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Introduction 

Perhaps the simplest solutions of the three-body problem are the periodic 
orbits discovered by LAGRANGE in 1772 [L]. Three masses arranged in an equilateral 
triangle can rotate uniformly around their center of mass if the rate of rotation 
is chosen so that the centrifugal force just balances the gravitational attraction. 
These orbits are part of a family of periodic orbits in which the triangle formed 
by the masses remains equilateral but varies in size as each mass traverses an 
ellipse. For each fixed energy and angular momentum there are two such Lagran- 
gian elliptical orbits (up to rotation) corresponding to the two distinct orderings 
of the masses around the triangle. 

Besides the equilateral triangles, there are three other configurations which 
admit such simple motions. For  each of the three distinct orderings of the masses 
along a line there is a unique choice of spacing giving rise to uniformly rotating 
solutions. These also lie in a family of elliptical orbits called Eulerian since EULER 
discovered how to choose the spacing [Eu]. 

As the angular momentum approaches zero the ellipses degenerate to line 
segments and the periodic solutions approach solutions exhibiting triple collisions 
in both forward and backward time. It is known that, for certain choices of the 
masses, the Lagrangian circular orbits are stable. It turns out, however, that for 
sufficiently small angular momenta the Lagrangian elliptical orbits are always 
unstable. This suggests the possibility of solutions homoclinic to one of the 
Lagrange orbits or heteroclinic between the two of them. The existence of such 
orbits is one of the main results of this paper (Theorem 4). 

In addition to the Lagrangian orbits we can construct a variety of other 
periodic orbits exhibiting close approaches to triple collision. Among them are 
orbits which approximate all five Lagrangian and Eulerian elliptical motions in 
succession between their close approaches to collision (Theorem 3). Figure 9 
shows one of the many possible behaviors. These new periodic orbits are linked 
with each other and with the Lagrangian orbits in a complicated network of 
homoclinic and heteroclinic connections. The whole network is described by 
use of  symbolic dynamics. 
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We obtained results similar to these in a special case of the three-body problem 
where a symmetry is used to lower the number of degrees of freedom [MI]: the 
isosceles three-body problem reduces to a flow on a three-dimensional manifold. 
The planar problem unfolds in five dimensions. The stable and unstable manifolds 
of the Lagrangian elliptical orbits are each three-dimensional and we are looking 
for transverse intersections. The strategy is to study first the case of zero angular 
momentum and then to treat the case of small nonzero angular momentum as a 
perturbation. 

Using the scaling technique of MCGEHEE to tame the triple collision singularity 
we find that as the angular momentum tends to zero, the Lagrangian orbits con- 
verge to a restpoint cycle (Figure 2). The stable and unstable manifolds of the 
restpoints patch together to form the stable and unstable sets of the cycle. These 
are again three-dimensional. We are able to produce intersections of these limiting 
sets by the following technique. The restpoints corresponding to the Lagrangian 
orbits are connected to restpoints corresponding to the Eulerian orbits. For certain 
choices of the masses, the latter exhibit complex eigenvalues. As the stable and 
unstable manifolds of the Lagrangian restpoints pass by they are wound into 
spirals around the Eulerian orbits and are thereby forced to intersect one another. 
Some of the details regarding spiralling of invariant manifolds in high dimensions 
are treated in [M2]. After constructing these intersections in the zero angular mo- 
mentum case we study the effect of the perturbation to nonzero angular momenta, 
obtaining the results described above. 

Two interesting questions remain open. First, we may wonder whether the 
homoclinic orbits to Lagrange's orbits persist for fairly large angular momenta. 
We mentioned above that for certain masses, the circular Lagrange orbits are 
stable; however, for other masses, including the case of exactly equal masses, 
these orbits are still hyperbolic. For such masses it is possible that homoclinic 
orbits exist over the whole range of angular momenta. Second, we may ask whether 
the invariant set described above is part of a larger invariant set which also 
includes oscillation and capture phenomena. This is so in the simpler isosceles 
case [M1]. In the planar problem the behavior of orbits "near infinity" is more 
complicated and we have not been stable to incorporate them into the symbolic 
dynamics. 

1. Three-body problem in the plane 

Let m k > 0 be the masses of point particles with positions qk E R2 and 
momenta pkER2;  k = 1,2, 3. Let q, p E R  6 denote the vectors (qt, q2, q3), 
(p~, P2,Pa). The three-body problem is governed by the Hamiltonian function 

n(p,  q) = �89 p" A- lp  -- U(q) 

where A is the 6 •  mass matrix diag (ml, ma, m2, m2, m3, m3), �9 is the scalar 
product in R 6, and 

mlm2 rn~m3 m2m3 

U ( q ) - i q ~ _ q 2 1  - ] - tq~-q31  -~ Iq2--q31" 
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Hami l ton ' s  equat ions are 

i 1 = A - l p ,  

b = V U ( q ) .  

We will assume that  the center of  mass  remains at the origin: 

m l q l  + m2q2 + m3q3 = 0, 

Pl  q- P2 ~- P3 = O. 

Let r = (q �9 A q )  �89 the square roo t  of  the m o m e n t  of  inertia. Note  that  r = 0 
if and only if all three masses collide at  the origin. MCGEHEE introduced the 

, 
substi tutions s = r - l q ,  z = r p ,  = r ~ which lead to the equations 

r '  : vr,  

s' = A -1 z - -  vs,  (1.1) 

z'  = V U(s) + �89 vz 

where v = s -  z [Mc]. Replacing q by the pair  (r, s) is analogous to the introduct ion 
of  polar  coordinates.  The normal ized position vector  s describes the shape of  the 
triangle fo rmed by the three particles while r describes its size. The vector  s lies 
on a five-dimensional ellipsoid in R 6 defined by 

s ' A s  = 1. (1.2) 

In these coordinates,  the assumpt ion  abou t  the center o f  mass  gives 

m l s 1  -~  m 2 s  2 -~- m 3 s  3 : O, 
(1.3) 

z~ § z3 § z3 = O. 

Solutions with energy H ( p ,  q) = h satisfy 

H(z ,  s) ~- �89 z "  A -1  7. - -  V ( s )  = r h .  (1.4) 

3 

F o r  solutions with angular  m o m e n t u m  p • q = ~] Pk x qk = O) we have 
n = l  

r~(z • s) = ,o. (1.5) 

In this paper  we will s tudy certain solutions of  the p lanar  three-body p rob lem 
which have negative energy (h <~ 0) and small angular  moment iam (]o[  small). 
Let  

M ( h ,  ~o) = {(r, s, z) : r ~ 0, s ~  A, 1.2-1.5 hold} 

where A = {s : si = sj for  some i =[=j}. The structure of  M d e p e n d s  on the masses 
as well as on h and ~o. 

The  topology of  M ( h ,  o9) can best be unders tood by considering the project ion 
to the configurat ion space. Let  Z" = {s: s-J; zl, 1.2-1.3 hold). The  equat ions 1.2 
restrict s to a four-dimensional  plane in 1% 6 and 1.3 then determines a three- 
dimensional  ellipsoid in this plane. The  collision set, A, breaks up into three corn- 
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ponents corresponding to the three equations s~ = sz, sL = s3, and s2 = s3. 
Within the ellipsoid these give three circles, each of which is linked with the other 
two. Thus the configuration space Z' is a three-dimensional ellipsoid with three 
circles deleted. 

The projection map (r, s, z) ---> s restricts to a map H : M(h, co) -+ X. For the 
energies and angular momenta we want to study, this map has a simple structure. 
It is surjective and the fiber over any point of Z' is diffeomorphic to the three- 
dimensional sphere S 3. In fact, the following result can be proved [Sm]: 

Proposition 1.1. There is a constant C < 0 depending only on the masses such that 
for C < hco 2 < 0 the manifold M(h, co) is diffeomorphic to S x  S s. 

It follows that for any given h < 0 the conclusion of  the proposition holds for 
IoJ[ sufficiently small. 

It is important to note that the three-body problem possesses rotational 
symmetry, Let R(O) denote the 6 x 6  block diagonal matrix with blocks 

cos 0 --sin 0 ] 

sin 0 cos 0]" 

Then (r(t), s(t), z(t)) solves I.I if and only if (r(t), Rs(t), Rz(t)) does. This means 
that the vectorfield 1.1 determines a vectorfield on the quotient space of M(h, co) 

under the action of  the rotation group. This space is easily seen to be X •  S 3 

where ~ is the quotient space of Z' under the action. S is diffeomorphic to a two- 
dimensional sphere with three deleted points, one for each of the deleted circles 
of  2 (Figure 1). 
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Fig. 1 
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The rotational symmetry leads to the construction of the periodic solutions 
of  EULER and LAGRANGE. These are solutions which exhibit configurations of  
constant shape. More precisely, let s E Z be a fixed configuration. We seek a 
solution of  1.1 with s( t)  = R(O(t))  s. In other words the normalized configura- 
tion changes only by a rotation; we allow the size of  the configuration (described 
by r( t ) )  to change arbitrarily. Substitution into 1. I leads to the following equation: 

(v' - -  (0') 2 - -  �89 v 2) A s  + (0" -+- �89 vO') A J s  - -  V U ( s )  = 0 

(o ;) 
where J is the 6 • 6 block diagonal matrix with blocks 1 . I f  we take the 

scalar product of this equation with s and with Js we find (using VU(s) " s = 

- -  U(s) and V U ( s ) .  J s  = 0): 

v" = (0 ' )  ~ + �89 v ~ - U ( s ) ,  

O" + � 8 9  

With these equations in hand the original equation becomes 

V U ( s )  = - -  U(s) A s .  (1.6) 

I f  we set o~ : 0' the other equations are 

v'  = ~,2 + �89 v ~ _ U ( s ) ,  

~" : --�89 vo~. (1.7) 

Equation 1.6 concerns the constant configuration vectors. A solution is called a 
central configuration. Up to rotation there are just five central configurations in 
the three-body problem [S-M]. For each of the three rotationaUy inequivaent 
ways to order the three particles in a line there is a unique collinear central con- 
figuration. These are called the Eulerian central configurations [Eu]. The exact 
spacing of the particles depends in a complicated way on the masses. In addition, 
each of the two rotationally inequivalent arrangements of  the masses in an equi- 
lateral triangle is a central configuration. These are the Lagrangian configurations 
[L]. Note that equation 1.6 implies that at a central configuration, the gradient 
of  U is normal to the ellipsoid s .  A s  : 1. Thus central configurations can be 
viewed as critical points of  the restriction of U to this ellipsoid. Figure 1 depicts 

the quotiented configuration space ~ with the central configurations. We have 
labelled the collinear central configurations ej, j : 1, 2, 3, where j  is the subscript 
of  the mass which lies between the other two. The equilateral configurations are 
e+ and e_. 

Once a central configuration, s : So, has been found, equations 1.7 determine 
the corresponding solutions of  the three-body problem. The size r ( t )  can be found 
using the energy and angular momentum equations 

�89 2 + ~2) __ U(so) = rh,  

r"-'or ~ ~ .  
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Fixing h < 0 leads to the phase portrait of Figure 2 in the (r, v)-plane. The family 
of periodic orbits is parametrized by I~ol. The rest point r = U(so)/Ih[, v = 0 
corresponds to o~ 2 = �89 uE/Ih !. For larger angular momenta there are no motions 
possible. As !a~ I decreases we pass through the family of periodic motions to the 
restpoint cycle, which corresponds to ~o = 0. Note that this cycle contains two 
restpoints and a connecting orbit in {r ---- 0}, the triple collision set. Orbits in 
the collision set do not represent actual motions of the three-body problem but 
rather additional motions of system 1.1. As can be seen from Figure 2, however, 
they do reflect the behavior of actual orbits passing close to triple collision. 

Fig. 2 

/ 

v 

It is interesting to ask how the positions of the three particles vary along 
these periodic orbits. It turns out that each particle follows an elliptical path 
according to Kepler's laws. The family of periodic orbits corresponding to an 
equilateral central configuration is shown in Figure 3. The central restpoint in our 
phase portrait has r(t)  constant and so corresponds to the circular orbit in Fig- 
ure 3. The portion of the restpoint cycle with r ~ 0 repreents an orbit which 
begins and ends in triple collision and corresponds to the radial motion in Figure 3 

Fig. 3 
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which is the limiting behavior of  elliptical motion as the eccentricity tends to I. 
I t  is interesting to note that along the other branch of the cycle (invisible in 
Figure 3) one computes a change in 0 of  exactly 2~ radians, so even in the limit 
the normalized configuration rotates once as we go around the cycle. 

We now see that each quotiented manifold A~(h, to) with h < 0 and 0 < I to I 
sufficiently small contains five simple periodic orbits, corresponding to the five 
central configurations. These are important  landmarks in the flow. As noted above, 
their existence goes back to EULER and LAGRANGE. The local structure of  these 
orbits, at least in the nearly circular case, has been well-studied [S-M]. The goal 
of  this paper is to show that for Iw] sufficiently small, these five orbits are part  of  
an intricate invariant set which also includes many other periodic orbits as well 
as orbits homoclinic to them and heteroclinic between them. The method we 
employ is to first study the case to = 0, where the periodic orbits are replaced by 
restpoint cycles, and then view the case of small angular momentum as a perturba- 
tion. 

2. Zero angular momentum 

From now on we fix an energy h < 0. We will write M(to) instead of M(h, to) 
to denote the integral manifolds described above. As there is no loss of  generality 
in considering only non-negative angular momenta,  we consider what happens to 
M(to) as to ~ 0 + .  As can be seen already in Figure 2 the manifolds develop 
"corners"  as they approach the collision set {r ----- 0}. 

Let M(0 + )  ----- {(r, s, z) : r ~ 0, s-~ A, 1.2-1.5 hold, z x s  >: 0}, where in 1.5 
we are to set to = 0. We will use just M instead of M(0 §  to simplify notation. 
Clearly 1.5 now factors into two equations r = 0 or z X s  ---- 0. Let 3//0 be the 
subset of  M where r = 0 and M+ the subset where z x s = 0. M+ is just the 
to ---- 0 integral manifold of  the three-body problem. M0, on the other hand, lies 
entirely in the triple collision set and so contains no actual solutions of  the three- 
body problem. Let C ---- M+ #~ Mo. C is called the triple collision manifold and 
it forms a boundary for the to ---- 0 integral manifold [Mcl]. Orbits in C reflect 
the behavior of  actual zero angular momentum solutions of  the three-body 
problem which pass close to triple collision. As we saw in Section 1, orbits in Mo 
reflect the behavior of  non-zero angular momentum solutions which pass close to 
triple collision. In Figure 2, the restpoints in the restpoint cycle lie in C, the top 
connecting orbit lies in M+ \ C and the bottom connecting orbit lies in Mo \ C. 

M = M+ kJ Mo is the union of  two manifolds-with-boundary, glued together 
along their common boundary, C. M+ and Mo meet at a corner so M is not a 
smooth manifold. However it is not  difficult to prove the following result. 

Proposition 2.1. M+ and Mo are diffeomorphic to Z •  D 3, where D 3 is a closed 
three-dimensional disk. The collision mani/old C = M+ f~ M_ is the common 
boundary Z x S  2. M :  M+ L/ Mo is homeomorphic to Z x S  3. 

The corner at C does not present much of a problem for the dynamics since 
M+, Mo and C are invariant under equations 1.1. As ~o---> 0 + ,  the differentiable 
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manifolds M(to) (also homeomorphic to Z •  S 3 by Proposition 1.1) converge to 
M just as the elliptical periodic orbits converged to the restpoint cycle in Figure 2. 

We now turn to the study of the flow on M. A good deal is known about the 
flow on M+, including its boundary, C [D1, M3, S, W]. The flow on Mo \ C 
has not yet been investigated. We will only discuss features relevant to the goal 
of the paper. 

The vectorfield 1.1 restricted to Mo is gradient-like with respect to v = s �9 z. 
In fact, an important inequality due to SUNDMAN can be written [M3]: 

v' ~ rh + �89 (zxs )  2. 

On Mo we have r = 0  and z •  with equality only on C. Thus v ' > 0  
on solutions in Mo \ C. A closer analysis shows that even in C, v(t) is increasing 
on every non-constant solution. This means that the restpoints are especially 
important. 

We have already found ten restpoints in C, namely, two in each of the five 
restpoint cycles. Actually, because of the rotational symmetry there are ten circles 
of restpoints in C. One verifies from 1.1 that there are no other restpoints. For 
reference we record the coordinates of the restpoints: 

r~-~O, 

s = So (central configuration), 

v = ~(2U(so)) ~, 

Z ~ v A s o .  

(2.1) 

To label the restpoints, let E+ and E*  denote the restpoints corresponding 
to the central configuration e+, where the star indicates the choice of a minus 
sign in 2.1. Similarly we use E_,  E_*, Ci, C* to represent the other restpoints. 
Figure 4 shows the levels of the restpoints with respect to the non-decreasing 
function v. 

All ten restpoints are hyperbolic when viewed in the quotient manifold of C 
under the rotational symmetry. The eigenvalues are closely related to the behavior 
of the potential near the corresponding central configuration. The variational 
equations of 1.1 involve the second derivative of the potential function. Let 

U: L ' - + R  be the restriction of the potential to the quotiented configuration 

space and let ~7 be the gradient operator with respect to the metric induced on 

by the metric A on •6. Then D V U(so) will have two (real) eigenvalues. It turns 
out that if 2 is such an eigenvalue then 

v ~ ]/v 2 + 162 
4 (2.2) 

is an eigenvalue of the variational matrix at the corresponding restpoint [D2]. 
Here v is given by 2.1. 

Now e+ and e_ are non-degenerate minimum of/_J while cj are non-degenerate 
saddle points. From this one can easily work out the dimensions of the stable and 
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unstable manifolds in C of each restpoint. These are shown in Table 1 along with 
the exact values of the eigenvalues. The latter were obtained from the intricate 
computation in [S-M] by a change of time scale. 

Since # ~ 0, the eigenvalues at the equilateral restpoints are always real. 
Note that for equal masses, # = 0 and so the eigenvalues occur with multiplicity 

N 

two. From 2.2 it follows that the two eigenvalues of D V U(e+_) agree in this case; 
this fact will be useful later on. 

To understand fully the eigenvalues at the collinear restpoints we need to 
know the spacing of the masses along the line (determined by ~,/3). These satisfy 
1 1 

--_L--~-=~ 1 and 
rnio~ fl q- mjfl mkor -~- mjfl 
me ~- mj/32 mk q- mj~x 2 " 

As noted above, there is a unique solution ~,/3 for given m,, rn:, m 3. It turns out 
that there is a large open set of masses such that rj > ~ which makes two of the 
stable eigenvalues at Cj and two of the unstable eigenvalues at C* complex. Since 
this is crucial in what follows we will describe this set of masses. When m i = m k  

i n  
= m ,  o r 1 8 9  and one finds easily that v j ~  if and only if - - > 4 .  

mj 
In particular, for equal masses, all six collinear restpoints exhibit complex eigen- 
values. Figure 5 shows the regions in the mass simplex rn 1 -I- rn2 § m 3 = l 
where the various vj exceed ~. [R-S.] 
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Table 1. Eigenvalues at the restpoints in C 

Restpoint R dim S t ( R )  dim U n ( R )  Eigenvalues (I v I = [/2-U-~) 

E§ 2 2 _ I ~  1 ~: (r ~ ~2 r  
4 

Cj 3 1 

[vl (1 i }/1 i }/~- %- 1 6 v j ) ,  
4 

Iol (~ • r • r _-= ~j )  
4 

C* 1 3 
Iv-~-I (1 • ]/1 :k 1/25 + 16v2), 
4 

( m l  - -  m2)  2 -J- (m, - -  m3)  2 ~- (m2 - -  m3)  2 

2(m, +//'/2 -~- m3) 2 

m i ( l  + a + 0C 2) -]- mk(1 + fl + f12) 
Vj = mi  + mj(or .q_ f12) ~_ mk ' 

rik rik 
o~ = ~ , fl = ~ { i , j , k  } = {1,2,3). 

r o rjk 

m3 

v3 <~ 
.'~/"N~ 

Vl <81 

v 2 < -  

m2 

Fig. 5 

ml  
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We now turn to the behavior of the restpoints in the direction complementary to 
C in M. Recall that M is composed of two pieces Mo and M+ which meet at a 
corner along C. As indicated in Figure 2 the restpoints exhibit different behaviors 
in these pieces. Each starred restpoint has an additional stable eigenvalue in M+ 
and an additional unstable eigenvalue in Mo. The situation is reversed at each 
unstarred restpoint. This unusual state of affairs results from our viewing the rest- 
point in the manifold with corners M rather than from any degeneracy of the rest- 
point itself. 

The fact that the dimensions of both the stable and unstable sets of the rest- 
points are increased when we view the restpoints in M is crucial to our perturbation 
strategy. Consider the restpoint cycle corresponding to one of the Lagrangian 

central configurations, e+ or e_. In ~r+, the quotient space of M§ under the sym- 
metry, the restpoint E has a three-dimensional unstable manifold and E* has a 

three-dimensioal stable manifold. Since M+ is five-dimensional it is dimensionally 
possible that the restpoint connection in the cycle represents a transverse inter- 
section of these stable and unstable manifolds. In fact, this is the case for all choices 

of  the masses [D2, S-L]. In hS/o E*, has a three-dimensional unstable manifold and 
E has a three-dimensional stable manifold. Thus it is dimensionally possible for 
the other branch of the restpoint cycle to be a transverse connection. This is also 
true, at least for generic masses. The proof  will be given in Section 4. 

Proposition 2.2. For all masses the Lagrangian connecting orbit E+,_--~ E*,_ 
is transverse. For generic masses the connecting orbit E~,_ -+ E + _  in the collision 
set is transverse. 

Here generic means that the exceptional masses lie in the zero set of an analytic 
function on the mass space. In particular, the set of allowable masses is open and 
dense and has full measure. 

Because of the transversality of the connecting orbits, the unstable manifolds 
of E+,_ and E*§ fit together to give an unstable topological manifold for the 
restpoint cycle. Similarly there is a patchwork stable manifold for the cycle. 

In the quotiented spare M these objects are three-dimensional. This hyperbolic 
structure of the restpoint cycle carries over to the nearby periodic orbits in the 
manifolds M(co). Thus we have: 

Proposition 2.3. Let the masses be so chosen that both connecting orbits of  the 
restpoint cycle are transverse. Then for all sufficiently small angular momenta, o~, 

the Lagrangian periodic orbits in )~I(o9) are hyperbolic with three-dimensional stable 
and unstable manifolds. 

Since )~t(to) is five-dimensional it is possible to have transverse homoclinic 
or heteroclinic orbits connecting the two Lagrangian periodic orbits. 

The Eulerian periodic orbits are apparently not hyperbolic. The restpoint 
cycles corresponding to collinear central configurations are not transverse, as a 

glance at Table 1 will show. In hT/+, Cj has a two-dimensional unstable manifold 
while C* has a two-dimensional stable manifold. Thus the existence of the connect- 
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ing orbit Cj-+ C* seems surprising. The explanation is that both of these mani- 

folds are contained in a three-dimensional invariant submanifold of h4+, namely, 
the collinear invariant manifold. If we start the three bodies on a line with mo- 
menta parallel to the line, then they will remain collinear for all time. These motions 

form a three-dimensional subsystem of ~r+ which contains the stable and unstable 
manifolds of the collinear restpoints [Mc2]. Viewed in this invaria;nt manifold, 
the Cj--> (7* connection is transverse [D2]. 

We now turn to the construction of homoclinic and heteroclinic orbits to the 
Lagrangian orbits. First we consider the case of  zero angular momentum. As we 
remarked above, the stable and unstable manifolds of E+,_ and E*,_  patch to- 
gether to give stable and unstable manifolds for the Lagrangian restpoint cycle. 
We will show that for certain choices of the masses these manifolds intersect each 
other transversely infinitely often. The Eulerian orbits play a crucial role in the 
proof  of this claim; they are brought into play by means of the following result 
[M3J: 

Proposition 2.4. For all masses, topologically transverse connecting orbits of  the 
following types occur in the collision manifold, C: 

E+--+Ci } 
C* -+ E* j - -  1 , 2 , 3 .  

+ , - -  

Because of these connecting orbits, parts of the unstable manifolds of E+,_ 
pass near each collinear restpoint Cj. Similarly the stable manifolds of E * _  pass 
near C* in backward time. The implications of these facts in the case when the 
collinear restpoints have complex eigenvalues can be seen schematically in Figure 6. 
Figure 6 is actually taken from a subsystem of the planar three-body problem which 
occurs when two of the three masses are equal. In that case, initial conditions 
which are symmetrical under reflection through some line lead to solutions which 
remain symmetrical for all time. This subsystem is called the isosceles three-body 
problem and has been extensively studied [D1, M l, M4, S]. If the particle with 
subscript j is on the axis of symmetry (the other two being the equal masses) 
then the restpoints E + _ ,  EY,_, Cj and C 7 lie in the isosceles submanifold together 
with parts of their stable and unstable manifolds. These are depicted i n  the 
figure. The main point is that the spiralling near the collinear restpoints causes the 
asymptotic manifolds of the equilateral restpoints to wind themselves around the 
Cj--> C* connecting orbit and thus produces infinitely many transverse inter- 
sections. 

We will see that this mechanism still works in the full planar three-body 
problem. The main difficulty is the higher dimension of the various manifolds. 
In Figure 6 we have two-dimensional asymptotic manifolds in a three-dimensional 
space. In the planar problem we have (after removing the rotational symmetry) 
three-dimensional asymptotic manifolds in a five-dimensional space. An advantage 
of the planar problem is that we now have three collinear restpoints which, for 
certain choices of the masses, all exhibit spiralling. 

The first step in the construction is to clarify what it means for one invariant 
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E_ E+ 

E_ 

Fig. 6 
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manifold to spiral around another. We have developed some of the theory of spirals 
in another paper [M2] and will present only a summary here. The concept of spiral- 
ling presupposes a codimension-two submanifold around which the spiralling 
takes place. For  example, a curve can spiral around a point in a plane or around 
another curve in space. A surface may also be said to spiral around a curve in 
space (see Figure 7). In the isosceles problem, the Cj ~ C* connecting orbit 
provides the required codimension-two submanifold. In the planar problem we 
need a three-manifold. The natural choice is the collinear subsystem mentioned 
above; it is a codimension-two subsystem of the full planar problem and it contains 
the Cj-+ C* connection. 
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Fig. 7 

Given a codimension-two submanifold we can define what  it means for another  
manifold to spiral a round it. Locally, one can introduce polar  coordinates in the 
complementary two dimensions; this can even be done globally if the submanifold 
is nicely embedded. A spiralling manifold should wind around the submanifold 
and converge to it as the angular coordinate tends to ~ (or to - -  cx~). We require 
that  the spiral converge in a controlled way. First of  all, it must  approach  a definite 
submanifold of  the codimension-two manifold;  we call this the core o f  the spiral. 
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In Figure 7 one spiral has a point as its core and the other has a circle as its core. 
The spiral itself should consist of a one-parameter family of copies of the core 
manifold, parametrized by the angular coordinate. As this parameter tends to 
-t-- oo, the copies of the core should converge smoothly to the core itself. Various 
technical conditions assure that in any other polar coordinate system we can still 
find such a parametrization [M2]. 

Spirals of this kind are formed near hyperbolic restpoints of flows when 
complex eigenvalues are present. Consider the situation near a collinear restpoint 
Cj when the masses are chosen so as to have complex eigenvalues. In the quotiented 

manifold h~r+ (five-dimensional) we find the invariant three-dimensional collinear 
submanifold containing the restpoint and its unstable manifold. The complex 
eigenvalues are stable ones and the complex eigenspace is a complement to the 
collinear manifold. The complete stable manifold is three-dimensional since there 
is also a real stable eigenvalue in the collinear manifold. If we take a small two- 
dimensional disk transverse to the stable manifold then according to [M2] it 
emerges from a neighborhood of the restpoint as a manifold spiralling around 
the invariant collinear manifold and converging to the unstable manifold of the 
restpoint (the core). This situation can be visualized if we consider a four-dimension- 
al cross-section to the flow near some point of the unstable manifold of the 
restpoint (Figure 8). In this cross-section the coUinear manifold appears as a co- 
dimension-two submanifolds; i.e., as a two-dimensional surface. Within this sur- 
face the unstable manifold of the restpoint appears as a curve. If we choose a 
polar coordinate system in the complementary dimensions and then fix the angular 
coordinate we get a three-dimensional half-space bounded by the collinear mani- 
fold. This is pictured in the figure. The image of the transversal disk is wound 
around the collinear manifold in such a way that it intersects the half-space in 

St(E*) 

Fig. 8 
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a curve which lies over the unstable manifold of the restpoint. As the angular 
coordinate is varied the curves converge to the core curve, the unstable manifold 
of the restpoint. 

We want to find a complementary two-dimensional disk to the stable manifold 
of Cj which lies in the unstable manifold of E+ or E_. According to Propositions 2.3 
we can find disks which are topological complements. Of course it is to be ex- 
pected that for generic masses, the connecting orbits described by the proposition 
are actually transverse but this has not been proved. Unfortunately the results 
of [M2] require transversality. It is possible to establish transversality for special 
choices of the masses. The following result will be proved in Section 4. 

Proposition 2.5. I f  the masses m~ and me are sufficiently close to being equal then 
there are transverse connecting orbits Cf  ~ E_~,_ and E+,_ ~ C3 in the collision 
manifold. The same is true i f  the subscripts 1, 2, 3 are permuted. 

The proposition is proved by considering the connecting orbits in the isosceles 
submanifolds for the case when two masses are equal (Figure 6). Clearly this 
connection is transverse in the isosceles submanifold. By studying the variational 
equations in the directions complementary to the isosceles manifold one can show 
that these connections are transverse when viewed in the full planar manifold. 
The proposition then follows since transversality is preserved by small perturba- 
tions. 

Thus for appropriately chosen masses Un(E+) and Un(E_) each contain disks 
which pass near the collinear restpoint Cj and emerge as spirals around the collinear 
invariant manifold with core Un(Cj). 

Consider a four-dimensional cross-section to the flow along the Cj ~ C* 
connecting orbit. Recall that when viewed in the collinear manifold this orbit 
represents a transverse intersection of Un(Cj) and St(C*). Thus in Figure 8 we 
find these manifolds as transverse curves in the collinear manifold. By following 
two-dimensional disks in St(E*,_) and St(E*) in backward time through a neigh- 
borhood of C* we find similar spirals converging to St(C*). These spiral in the 
opposite sense to the spirals arising from Un(E+,_): if the "unstable" spirals con- 
verge to their cores as the angular coordinate tends to + oo, then the "stable" 
spirals converge as the angular coordinate tends to --  o~. Then it is clear from 
Figure 8 that there will be intersections of the unstable curves and the stable curves 
as the angular coordinate is varied. From the results in [M2] it follows that in 
every neighborhood of Un(Cj)• St(C*) there are infinitely many topologically 
transverse intersections of each of Un(E+,_) with each of  St(E*,_). 

Theorem 1. Let the masses be chosen so that the restpoints Cj and C* have complex 
eigenvalues and so that the connections E+ _ ~ Cj and C* ~ E* , +,_ are transverse. 
Then in every neighborhood of the Cj ~ C* connection there are topologically 
transverse connections from each of E +_ to each of E*,_. 

Our main interest in this result is its implications for the Lagrange orbits 
with small but  non-zero angular momenta. However we have the following result 
for the zero angular momentum problem. 
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Corollary. For masses as in the theorem there are infinitely many solutions of the 
three-body problem which both begin and end in triple collision. As they approach 
collision their configurations approach an equilateral triangle; however, such orbits 
occur in every neighborhood of the collinear orbit C~ ~ C*. 

This phenomena was first found by DEVANEY in the isosceles problem [D1]. 
For the perturbation theory in the next section, it is convenient to introduce 

a graph representing the various restpoint connections in M. 

Definition. For each mass vector m and energy h < 0, the connection graph 
G(m, h) is the directed multigraph with four vertices E+, E_, E*, E* and one direct- 
ed edge between vertices for each topologically transverse connecting orbit 
between the corresponding restpoints in the flow on the limiting variety M(h). 

With this terminology, Proposition 2.2 and Theorem 1 can be combined as 
follows: 

Theorem 1'. Let the masses be chosen so that the restpoints Cj and C* have complex 
eigenvalues and so that the connections E +,_ ~ Ci and C~ ~ E* _ are transverse. 
Then for any h < O, the connection graph G(m, h) contains the graph:  !Ix!IE) 

(2.3) 

where the bold arrows indicate a countable infinity of distinct edges. Moreover, 
connections of the type represented by the bold arrows occur in every neighborhood 
of the Eulerian Cy ~ C* connecting orbit. 

In this graph, each upward-pointing arrow represents the branch of a Lagran- 
gian restpoint cycle which lies in Mo. The branch in M+ is represented by one of 
the semicircular arrows, The other arrows represent connections caused by the 
spiralling near the Eulerian restpoints Cj and C*. Note that the hypotheses may be 
satisfied for several values of j  in which case the bold arrows get even bolder. Also, 
the complete connection graph may contain other edges unrelated to the ones 
found in this section.In particular there may be other connections fromE~_,_---~E+,_ 
in Mo besides the one in our Lagrangian restpoint cycle. The perturbation theorem 
of the next section applies to those orbits, if they exist. 
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3. Nonzero angular momentum 

In the first section of this paper we found that the Lagrangian elliptical periodic 
orbits in M(h, o~) converge as co ~ 0 to restpoint cycles in the limiting variety 
M. In the second section we constructed infinitely many other orbits in M connect- 
ing the same restpoints; these were represented as edges in the connection graph. 
Now we will see what happens to this collection of restpoint connections when we 
return to nonzero angular momenta. 

The results are best described using symbolic dynamics in the quotient manifolds 

)l~(h, ~). Along each of the orbits in the connection graph we erect a small trans- 

versal or "window". Since all ~t(h, to) are homeomorphic to/1~ and converge to 

)~r as to ~ 0 we can erect corresponding windows in ~r(h, to) and these will still 
be transverse to the flow for small Ico [. Thus we can view the edges of the connection 

graph as representing windows in M(h, to) instead of orbits in ~r. We will say that 
a path in the graph is realized by an orbit if the orbit crosses all of the windows cor- 
responding to the edges in the path in the order described by the path. A path may 
be bi-infinite. We can choose the windows so as to make the following theorem 
true. 

Theorem 2. Let 1" be a finite subgraph of the connection graph G(m, h). There is a 

positive constant co(1") such that for 0 < [co [ < co(['), the flow on h/I(h, co) realizes 
every path in 1". 

This result and its proof are essentially higher dimensional versions of those 
in a previous paper [M1]. Before discussing the proof we turn to the corollaries. 
As in [M1], cycles in the graph lead to periodic orbits in the flow; the proof of 
the following is omitted. 

Proposition 3.1. Let 1" be a finite subgraph of G(m, h) and let 0 < [to[ < o9(1"). 
I f  C is a cycle in 1" then the set I(C) of orbits realizing C is a compact isolated in- 
variant set which carries a one-form; moreover I(C) contains at least one periodic 
orbit. 

For a discussion of "carrying a one-form" see [C]. It is likely that the set 1(C) 
Consists in a single unstable periodic orbit. We can verify this for the special cycles 
representing the Lagrangian periodic solutions. Let lo be the edge in C correspond- 
ing to the E~ -+ E+ branch of our restpoint cycle and let l+ be the E+ ~ E* 
branch. Then the path ... lol+lol+ ... is a cycle and the Lagrangian periodic orbit 
realizes it. Since this orbit is known to be hyperbolic we can choose the windows 
corresponding to lo, 1+ in such a way that no other orbit can realize the cycle. 
Similarly the other Lagrangian periodic orbit is the unique orbit realizing a certain 
cycle. If  the masses are chosen so that Theorem 1' holds then there are infinitely 
many other cycles in G. It is interesting to consider the qualitative behavior of 
the triangle formed by the three bodies along the corresponding periodic orbits. 
All cycles in the graph 2.3 repeatedly traverse the two vertical arrows. These re- 
present windows close to triple collision. The behavior is near that along the branch 
of the Lagrangian restpoint cycle; namely the particles form a tiny triangle which 
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is nearly equilateral and spin around through an angle of nearly 360 degrees. 
The downward pointing arrows represent behaviors between these close approaches 
to collision. Among the possible behaviors we have the behaviors of the Lagrangian 
and Eulerian restpoint cycles. In other words, the particles can emerge from their 
close approach near an equilateral configuration or nearly collinear. We can there- 
fore construct periodic orbits which mimic the behavior of these famous orbits 
in virtually any order we like. If the masses are so chosen that Theorem 1' holds for 
j ---- 1, 2, 3 (for example, nearly equal masses) then all five of the central configu- 
rations can be incorporated. Such orbits, which follow the Lagrangian and Eulerian 
periodic orbits except near the close approaches, can also be aperiodic. We want to 
be a bit more precise about how well we can approximate these behaviors. Let 
Z ---- {v ~- 0). The branches of the Lagrangian and Eulerian restpoint cycles which 

lie in )~/+ cross Z at unique points. If we recall that r '  ~- v we see that by inter- 
secting with Z we are catching these orbits just as the moment of intertia (size) 
of the configuration reaches its maximum. The windows we will construct to prove 
Theorem 2 will lie in Z. There are no windows around the points where the 
Eulerian orbits hit Z but there are windows in every neighborhood of them. We 
can arrange that the orbits we construct follow an arbitrary compact piece of the 
Lagrangian or Eulerian orbits with arbitrary accuracy by requiring that they hit 
Z sufficiently close to these points. This can be done by specifying windows. 

Theorem 3. Let arbitrary neighborhoods of the Lagrangian and Eulerian ejection- 
collision orbits be given. Suppose the masses are nearly equal. Then for sufficiently 
small angular momenta there are orbits that pass through the given neighborhoods 
in any order and that satisfy the following selection rule: passes through neighbor- 
hoods of different Lagrangian orbits must be separated by at least one pass through 
an Eulerian neighborhood. I f  the sequence of neighborhoods is periodic then there 
is a periodic orbit realizing it. 

This follows from Theorems 1' and 2. Figure 9 shows the behavior of a periodic 
orbit constructed in this way. 

If  Ct and Cz are cycles in F we can construct orbits heteroclinic between 
I(C1) and I(Cz) by choosing a path y E F whose backward tail agrees with C1 
and whose forward tail agrees with 6"2. Choosing the cycles corresponding to 
the Lagrangian periodic orbits we have: 

Theorem 4. For small angular momenta there exist orbits homoclinic to the La- 
grangian elliptical orbits and heteroclinic between them. Such orbits can be found 
near the Eulerian elliptical periodic orbits. 

There is another way to prove Theorem 4 which does not involve symbolic dyna- 
mics and which provides some transversality. We know that the Lagrangian rest- 

point cycles have three-dimensional stable and unstable sets in M and that the 
Lagrangian periodic orbits have three-dimensional stable and unstable manifolds 

in h~t(h, to). Furthermore, the asymptotic manifolds of the cycle have infinitely 
many topologically transverse intersections. The same would hold for the periodic 
orbits if we knew that the asymptotic manifolds behaved smoothly as to-+ 0. 
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It is possible to carry out this program in spite of  the fact that the limiting manifolds 
are not smooth but have corners at the restpoints. We will not pursue this line of 
reasoning here. 

By choosing the cycles Ct and C2 in other ways we can find orbits which are 
homoclinic to or heteroclinic between the periodic orbits of  Theorem 3 (or at 
least the corresponding sets I). For  example there are orbits asymptotic to a La- 
grangian elliptical orbit in backward time and to orbits behaving as in Figure 9 
in forward time. 

0 
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We turn now to proof  of  Theorem 2. We will develop a four-dimensional 
special case of window theory [E]. Let I---- [--1, 1] and I n = [--1, l ] x  ...  x 
[--1, 1], the n-dimensional cube. Viewing 14 as 12 x I 2 we define certain 
subsets of  the boundary: 8+ = 812 x 12 and 8_ ---- 12 • 812. Each of these is a 
solid torus and 8I 4 ---- t3 W ~_. 

We will use the terminology of singular homology theory. A relative two- 
chain a which represents a non-zero class in the relative homology group 
//2(14, 8+) ~ Z will be called a positive chain. Similarly we can define negative 
chains. The following simple fact underlies much of what follows. 

Proposition 3.2. Let K be a compact subset of  14 which is disjoint from ~+ but 
which intersects every positive chain. Let L be compact, disjoint from 8_ and inter- 
secting every negative chahT. Then K #~ L ~ O. 
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Proof. Consider the triple (i4, 14 \ K, 8+). A portion of the exact cohomology 
sequence of this triple is: 

----" H2(I  4, I 4 \ K) i *  H2(I,, ' tO)+ J*--,. H2(I  4 \ K, 8+) ----" 

where i and j are inclusion maps. 
Let 0% be a cocycle representing a generator of H2(/4, 8+). Then 0% vanishes 

when applied to any relative cycle which is not positive. Let tr be any relative 
cycle for the pair (14 \ K, 8+). By hypothesis, j(tr) cannot be a positive chain in 
(i4, 8+). Therefore o%(j(a))=j*o%(tr)---0.  By the exactness of the sequence, 
~x+ = i'z+ for some z+ E H2(I  4, 14 \  K). Similarly, if 0~_ generates H2(I  4, 8_) 
then 0~_ = i ' z_  with z_ E H2(I  4, 14 \ L). 

Now suppose KF~ L = 0. Then the cup product z+ kJ z_ E 1-14(14, 14 \ 
(K•  L)) = 114(14,14) will vanish. But i.(z+ W u_) = 0% W 0r C H4(I  4, 814) is 
a generator, a contradiction. Hence K F~ L ~ O. 

A window for a flow on a five-dimensional manifold ~r  is an embedding 

w : 14 ~ M such that w(U) is transverse to the flow. We sometimes write (w, 8 •  
instead of (w(I4), w(Sq-)) in what follows. Given windows Wo and wl it may happen 
that there is a Poincar6 map defined on some part of  Wo mapping into w~. We will 
define a notion of correct alignment of windows, meant to capture the idea that 
the flow stretches Wo across w~ in some way. Our definition is different from that 
in [El. To the windows Wo, w~ we associate auxiliary windows I4Io, W~ with 
Wo A Wo(~+) = Wt/5  wt(0-) = O. Let A+ ---- W1 \ w~ and A_ = 141o \ Wo. We 
require the existence of retractions ro : (Wo, A_)--+ (Wo, 9_) and rt : (I411, A+) 
-+ (wl, ?+) inducing isomorphisms in homology (see Figure 10). 

~ +  

W" 

W1 

Fig. 10 
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Definition. Wo and w~ are correctly aligned if there are Poincar6 maps ~0 : (Wo, 8+) 
(W~, A+) and ~p : (wl, 8_) --~ (Wo, A_) inducting isomorphisms in homology. 

Several remarks are in order. The main difficulty with Poincar6 maps is finding 
their domain and range. Note that ~ = rt  o ~0 : (Wo, 8+) ~ (w~, 8+) and ~ = 
ro o ~ :  (wl, ~_)-+ (Wo, 8_) are defined on the whole window and that for any 
po in tp  with ~(p) E int (w~), q~(p) = q0(p) since the retraction rt fixes wl and takes 
A+ to ~3+. Similarly, if ~(q) E int (Wo) then v~(q) = ~p(q). The condition for correct 
alignment has the advantage that is depends only on the action of the flow on 
Wo(O+) and w~(~_); in fact, a simple exact sequence argument shows that the win- 
dows are correctly aligned if and only if ~0. : H.(~+) -+ H.(A+) and ~p, : H,(~_)  

H.(A_)  are isomorphisms. This makes it easy to verify correct alignment. 
Now let Wo, w~ . . . . .  WN be a sequence of windows correctly aligned by a flow 

and let ~0~ . . . .  , ~PN be the Poincar6 maps. The composition q~N . . . .  o ~ will be 
defined on some compact subset DN of Wo whose properties we now investigate. 

Lemma. Let a be any pos#ive chain in Wo. Then ]a[/h D N =~= O. 

Proof. [a ] denotes the image of the chain a, which is a relative two-chain repesent- 
ing a nonzero homology class in H2(wo, 8+). The composition ~ s  . . . . .  ~1, is 
defined on all of  Wo and induces an isomorphism of H2(wo, 8+) and H2(wn ,8+). 
Consequently the image chain ~N . . . . .  ~((r)  represents a nonzero class in the 
latter group. I t  follows that ~ s  o ...  o ~l( ta l )  intersects the interior of  WN; if 
not then since it is disjoint f rom ~_, it lies in 8+ and so is trivial in H2(ws, 8+). 
Let qE~N . . . .  o~l(l~l)A int (wN) say, q----~N . . . . .  ~x(P) where pE lal. Then 
q = q~u . . . . .  ~01(p) and p E  ]a] A DN as required. 

Proposition 3.3. Let ..., w_u . . . . .  Wo . . . . .  Wu, ... be a sequence of  windows cor- 
rectly aligned by a flow. Then there is a nonempty, compact subset of  Wo whose for- 
ward orbits pass through w~, w2 . . . .  and whose backward orbits pass through 
w- l ,  w-2 . . . .  under the appropriate PoincarO maps. 

Proof. The domain of definition of ~0 N . . . . .  ~01, ON, intersects every positive 
chain in Wo. Dually, the domain of the backward Poincar6 map Y-N . . . .  ~ ~1, D*, 
intersects every negative chain in w0. Applying Proposition 3.2 we have DN 
D* =~ 0 for all N. Since these sets are nested, /~  DN A D* is nonempty and com- 
pact. N 

Let o~ be one of the orbits represented by the edges in the connection graph. 
Then ~ is a topologically transverse intersection of the stable and unstable mani- 
folds of  two equilateral restpoints, say St(E) and Un(E'). We will work in the five- 

dimensional space jkr where these manifolds have dimension three. Let Z be a 
transversal to 0~ at some point p. I f  or is one of the orbits from graph 2.3 we can 
always choose Z ---- (v = 0}, as noted above. Since p is a topologically transverse 
intersection of St(E) A Z and Un(E')/q Z, we can choose C o local coordinates 
U--~R 4, where U is a neighborhood o f p  in Z, taking p to 0, Un(E') to R 2 •  
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and St(E) to 0 •  2. The window associated to o~ will be a small cube in this coor- 
dinate system. 

Under the flow on ~r such a window can be followed forward to a neighborhood 
of E where it accumulates on the unstable manifold of E. Similarly, in backward 
time the window accumulates on St(E'). Suppose that/5 is an orbit corresponding 
to a connection E--,'- E" .  Then following the window ofo~ forward and the window 
of fl backward brings them both in to the neighborhood of E. Recalling the un- 
usual nature of the flow near E (Figure 11) we see that the windows are stretched 

in a favorable way and brought quite close together. However, the flow on 

cannot correctly align the windows since necessarily one window is in ~,r and the 

other is in ~ro, and these are separated by the invariant collision manifold C. It 
happens that when we perturb to nonzero angular momenta, the restpoint dis- 
appears and the windows are correctly aligned. We will carry out the proof of this 
assertion in two steps. First we show that the windows along o~ and z are correctly 
aligned with windows in the boundary of a small ball around E. Then we show that 

these new windows are correctly aligned by the flows on M(h, to) for t tol suffi- 
ciently small. Both steps are greatly facilitated by the construction of a good coor- 
dinate system near E. 
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First we set z = v A s + O A J s + w  where v = z . s ,  O = z x s = z ' J s  
w is defined by the equation. The new differential equations are: 

r t = v r ,  

s ' =  ~2Js + A -1 w, 

v' = k v 2 + 0  2 + wra - l  w - U(s), 

Here 
sold 

and 

O'  = --�89 vS2, 

w" = 7U(s) ,  - �89 vw - Q J w  - (wrA -~ w) As.  

g U(s)t = g U(s) + U(s) As, the component of  g U(s) tangent to the ellip- 
g A s  = 1. The energy and angular momentum equations become: 

�89 (v 2 + 0  z + wrA - l  w) - U(s) = rh, 

r 112 ~ : 0 ) .  

The first of  these two equations can be used to eliminate v locally near E, since 
v(E) #: O. With this accomplished we have only the equation rO z = ~o 2. Now 
let / z = Z [ h l  r-Q2 and v =  I h l r - O  z . Then ~ , v , s , w )  provide C O local 
coordinates near E which are smooth away from C but have the effect of flattening 
the corner at E. To see this, just note that the constraint equation becomes simply 
or = I h[o92. In particular, M corresponds to {~ = 0}. Now the differential 
equations for o~, z are easily found: 

/~' = 0 ,  

'P' : V r  _~_ ,k,2 

Here v(/z, v, s, w) is obtained from v(r, s, O, w) by substitution. Since E is hyper- 

bolic in the directions complementary to v in A~ r we obtain the following lemma: 

Lemma 3.4. There are coordinates (v, xl . . . . .  x4) near E in ~I  in which the vector- 
f ield takes the form: 

, / =  Iv(E)]- [,,I + . . . ,  

x; = 2jxj + . . .  

where 21 _>-- 22 > 0 > 23 ~ 2, are the eigenvalues o f  E in C. Moreover C : 
{ ~ = 0 } ,  s t ( e ) = { ~ < O , x ~ = x 2 = O }  and U n ( E ) : { ~ > O ,  x 3 = x , : O } .  

These coordinates can also be used in the nearby manifolds Al(h, a,) and then the 

equations depend continuously on (o with v' = Iv(v, x)[ ]/}t2(- * + v 2. 

This follows from the discussion above, replacing v by --v if v(E) ~ O. Figure 11 
shows a schematic picture of the flow near E in these coordinates. As mentioned 
above the effect of  the perturbation to nonzero angular momenta  is to eliminate 
the restpoint and render v' > 0 so that the obstruction to correct alignment of  
our windows is removed. 
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We have said that the window associated to the connecting orbit  o~, E '  ~ E, 
is to be a cube in a special coordinate system set up on the transversal Z to o~. 
This coordinate system takes St(E) and Un(E') into coordinate planes. The last 
lemma provides us with special coordinate systems near the restpoints E, E ' .  
In particular, if B is a small ball around E and if q = o~ A ~B then there is some 
neighborhood of q on which the vectorfield points strictly into B and on which 
(x~, . . . , x4 )  will serve as local coordinates. Similarly there are coordinates 
(x'l, . . . ,  x~) near the point q '  = o~ A ~B' where B'  is a small ball around E ' .  
We may assume that the vectorfield points out of B'  on a neighborhood of q'. 
Finally let (y,  . . . . .  Y4) denote the coordinates near p in Z. The next lemma shows 
that by choosing the window Wo in Z appropriately we can be sure that Wo is 
correctly aligned with windows w_l Q aB' and w~ Q 8B which are cubes in their 
respective coordinate systems. The maps 99-1 and 99~ in the lemma represent the 
Poincar6 maps from the neighborhood in aB' into Z and from Z into the neighbor- 
hood in aB, respectively. The maps in the lemma are only assumed to be C O 
because y was only a C o coordinate system. Finally, the preservation of R 2 •  0 
and 0 •  2 by 99_1 and ~ correspond to the invariance of Un(E') and St(E) under 
the Poincar6 maps. 

Lemma.  Let x = 991(Y) and y = 99_1(x') be local homeomorphisms o f  (R 4, 0) 
such that 99, preserves 0 •  2 and 99-1 preserves R2•  O. Then there are windows 
w-l ,  w0, wl which are cubes in x' ,  y, x coordinates, respectively, such that 99_ ~ cor- 
rectly aligns w_l  and Wo and 991 correctly aligns w o and wl. 

Proof. Let II (W, •)II = max (1~ I, It/I) be the square metric on p z. Write x = (~, x) 

with ~ E R z •  and ~E 0 •  = and do the same for x '  and y. 

We may assume that the maps restrict to homeomorphisms on the unit cube 

in y space. Consider the squares [[Y[I= 1 and [l~[[ = b <  I in O•  2. I f b  
is sufficiently small then their 991 images can be separated by a square of  the form 

[[xl[----f. Similarly we can choose O <  a <  1 so that the ~ - l  preimages of  
IlYll = 1 and II~lJ = a can be separated by a square 1171[ = c. Let Wo = 

{[[~[[ <_ a, [[~[1 =< b} and let Wo + = {11~11 < a, Ilyll < 1} and W0 = {IlYII < 1, 
Ily]] ~ b} (see Figure 12). Actually these do not quite work as auxiliary windows 
since, for example, W + / 5  8_ =4= 0. But later we can shrink Wo ~ a little in the 

direction and 1410 a little in the ~ direction. 
For  the rest of the proof  we can work with 99~ and 99-1 separately. We will 

discuss 99a. Choosing a smaller, if necessary, we may assume that 

maxll~[I < f <  minllxll �9 
{ll;}_~a, tl~l =b} {llTll_~a,ll~I-- 1 } 

The "posit ive" boundaries of w o and Wo + link 0 x R  2. Since 0 xP~ 2 is invariant, 
the same is true for their images. Hence there are constants 0 < e < E such that 

e <~ min [[~[[ < max [[~[[ < E.  
(!!.~[t - a,l!ytl <b} {l1711-a,lrYll~l} 
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Now let w 1 = {/l~ll ~ e, I[xl] ~ f }  and wl = (1(~11 ~ E, Ilxll ~ f } .  By means 
of  these choices we have 9~1 : (Wo, 8+)-+ (1411, A+) and ~o~ : (wl, 0_)-+ (W6-, A_) 
as required. Furthermore there are obvious retractions ro : (W6-, A_) ~ (Wo, 8_) 
and r~ : (I411, A+) ~ (wt, 8+) inducting isomorphisms on homology. It  remains 
to verify that 9~t and ~p~ induce isomorphism on homology. As we remarked above 
this can be checked by restricting to the boundaries. ~ is a solid torus linking 
0 •  z so the same is true of  q~1(~3+). This shows that qh. is an isomorphism. 8_ 

is a solid torus whose "center" is the square [J ~[1 ---- c in 0 •  z. For  homological 
purposes we need only consider the effect of  ~01 on this square. But the ~p~ image 

of the square is a simple closed curve in the y plane encircling the origin so it is 
linked with R 2 •  This proves that ~0~. is also an isomorphism. 

We have now associated to each orbit o~ in the connection graph three windows 

in M, one in the section Z and one at each end of the orbit in the boundaries of  
small balls around the restpoints which o~ connects. Now we will show that if o~ 
connects E '  to E and fl connects E to E '  then the windows at the ends of  0~ and fl 
near E are correctly aligned by the perturbed flows. Thus let Wo be any incoming 
window at E and w~ be any outgoing window. In the coordinates of  Lemma 3.4 
Wo lies in the ~, > 0 hemisphere of  c~B where B is a ball around E and w~ lies in the 

= 0 hemisphere. Both windows are cubes with respect to (x~ . . . . .  xa) used as 
coordinates on OB near the points where 0~ and/3 cross it. The auxiliary windows 
Wo and W1 will be tubes around St(E)/5 OB and Un(E) F~ ~B in ~3B, respectively 

Wq 

vv 0 

Fig. 12 

�9 ~.~ ' q : ~  ::~i~::'~k'!:~:: "i: 

w 0 o ~_ 
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(see Figure 11). There are obvious retractions ro : Wo ~ Wo and rl : WI -+ wl 
as required. 

First consider what happens to Wo under the flow on A1. Every point of Wo 
except q = Wo f~ St(E) leaves B near Un(E) f~ C. If  W1 is properly chosen these 
points will leave through I411. Points which remain in B for a long time emerge 
very close to Un(E). Now under perturbation ~' > 0 so every point of Wo leaves 
B and does so near Un(E)f~ OB. If  the perturbation is small enough Wo will 
exit B through W1, i.e., there will be a Poincare map ~v : Wo -+ W1. Points of 0+ 
leave bB near where they did for the unperturbed flow, namely, near Un(E) f~ C 
so they do not hit wl. Hence ~v : (wo, 0+) -+ (I411, A+). The homology condition 
of the definition of correct alignment is just that the solid torus ~o(e+) should link 

St(E). This was true in AI and is still true in AI(h, ~o). A similar argument about the 
backward Poincar6 map ~0 : (wt, 0_) -+ (Wo, A_) completes the proof  of correct 
alignment: 

Proposition 3.5. Let o~ and t3 be connecting orbits represented by edges o f  the 
connection graph with a common vertex, E. Let Wo and wl be the windows near E 
associated to o~ and~3. Then there is a constant c(~, t3) > 0 such that for 0 < I,ol 
< c(~,/3), and the flow on ~l(h, ~o) correctly aligns Wo and wl. 

I f / "  is any finite subgraph of G(m, h) then we can choose o)(F) > 0 to be the 
minimal c(~,/3) where 0~,/3 run over the adjacent edges of Jr'. Then Propositions 3.3 
and 3.5 imply Theorem 2. 

4. Variational Equations and Transversality 

In this section we will prove Propositions 2.2 and 2.5 which assert the trans- 
versality of certain restpoint connections. In both cases the orbit itself is well 
understood. For Proposition 2.2 we are considering the branch of the Lagrangian 
restpoint cycle that lies in the collision set Mo. For Proposition 2.5 we are con- 
sidering an orbit in the two-dimensional isosceles collision manifold. We prove 
transversality by studying the variational equations along these orbits. 

The variational equations of 1.1 are 

4 _ i_sz  1- 
L 0 ]   ;VF(s) zz i [ �89 vl + � 8 9  

where I denotes the 6 • 6 identity matrix. The tangent space to M(h, oa) is given 
by: 

ml as1 -+- m2 as2 + m3 as3 = azl + az2 q- az3 = 0, 

s~ A as = O, 
(4.1) 

zrA -1 as -- VU(s) �9 as = h 0r, 

z r  J as -- sr J az = O. 
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We always work with tangent vectors satisfying 6r = 0. I f  we want to study 
tangent vectors complementary to the direction of the rotational symmetry we 
can impose the condition 

srJA ~s = O. (4.2) 

Let e be a Lagrangian central configuration. Along the corresponding rest- 
point cycle we have, as in Section 1, s(t) = R(O(t)) e. Then from 1.1 we find 

z(t)  = vAs + o~AJs (4.3) 

where 0r = 0'. Let Ps be the plane in T, S w h e r e  4.2 holds and let AP~ 
{6z : 6z = A &~, 6~ E P~}. One can show that PR(o)~ ~- P~ when both are viewed 
as subspaces of  1% 6. 

Lemma4.1. P c •  = Ps(t) • AP~o ( R ~ 2 is invariant under the variational 
equations along the Lagrangian restpoint cycle. 

Proof. The equation follows from the lat remark and the equation s(t) = R(O(t)) e. 
To prove invariance we will differentiate 4.2. First note that if hs C Ps and 6z = 
A ~J, J JE  Ps, then 4.1-4.3 give srOz ~- z r 6 s  ~ 0 so the variational matrix 
becomes 

0 

- - v I  A--I . 

D V U(s) �89 

(4.4) 

Also z r J  ~3s ----- s rJ  6z -~ O. From these facts it follows easily that (srJA 6s)" = 0 
and that (srJA(A - I  ~3z))" = s r J D  7U(s)  Os. We will show that this also vanishes. 
We have V U(s).  ,Is ~- 0 since this is the derivative of  U(s) in the direction of the 
rotational symmetry. From this we get srJ  D V U(s) 6s = V U(S ) .  J 6s. Since s 
is a central configuration and ,Is E T~ S ,  the last expression vanishes. It  follows 
from these facts that Os(t)E P,(o and 3z(t)E AP~(t) for all t. 

The variational flow along the restpoint cycle in the quotient manifold )O is a 
linear flow on a five-dimensional bundle. From the lemma it follows that the four- 
dimensional plane P c •  can be used as an invariant transversal to the direc- 
tion of the vectorfield along the whole cycle. Hence the study of the variational 
equations reduce to the time-dependent system induced by 4.4 on Pe • APe. Along 

the branch of the cycle in ~r+ the equations split further into invariant two-planes. 
This fact was first observed by DEVANEY and later generalized by SIMO & LLmRE 

[D2, S-L]. Along the branch in Mo however this does not generally occur. It  does 
occur for exactly equal masses as we will now show. 

In Section 2 we saw that for equal masses the two nontrivial eigenvalues of  

D V U(s) are equal. The eigenvectors lie in P,. Hence if et, ez is any basis for P, 

D VU(s) ej ~ 2ej or D VU(s) e i = (2 - -  U(s)) Aej since VU(s)  = A ~U(s)  - -  
U(s) A(s). I f  f j  = Ae~ we can use el , fa ,  e2,f2 as a basis for our invariant four- 
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plane. I f  a~, b~, a2, b2 are  coordinates with respect to this basis, we find, using 
4.4: 

I 
a l  

bl 

a2 

b2 f! 0 :t f::it �89 v I 0 bl 

0 I --V a2 
I ^ 

0 ~ 2 

(4.5) 

where 2 = 2 - -  U(e) and v(t) is computed  along the restpoint  cycle. When the 
masses are not  equal,  one cannot  choose a t ime-independent  basis o f  eigenvectors 

~ -  3 U(e) so ~t { U ( e ) .  Our  for  D UU(s(t)). F r o m  Table  1 on 2.2 we have 2 = ~ = 
considerat ions are now reduced to the two dimensional  system: 

I:] I *' ' ]I:] = ~ 

�89 U(e) �89 v(t) (4.6) 

F r o m  the equations in Section 1 we find v' = U(e) -- ~ v 2 along the branch of  

the restpoint  cycle in )hto. Now we can prove.  

L e m m a  4.2. The cone family a(b -- �89 va) ~ 0 is positively invariant under equa- 
tions 4.6, 

Proof .  I f  a = 0 then a '  = b and [a(b -- �89 va)]' = b 2 ~ 0. Hence orbits 
cannot  leave the family through the a = 0 boundary.  I f  b - - � 8 9  we find 

3 v(t)2 a 2. This shows that  orbits cannot  leave through the [a(b -- �89 va)]" = -g 
b -- �89 ba = 0 boundary  either. 

This can be used to prove the transversali ty of  the E*+,_ -+  E~ ,_ connecting 
orbits if the masses are equal. Because 4.5 is block diagonal,  the tangent  spaces to 
Un(E*_) and St(E+,_) are direct sums of  their intersections with the (a~, b~) 
and (a2, b2) planes. These tangent  spaces are transverse if and only if their inter- 
sections with these coordinate  planes are transverse. Now a vector  v ETe .  Un(E*) 
/5 (a, ,  b~)-plane must  lie in the cone family of  L e m m a  4.2 since it is an a t t rac tor  
in the projective flow on the (a~, bl)-plane.  Therefore  vectors in T(s(o.~-o)) Un(E*) 
/5 (a~, b0 -p l ane  lie in the cone family. On the other  hand,  vectors in 
T(~(o,~o~ ) St(E) • (a~, b0-p l ane  do not  lie in the cone family. To  see this note that  
the symmet ry  v - + - - v ,  6s-+6s, 6z-->--6z, t - + - - t  of  equations 4.4 takes 
TE. Un(E) to TE St(E). In the (al ,  b , )  plane this reduces to v -+ - -v ,  a~ ->  a~, 
bl -+ --b~. This changes the inequali ty of  L e m m a  4.2; hence vectors of  Te St(E) 
/5 (a~, b~)-plane do not  lie in the cone family. I t  follows that  the same holds for  
T(s(t),z(t) ) St(E). We have now shown that  T~,:) Un(E*)/5 To,=) St(E)/5 (aj, bj) 
plane ---- {0) for  j = 1, 2. Since the full tangent  spaces are direct sums, TO,~) Un(E*) 
/q T~s,.)St(E) = {0) as required. 

Proposi t ion  2.2 follows f rom the transversali ty in the equal mass  case since 
the manifolds  Un(E*) and St(E) depend real analytically on the masses. The set 
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of masses such that the E *  -+ E~ _ connections are not transverse will be the 
zero set of some analytic function of the masses. Since the equal masses do not lie 
in the zero set, the zero set is at least codimension one. 

To prove Proposition 2.5, we assume mj = m2 and show that the E + _  -+ C3 
connection in the isosceles collision manifold is transverse when viewed in the full 
planar collision manifold. To do this we will find invariant bundles for the varia- 
tional flow near the isosceles manifold and then find an invariant cone family, as 
above. 

Let L : R 6 - + R  6 be the linear isometry L(xx,y l ,  x2, Y2, x3, y3) - -  
(--x2,  Y2, --x~, y~, --x~, Y3). This reflects each position vector (xj, Yi) through the 
y-axis and then interchanges the first two particles. A fixed point of L is an iso- 
sceles configuration : s = (x, y, - -x ,  y, 0, Y3). 

Now define L(s, z) = (Ls, Lz) and i~ • L(s, z, 6s, 6z) = (Ls, Lz, L 6s, L 6z). 

The fixed points of  L form a submanifold, J ,  of M called the isosceles submanifold. 

Since rn~ = m2, L commutes with the flow of 1.1 and so J is invariant. We 
will split T s M  into eigenbundles of  L. L has eigenvalues ~ 1. The + 1 eigenspace 
is just T C J  = T J .  The --1 eigenspace we call B. Then T I M  = T J  �9 B and 
both bundles are invariant. They are each three-dimensional. 

The isosceles collision manifold is C#~ J .  We get a splitting Tc~,~ C = 
T(C/5  J )  �9 Bc~l .  We will refer to the second factor as just B. Thus B = 

{(s, z, ~s, ~z)" (s, z) ~ C A j r ,  (6s, ~z) C T(~.~) C, /~(6s, 6z) ---- --(6s, ~z)}. 
We will introduce a basis in the three-dimensional bundle B. Let s = 

(x, y, - -x ,  y, 0, y3) and z = ( ~ , % - - ~ , ~ 7 , 0 , - q 3 ) .  Let e = (l ,  0,1,  0, - -2a ,  0) 
and f = ( 0 , 1  + 2 a ,  0 , - - (1  + 2 ~ ) , 0 , 0 )  where a = m f l m 3 = m z / m 3 .  In the 
following lemma we indicate the 6s and 6z components of basis vectors: 

Lemma 4.3. The vectors ul = (xe + yf, --(m -1 (Ae + m -1 ~Af)), u2 = (0, xAe 
-~- yAf)  and u3 = (Js, Zz) Jbrm a basis Jbr B at (s, z) E C f~ J .  

Proof. The proof  consists in checking all the equations defining B on these vectors. 
We omit the details. 

Note that u3 is just the tangent vector to the action of the rotation group. 
Thus (ua) is an invariant one-dimensional bundle of B. To compute the differential 
equations for the coordinates corresponding to this basis is laborious and we will 
omit the computation. Expressing vectors in B as au~ + bu2 + cua we have: 

r: r 2v ot !t f ( s ) -  5tJ(s) ~ v I o 
L J L  ' - -  

c * 0 I 0 

(4.7) 

d 2 
where f(s) = (I + 2~) - t  ~ U(s + t(xe -F Yf))]t-o. Since we are really interested 

in variational equations in the quotient manifold of  C under the rotation symmetry, 
we need only study the first two components of (a, b, c). 
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Fortunately,  the crudest of  information abou t  this matrix suffices to show the 
existence o f  an invariant  cone family. The orbit  considered in Prosposi t ion 2.5 is 
a restpoint  connect ion E+ ,_  --~- C3 or C* ~ E*,__. We need to es t imate f ( s )  a long 
this orbit. A direct computa t ion  gives 

f ( s )  - 
2mm 3fl 

(x 2 - t  flZy2)5;2 [3( x2 "/3Y2) 2 --  ( x2 " y2) (.v 2 --  f12y2)]. 

I t  is easy to see that  f ( s )  ->- 0 when x z ~ ~ f12y2. Unfor tunate ly  we need to con- 
sider the range of  configurations with x 2 ~ ~-f12y2, the equality corresponding 
to the equilateral configuration. In this case one can at least show f ( s )  t- U(s) > O. 
We will also need to estimate v(t) along the orbit.  Since the flow on C is gradient-  
like with respect to v, v(t) is bounded on either side by its values at the restpoints.  
It  is also true that  for the orbits in question U(s) is bounded on either side by its 
values at the restpoints. F rom 2.1 we have v 2 = 2U(s) at the restpoints. Since al- 
ways v 2 ~ 2U(s) and since U(e . .  ) < U(s) we obtain the following est imates:  

U ( e . , _ )  ~_ U(s) ~ U(c3) , 

2U(e ~,_) ~ v 2 :<= 2U(s). 

A simple computa t ion  gives 

U(e_~ ,__) 1/2 (2-.!- .~)3:2 

U(c3) (o~ -t- 4)(1 --  2:x) U2" 
(4.8) 

Also, if we define So to be the configuration with .& = ~. f12y2, we have 

U ( e . , , _ )  _ ] / 6  (2 -F ~x) 3/2 

U(so) (3 + 2~x) ';2 (J/3-~x !. 4)" 
(4.9) 

Lemma 4.4. There exists a positive numner k such that the cone fami ly  a(b -- ha) 
0 is invariant under 4.7. 

7 I/2--U-~__ ). When a 0 we have [a(b--ka)]" Proof .  In fact we can take k = -~ , = 
.... b 2 ~ 0 .  When b = k a  we find: 

v vk k2]. [a(b -- ha)l" = a2[f  - 5U § -~ -- 

To see that  this is nonnegative for x 2 >= ~ fl23,2 it suffices to show that  

Since 

--5U(c3)  § ~ v I/2U(e.~,_) --  ~ U ( e  ,_) ---~. O. 

v ~ ]/2U(e~ _), 

U(e . ,_)  > 4_o 
0 ~- U(c3) ~ 49 



68 R. MOECKEL 

4o On the interval is good enough. But 4.8 gives ~ > - -  which does exceed ~ .  
---- 7 t / 7  

�89 <= x ~ <= �89 f12y2, one finds that the following estimate suffices: 

U(e+ _) 
~ U(So)  > 48 49" 

~/6(12 --  6 ]/~')3/2 
From equation 4.9 one can show ~ ~ 

48, = (8 --  3 1/~-),/2 (100 - -  56 1/3-) Incredibly, 
this exceeds ~ .  

Now Proposition 2.5 follows f rom this lemma by the argument used for 
Proposition 2.2. 
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