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1. Introduction 

The classical theory of fluid mixtures I treats the mixture as a single body: 
balance laws for momentum, energy, and entropy are postulated for the mixture 
as a whole, rather than for the individual constituents. 2 The effects of diffusion 
manifest themselves in the appearance of the diffusive energy flux 

(1.1) 
~g 

where #', is the chemical potential and h~ the relative mass flux of constituent ~. 
These laws are supplemented by an equation of mass balance for each constituent 
and a Gibbs' relation for the mixture. 

It is the purpose of the present paper to show that the classical theory can be 
formulated within the framework of modern continuum thermodynamics; that 
several of the assumptions of that theory can be proved as theorems; and that the 
constitutive class compatible both with the classical assumptions and with the 
modem general theory is extremely narrow. We treat the mixture as a single body 
and postulate: (i) balance laws for mass, momentum, and energy together with 
a law of entropy growth, all for the mixture as a whole; and (ii) a law of mass 
balance for each constituent. We do not postulate a Gibbs' relation for the 
mixture, nor do we specify the form of the diffusive energy flux in the energy 
equation. In our constitutive relations, which are fully compatible with equi- 
presence, 3 we take as independent variables the specific volume o, the temperature 
0, the concentrations c~, and the gradients of o, 0, and c~. As consequences of the 
second law we prove that: 

(i) there are no shearing stresses, i.e. the stress reduces to a pressure; 

1 JAUMANN [1911], LOHR [1917], ECKART [1940], MEIXNER [1941]. See also MEIXNER (~g REIK 
[19591. 

2 A second, more general approach, due to TRUESDELL [1957], treats each constituent as a 
single body. Cf. FICg [1855], MAXWELL [1867], STEFAN [1871], NACHBAR, WILLIAMS, & PENNER 
[1959], TRUESDELL d~ToUPIN [1960], KELLY [1964], TRUESDELL [1969]. Within TRUESDELL'S 
framework, or minor modifications thereof, complete theories for various types of materials have 
been formulated by ERINGEN & INGRAM [1965], GREEN & NAGHDI [1965], [1967], [1968], [1969], 
[1971], CROCHET & NAGHDI [1966], GREEN & STEEL [1966], MILLS [1966], BOWEN [1967], [1968], 
[1969], INGRAM & ERINGEN [1967], DUNWOODY & MOLLER [1968], MOLLER [1968], BOWEN & 
WmSE [1969], BOWEN & GARCIA [1970], 11971l, DORIA [1969], CRAINE, GREEN, & NAGHDI [1970], 
DLrNWOODY [1970], GURTrN & DE LA PENrIA [1970], GURTrN [1971]. 

3 Sometimes called TRUESDELL'S principle of equipresence. See, e.g., TRUESDELL d~ NOLL 
[1965]. 
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(ii) the free energy, pressure, and entropy depend only on o, 0, and c~ and are 
related by the classical relations of thermostatics; 

(iii) there exists a chemical potential for each constituent such that the diffusive 
energy flux has the form (1.1), and, in addition, the chemical potential is the deriva- 
tive of the free energy with respect to the corresponding concentration; 

(iv) the classical dissipation inequality holds; this inequality is usually taken 
as a starting point by writers on irreversible thermodynamics;  

(v) the Gibbs '  relation holds; 

(vi) near a strong equilibrium state the linearized constitutive relations have 
the following properties: the heat flux and relative mass flux depend only on the 
temperature gradient and the gradients of the chemical potentials, while the mass 
supply depends only on the chemical potentials. 

We consider only nonviscous fluid mixtures. The extension to viscous mixtures 
is not difficult. For  convenience, we omit all smoothness hypotheses; it will be 
clear f rom the context what these ought to be. 

Notation. Throughout this paper & denotes a body; 1 we will refer to & as the 
mixture. Elements X of & are called material points. Given a motion (X, t )~  
x(X, t) of ~ ,  we write grad and div for the spatial gradient and spatial divergence 
(i.e. with respect to x=x(X,  t) holding t fixed), and we use a superimposed dot 
to denote the material time derivative (i.e. with respect to t holding X fixed). 

Given a second-order tensor A, we write A r for its transpose, sym A =�89 + A  T) 
for its symmetric part, and tr A for its trace. The inner product of two tensors 
A and B is defined by A .  B=tr(ABT). Finally, we write a| for the tensor 
product of two vectors a and b. 

2. Basic Laws 

We consider a fluid mixture & with N +  1 constituents. Let (X, t )~x(X ,  t) 
denote a motion of ~ .  For  the basic laws of our theory we postulate the following: 

balance of mass 
/ ~ + p d i v k = 0 ,  

balance of mass for each constituent 

p ~, = - div h, + m~, (~ = 1 . . . . .  N) ,  
balance of forees 2 

divT+ p b = 0, 
balance of energy 

growth of entropy 

Here 

p(X, t) 
r (x ,  t) 

p ~ =  - div(q + j -  TJO+ pr + p b . x ,  

pr  
ps__>-div + 0 " 

is the density, 
is the stress tensor (T= Tr), 

1 In the sense of NOLL (TRtmSDELL & NOLL [1965], w 15). 
2 The body force b includes the inertial force --3~. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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b(X, t) is the 

e(X, t) is the 

sO(, t) is the 

q(X, t) is the 

r(X, t) is the 

O(X, t) is the 

j(X, t) is the 

c,(X, t) is the 

h~(X, t) is the 

m~(X, t) is the 

We  call 

body force, 
internal energy, 
entropy, 
heat .flux, 
heat supply, 
temperature (0 > 0), 
energy flux due to diffusion, 

concentration x of consti tuent ~, 

relative mass flux 2 of consti tuent ~, 

mass supply to consti tuent ~ (due to chemical reactions). 

L = g r a d x  (2.6) 

the velocity gradient; using (2.3) and (2.6), we can rewrite (2.4) in the form 

p ~ = - div (q + j )  + T- L + p r .  (2.7) 

The free energy ~k is defined by 
~ = e - O s .  (2.8) 

In view of (2.7) and (2.8), the inequality (2.5) can also be written in the form 

L +  d iv j  + 1 q .  g r a d 0 < 0 .  (2.9) p(~+sO)-  T. 

Remark 2.1. If (2.7) and (2.8) hold, then (2.5) and (2.9) are equivalent. 

Remark 2.2. For  consti tuent N + l  we simply define Cry+l, hu+x, and mtr by 
the relations 

N N N 

c N + I = I -  Z c, ,  h N + a = - - Z h , ,  r a N + l = - -  Z m , ;  (2.10) 
a t = l  ~ t = l  a~=l 

this insures that  balance of mass (2.2) is satisfied when ~ = N +  1. 

Remark 2.3. A t  first sight it might  appear  that  there should be a term of the 
form - d i v  I in the entropy inequality (2.5). 3 To see that  this is not  necessary, let 
us replace the divergence terms in the r ight-hand sides of (2.4) and (2.5) by 

- d i v ( q ' + j ' - T i )  and - d i v  + l  , (2.11) 

x c~=#Jp, where #~ is the mass density of constituent at. 
2 he=#e(v _~: ) (no sum on e), where e~ is the velocity of e. 

3 In Mt~LLER'S [19681 theory the term ] is not present in the energy equation and the term --~ 

in the entropy inequality is replaced by an arbitrary entropy flux O. The argument given in this 
remark shows that there is no essential difference between MULLER'S point of view and ours. 
Indeed, within the context of classical mixture theory we would view the quantity (1.I) as a flux 

1 , 
of energy (as does ECKART [19401), while MOLLER would view -~-~#~h~ as a flux of entropy 

(as do MHXNER & R~IK [1959]). We take the point of view that the heat flux is that field which 
when divided by the temperature gives the entropy flux. 
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respectively. Then if we define 

q=q'  +Oi, 
the terms (2.11) reduce to 

- div (q + j -  T/0 

j =j'  - Ol, (2.12) 

and - d i v  ( -~) .  (2.13) 

In (2.12) q' represents a non-diffusive heat flux and 01 the heat flux due to diffusion. 

Remark 2.4. In the standard treatises on mixtures it is usually assumed that 

N + I  

J =  E #~h=, (2.14) 
a = l  

where #', is the chemical potential of constituent a. If we define the reduced chemical 
potential #, by 

t ! 
/~,=/~--/IN+ 1, (2.15) 

then, in view of (2.10)2, (2.14) reduces to 

j = p ,  h, ; (2.16) 1 

and we can use (2.2) to reduce (2.9) to the more familiar form 

p(~ + s0- /~ ,  ~ ) - T .  L+h , .  grad/t, 

1 (2.17) 
+-0- q ' grad 0+ m, /z ,<0 .  

In this paper we do not assume that (2.14) holds. 

Remark 2.5. Note that in the energy equation (2.4) we do not include a term of 
the form 

N + I  

E b,. h,, (2.18) 

where b, is the body force on constituent 0e; thus, in view of (2.10)z, our theory is 
restricted to situations in which b, is the same for each constituent. It is not much 
trouble to add a term w, representing the excess power due to diffusion, to the 
right-hand side of (2.4). If we do this and demand that w be given by a constitutive 
relation of the form (3.3), then the results of Sections 4, 5, and 6 remain valid 
provided we demand that w vanish in every homogeneous state and add w to the 
right-hand sides of (4.5), (4.8), and (4.13). Of course, w cannot, in general, re- 
present a term of the form (2.18), since the body force b~ is usually not given by a 
constitutive equation of the form (3.3). 

The quantity 
1 

t~=--  (2.19) 
P 

is called the specific volume. A motion x(X, t) and a specific volume field v(X, t) 
will be called compatible provided they satisfy balance of mass (2.1). As is well 

1 Summation from 1 to N over repeated Greek indices is assumed. 
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known,  this will be the case if and only if 

o(X, t) = ] detF(X,  t)[ o(X, 0), (2.20) 

where F is the deformat ion gradient taking the configurat ion at t = 0  as reference. 

Let  

where 

3. Constitutive Assumptions 

A = (o, 0, c, grad o, grad 0, grad c), 

c= (ca  . . . . .  cN), g r a d c = ( g r a d c  1 . . . .  , grad cN). 

As our  constitutive assumption we suppose that  

$ = ~ ( A ) ,  T =  T(A), s = ~ ( A ) ,  

j = j ( A ) ,  he=he(A), m e = ~ e ( A  ) . 

q = ~ ( A ) ,  

(3.1) 

(3.2) 

(3.3) x 

Moreover ,  since the mixture is a fluid, we assume that  the response functions 
~, ~, ~, ~, ~, ~ ,  ffz~ are isotropic. 

Let 

[ ah.(A) ] (3.4) H~p(A) = sym [ ' 0 ~ ) ]  " 

The following two requirements are assumed to hold th roughou t  the paper. 

(A) The N • N matrix [I H~p [I (with tensor entries) is invertible, i.e., there exist 
symmetric tensors H~, (2, z = 1, 2 . . . . .  N)  such that  

H~p H'a ~ =H'ep Hp ~ = 3 ~  l . (3.5) 

(B) 2 Given a material point  Xo, a ne ighborhood  ~ '  of Xo, an initial concentra-  
t ion vector  co(X ) on ~ ' ,  a time interval [0, q) ,  a mot ion  x(X, t), a specific volume 
field o(X, t) compatible with x(X, t), and a temperature field O(X, t), all on  
~ '  • [0, t l ) ;  there exists a solution c(X, t) of (2.2), (3.3)6.7 on 0~ • [0, to), where 
~ c ~ '  is a ne ighborhood of  Xo and to is in (0, tl), such that  

c(X, 0) = c o (X) (3.6) 
on ~ .  

An  array (x, v, 0, $ ,  T, s, q, j ,  ce, he, me; ~ =  1 . . . . .  N)  defined for  all X in 
some part  # of ~ and all t in some time interval [0, to) will be called a constitutive 
process (with domain 0~ x [0, to) ) if it is consistent with the constitutive equations 

i The constitutive assumption (3.3) 6 for h e generalizes Fick's law. A somewhat different 
generalization was obtained by MOLLER [1968l as a consequence of balance of momentum for the 
individual constituents. The relation deduced by MOLLER includes inertial terms, and this, in 
turn, leads (in certain circumstances) to finite propagation speeds for disturbances in concen- 
tration. On the other hand, our theory leads to infinite speeds for such disturbances. Of course, 
a deficiency such as this is also present in classical heat conduction, and, as in that theory, should 
not detract from its usefulness in most situations. 

2 BOWEN [1969] Was the first to notice that an assumption of this nature is necessary when 
chemical reactions are present. See also COLUMN & GLrRTIN [1967] who utilize this type of assump- 
tion in a slightly different context. 

13 Arch.  Rat ional  Mech.  Anal. ,  Vol. 43 
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(3.3) and balance of mass (2.1), (2.2). Assumption (B) insures that given Xo, x, o, 0, 
and Co, with x and o compatible, there exists an associated constitutive process in 
some neighborhood of X o . 

4. Consequences of the Second Law 

Given a constitutive process, (2.3) and (2.4) can be used to determine the body 
force and heat supply necessary to sustain the process. On the other hand, the 
inequality (2.5) - or equivalently (2.9) - will be satisfied in every process if and 
only if certain restrictions are placed on the response functions. The next theorem 
lists these restrictions. 

Theorem 4.1. A necessary and sufficient condition that every constitutive process 
obey (2.9) is that the following five statements be true: 

(i) The stress T is a pressure: 

T= - p l .  (4.1) 

(ii) ~k, p and s are independent of grad o, grad 0, and grad c: 

~k = ~(o, 0, c), p=~(o, O, c), s=~(o, O, c). (4.2) 

(iii) ff determines p and s through the relations 

/3= ~ ~= Off (4.3) 
av ' a0 " 

(iv) The energy f lux due to diffusion must have the classical form 

j = /~  h,,  /~ =/i,(o, 0, c) = a~_~ (4.4) 
~c~ " 

(v) In every constitutive process 

h, .  grad p= + 1 q.  grad 0 + m, #, <___ 0. (4.5) 
L 

We postpone until later the proof of this as well as of several subsequent theo- 
rems. 

We assume for the remainder of the paper that (i)-(v) hold. By (4.4)2, 

grad#~=~/-/o--#olagradv+?-~-kgradO+~l,tgradc~; (4.6) 

hence we conclude from (3.1) that grad/~, is a function of A in any constitutive 
process. Therefore, in view of (3.3)4, 6,7 and (4.4)2, the left-hand side of (4.5) can 
also be considered a function of A. By Lemma 9.1, given any value of A, we can 
find an associated constitutive process; thus (4.5), with q, h,, m, , / t , ,  and grad#, 
defined by (3.3)4,6.7, (4.4)2, and (4.6), must hold for every value of A in the do- 
main of the response functions. 
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The quantity/z~ defined by (4.4)2 is called the reduced chemical potential I of 
constituent ~. In view of (4.1)-(4.4) and (2.8), we have the "Gibb's  relations" 

--p~+O~+p,~ (4.7) 

in every constitutive process. By (2.1), (2.2), (2.18), (4.1), (4.4)1, and (4.7)2, we 
can rewrite the energy equation as follows: 

p 0 s = - div q + p r - h a �9 grad/~ - m~/za. (4.8) 

Finally, (4.3) and (4.4)2 yield the well-known relations 

0v 0 0 '  dca d0 ' de, d o '  

dcp d c a '  d0 d 0 '  

(4.9) 

where ~=ff  + 0~ is the response function for the internal energy. 

Remark 4.1. One can give plausible physical arguments to support the following 
constitutive relations for the stress and free energy: 

N+I ha| ha 
T= -p(o, 0, c ) l -o  Z 

�9 = 1 Ca 

2 N+ 1 ,_2 (4.10) 
R a 

r O, c) +-w- L - ;- .  
"~ , . ' = 1  ~ a  

In view of (3.3)6 and (2.10), (4.10) are consistent with the constitutive relations 
(3.3)1,2.6. However, the results (4.1) and (4.2) imply that the constitutive relations 
(4.10) are inconsistent with the present theory. What the second law essentially tells 
us is that i f  terms involving squares of the relative mass flux are important, then the 
classical theory is not applicable. It is clear from the work of Bowm~ [1967], [1969] 
and MOLLER [1968], among others, that the more general approach due to TRUES- 
DELL [1957] allows for constitutive relations of the form (4.10). 

Remark 4.2. When there are R independent chemical reactions, 

R 

m~= ~ va,J r, (4.11) 
r = l  

where Jr is the reaction rate of reaction r, and v,, divided by the molecular mass of 
constituent ~ is proportional to the corresponding stoichiometric coefficient. The 
chemical affinity of reaction r is defined by 

in these circumstances, 
Ar = v, , / t , ;  (4.12) 

R 

m, Ita= ~,, J,A,,  (4.13) 
r = l  

1 See Remark 2.4. 

13" 
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and (4.5) takes the familiar form 
1 e 

h~. g rad#~+f f  q.  grad0+ ~. J,A,<O. (4.14) 
P = I  

Remark 4.3.1 It is often more convenient to take the constituent densities as 
independent variables in place of the specific volume and the concentrations. Thus 
suppose, for the present, that 

~=~(Pl ,  -.., PN+I, 0). (4.15) 
Then 

oc,,  , ,o) 

and (4.2), (4.4)2 imply that 
a(p,~) a(p~) 

Op~ aPN+t ' 

p=vEp,~. 
==1 

Further, if we define 
, ~(pff) 

#~= ap~ ' 

we arrive at the well-known result 

N 

(4.16) 

(4.17) 

(4.18) 

N + I  

2 c , ~ = f f  + p "  (4.19) 
�9 = 1  P 

5. Homogeneous States 

An element A=.4  in the domain of the response functions will be called a 
homogeneous state provided it has the form 

o 
A =(v, 0, c, 0, 0, 0), (5.1) 

i.e. provided gradv=gradO=gradc~=O. In view of Lemma 10.1, (4.5), and the 
remarks made in the paragraph containing (4.6), we have 

Proposition 5.1. Let 1~ be a homogeneous state. Then 

o o o ~ o 

h~(A)=~(A)=O, ~ ( A )  g~(A)<O. (5.2) 

Further, i f  �9 denotes v, O, or c,, and i f  g denotes grad v, grad O, or grad c,, then 

ag 2 = - - ~ 1 , ~ = ~ - ,  2 =0 .  (5.3/ 

1 These observations contained in this remark are due to R. M. BOW~N (private communi- 
cation). 
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The results (5.2)1 , 2 assert that there is no flow of heat or mass in a homogeneous 
state. If we expand ~(A) and ~(A)  in a Taylor series about a homogeneous state 

o 

A, and use Proposition 5.1 and Lemma 10.1, we arrive at 

Proposition 5.2. Let A be a homogeneous state. Then there exist scalars x, 2 t ,  
~, 2", 2tp, and to t such that 

0 2 

q = - x grad 0 -  2~ grad c t -  ~ grado + O(I A - A  I ),  (5.4)1 

ht = - 2'- grad 0 - 2t p grad c a - to~ grad o + 0 (I A - A 12) 

o 

as I A -  A I ~ 0 .  Here A = (o, 0, c, grad o, grad 0, grad c) and q, h, are given by (3.3)4, 6- 

The second and third terms in (5.4)t represent, respectively, al low of  heat due 
to concentration gradients (Dufour effect) and a f low of  heat due to a density 
gradient (piezo-caloric effect); the first and third terms in (5.4)2 represent, respec- 
tively, mass transport due to a temperature gradient (Sorer effect) and mass transport 
due to a density gradient (piezo-diffusive effect). 

6. Linearized Theory Near Equilibrium 

By an equilibrium state we mean a homogeneous state A with the property 
that 

o 

n~,(A)=0 (~=1 . . . .  , N). (6.1) 

Clearly, the result (5.4) holds near an equilibrium state. The next proposition gives 
an analogous result for the mass supply. 

o 

Proposition 6.1. Let A be an equilibrium state. Then there exist scalars *~a, r 
and 3" such that 

m ,=  - , , a ( c p - c ~ ) - r t ( O - O * ) - 3 ' - ( o - ~ ) + O ( I  A- /~ I  2) (6.2) 

o o 

Moreover, i f#  t = #t (o, O, a s l A _ A l _ , O .  Here Aisgivenby(3.1)andm~by(3.3)7" �9 o ^ , ~), 
then 

o o t o 

T,p F, = ~, Ft = ~t F~ = O. (6.3) 2 

The proof of this proposition is given in Section 9. The inequality (4.5) and the 
remarks given in the paragraph containing (4.6) yield certain inequalities for the 
coefficients in Propositions 5.2 and 6.1; we shall not list these inequalities. 

^ o o 

Since I~=/z.(A)=I~+O(IA-A[), we conclude from (6.2) and (6.3) that 

o o ~ o 

m t g t = O ( I A - A I  ),  m , g , = O ( I A - A I 2 ) ;  (6.4) 

o 

thus, to within terms of O(I A-AI2 ) ,  the mass supply and the reduced chemical 
potential are "or thogonal"  

o o o 

I Here i a _ h  12-- - Io-- o12+10 - 012+ I gradol2+ ] grad012+ Z[(c,-- ~)2+ I gradc,12l. 

2 A result similar to the first of these was established by BOwEN [1969], F_Xl. (7.19). 
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NOW let ,4 be a fixed equilibrium state and consider a constitutive process with 

I A - . , ~ l < e ,  Igradxl,  101,151-<e. (6.5) 

By (2.1), (2.19), (5.4)2, and (4.6), 

{)=O(e), h~. grad/~= O(e2); (6.6) 

therefore, in view of (6.4)2, (4.8) yields 

a t ~}+a  2 6+ d~ c ,=  - d i v q  + ~ r +  O(e2), (6.7) 
where, by (4.9), 

a l = p - ~  ,~ = P 630 I. ~ 

d o~ 63~ o~ a~,, ,=p T~, ~=-p --~- ~, 

63~ I o o o o ,~/, 
a2 = pO-~o .~= pO--~- ~ , 

o 1 

o 

( 6 . 8 )  

If we neglect terms of O(e 2) in (2.1), (2.2), (5.4), (6.2), and (6.7), and combine the 
resulting relations, we arrive at the following equations: 1 

~ o = d i v i  
o �9 t pc~=2~pdcp+2~dO+o~Ao+m~, 

(6.9) 
o o t o 

m ,  = - ~ p  (cp - cp)  - ~ , ( 0  - 0 ) -  ~ , ( o  - o ) ,  

at/~+a2 6 + d , ~ = x A  0 + 2  a A ca+~A u+ ~r , 

provided we assume that r = O (e). Further, if we let 

El = 630 I ~ E2__ 63~ a 2 63~ 
' dc~ ~=  

then, if we neglect terms of O(e2), (2.3) and (4.1) imply 

Elgrado+E2gradO+F~gradc~+~b=O, (6.11) 2 

provided, of course, that b = O (e). 

To the same degree of approximation material time derivatives are equal to the 
corresponding spatial time derivatives, and in what follows we shall assume this is 
so. Then the operator " . "  commutes with the operators grad and div. Let 

b = bo -- J~, (6.12) 

where bo is the non-inertial body force. If we take the time derivative of (6.9)1 
and the divergence of (6.11), we conclude, with the aid of (6.12), that 

o 2 . .  o , 

p o=EIAo+E2AO+F~Ac~+p dlvbo (6.13) 

provided t~ is a constant. Equations (6.9)2,4 and (6.13), supplemented by (6.9)3, 
constitute the basic field equations of the linearized theory. If the "coupling 

i Here zt = div grad is the spatial Laplacian. 
2 Recall that b includes the inertial body force --.~. 
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coefficients" E2 = F~ = o~= ~ = Y = 0 and if the resulting coefficients have appro- 
priate signs, then (6.13) results in a hyperbolic equations for the specific volume o, 
while (6.9) 2,, reduce to coupled parabolic equations for the concentrations e~ and 
the temperature 0. 

7. Linearized Constitutive Relations Near a Strong Equilibrium State 

In view of (6.4)1, 
n~, (A)/~, = O (IIA - ,~ 12) (7.1) 

o A o 

provided .4 is an equilibrium state and p ,=p, (A) .  We say that .4 is a strong 
equilibrium state if, in addition to (6.1), 

nq~(A)/~ = 0 ([ A - A I  3) (7.2) 
as ]A-.41~0.1 

Remark 7. I. To see that this is a natural generalization of the usual notion of 
strong equilibrium, we assume, for the time being, that there are R independent 
chemica! reactions, so that (4.11) and (4.12) hold. In this instance it is customary 
to call A a "strong equilibrium state" provided 2 

o o 

Jr(A)=A,(A)=O. (7.3) 

By (4.11), the first of (7.3) implies (6.1). Further, (4.11), (4.12), and (7.3)2 yield 

R 

r~,(A)/~,= ~ Jr(A)A, ( , t ) -O.  (7.4) 
r = l  

Thus our notion of a strong equilibrium state is somewhat weaker than the classical 
definition. For all of our results it suffices to use the definitioncontaining (7.2). 

Let A be an equilibrium state and let 

a,a =--~-ca .~. (7.5) 

We suppose that 

(C) the N x N matrix II a~a II is invertible. 

This assumption insures that IX and gradlx can be used as independent variables 
o 

in place of c and grad r at least in a neighborhood of A. The next theorem provides 
a rational basis for some of the linear formulae that appear in texts on nonequili- 
brium thermodynamics. 

o ^ o o o 

Theorem 7.1. Let .4 be a strong equilibrium state and le t /~=/ t , (o ,  0, c). Then 
there exist scalars k, I~, 1'~, l~p, and t~p such that 

o 2 
q = - k grad 0 -  l~ gradp~ + O(1A - A I  ), 

h~ = - 1'~ grad 0 -  l~p grad #p + 0 (I A - A ]2), (7.6) 
o o 

m~= - t,p (#p--/~a) + O(I A - A  ]2), 

1 GLrRTIN [1971]. 
2 TRUESDELL [1969], p. 107. See also BOWEN [1969], p. 121. 
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o 

as IA-AI-~0.  Here A is given by (3.1) and q, h~, m~, #~, and grad/G correspond to 
A in the sense of(3.3), (4.4)2, and (4.6). Further, 

t~a/~=0,  
and the matrices 

t iI!  
II 1;s lsx ... INN II 

are positive semi-definite. 

(7.7) 

(7.8) 

Theorem 7.1 asserts that to within terms of O(I A - , 4 t  2), q and h, depend only 
on grad 0 and gradlx, while m, depends only on Ix. Also, a simple consequence of (7.8) 
is that the conductivityk is non-negative and the matrix I I l~ a II positive semi-definite. 
Finally, note that if t , a=  tp,, then (7.6)3 takes the form 

m~= - t~a  #a + O(I A-.,~ 12). (7.9) 

The coefficients in (7.6) are related to those in (5.4) and (6.2). Indeed, by (4.4)2, 
(4.6), and (7.5), 

o o o o 2 #~-#~=a,a(ca-ca)+ y~(o-o)+rt~(O-O)+O(I A - A I  ), (7.10) 
o 2 

grad ~ = a~a grad c o + 7~ grad o + r/~ grad 0 + O (I A - A I ), 
where 

and thus 

r/" =-0-0- 3'  (7.11) 

x = k + l , q , ,  ; t ,= l , a , a ,  ~ = / , y , ,  

2~ = 1', + / ,a  t/a , 2 ,p=i , , a ,a ,  co,=l, ay a , (7.12) 

Remark 6.1. Let us now suppose that (4.11) and (4.12) hold, that 

R 

V, rf~=O (~= 1, ..., N) only when J'l . . . . .  fa = 0 ,  (7.13) 

and that 

where 

R 

J,= - ~ L~s(As--.4s)+O(IA--~I]2), (7.14) 
s = I  

o o 

As = v~ s/a, �9 (7.15) 

Then, by (4.11), (4.12), (7.6)3, (7.14), and (7.15), 

R 

t ~ =  ~ v~, vpsL, s, (7.16) 
r , s = l  



Reacting Fluid Mixtures 191 

and, using (7.13) and the fact that I I t, p ll is positive semi-definite, it is not difficult 
to prove that 1I L, s [J is positive semi-definite. Further, by (7.7), (7.15), and (7.16), 

R R 

E vp,L,,2,= E vp~v,,L,~q=t,a~=O, (7.17) 
r , s = l  r , s = l  

and thus we conclude from (7.13) that 

Therefore, in view of (7.14), 

R 

E L~A~=O. (7.18)' 
r = l  

R 

E JrA~=O(I A-XI2), (7.19) 
r = l  

and, if L,s=L,,, (7.14) reduces to 

R 

J,= - ~ L, sAs+O(IA-fiII2). (7.20) 
S m I  

Of course, if (7.3) holds, then (7.14) automatically reduces to (7.20). Finally, if 
(7.3) holds, then (7.15) and (7.16) imply that 

ta~=O; 
thus, in this instance, (7.6)3 reduces to (7.9) without the assumption t,~=tp,. 2 

8. Incompressible Materials  

Assume now that the body is incompressible in the sense of the constraint 

~ - 0 .  (8.1) 

In this instance the stress is determined only to within an arbitrary pressure; thus 
we replace (3.3)2 by the constitutive relation 

T -  k(tr T) 1 =S(A) ,  (8.2) 
where now 

A = (0, c, grad 0, grad c). (8.3) 

The remaining relations in (3.3) are still assumed to hold, but with (3.1) replaced 
by (8.3). Theorem (4.1) remains valid in the present circumstances with (4.1), 
(4.2), (4.3), and (4.4)2 replaced by 

~=0 

~=J/(O,c), s=~(o,c), ~= ~ 
00 ' (8.4) 

t~,=~,(o, c)= ; Oc, 

the results (4.4)1 and (4.5) remain unchanged. 

x A similar result is derived by BowEN [1969], Eq. (7.22). 
z This observation is due to R. M. BOWEN (private communication). 
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Homogeneous states and equilibrium states are defined analogously, and 
Theorem 7.t remains valid. Further, the equations (6.9) have the following counter- 
parts: 

~ = 2 ~ A c p +  A'~AO+m~, 

m~ = - r~ ~ (c  a - ~p) - ~ (0  - t~), ( 8 . 5 )  

al O+d~c~=xAO+ 2aAca+ ~r.  

9 .  P r o o f s  o f  M a i n  R e s u l t s  

. Lemma 9.1. Let a > 0 ,  g > 0 ,  d~, * * * a, and ~ be given scalars, let a, g, d~, a, g, and 
d~ be given vectors, let M be a given tensor with t r M = 0 ,  and let A, G, and D~ be 
given symmetric tensors. Let X o be a given material point. Then there exists a 
constitutive process whose domain contains (Xo, O) such that when X = X  o and t = 0 :  

v=a ,  0=g ,  c,=d~, grado=a ,  g rad0=g ,  gradc~=d~, 

�9 , �9 , _" , �9 , * 

o=a, O=g, gradv=a ,  g r a d 0 - g ,  gradc ,=d~,  (9.1) 

grad z o = A, grad 2 0 = B, grad2 c~ = D~, grad x - �89 (div ~) 1 = M.  

Proof. It is a simple matter to construct a motion x, a compatible specific 
volume field o, and a temperature field 0 on # '  x [0, tt) , where ~ '  is a neighborhood 
of Xo and t1>0,  such that for X=Xo and t = 0  the results in (9.1) concerning x, 
o, and 0 hold. Now let r be an initial concentration vector on ~ with the property 
that 

grad Co ~ (Xo) = d~, grad 2 Co ~ = D~, grad 3 Co ~ (Xo) = F~, (9.2) 

where F~ is a completely symmetric third order tensor, as yet unspecified. In view 
of assumption (B), there exists a constitutive process whose domain # x [0, to) 
contains (Xo, 0) such that 

r 0) = co(X) (9.3) 

for every X r  Thus to complete the proof we have only to show that F, can be 
chosen so that 

grad c~(X o , 0) = d~. (9.4) 
Let 

Since 
k~ = grad x(X o , 0)rd~, d'y=d~+k~. (9.5) 

grad c~ = grad ~ - (grad ~)r grad c, ,  (9.6) 

to establish (9.4) it suffices to show that F~ can be chosen so that 

grad d~ (Xo, 0) = d',. (9.7) 
By (2.2) and (2.19), 

grad ~ = - o grad div h~ + o grad m~ + ( -  div h~ + m~) grad o. (9.8) 
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Assume now that a Cartesian coordinate system (xl, x2, x3) is specified, and let 
H~p(i,j) denote the components of the tensor H~p defined in (3.4). Then, by (9.8), 
(3.3)6.7, and (3.1), 

a ~3 cp 
a ~ = _  ~ oH~p(i,j) +f(k), (9.9) 

3Xk i,j=l aXiOXjOXk 

where f (k )  is the k-th component of a vector f ie ldf  of the form 

f=f(o, 0, c, grad o, grad 0, grad c, grad 2 o, grad 2 0, 

grad 2 c, grad a o, grad a 0). (9.10) 

We now assume that the components F~(i,j, k) of F~ have the form 

F~(i, j, k)=H'~p(i, j)vp(k)+H'~p(k, j)vp(i)+H'~p(i, k)vp(j), (9.11) 

where H'.p(i,j) are the components of the tensor Hip of assumption (A) and vp(k) 
are the components of the vector 

vp = - ~---~ (d'~-f (Xo, 0)). (9.12) 

Then, if we evaluate (9.9) at (Xo, 0) and use (3.5), (9,2)3, (9.3), (9.11), and (9.12), 
we arrive at the desired result (9.7). | 

Proof of Theorem 4.1. The proof of sufficiency follows upon direct substitu- 
tion. To establish the necessity of (i)-(v) we assume that every constitutive process 
obeys (2.9), or equivalently, by (3.3)1, (2.1), and (2.19), that every constitutive 
process obeys 

0 (grad v) 0 (grad O) 

-~ o(gr---ddc,) 

_ [T+ p l ] .  [ g r a d ~ _ l ( d i v J c )  1 ] (9.13) 

1 
+ divk + h~ �9 grad/l~ + -  0- q .  grad 0 +  m~/~__< 0, 

where 
p =  - ~ ( t r  T)I  

k=~(A)=j-Z~h~, (9.14) 

It is clear from Lemma 9.1 and the constitutive equations (3.3) that (i), (ii), and 
(iii) hold and that 

+ h~. grad/t~ + 1 q" grad 0 + m~/t~ =< 0 (9.15) div k 
1 7  
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is satisfied in every constitutive process. Thus to complete the proof it suffices to 
show that 

k ~ 0 .  (9.16) 

By (9.14)3, (4.4)2 holds; hence gradp, is a function of v, 0, c, gradv, grad0, and 
grad c (and is independent of grad 2 v, grad 2 0, and grad2 c) and, by (3.1) and (3.3), 
(9.15) has the form 

divk+f(A)<=O. (9.17) 
On the other hand, 

0(g -d0)] " 0 t3 (~ad o)]"  grad2~ [ grad2 divk= 
L (9.18) 

+1 0T, d (g r~  c~)] "grad2 c~ + g(A), 

and since (9.17) must hold in every constitutive process, we conclude from Lemma 
9.1 that 

0T, 0T, 
O(g-~-d0)] "B=[t3(g-~dc~,)] . D . = 0  (no sum on e) (9.19) [ t3 (g~-d o)]"  a = [  dk 

whenever A, B and D~ are symmetric tensors. Thus the symmetric parts of the 
partial gradients of ~ with respect to grad o, grad0, and grad c~(~= 1 . . . . .  N) 
vanish, 1 and we conclude from Lemma 10.2 that (9.16) holds. I 

Proof of Proposition 6.1. The result (6.2) follows from (5.3) and (6.1). Next, 
since (7.10)1 holds in the present circumstances, 

o o 

p,,=p~+O(lh-al), 
and, letting 

! o O r  ~ , C~=C~--Cat, 0 ' = 0 - - ~ )  , 0 - - 0  

we conclude from (5.2)3 and (6.2) that 

o 1 o #~,['c~#c#+6~,O' +,5',o']+O(IA-AI2)>O 
0 

as I A - A [ ~ 0  with A homogeneous. This clearly implies (6.3). 

Proof of Theorem 7.1. Let 

~, = grad %, e = grad o, g = grad 0, 

and (with the aid of (9.21)) define 

ff~=a~,#c'p+ ~,o' +rl~O', 

Then, by (7.10), 
I o t ~ , = / ~ - ~ +  O(e2), 

u~ = grad tl~ + O (e2), 

1 cf. MOLTER [1968], Eq. (6.2). 

(9.20) 

(9.21) 

(9.22) 

I 

(9.23) 

(9.24) 

(9.25) 
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where 
e = I A - A I. (9.26) 

Since II ~.p II is invertible (by assumption (C)), we can solve (9.24)1 for c~ in terms 
of #',, o', and 0' and (9.24)2 for ~p in terms of u~, v, and g. If we do this and then 
substitute the resulting relations into (5.4) and (6.2), we find that 

q= - k g - l , u ~ - L v + O ( ~ 2 ) ,  

h, = - l'~ g -  l,p u B - M, v + O (e2), (9.27) 

m~= - t~l t '~-P~O'-Q~o'  +O(e2). 

Next, by (7.2), (9.25)1, and (9.27)3 

m~ p~ = m~ #'~ + O (e 3); (9.28) 

thus (9.21), (9.25)2, (9.27), and the remark made in the paragraph containing (4.6) 
imply that 

[l'~g+ l~ u~+ M~v] . u~+(O) -1 [kg+l~ u~+ Lv] . g 
(9.29) +t, ap'-lt'p+[P~O' +Q~o'] #'~+0(~3)>___0 

for all sufficiently small values of 0', o', #'~, g, v, and u~. Therefore 

M~=L=P~=Q~=O; (9.30) 

thus, by (9.25), (9.26), and (9.27), (7.6) holds. Finally, (9.29) and (9.30) yield 
(7.8), while (9.27)3, (9.30), and (7.2) yield (7.7). 

10. Appendix. Isotropic Functions 
In this section we discuss functions of the form 

~0=~(~1  . . . . .  ~K, ul ,  . . . ,  ~M), 

v=v(~l ,  -.-, ~r, ul, . . . ,  uM), (10.1) 

where ~1 . . . .  , ~ are scalars, ul . . . .  , uM are vectors, ~ is scalar-valued, and ~ is 
vector-valued. We assume that ~ and ~ have for their common domain D = U x V ~, 
where U is an open set in R r. Here R denotes the reals and V the underlying vector 
space. For convenience, we write 

A--(~I . . . . .  ~r,  ul, -.-, u~) (10.2) 

for an arbitrary element of D. Given an orthogonal tensor Q, we define QA by 

QA=(~I, ..., ~r, Qul . . . . .  Quu).  (10.3) 

We assume that ~ and ~ are isotropic, i.e. we assume that 

~(A)= ~(QA),  Q~(A)=~(QA) (10,4) 

for every orthogonal tensor Q and every A in D. 
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Lemma 10.1. Let A in D have the fo rm/~=(~ l  . . . .  , ~ ,  0, . . . ,  0). Then 1 

~(~)= 0~ = 0~l  =0 (10.5) 
Ogre 3 ar 3 " 

and there exist scalars xl ,  ..., ~M such that 

01/m .~=gml  �9 (10.6) 

Proof. The result (10.5) follows from (10.4) with Q = - 1. Let K s denote the 

left-hand side of (10.6). Since Q A = A ,  (10.4)2 and  the chain-rule imply that  

QKm=KmQ. 

Thus K m commutes  with every or thogonal  tensor;  as is well known,  this can happen  
only if K m = xm 1, with x m a scalar. | 

symmetric part of  a v [  vanishes at every A Lemma 10.2. 2 Assume that the 
in D for  m = 1, ..., M. Then '~",,, ra 

~ - 0 .  
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