p~divv~+u~. gradp~=pc +, 

balance of momentum for each constituent 

p~ !;~ + p~ (grad v~) u~ = div T~ +p~ b~+p~ 1 + 
14 Arch. Rat ional  Mech. Anal. ,  Vol. 43 

(2.1) 

(2.2) 
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balance of energy for the mixture 1 

pe=-div(q+j)+~(T~-p~u~| (2.3) 

growth of entropy for the mixture 

4, p ~ > - d i v  + 0 " 

Here  

T~ is the  stress tensor for  ~ ,  

b~ is the  body force for  0~, 

! + is the  momentum supply for  0t, 

c + is the  mass supply for  0t, 

e is the  internal energy, 

q is the  heatflux, 

j is the  diffusive energy flux, 

r is the  heat supply, 

s is the  entropy, 

0 is the  temperature. 

W e  also pos tu la te  t ha t  

y + (2.5) 

t h e n  (1.1), (2.1), a n d  (2.2) i mp l y  the  laws of mass  a n d  m o m e n t u m  ba l ance  for  the  
m i x t u r e :  

p + p d i v v = 0 ,  

p~=div(T-~p~u~| ~p~b~, (2.6) 

where  

T = ~  T,~ (2.7) 

is ( the i n n e r  pa r t  of) the  total stress. 

1 In MOLLnR'S [1968] theory the term j is not present in the energy equation and the term 
q/O in the entropy inequality is replaced by an arbitrary entropy flux O. To see that there is no 
contradiction between M O L ~ ' S  theory and the one presented here, let q' denote the heat flux 
in the former. If we define a new"heat  flux" q by q = 0 0  and a diffusive energy flux j by j= q'-- q, 
then MOLLER'S equations (2.16), (3.4) reduce to my (2.3), (2,4). The difference is simply a matter 
of taste. Indeed, within the context of the classical theory of mixtures I would view the quantity 
~lz~p~u~, where/z~ is the chemical potential of at, as a flux of energy (as does ECr, ART [1940]), 
while MOLLER would view --(~lz~p~a~)/O as a flux of entropy (as do MEtXNER & REr~ [1959] 
and DEGROOT & MAZtm [1962]). I take the point of view that the "heat flux" is that vector 
field which when divided by the temperature gives the entropy flux. 

The theory presented here falls within Bowmq's [1969] framework provided we take j to be 
a certain specified linear function of the diffusion velocities. 
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If we use (2.2) to eliminate b, in (2.3), we find, with the aid of (1.1), (1.2), (2.1), 
and (2.6)1, 

p ~ =  - div(q + k ) + ~  T,. g r a d v , -  ~ n,.  u ,+pr ,  (2.8) 
where 

e , = e - � 8 9  u 2 (2.9) 

is the inner part of the internal energy and 

k = j + ~ ( T r - � 8 9  u 2 1)u, ,  n ,=p , !  + +�89 + u,. (2.10) 

If we define (the inner part of) the free energy by 

~k=e~-Os, (2.11) 

then (2.4) and (2.8) yield the reduced dissipation inequality: 

T~. gradv~+divk+~n~. U,+ O q.  grad0=<_0. (2.12) p(~l + s O ) - ~  

3. Constitutive Assumptions 

We consider a mixture defined by constitutive equations in which 

~, T~, s, q,j ,  i+,, c +, are functions o f  (~, O, grad~, grad0, ~), (3.1) 

where, for convenience, we have used the notation 

P=(P l  . . . . .  Ps),  grad~=(gradpx,  . . . ,  gradpN), ~=(v~, . . . ,  eN). (3.2) 

We assume that the response functions are isotropic and that c, + and 1, + are con- 
sistent with (2.5). Further, in order to make our theory consistent with material 
frame indifference, we require that 

f (~ ,  0, grad~, grad0, ~)=f (~ ,  0, grad~, grad0, ~+~)  (3.3) 

whenever f is one of the response functions in (3.1) and ~=(a ,  ..., a). Clearly, 
(3.3) implies that 

=0 (3 94~ 

and that 
f (~ ,  0, grad~, grad 0, ~ )=f (~ ,  0, grad~, grad 0, ~), (3.5) 

where 
u = ( u l  . . . . .  aN) (3.6) 

with u~ the diffusion velocity (1.1)4. 
We also assume that: I 

(A) Given a point Xoe~,  a neighborhood ~o of Xo, an initial density distri- 
bution Po: ~o--'(IR +) N, a time interval [0, to), a temperature field 0: ~o x [0, to)-, IR +, 
and a velocity distribution ~: ~o x [0, to)-,3e'N; there exists a ~ = ~ o  with X o ~ ,  a 

1 BOWEN [1969] was the first to notice than an assumption of this type is necessary when 
chemical reactions are present. See also COLEMAN & GtmTrN [1967], who utilize an assumption 
of this type in a slightly different context. 
14" 
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ze(0, to), and a solution ~: ~ x [0, z)--+(IR+) P/of (2.1), i.e. of 

~++p+ divv, + u,(~, +). gradp+=p(~) c + (~, 0, grad~, grad0, +) (3.7) 

on ~ x (0, +), such that 
~(x, 0 )=~  o for x e ~ .  (3.8) 

Of course, in (3.7) u+(~, v) and p(~) are given by (1.1). 
An array (~, 0, +, ~b, ~r, s, q,j ,-i  +, ~+) of fields on ~ x[0, +) (with values in 

appropriate spaces) will be called a constitutive process if it is consistent with the 
constitutive assumption (3.1) and balance of mass (2.1). Here T=(T~ . . . . .  TN), 
7 + = (l~- . . . .  , /+),  and ~ + = (el +, . .... c~). Assumption (A) insures that given Xo, Po, v, 
and 0 there exists an associated constitutive process in some neighborhood of Xo. 

Note that by (1.1), (2.10)1, and (3.1), 

k = k (p, 0, grad ~, grad 0, ~). 

For convenience, we introduce the following notation: 

thus 

�9 t~k ak 
dlv o k = ~ - ~ p  �9 grad p~ +--~- .  grad 0, 

d i v l k = ~  ~k ak a (grad p~) "gradE p~ "{" t~ (grad 0) "grad2 0; 

divk=divok +divl k + ~ { ak ] T. gradv~. 

(3.9) 

(3.10) 

4. Consequences of the Second Law 

Given a constitutive process 1 (2.2) and (2.3) can be used to determine the body 
forces b~ and the heat supply r necessary to sustain the process. On the other hand, 
the inequality (2 .4 ) -o r  equivalently (2.12)-will  be satisfied in every process if 
and only if certain restrictions are placed on the response functions. The next 
theorem lists these restrictions, z 

T h e o r e m  4.1. A necessary and sufficient condition that every constitutive process 
obey the reduced dissipation inequality (2.12) is that the following four statements be 
true: 

(i) The total stress is a pressure: 

T= - p l .  (4.1) 

(ii) ~, p, and s are independent of  grad fl, grad 0, and v: 

~b = ~b(p, 0), p=p(p,  0), s=s(p, 0); (4.2) 
moreover, 

(4.3) ap~ ' s = -  a--6" 

t Note that, by definition, the mass balance relations (2.1) are satisfied by every constitutive 
process. 

2 Cf. MOLLER [1968, w 5], DORIA [1969, w 5], BOWEN & WmSE [1969, w 5], BOWE~ [1969, w 6]. 
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(iii) The constituent stress T~ is given by 

T ` ` =  -pp``~-~-~p l .  (4.4) 

( iv)  In every constitutive process 

divo k + p F~ 0-0~- [p c~ - u`  ̀ g radpJ  + Y  n`  ̀�9 1 �9 u`` + ~ -  q. g rad0<0 ,  (4.5) 

divl k = 0. 

ProoL The proof of sufficiency follows upon direct substitution. To establish 
the necessity of (i)-(iv), we assume that every constitutive process obeys (2.12), 
or equivalently, in view of the constitutive assumption (3.1), balance of mass (2.1), 
and (3.10), 

P(~-o +s) O-~[PP``-~p l+T``-(-~v~)r]'gradv`` 

oo oo - q 
�9 �9 grad 0 + ~ ff~-v~" t~ (grad p``) grad p``-F 0 ( g r a d  O) 

(4.6) 
0 r  § 

+ p E ~-~o " [pc,, - u`̀  . gradp``] 

1 
+ div0 k +div 1 k + ~  n``. u``+- 0- q- grad0 < 0. 

It follows from Lemma 6.1 that 0, grad p``, grad 0, ~``, and grad v`̀  can be specified 
arbitrarily in (4.6), and this observation yields (4.2)1,3, (4.3)2, and (4.4). Next, it 
follows from (2.10) and (3.1) that (3.3) (and hence (3.4)) holds w i t h f = k ;  thus, if 
we sum (4.4) from 1 to ct, we are led to (4.1) and (4.3)1. Next, div 1 k is the only 
term in (4.6) involving second gradients; thus it follows from (3.9)2 and Lemma 6.1 
that 

a k ~ = ~ k 

which implies (4.5)2. Finally, (4.1)-(4.4), (4.5)2, and (4.6) yield (4.5)1. [] 

We assume for the remainder of the paper that (i)-(iv) of Theorem 4.1 hold. 

Let n be a unit vector. The quantity 

t``(n) = T`̀ n (4 .8 )  

is the stress vector for constituent g (corresponding to the unit normal n). By (3.1) 

Ot``(n) (with t~(n) is a function of (~, 0, grad ~, grad 0, ~). We call the matrix 0v~ 
tensor entries) the stress-diffusion matrix. 

Theorem 4.2. The stress-diffusion matrix is symmetric; i.e. 

( otp(n) 
Ov~ = \  Or`̀  ] (4 .9 )  

for every unit vector n and all constituents ~, ft. 
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Proof. Let x = k .  n. Then (4.4) implies 

t,(n) = - ~  - p p, ~ n; (4.10) 

since the second term (4.10) is independent of ~, if we differentiate t~(n) with 
respect to vp, we are led at once to (4.9). [] 

We call the quantity 

[.O~k 1 ~-~-2--_0~k] (4.11) /Z== ll=(~, O)= p 

the chemicalpotential of c~; note that 

E#==0. (4.12) 

In view of (2.5) t and (4.11), we can rewrite (4.5) as follows: 

00 �9 u~+-~-q, gradO+p~#,c+~ <0. (4.13) 

Further, by (1.1), (1.2)2, (2.1), (2.5)1, (2.9), (2.11), (4.1)-(4.3), and (4.11), the 
energy equation (2.3) takes the form 

p(O~+�89 ~ c~-~u~) = - div (q + j - ~  p=p, u=)-~(p~ u~ | u~). gradv 
(4.14) + ~p~u,. (b=-gradla~)-p~#,c+~ +pr. 

In the classical theory of fluid mixtures the diffusive energy flux has the form 
j=~#,,p,u,, ,  so that the divergence term in (4.14) reduces to - d i v  q. The next 
theorem shows that in the general theory the diffusive energy flux is approximated 
by its classical counterpart. 

Theorem 4.3. The diffusive energy f lux j =j(~, O, grad ~, grad 0, ~) vanishes 
when the diffusion velocities vanish. Moreover, 

j =~# ,p ,u ,+O( l~ l  2) as ~--,6. (4.15) 1 

Proof. Let Q = 03, 0, grad ~, grad 0). Since the material is isotropic, it follows 
from (2.10)1 that k = k(t2, ~) is an isotropic function. Thus, by (4.7) and Lemma 6.2, 

k(fl, 6)=0 ,  (4.16) 2 

and we conclude from (2.10)1 that 

j(E~, 6)=0. (4.17) 
Next, by (1.1)3.4, 

a up = (6,p - c,) 1; (4.18) 

1 In our definition of the chemical potentials/~= ~-~p+ v, with v chosen so that (4.12) holds. 

In view of (1.2)2, the result (4.15) is independent of the particular choice of the function v. 
2 For binary mixtures DORIA [1969, Eq. (6.35)] established the stronger result that k= ~u 

(u= u l =  --u z) with ~= ~(Pt, P2, 0, [u D, which implies, by (4.4) and (4.2), that T~ is independent 
of grad p and grad 0; unfortunately, these results are restricted to binary mixtures. 
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thus if we differentiate (2.10)1 with respect to v~ and use (2.7), (4.1), and (4.4), we 
arrive at 

Oj = p p , , - ~ p - c , , p  1 when ~ = 0 .  (4.19) av~ 
Therefore 

j(f2, ~ ) = ~  ( p p ~ , - ~ - c , , p ) v , + O ( ] ~ ]  2) as ~- ,0.  (4.20) 

But by (3.5), j(t2, ~)=j(t2, ~); thus, by (1.2)2, 

j(t2, u ) = ~ p p = - - ~ u , , + O ( l r [  2) as ~--,0; (4.21) 

and this result, in conjunction with (1.2)2 and (4.11), implies the desired result 
(4.15). [] 

5. Results near Equilibrium 1 

Let (Po, 0o) be given, and, for convenience, let 

f~ = grad p~, f =  grad ~, g = grad O, 
(5.1) 

=(~, o , f  g, ~), ~o =(~o, Oo, ~, o,~). 
We call % an equilibrium state provided 

c + (%) = 0 (5.2) 

for every constituent ~c Let h denote the left-hand side of (4.5), or equivalently, of 
(4.13). It then follows from (3,9)1, (3.1), (2.10), and (4.11) that 

~k ak ~ 
h = h ( ~ ) = ~ .~p . f , _t_ __~O_ . g _F ~ ( n, _ p _~_~ f ,, ) 1 �9 u~,+-~-q .g+pE~, ,c  +, (5.3) 

and it is clear from Theorem 4.1 and Lemma 6.1 that 

h(~)<0 (5.4) 

for every a in the domain of the response functions. If % is an equilibrium state, 
then (5.2) and (5.3) imply that h(%)=0, so that 

h(~) is a maximum at a=%. (5.5) 
Thus 

ah 

where the subscript " 0 "  indicates that the corresponding function is to be eval- 
uated at ~ = %, and we have the following result: 

\ apa ]o \ d0 ]o =0" 
(5.7) 2 

1 In the absence of chemical reactions (c + ------0) eoery % of the form (5.1) s is a strong equilib- 
rium state; thus all of the results of this section apply also to diffusion without chemical reac- 
tions. 

2 Cf. BOWEN [1969, Eq. (7.19)]. 
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Here fl~=#~(Po, 0o). In addition, since c~ + is an isotropic function, 

( ~c: ~ =( ~: 1 =~ ~: 1 = o  ~ 
Ofp ]o \ Og /o \ OVp /o 

It follows from (5.2), (5.7), and (5.8) that 

E c :  o 2 ( a ) # , = 0 ( l ~ - % [ )  as ~ o ,  (5.9) 
where 

Io-%l=l~-~ol  +lO-Ool + lfl +lgl +l-il . (5.10) 

We say that an equilibrium state % is strong provided 

~c,+(~)l]~--O(l~-~ol 3) as ~--'~o. (5.11) 

Remark. To see that this is a natural generalization of the usual notion of 
strong equilibrium, we assume, for the time being, that there are R independent 
chemical reactions: 

R 
+ 

c~ = ~ v, ,d , ,  (5.12) 
, = 1  

where v~, is the stoichiometric coefficient of constituent ~ in the reaction r divided 
by the molecular mass of ~, and J,=J,(~) is the reaction rate of reaction r. The 
chemical affinity of reaction r is defined by 

A,=A,(~,O)=Zv,,#,(~,O ). (5.13) 

In this instance it is customary to call % a "strong equilibrium state" provided 1 

J,(%) =A,(po, 0o)=0.  (5.14) 

In view of (5.12), (5.14) implies (5.2). Further, by (5.12)-(5.14), 

+ o Zc, 0)~,-0. (5.15) 

Thus our notion of a strong equilibrium state is somewhat weaker than the standard 
definition. For all of our results it suffices to use the definition containing (5.11). 

With a view toward determining the behavior of the response functions near 
equilibrium, we first determine some of the more obvious consequences of iso- 
tropy. First of all there exist scalar functions p,(k, 0) such that 

T,(p, 0, 0, 0, 0)= -p , ( p ,  0)1. (5.16) 

Next, if % is an equilibrium state, then, clearly, 

( --0 for , ,  or 

1 TRtmSDELL [1969, p. 107]. See also BOWEN [1969, p. 121]. 

(5.17) 
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Further, there exist scalars x, ~ ,  ?~p, y~, and 2~p such that 

~l+ ~ (p al_g_:  
~3g /o = - ~ 1 ,  

207 

(5.18) 

app,o  wf;. )o 
and, in view of (2.5), (3.4), (4.18), and (5.2), 

~ ~c~ = ~  ~,~p = ~  ~,~p =~.  ?~= 0. (5.19) 
p 

We call x the conductivity and If ?~a II the momentum supply matrix. The matrix 
[I 2,p II is of importance in applications. Indeed, if we consider the linearized system 
of momentum equations appropriate for small departures from the equilibrium 
state %, then (after dividing by p~ o) the term involving grad p~ o in the a-th equation 
has the form ~2~pgrad pp. For this reason we call [] 2~  I[ the elasticity matrix. 1 

p 

Theorem 5.1. Let  % be a strong equilibrium state. Then 

(a~(p~) 
(5 ~20~ 

~ ~ ] o' 

(a-~)o=O, (5.21) 

Oo p -~o +~p+ + ppp awp+ ~.2)~pw~wp>O \ S0 ]o o ~,p - (5.22) 

for  all a, w I . . . . .  wN~la; 

so that, in particular, the conductivity ~ >0  and the momentum supply matrix II ?~p HI 
is positive semi-definite. 

Proof. By (4.11) and (5.11), 

�9 ~ - ~  ] o = 0  whenever a = f a , g ,  or vp a n d d = f r , g ,  or yr. (5.23) 

Next, it follows from (4.16), (5.3), and (5.23) that 

a2 h \ 
a f - - ] ~ )  o =0" (5.24) 

1 In fact, GURTIN [1971 ] has shown that in the purely mechanical theory the linearized equa- 
tions for the densities have the form 

Pa = Po ~ ~' 2~ p A Pp + terms involving ~p and div bp. 
P 

Thus the elasticity matrix plays an essential role when studying the propagation of small-amplitude 
disturbances. 
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Thus, in view of (5.5), 
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c~f~ag]o \ cof~c~rp ]o =0" (5.25) 

The first of (5.25), in conjunction with (5.3), (4.16), and (5.23), yields (5.21). On 
the other hand, the second of (5.25), (5.3), and (5.23) imply 

(5.26) 

By (2.5)2, (2.10)2, and (5.2), 

cOn=] =0  whenever a=fp ,  g, or rp, (5.27) cOI+~ IcOn ] 
cOa/o and E cOa/o 

and (4.4), (4.18), (5.16), (5.18)s, (5.26), and (5.27) yield, after some manipulation, 
the result (5.20). 

Next, by (5.5), 

t cO2h\ ( cO2h I ] 

for all vectors a, wl . . . . .  wN. If we take a = a e  and w~ =w~e in (5.28), where e is 
a unit vector, and use (4.3), (4.4), (4.16), (4.18), (5.3), (5.16), (5.18), (5.23), and 
(5.27), we are led to (5.22). [] 

As a direct consequence of (5.20) we have the following important result. 

Corollary 5.1. Let % be a strong equilibrium state. Then the elasticity matrix is 
symmetric: 

2~#=2#~. (5.29) 

The next corollary follows from (1.1)4, (5.17)-(5.19), and (5.21 ); it asserts that 
near a strong equilibrium state to within terms of O (1 ~ -  % 12) q depends linearly on 
grad 0 and ft. 

Coronary 5.2. Let % be a strong equilibrium state. Then 

q = - x g - ~ x ~ u ~ + O ( l ~ - % l  2) as ~ % ,  (5.30) 1 

where q = q 0). 

In view of (1.1), we can take p, c~, ..., cN as independent variables in place of 
p~, ..., p~v, i.e., e.g., 

Y,(Pl . . . . .  PN, 0)=/t,(Cl p . . . . .  cup, 0)=/~,(p, 0, C l . . . . .  CN). (5.31) 

By (1.2)1 and (4.12), the vectors c'=(cD ..., cN) and ~=( /q ,  ..., #~) both lie on 
planes in IR s of dimension N -  1. We assume that the mapping 

~--~(p, 0, ~) (5.32) 

1 Cf. Mi2LLER [1968, Eq. (7.28)I], DORTA [1969, Eq. (7.31)], BOWEN & GARCIA [1970, Eq. 
(6.14)]. All of the above treat diffusion without chemical reactions. 
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is invertible in some neighborhood of %. Then in this neighborhood we can express 
the mass supply as follows: 

+ + 
c~ = c, (p, 0, ~,/~ g, ~). (5.33) 

Let 

z ~ # = -  \ 0## ]o;  (5.34) 

we call 11 ~#  II the mass supply matrix. The next theorem shows that to within 
terms of O ( l a - ~ o l  2) c~ + depends only on #1 . . . . .  PN. 

Theorem 5.2. Let ~o be a strong equilibrium state and assume that the mapping 
(5.32) is invertible in some neighborhood of%. Then 

C :  o .  2 =-Zx~a(~a-~a)+O(la-aol  ),  (5.35) 
p 

where G + = c~ + (~). Moreover, the mass supply matrix tl T~# II is positive semi-definite 
and 

(5.36) 

Proof. First, since c + is isotropic, 

( Oc+~ ~ (Oc+~ ~ (Oc+~ I = 0  (5.37) 
-g~/# Io = Y--~# Io = ~ 0'~# :o " 

If 
I---6, g = 0 ,  ~ = 6 ,  (5.38) 

then, letting 
' ~ p '  O' l t~=l~-#~,  = P - P o ,  = 0 - 0 o ,  

8 = ~  Ip '~l+lp ' l+lO'[ ,  (5.39) 

we conclude from (5.2), (5.3), (5.4), (5.11), (5.33), and (5.34) that 

X'~C + , . 0 , 8 3 ,  

%2 + o0, / : + 0 ( 8 3 )  (5.40) 

as 8~0.  Thus 
(ac:  (Oc:  

Op / o = \  O0 7o =0  
(5.41) 

and II ~ #  II must be positive semi-definite. Finally, the Taylor expansion of (5.33) 
about % reduces to (5.35) when account is taken of (5.2), (5.37), and (5.41). []  

6. Two Lemmas 

Lemma 6.1. Let ~*=(~*, 0* , f* ,  g*, ~*) be an arbitrary element in the domain 
o f  the response functions. Let Xoe~;  oJeIR; a~, d~, b~3e'; and suppose that F~, G, 
and L~ are tensors with F~ and G symmetric. Then there exists a constitutive process 

[ tic+ 0 e+ I lies in the "tangent space" 1 The derivative \ 0/zl ..... ap N {(~o I ~N)~IRN [ ~ / o}. 
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whose domain contains (x o, 0) such that when x= x o and t=O: 

~-(p,  0, gradp, grad0, v)=o*, 

/7 = w, I;, = a , ,  grad p, = dat, grad 0 = b, 

grad2 pat = F~t ,  grad2 0 = G, grad vat = L, .  

(6.1) 

Proof. Let v* denote the mixture velocity corresponding to ~*=(v* . . . . .  v*) 
and ~* =(p* . . . .  , p*) in the sense of (1.1)9, let 

and let 
r : X - - X o ,  

O(x, t)=O* + t[og--g *. v*]+[g * +t(b-Gv*)]  . r +�89 Gr, 

v~(x, t)=v* +t[aat-L~v*]+L~r+�89 eat, 

=p~ fat. r +�89 F~r , po~(X, t) *+ 

(6.2) 

(6.3) 

where eat is, as yet, unspecified. Then, in view of (1.3), 0 and ~ satisfy (6.1)1 , 2, s, s, 7, s- 
Further, since 0* and p* are strictly positive, there exists a neighborhood ~o of 
Xo and a t o > 0 such that 0 > 0 on ~o x [0, to) and Po at > 0 on ~o. Thus we conclude 
from assumption (A) and the ensuing discussion that there exists a neighborhood 
~ c ~  o of x o, a time re(0, to), and a constitutive process on ~ • [0, z) correspond- 
ing to 0, ~, and Po. Moreover, (3.8) and (6.3)3 imply that the corresponding density 
field ~ obeys (6.1)1,6. Thus to complete the proof we only need to establish (6. I)4. 
By (2.1), (1.1), and (3.1), it is clear that grad P, + Pat grad div vat can be considered 
a function of (~, grad 2 p, grad 2 0, grad ~); let ;t denote the value of this function 
at ~=~*, grad z pat=F~, grad 2 0 = G ,  grad vat=L~ (i.e. the value when X=Xo, t=0).  
Then, letting L=grad  V(Xo, 0), we conclude from (1.4) and (6.1)1 that 

But by (6.3)2, 

grad pat (Xo, 0) = - p* grad div v~ (Xo, 0) + ). - I f  f* .  

grad div v~(x o, 0)=e~; 

(6.4) 

(6.5) 

thus (6.1)4 will be satisfied provided we take 

1 
[~, -d*-Lr  f*] .  [] (6.6) eat  ~ . 

Pat 

Let d) 
provided 

denote the orthogonal group. A function f :  ~ e ' u ~ / r  is isotropic 

f (Q w) = Q f  (w) (6.7) 

for every w= (wl ,  ..., wu)e3 e'u and every Qe0 ,  where 

Q w = ( Q w l  . . . . .  QWM). (6.8) 
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Lemma 6.2.1 Let f:  ~v'M--,~ e" be an isotropic function of class C a, and assume 

that for every w ~  e'M and every me{l,  ..., M} the tensor 0f(w) is skew. Then 
f=O. OWm 

P r o o f .  Choose an orthonormal basis for~:, and l e t f ( i )  and Wm(i ) (i: 1, 2, 3) 
denote the corresponding components of f and Wm. By hypothesis, 

Of(i) Of ( j )  
OW,n(j ) -- OWm(i) ' 

SO that 
Of(i) = 0 .  

OWm(i) 

Equations (6.9) and (6.10) imply that 

a2f(i)  02 f ( j )  
Owm(j) awn(j)  = OWm(j) Own(i) 

hence 

(6.9) 

(6.10) 

=0;  (6.11) 

03f( i )  = 0 ,  (6.12) 
OWm(j) Own(k) Own(l ) 

since two of i, j ,  k, and l must coincide. Therefore f must have the form 

f (w) = f  (0) + F (w) + G (w, w), (6.13) 

where F: ~M__,~ is linear and G: ~M x ~ M ~  is symmetric and bilinear. It 
follows from (6.13) and (6.7) with Q =  - 1  that f ( 0 ) = 0  and G = 0 ;  therefore 

M 
f(w)=F(w)= ~ Fmwm, (6.14) 

m=l 

where each Fm is a tensor. Further, 
Of(w) 

F m -- O W m ,  (6.15) 

so that Fm is skew. Finally, by (6.7) and (6.14), 

QFm=FmQ (6.16) 

for every Q60,  and the only skew tensor with this property is Fm=O. [] 
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