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1. Introduction 

A conjecture, attributed to BIEBERBACH [1], asserts that if 

(1.1) f ( z ) = z +  ~ anz n 
n=2 

is analytic and univalent in the unit disk, then I an ] _-< n with equality holding only 
for the Koebe function 

co 

or one of its rotations. The conjecture was proved to be true for n = 2, 3 and 4 
by BIEBERBACH [1], LOEWNER [11] and GARABEDIAN & SCHIFFER [5], respectively. 
Alternate proofs for the case n =  4 have been provided in the papers [19], [4] and 
[14]. Recent evidence in support of the conjecture has been obtained by GARABE- 
DIAN, ROSS & SCHIFFER [4], GARABEDIAN & SCHIFFER [6] and BOMBIERI [2]. In 
these papers it was shown that Rean<n if f (z) is sufficiently close to K(z) in 
various topologies. The author [14] proved that, at the Koebe point, these topo- 
logies are all equivalent. 

It is the purpose of this paper to prove the Bieberbach Conjecture for the 
sixth coefficient. 

Theorem 1. If  f (z) is normalized, analytic and univalent in the unit disk, then 
la61<6 with equality holding only for the Koebe function or one of its rotations. 

The proof of the above theorem uses the formulas of GARAaEDIAN, ROSS & 
SCHIrVER [4] together with an observation of the author [15] that the Grunsky 
matrix of a slit mapping is unitary. Grunsky's inequality is based on the fact that 
a function defined by (1.1) is univalent in the unit disk if and only if the series 

log f ( z ) - f ( ( )  = ~ dm n zm ~n 
Z--~ m,n=O 

converges for I zl < 1, I (1< 1. GRUNSKY [7] showed that this is the case if and only 
if the linear transformation defined by the symmetric infinite matrix 

(1.2) C=(c .n ) ,  c.,n=Vm--nd., n 
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satisfies the inequality 

(1.3) (Cx,~)____ llxl12 

for every square summable complex vector x=(x~, x2, ...,x,,, ...). Here, and 
elsewhere, (x, y) denotes the inner product ~ x ,  Yn. SCmrrER noted that it is a 

n 

consequence of SCnUR'S diagonalization theorem [21] that (1.3) is equivalent to 
the inequality 

(1.4) IlC xl12__< Ilxll 2. 

The author [15] noticed that it follows from an independent proof of JEN~NS [8] 
that equality holds in (1.4) if and only if f defines a slit mapping. Here a slit 
mapping is one which maps the disk onto the complement of a set of measure 
zero. An immediate consequence is t ha t f  is a univalent slit mapping if and only 
if the Grunsky matrix C is unitary. 

In his proof that la21<2, BIEBERBACH [1] made use of the fact that if f (z) is 
univalent in the unit disk, then so is a branch of l / f ~ .  GARABEDIAN, ROSS & 
SCHIFrER [4] observed that any even order coefficient a2 ~ o f f  can be expressed as 
a polynomial in the matrix Cn=(C2j_~, 2~-~), J, k =  1, 2, ..., n, of the Grunsky 
matrix C associated with V f ~ .  When 2n=4, they used this fact to prove that 
laal <4. An expression for a 6 is given by (see [4, pp. 985-86]) 

v 2 8 C35+6C21C33 12 a6=Plo(Ca)--~ c55 + - ~  c~1 +---~ c13 c,5 
(1.5) 

14 32 2 c~1. 

The above polynomial, however, is not unique since there is a relation 

(1.6, P6(Ca)-C,5 + Y ~  c : , - ~  c 3 3 - ~ - ~  c,i C ,a -0  

among the elements of C3. Note that the polynomials Pk are homogeneous of 
degree k in the sense that replacingf(z) by e-  ~ ~ ~ brings out the factor e ~ k 0 in 
front of Pk. The above authors were then led to the representation 

(1.7) a 6 = 5 0 ( 6 3 )  - ( 2  c21 +/t c13 ) 5 ( 6 3 ) ,  

where 2 and # are Lagrange multipliers. A comparison of the above formula with 
one obtained by a different method then led to the choice 

8 12 

The authors then considered the problem of maximizing the above polynomial 
over the class of all 3 x 3 matrices which satisfy Grunsky's inequality (1.3). An 
application of Schur's diagonalization theorem, together with the maximum 
principle, then showed that in the extremal case the truncated matrix must be 
unitary. By determining the most general 3 x 3 symmetric unitary matrix, a bound 
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was obtained for Rea  6 in terms of a trigonometric polynomial in five real varia- 
bles. Computing machine experiments gave considerable evidence that the poly- 
nomial has the desired bound. 

The author [16] used the unitary property of the infinite matrix to show that, 
for suitably normalized slit mappings, Rea  6 is bounded by a computable function 
of the single real variable t=Rea2 /2 .  Computations of this function gave more 
evidence that Rea6 < 6. The results of the latter study indicate that one should be 
able to prove 

Re (a 6 - 6) < a(Re a2 - 2) 

where ce is near 1/2. Since this would require considerably greater effort, with no 
new ideas, we content ourselves with estimates which are consistent with the 
objective of proving Theorem 1. 

The present study uses a simplified version of the method used in [16]. We 
are led naturally to the formula (1.7) with 

8 
(1.8) 4 = -  V--~" # = 0 .  

It is convenient to introduce the identity 

(1.9) ca5 - c17 c11c15 ~ c21cl--a c2a 

V-i  Vv 3 
which is obtained by direct computation. The usefulness of (1.9) is a consequence 
of the fact that its imaginary part does not depend on the real parts of elements 
outside of the truncated matrix Ca. After omitting certain terms, which the 
unitary property of C shows are negative, the remaining bound is reduced to a 
polynomial in the real and imaginary parts of the first now of C by means of (1.6) 
and (1.9). 

Perhaps a few remarks on the determination of the multipliers are in order. 
This requires a certain amount of guessing since the optimum choice requires a 
knowledge of the eigenvalues of certain matrices as functions of 2 and/~. We there- 
fore choose/~ and 2 so that reasonably good estimates are obtained for univalent 
functions whose coefficients are all real. The value 2 = -9 /1 /3  gives the best local 
estimate for the latter class. The choice 4 = - 8 / V 3 ,  which turns out to be a 
stationary value of the discriminant of a certain quadratic form, gives a better 
estimate for functions with complex coefficients. By comparing our bound for 
Rea6 with the one obtained for Rea  4 in [15], the value 2 = - 8 f 1 / 3  suggests the 
beginning of a pattern which, at least as far as the local result is concerned, may 
extend to the higher even order coefficients. Having chosen 2 = - 8/1/3, # is chosen 
to optimize the second derivative of the estimate for a 6 at t = 1. This is accomplished 
by choosing # = 0 .  We shall not carry out a justification of the remarks of this 
paragraph. The interested reader may wish to do so himself by following the lines 
of w for an arbitrary polynomial of the form (1.7). 

It will be observed that the point 2 = -8 /1 /3 ,  # = 0 lies outside of the region 
for which the scheme of GARABEDIAN, Ross & SCHIFFER [4, p. 987] gives a negative 
local variation. This in no way implies a contradiction since we are considering a 
smaller class of matrices. The fact that the relations (1.6) and (1.9) are valid in 

24* 
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our class allows us to estimate certain quadratic forms over subspaces in which 
smaller bounds are obtained. Some of the bounds of this paper can be improved 
by allowing 2 and p to vary with t. The above choice, however, is adequate for 
the global theorem and tends to minimize the complexity of the computations. 

For special results related to the sixth coefficient problem, the reader is 
referred to OZAWA [13], SCI~IrFER [18] and JENKINS d~ OZAWA [9]. 

In w we prove some preliminary lemmas. The basic estimates for a 6 are ob- 
tained in w and in w are reduced to estimates depending only on t=Rea2/2. It 
turns out to be necessary to treat the cases Recla >0  and Rec13__<0 differently. 
In w it is shown that the bound for the former case is dominant. w is devoted to 
estimating quartic forms in terms of the eigenvalues of quadratic forms. In w 7 the 
results of the previous sections are used to prove Theorem 1. 

2. Preliminary Lemmas 

If C is a matrix, define 6 C =  C - I  where I is the identity. The elements of C 
are denoted by Cjk= rjk + iSjk where rjk and Sjk are real. One of the essential tools 
of our investigation is provided by the following lemma. 6 Cj denotes the j-th row 
of the matrix 6 C. 

Lenuna 2.1. A necessary and sufficient condition that an analytic function f (z), 
normalized by (1.1), be a slit univalent mapping of the unit disk is that the Grunsky 
matrix C associated with f satisfy 

(2.1) 6 r jk = --�89 C j, 6 Ck). 
For a proof of the above lemma see [15]. 

On several occasions we shall need to estimate the largest eigenvalue of a 
"border"  matrix. The following lemma gives bounds which are adequate for our 
purposes. 

Lemma 2.2. The largest eigenvalue of the quadratic form 

(2.2) q ( x , y ) = A x 2 + 2 x ( B , y ) ,  A,x~R~,  y, B e R ,  

is given by 
A + EA2 +41IBII2] ~ 

(2.3) �9 --- 
2 

I f  A and B are of class C 2 with respect to t and if 

(2.4) a "  > 0, (B, B") > 0 ,  [A2+4 IIBII2]~ + 0, 

then �9 is a convex function of t. 

Proof. A simple computation shows that the characteristic polynomial of the 
real symmetric matrix associated with q is 

( -  z)"- 1 (z 2 _ a z -  Ilnll 2) 

from which it follows that the largest eigenvalue of q is given by (2.3). Assuming 
A and B to be of class C2 with respect to t, we have 

(2.5) 2 ~ " = A " +  AA"+4(B ,B" )+  IIA'112+4 [In'll 2 _ [AA'+4(B, B')] 2 
[-a 2 +4  liB[12] ~ [A 2 +4  Ilnll2] ~ 
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An application of Schwarz' inequality yields 

[AA'+ 4 (B, B')]2 < (A 2 + 4 lIBII z) ((A,)2 + 4 liB' I I 2). 
Substitution of the above inequality into (2.5) gives 

2 z " > A "  lq- (a2+4[iB[12) ~- -~ (a2+4llBii2) ~ . 

Hence, if (2.4) is satsfied, then z " >  0. This completes the proof of Lemma 2.2. 

3. The Basic Inequalities 

Letf(z)  be a univalent slit mapping of the unit disk and let C be the Grunsky 
matrix of ]/f--~). It may be assumed, without loss of generality, that 

(3.1) a6>0  and ]Arga2[<n/5 .  

Setting t = r l l  and using the fact that c1~ =a2/2 , it follows from (3.1) that 

(3.2) 0 < t < l  and I s l l [ < ( t a n n / 5 ) t < � 8 8  

By using formula (1.7) with 2=  - 8 / ] / 3  and #=0 ,  together with (3.1), we obtain 

t ~ a 6 = R e ( a 6 - 6 ) = R e { 2  ( c s 5 - 1 ) + - - ~  c11c35+1~03 (c21c33-1)  

(3.3) 
8 2 12 24 3 14 2 34 . s _1)  1 + - ~ c l '  c15+~c'3c 's  + - ~ c ' i  c13 +TC ' l  C13 +-~(c"  ., �9 

It is easily verified that 

(3.4) R e ( c 2 x c a a - 1 ) = t 2 ( r a a - 1 ) + ( t 2 - 1 ) - s E l r a 3 - 2 t S x l S a a .  

The real and imaginary parts of (1.6) are next equated in order to obtain 

3 3 
= 3__3_]/5 rl5 + t3 - 3  t2s l l  +l--~- V ~ $11 s13  (3.5) r33 - - - ~  tr13 

F v 

and 

s3 3 3 (3.6) s a a = - ~  s l s + 3 t 2 s l l - 11 -  - ~  t s l a - - ~  r l a s l l . 

Substituting (3.5) and (3.6) into the third and fourth terms on the right side of the 
equality in (3.4) and then substituting the resulting expression into (3.3), we obtain 

2 8t 12 8t2) rls 10 
6 a 6 = - 5 ( r 5 5 - - 1 ) + - ~ r 3 5 + ( - - ~  r13+ . -V-~- +-'3 - ( t 2 -1 )  r33 

14 24t a 3 4 1 0  14 
+~- -  t r2a + ~ rla + - ~  (t 5 - 1) +- -~  (t 2 - 1) - 4 6 t  a s~l - - f f -  t s2a 

(3.7) 8 52 t 2 36 t 12 
l s , ,  - + 2 8  , 

14 a 42 t 28 
+~5-,-~,~ sll s13-- . ~ _  r13 s ~ l - - ~ -  r13 six s13-18s21 r15.  

V z V ~  
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It is convenient to introduce the vectors 

(3.8) V~ ~cs+-~c3+ -~ r13 
and 

v__l___ (3.9) 1/5 ~ c~ +2t~ cl .  

Here e is a constant to be chosen later. It is a consequence of Lemma (2.1) that 

2 8t 8 1" 8t 2 r 12 16t 3 -~(rs,--1)+-~--~ ras+-~ t2(r33 - )+--~ ~s+---~ r13r t ,+Tr13 

2 24 
(3.10) =-IIUII2-(14t-6) r13+--~t2(1-t)r13+8t'~(1-t) 

�9 2 4 4e + ( 2 0 t -  12) ~ r13 s .  - 8 ~ : ( 1 - 0  sL + 2 ~ ' ( 1 - 0  s~  + ~-7~ r, ,  ~l~X 
v v 

and 

(3.11) 2 t2(ra3 8t 3 - t  2 ilVll2+8t4(l_t). ~- - 1) +-~-~- r13= 

By using ~=9/2 and substituting (3.10), (3.11) into (3.7) we obtain 

~a6= -- I[ U[[2- t 2 IlV[[ 2 +_f3_ (t 5 _ 3 4  1)+103(t2_l)+16t4(l_t ) 

-(~-~8 t - 6 ) r ~ 3 + 2 4 t 2 ( 1 - t ) - ~ 3 - ( 3 6 t 2 + l O t 3 ) s ~ l - ~ - t s 2 3  

(3.12) 8 52 t 2 36 t 12 

a 14 r1_3 s 2 28 
+(40.5-12.5t )s , ,+-~-~-  s3xt st3-(54-48t) V 3 ,1--~-r,3s,,s13. 

At this point, it is convenient to introduce the linear forms 

k t k - j  
(3.13) Ck=j=lZ V2~ '~-1  S l , 2 j - I '  k=1,2 ,3 ,  

S3s 2t 
(3.14) t/=-~--~- +--Q-~- sis 

and the nonlinear forms 

2 9 s~3 - 2t rt3s1~+3 r13 s~3 (3.15) ~ l = - 3 t s ~ - T  s21 V5 V-3 V3 V3' 
~ _ 3  9 

(3.16) z - - - ~  r13 Sll - ~ -  S~l, 

f $31 .4. r t3 . (3.17) ~3=--ff - - ~  Sll 
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The fact that ] / f - -~  is an odd function implies that Cjk = 0 ifj and k have opposite 
parity. By retaining the contributions of the imaginary parts of the first two non- 
vanishing components of U, the first three of V, and using (3.6), (3.8), (3.9), 
(3.13), (3.14), (3.15), we have 

-IIUl[2-  t 2 [I VII2__< --3(q+2tSsxl+(1)2--5t2q2--(~s+t~2+~2)2 
( 3 . 1 8 )  - -  3 t 2 (~3 - -  ( 3 )  2 1 t 2 (~2 + t ~ 1) 2 �9 

It follows, by eliminating q, that 

-3(rl+ 2tS sll +(i)2-5t2q2-8qsil 

(3.19) < - 15t2 (2t s sxl +(1)2 + (48ts+ 16)s21 +24(1 sll 
= 3+5t  2 3+5t  2 

As a consequence of (3.12), (3.13), (3.18), (3.19) and the inequalities 

-(2tSs11+(1)2= < - 4 t 6 s 2 t - 4 t s s l l  (1, 

- (Ca  + t r + (2) 2 < - ( ~ s  + t r 2 - 2 ( ~ s  + t r (2 ,  

1 (~3 1 ( 3 )  2 ~ - -  ~2 + 2 Cs (s, 

we arrive at the estimate 

34 1 ) + - ~  (t 2 - 1 ) +  16 t4(1- t) c5a6< ~ -  (t 5 -  

(3.20) - ( - ~  t - 6 ) r 2 s + 2 4 t 2 ( 1 - t )  r13 
1/3 

+ql(t;s)+s21 q2(t;s)+qa(t;s) r13. 
V3 

Here the quadratic forms qt, q2 and qs are defined by 

q l = - (~s + t r 2 - 3 t 2 r t 2 (r + t ~1) 2 

/ 60 ta -48 t s -16  ] 14 2 52t2 
(3.21) - ~36t2+ 10ts+ 3+5t  2 ] s21---~- tSls--]--f~-~ sll Sis 

20t 12 
s11s,5-w-7 S, sS,5, V5 v - 

8t(5t5--2) 
q2=( 40"5-12"5t+18ta+2t4+ 3+5t  2 ) s21 

(3.22) 
54(5ts_2) ~ SllS13 slls15 

+ 14+18t+2ta+  3+5t2 ] y3 k ( 9 + 2 t 2 ) V ~  

and [ 24t(5 t5--2) '~ 
qs=~ 48t-54-12t2+6t4+ 3+5t  a ] $21 

(3.23) 
36(5t5_2) ~ sll Sis stlsxs 

- 2 8 + l E t - 6 t s +  3+5t  2 ] y 3  t -6 ( t2 - -1 ) ] /~  

The inequality (3.20) will be used to derive the estimate 6a6 <0 for te [.85, 1). 
For intermediate values of t, different estimates are required. By equating imagi- 
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nary parts in (1.9), we have 

s3s s17 t t 2 2 1 
V a s " r ' 5  

(3.24) 1 2t  
- g-S Sfl . 

By letting ~ = 5/2 and substituting (3.10), (3.11) and (3.24) into (3.7), neglecting 
the term - l l U l 1 2 - t  2 IlVll 2, we obtain the estimate (3.20) with the simpler ex- 
pressions for the quadratic forms qt ,  q2 and q3: 

ql = --(20t2 + 26t3)S~1-- l~4 a ts~3 8 28t 
--'~--~ Sll $ 1 7 - - - ~  $11 S15 

(3.25) 60t 2 12 
V~ s~l s13-  ~ -  sx3 s~5, 

22 
(3.26) q2=(12.5+15.5t)s~l + - ~  Sll S13, 

s2 12 
(3.27) qs = - ( 3 0 + 8 0  1 1 - - ~  Sll s is .  

The estimate obtained above will be used when .25 < t <  .85 and r13 > 0. 

When .25 < t <.85 and rls < 0, let ~ = 5/2, substitute (3.10) and (3.24) into (3.7), 
and omit the term 2 t 2 (r 33 - 1 ) -  II U II 2. The result is an inequality which is obtained 
by adding the quantity 

. 8t 3 
(3.28) - 8 t4(1 - t)+ ~ r13 

F 

to the right side of (3.20). ql ,  q2 and q3 are again defined by (3.25), (3.26) and 
(3.27). 

4. Reduction of the Number of Variables 

It was shown in the previous section that r has an upper bound of the form 

F13 
(4.1) ~a6<P-er~3+fl +ql(s)+s~lq2(s)+q3(s) V~ 

where P, ~ and fl are polynomials in t and ql ,  q2 and q3 are quadratic forms in 
s=(s11, s13, s15, s17) whose coefficients are rational functions of t. The purpose 
of this section is to reduce the above estimate to one depending only on t. 

It follows from the fact that the first row of C has norm one that 

(4.2) II s II 2 =< 1 - t 2 - r~3 _-< 1 - t 2. 

Our goal is to obtain an upper bound for ~a 6 subject to the restraints (4.2) and 

(4.3) [ s lx l< �88  

The latter inequality is a consequence of the normalization (3.2). 
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Definition 4.1. If F(s) is a quadratic or quartic form whose coefficients depend 
on t, we define 

F(s) 
(4.4) p(F)=maXi is -~ ,  l i s l l 2 < l - t  2, [Slll<3t/4 

and 

(4.5) a(F)=maxF(s), I l s l i2<l - t  2, Islll<3t/4. 

The quantities/7 and ~ denote upper bounds for p and tr, respectively. 

Lenuna 4.1. Let Q=ql +s21q2 and suppose that f f (Q)+~>0.  Then 

(4.6) 6a6 <=P q-~9(Q)(1-t2) -F ~2 
12(~+~(Q)) 

where 
~fl+~(qa) if  r13>0 , 

(4.7) 
T = ( ~ ( - q a ) -  fl if  r l 3<0 .  

Proof. It is an immediate consequence of (4.2) and (4.4) that 

(4.8) Q<~)(Q)(I_t 2 2 - - r 1 3  ) . 

By using (4.5) and (4.7), we have 
r13 < 

(4.9) (fl+qa) ],/5 = 1/3 Ir'31" 

Substituting (4.8) and (4.9) into (4.1), one obtains 

6a6 < P + ~(Q)(l_t2)_(~ + ~(O))r23 + ~ I rl3______~l 

The conclusion of Theorem 4.1 now follows from the assumption that ~ + ~7(Q)> 0. 
In the absence of the restriction (4.3), we have for a quadratic form q(s) 

(4.10) or(q) ='c(1 - t 2) 

where z is the largest eigenvalue of the symmetric matrix associated with q. The 
inequalities s21 < 1 - t  2 and I s l l l  < 3t/4 merge at t=.8.  If the coefficient of s21 is 
positive and t < .8, more efficient estimates can be obtained by separating out some 
or all of the terms involving sll  and estimating them separately. The following 
lemma provides bounds which will be used to estimate border matrices. 

Lemma 4.2. If q is a quadratic form given by (2.2) then 

(4.11) tr(q)<3____~ ya2d-4 l[nll2 [ / ] - Z ~ ,  

(4.12) a(q)<-~ t2 ]AI+ 3 tIIBIIVI-~ "z, 

and 

(4.13) tr(q)<~-~ t 2 IAI+ IIBII ( 1 -  t2). 

The proof is a simple consequence of Schwarz' inequality, (4.2) and (4.3). 
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5. Estimates of Quartie Forms 

This section is devoted to obtaining bounds for the quartic form 

(5.1) Q=ql q-s21q2 

where ql and q2 are defined by (3.21), (3.22) or (3.25), (3.26). One method is to 
use the inequality 

(5.2) Q <-ql +s21 ~(q2) 

where ~ is one of the bounds (4.11)-(4.13), and then to estimate the largest 
eigenvalue of the quadratic form defined by the right side of (5.2). It is the nature 
of ql that the coefficient of s~Zl is negative and large in magnitude compared to 
the other coefficients. It therefore seems reasonable that, for t in a neighborhood 
of one, better estimates can be found by obtaining a preliminary bound on the 
size of s~l in order that 

(5.3) Q>MIIsll 2, [Is[12<l-t  2 

where M is a tentative estimate for p (Q). 
The symbols qk, G, H and K are defined by 

(5.4) qk(s)=qk, 21 S21 + qk(S), 

(5.5) G=q2, 11 (1-- t2), H =  - q l ,  1 1 - P ( q 2 ) ( 1 -  t2), K = p ( q l )  - M "  

Let 2 -  and 2 +  ( 2 -  < 2 + )  be the roots of 

(5.6) G z 2 - H z + K = O .  

Lemma 5.1. Suppose that H2>4GK, G>0,  H > 0  and K>O. I f  (5.3) is satisfied 
at a point where s21 <2+ (1 - t2), then 

(5.7) s21 < 2_ (1 - t2). 

In particular, if H> G+ K, then (5.7) is valid. 

Proof. Let SlI=V1-'Zt2~ and )~-----VI--t2(Sla,Sls,Sl7); hence ~z<2+ and 
ez+  i~ 12< 1. It is then easily demonstrated that 

(a(s)-M llsll2)/(1-t2)<a~'-n~2+g. 
The right side of the above inequality is negative if 2 -  < r  2 + .  It follows that 
if (5.3) is satisfied, then either ~ 2 < 2 -  or ~ 2 > 2 + .  The latter possibility is pre- 
cluded. The proof is completed by noting that if H >  G +  K, then 2 + > 1. 

We next focus our attention on obtaining the preliminary information which 
is needed to apply Theorem 5.1 on the interval [.85, 1]. 

Lemma 5.2. If  ql and q2 are defined by (3.21) and (3.22), and te[.85, 1], then 

(5.8) p ( ~ 1 ) < 4 0 t - 2 2  and p ( ~ 2 ) < 4 2 t - 2 6 .  

Proof. In order to prove the estimate for P(ql), it is sufficient to verify that 

(5.9) (40 t - 22) (stZl 2 z + s13 + s15)-~ql (s) 
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is positive definite. It is convenient to use the coordinates ~k defined by (3.13). 
We note that 

(5.10) SX,2k-l~V2k--l(~k--t~k-1),  4 0 = 0 .  

After substituting (5.10) into (5.9), we obtain the quadratic form 

3 

j,k=l 
where 

All =(40t-22)(1-t- 3t2)- 38ta- 7 t4-  3t 6, 

A22=(40t-22)(3+5t2)+2t(l+t), Aaa=5(40t-22)+1+3t 2, 

Aa2=t[t2+8-3(40t-22)],  A23=4t, A23=t+6-5t(40t-22) .  

It will be shown that the determinants of the principle minors of the above matrix 
are positive. It is clear that A33 >0.  We next compute 

A 2 (t) = A22 Aa 3 - A23 = 7158 - 27,830 t + 26,053 t 2 + 1366 t 3 - 324 t 4 + 600 t s. 

It is easily verified that A[( t )>0,  t~[.85, 1] and that A2(.85)>0; hence A2(t)>0.  
As a consequence of convexity, we have 7t*+3t6<34t-24, t~[.85, 1]; hence 

A22 >(40t-22)(l  + 3t2)- 34t + 24-  38t 3. 

It follows that A3 = det (Ajk) satisfies 

A 3 --> 4 (t) = 14,316 - 12,712 t + 14,190 t 2 - 390,254 t 3 

+ 904,110 t 4 - 647,346 t s + 139,861 t 6 - 65,648 t 7 + 49,197 t*. 

One deduces from the inequality 

4 (0 (t) ~ 107 [(33 t-- 17) t 2 + (10 t-- 8)] 

that 4 " '  is convex. It is next verified that 4" ' ( . 85 )<0 ,  4 " ' ( 1 ) > 0 ,  4 " ( . 8 5 ) < 0  and 
4 " ( 1 ) < 0 .  These inequalities, together with the convexity of 4 ' " ,  imply that 4 
is concave. More computations give 4 ( .85 )>0  and 4 ( 1 ) > 0 ;  hence 4 ( 0 > 0 ,  
te  [.85, 1]. This completes the proof of estimate for P(ql).  

It can be shown that q2.13, q~', 2a, q2, 25 and q~', 2s are all positive on [.85, 1]. 
2 2 Hence, by Lemma 2.2, the largest eigenvalue, "c=Vq2, 23+q2, 25, of q2 is convex. 

It follows, by computing z at both endpoints, that z < 4 2 t - 2 6 ,  t~[.85, 1]. This 
completes the proof of Lemma 5.2. 

Lemma 5.3. If q2 and q2 are defined by (3.21) and (3.22), and Q=ql +s21q2 > 
( 7 . 5 - 7 0  I[s][ 2, then s21 <.42 (1- t2 ) .  

Proof. An analysis of the proof of Lemma 5.2 shows that its conclusion is 
valid with ql. 22 and q2.11 replaced by upper bounds. It is fairly easy to verify 
that q~',<0 and q~' 11 > 0  on [.85, 1]. Estimating ql, 11 by the tangent at .85 and 
q2,11 by the chord between .85 and 1 we obtain 

q l , 1 1 < 6 9 - 1 2 0 t  and q2 ,1 t<7 .5+43 .5 t ,  tE[ .85 ,1 ] .  
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Using the above estimate, together with M = 7 . 5 - 7 t ,  in (5.5), we find that 

G=(7.5+43.5t)(1-t2), H=(120t-69)-(42t-26)(1-t 2) 

and K = 4 7 t - 2 9 . 5 .  We have 

H-G-K=85.5t3-18.5t2-12.5t-21. 

The above expression is easily seen to be increasing and positive at .85. Hence 
H>G+K, t~[.85, 1]. Putting z =  .42 into (5.6), we obtain 

- 25.3134 t 3 + 9.597 t 2 + 21.9554 t - 10.117. 

The above polynomial has a negative derivative and is negative at t = .85. It  follows 
that .42 separates the roots of quadratic equation (5.6). This completes the proof. 

We are now in a position to obtain a bound for p(Q). 
Lemma 5.4. If the hypothesis of Lemma 5.3 is satisfied, then 

(5.11) p(Q)<7.5-7t, t~[.85, 1]. 

ProoL As a consequence of Lemmas 5.2 and 5.3, it is sufficient to prove that 
the largest eigenvalue of the quadratic form 

= q l  + (.42 q2, 11 + 42 t - 2 6 )  (1 - t  2) s~l 

is less than 7 . 5 - 7 t .  It  suffices to show that 

( 7 . 5 - 7 t )  ][sl[2-~ 

is positive definite. It  follows f rom (3.21) and (5.10) that the above quadratic form 
is equal to 

3 

~'~ Bjk~jCk, Bjk=Bkj 
j,k=l 

where 

B11 = ( 7 . 5 - 7 0 ( 1  + 3 t 2 ) -  ql, 11 - (.42q2, 11 +42  t - 2 6 )  (1 - t2)-38t3-7t4-3t  6, 

B22=2t(l+t)+(7.5-7t)(3+5t2), B33=l+3t2+5(7.5-7t), 

B12=t3+8t-3t(7.5-7t), B 13= 4 t ,  B23=t+6-5t(7.5-7t). 

It  is clear that B33 >0.  We next compute 

A 2 (t) = B22 B 33 - B223 = 830.25 - 1081 t + 501 t ~ - 232 t 3 + 118.5 t 4 - 1 0 5  t 5. 

Note that 
A ~ (t) < - (1081 - 1002 t ) -  ( 6 9 6 -  474 t) t 2 < 0 

and that A2(1)>0;  hence A2(t)>0,  te[.85, 1]. In order to bound A3=det  (Bj0  
from below by a polynomial of lower degree, we compute 

B11 = 16.2 t 6 - -  4.856 t 4 -12 .25  t 3 -1- 49.4956 t 2 

39.616 t--2.41792 
-- 54.702 t + 11.96264 + 

3 + 5 t  2 
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It is easily verified that B~ 1 (.85) > 2, B~ 1 (.85) > 34 and B~'~ (t) > 0, te [.85, 1 ]; hence 

Bll  > 3 4 t - 2 6 . 9 ,  t~ [.85, 1]. 

Using the above inequality, it can be shown that 

A a > 7~(t) = - 22,333.725 + 57,307.4 t - 71,161.525 t 2 

+ 99,502.05 t 3 - 104,267.4 t 4 + 44,783.5 t 5 - 3686.5 t 6 - -  139 t 7 - -  3 t 8. 

It is next shown that, for t < 1, 

~ ' "  (t) > 103 (597 - 2503 t -  2687 t 2 - 443 t 3 - 34 t 4 -  2 ts). 

Using tk< 1, we then have 

7~'"(t)> lO3(597-2503t-2208t2)>O, t> .9. 

By applying a similar argument to the interval [.85, .90], it is seen that ~u'"(t)>0, 
tel.85, 1]. By computation, one shows that ~P"(t)<0, tP(.85)>0 and 71(1)>0. 
It follows that ~ (t)> 0 on [.85, 1 ]. Hence the determinants of the principle minors 
of (Bjk) are all positive. This completes the proof of Lemma 5.4. 

The problem of finding bounds for p(Q) on the interval [.70, .85] is considered 
next. 

Lemma 5.5. If ql and q2 are defined by (3.25) and (3.26), then 

v < 1 1  
(5.12) p (~1)<25 t -9 .3  and P(q2)=--~-,  t~[-.70,.85]. 

Proof. The estimate for p (q2) is a simple consequence of the inequality between 
geometric and arithmetic means. The bound for p (~ x) is obtained by demonstrating 
that 

(5.13) (25 t -9 .3 )  Ilsll 2-~1 
is positive definite. After introducing the variables 

(5.14) Yk=l/2k--lSl, 2k_t, k = l , 2 ,  3,4,  

(5.13) becomes 

(25 t -  9.3) y2 + (89 t -  27.9) y2 + 5 (25 t -  9.3) y2 + 7 (25 t -  9.3) y2 

+ 6 0 t 2 y l Y 2 + 2 8 t y  lya+8yt Y4+12y2Ya. 

Elimination of the variables Ya and Y4 by completing the square shows that the 
above expression is bounded from below by 

Dy2+2EylY2+Fy 2 
where 

D = ( 1 5 t - 9 . 3 ) -  + (25 t -9 .3 )  ' 

E=30t2  84t 
5(25t-9 .3)  

and 
36 

F=(89t--27.9) 5(25t-9 .3)  " 
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Estimating from above by the chord between .7 and .85 and from below by the 
tanget at .75 gives 

1 
.315-  .28t< 25 t - 9 . 3  < .301- .255 t,  t~ [.7, .85]. 

By using the lower estimate in the expression for E and the upper estimate in the 
formulas for D and F, it is found that 

D F -  E 2 > - 297 t a -  1006 t a + 2650 t 2 - -  1677 t + 300-- ~ (t). 

The polynomial �9 (t) is easily shown to satisfy r  (t) < 0, te [.70, .85], ~ "  (.70) < 0, 
�9 (.70)>0 and ~(.85)>0. It follows that ~ ( t ) > 0  on [.70, .85]. This completes the 
proof of Lemma 5.5. 

Lemma 5.6. I f  ql and q2 are defined by (3.25) and (3.26), and Q--q1 +821q2 >= 
(11--10t) lls][ 2, te[.70, .85], then s21<.4 ( l - t 2 ) .  

Proof. By Lemma 5.5, (3.25) and (3.26), we see that it is sufficient to apply 
Lemma 5.1 with 

11 (1_ t2) ' K = 3 5 t - 2 0 . 3  G=(12.5+15.5t)(1-t2), H=20t2 + 2 6 t a - - ~  

Note that 
H -  G-K>41 .5 t  a + 38.9 t 2 - 50.5t + 1.3 

which is increasing and positive at t =  .73; hence it is positive on [.73, .85]. When 
t <  .73 we use the inequality s21 <9  t2/16 (see (4.3)) to deduce that s21 __< .65 (1 - tz), 
te [.70, .73]. One notes that 

G ( . 6 5 )  2 - H (.65) + K < - 23 t a - 22 t 2 q-  42 t-- 10.8 

which is decreasing on [.70, .73] and negative at t =  .70. It follows that 2+  > .65 
on [.70, .73]. We next calculate 

G(.4) 2 - H(.4) + K < - 12.88 t a - 12.544 t 2 + 37.48 t -  15.756- ~(t) .  

The function ~ satisfies ~ ' ( t )<0 ,  t> .72,  and ~( .72)<0;  hence ~ ( t ) < 0  for 
t~ [.72, .85]. It is easily shown that I ~ '  (t)] < 2 on [.70, .72] and that �9 (.70) < - .08 
from which it follows that ~ ( t ) < 0  on [.70, .72]. Hence 2 -  < .40. This completes 
the proof of Lemma 5.6. 

Lemma 5.7. Under the hypothesis of Lemma 5.6, we have 

(5.15) p(Q)<_ll- lOt ,  t ~ [.70, .85]. 

Proot. As a consequence of Lemmas 5.5 and 5.6, it is sufficient to prove that 

(5.16) (11-10t ) , ] s , ]2 - -q l - -{ .4(12 .5+15.5 t )+-~}  ( 1 -  t2) s21 

is positive definite. Estimating 1/(11-10t) from below by the tangent at .8 and 
from above by the chord between .7 and .85. we obtain 

l O t - 5  1 
< -< 1.25t-- .125, t e [.70, .85]. (5.17) 9 = 1 1 - 1 0 t  - 
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By following the lines of the proof of Lemma 5.5, using the variables (5.14) 
together with (5.17), it is found that the quadratic form (5.16) is bounded from 
below by 

(1.075--19.06t + 55.85t2--16.8ta) y2 + 2(ll.34t2 + 9.34t) yl y2+(37.5-25t) y 2 . 

The negative of the discriminant of the above quadratic form is bounded from 
below by 

4 0 -  742 t + 2483 t 2 - -  2239 t a + 291 t 4 

which is easily proved to be concave on the indicated interval and positive at its 
endpoints. This completes the proof of Lemma 5.7. 

We turn now to the proof of the bound for p(Q) on the interval [.25, .70]. 

Lemma 5.8. If ql and q2 are defined by (3.25) and (3.26), then 

(5.18) p ( Q ) < 4 ,  t e  [.25, .70]. 

Proof. We first prove that 

(5.19) tr(q2) < 14.8 t, t s [.25, .70]. 

On the interval [.25, .56], the estimate (4.12) gives 

14.8t_q2>14.8t _225~ 2 279 3 - t - - - ~ - t  --5.3V3t], /]--~-~--~(t  ). 

A routine calculation shows that 

- 2 2 5  837 t+16.51/~1/-' 1+2t2/3 ~ " ( t ) =  
16 16 (1 - -  t 2 )  ~ 

If t <  .56, it can be shown that 

t .  

16.5 3(1+2t2/3) <62 
( 1 - - t  2 ) ~  - " 

It follows that ~"  (t) < 0 on [.25, .56], which together with �9 (.25) > O, �9 (.56) > O, 
yields the inequality (5.19). On the interval [.56, .70], the estimate (4.13) is used 
to obtain 

14.8t--q2>14.8t--2~52= t2---~279 t3_  11 ( 1 _ t 2 ) ] / 5  

which a concavity argument shows to be positive on [.56, .70]. 
Using (5.19) and again following the lines of the proof of Lemma 5.5, it is 

verified that 
41ls[12-qa-s~x q2 

is bounded from below by a quadratic form, the negative of whose discriminant 
is greater than 

(t) = 34.96 - 129.608 t - 120.8 t 2 + 660 t 3 - 536 t 4. 
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We note that 

~t" (t)< -129.608 + t [-2144 ( t -  92~044 ) 2+ 215.4] . 

Neglecting, for the moment, the squared term within the bracket, it is seen that 
~ ' ( t ) < 0  if t <  .596. When t__> .596, we have 

~ ' ( t ) < - 1 2 9 . 6 0 8 + 1 8 3 . 7 t < 0  if t <  .7. 

The proof is completed by verifying that ~( .7)>0.  

6. Comparison of the Cases r u  < 0 and rio > 0 

In this section it will be shown that an estimate of 6a6 for the case r13_>0 
always dominates a particular one for the case r l a~0 .  The estimate of tr(q3) 
which we shall use for the former case is given by the following lemma. 

Lemma 6.1. If q3 is defined by (3.23) or (3.27) then 

tr(qa)< . 4 (1 -  t2), t~ [.25, .85], 

(6.1) < ( 5 0 t - 3 7 . 5 ) ( 1 -  t2), t e  [.85, 1]. 

Proof. By Lemma 2.2, the largest eigenvalue of the quadratic form (3.27) is 
given by 

- (30 + 8 t) + 1/(30 + 8 t) 2 + 48 _ 24 
< .4 .  

2 (30 + 8 t) + ]/(30 + 8 t) a+ 48 - 

The proof of the first estimate is immediate. With q3 given by (3.23), it is fairly 
easy to prove that 

q~',11>0 and qa, 13q'3',la+qa, 15q'3',15>O, t~ [ .85 ,1] .  

Hence, by Lemma 2.2, the largest eigenvalue z of q3 is convex. Computations show 
that x (. 85) < 5 and z (1) < 12.5; hence z < 50 t - 37.5. The proof is complete. 

Lemma 6.2. Suppose that in Theorem 4.1, the estimate of Lemma 6.1 is used 
for a(qa). Then there is a bound for a ( - q 3 )  such that the bound for 6a6for the case 
r~a >0 is greater than the one for the case r13 <0. 

Proof. Consider first the case .85 < t <  1. As a consequence of (3.20) and (4.7), 
it is sufficient to prove that 

(6.2) z(qa)(1-t2)+24t2(1-t)>z(-qa)(1-t2)-24t2(1-t)  

where z(qa) and z ( -  qa) are the largest eigenvalues of q3 and - q3, respectively. 
By Lemma 2.2, 

z(qa)--z(--qa)=qa, t t .  

Hence, in order to prove (6.2), it is sufficient to demonstrate that 

48t2+(l+t)qa,~1>O, te l .85,  1]. 

The above quantity is easily shown to have a positive derivative on [.85, 1] and 
to be positive at .85. This completes the proof of (6.2). 
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We turn now to the case .25 < t <  .85. It follows f rom (3.20), (3.28) and Theo- 
rem 4.1 that  it is sufficient to prove 

(6.3) 
[a ( - -  qa)--24t2( 1 -- t)-- 8 ta] 2 < [.4(1 -- t2) + 24 t2(1 -- 0]  2 

2_88 t - 6 + ~ ( Q )  2__8_8 t - 6 + ~ ( Q )  
3 3 

Note that, in virtue of Lemmas 5.7 and 5.8, 28t/3-6+~(Q)>O. 
The case . 2 5 < t <  .50 is considered first. It  follows f rom the estimate (4.12) 

that  
a(-q3)<16.875 t2 + 4.5 t3 + 3 ]/3 t ]/-i-:-~ ; 

hence 
[.4 (1 - t 2) + 24 t 2 (1 -- t)] - [a  ( -  q a) - 24 t 2 - 8 t a] 

=> . . . .  4--5 2t V ] - ~ " z + 3 0  7 2 5 t 2 - 4 4  5t a. 

By using the inequalities 1 - t 2 ~ 1, tE [.25, .45] and V 1 - t 2 ~ .9, tE [.45, .50], one 
obtains on each of the intervals a positive concave lower bound for the right side 
of the above inequality. The validity of (6.3) follows. 

When t >  .5, the contribution of 8 t 4 ( 1 -  t) must  be taken into account. Define 

and note that  

w =  6 ( 1 - 0  t - 6  

8t4(l_t)> w[24t2(1-t)] 2 

1212~83 t-6+p(Q) ] 

In order to prove (6.3), it is sufficient to establish that  

(6.4) ]/1 + w [24 t 2 (1 - t)] - [ a ( -  q3) - 24 t 2 (1 - t) - 8 t 3] __> 0.  

Since ~ (Q)=4 ,  te[.25, .70] and ~ (Q)=  1 1 - 1 0 t ,  te  [.70, .85], we have 

(6.5) 

1.37, t > . 5 ,  
/1 .7 ,  t > . 6 5 ,  

] / l + w > / 1 . 9 4 ,  t > . 7 3 ,  
/2 .02,  t > . 7 6 ,  
[2.06, t=>.77. 

We also have, as a consequence of (4.13), (4.11) and (2.3) 

(6.6) a(--q3)  < 3 t V(30 + 8 02 + 48 ]/]--z-~, 

(30+8t)+V(30+8t) 2+48 ( l _ t 2 ) ,  
2 

t e [.50, .77] 

[.77, .80] 

t [.80, .853. 

25 Arch. Rational Mech. Anal., Vol. 31 
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It is easily proved that 

V(30+ 8 t)2 +48 < 1.02(30+ 8 t), t<  .85 (6.7) 

and 

(6.8) i//]-Z--~< 5 - 4______~t te  [.77, .80] 
3 ' 

the latter inequality being obtained by using the tangent at .8 as an upper bound. 
By using (6.5)-(6.8), we obtain the following lower bounds for (6.4): 

- 3.466 +43.471 t 2 - -  53.38 t a, 

- 3.466 + 51.391 t 2 - -  61.3 t a, 

- 3.466 + 57.151 t 2 - -  67.06 t a, 

- 3.466 + 59.071 t 2 - -  68.98 t 3, 

- 38.25 t + 93.88 t 2 - -  57.28 t a, 

- 30.3 - 8.08 t + 102.54 t 2 - -  56.16 t 3, 

te  [.50, .65] 

t ~ [.65, .73] 

t E [.73, .76] 

t ~ [.76, .77] 

t e [.77, .80] 

t E [.80, .85]. 

Each of the above polynomials in concave on and positive at the end points of 
the indicated interval. The proof of (6.4), and hence (6.3), follows. 

7. Proof of Theorem 1 

We begin by disposing of the case 0 < t <  .25. Since C is unitary, we have 

Icjkl<l and 1clac151<1c1312+1c1512= 2 <1/2.  

The inequality I sl 11 < 3 t/4 (4.3) implies that 

Ic~ll<~t. 
Alter substituting the above inequalities into (1.7) with 2=  -8 /1 /5  and #=0 ,  we 
obtain 

2 6 ( 8__8_+14] 5t ( 1 0 +  8 ](5t/4)2 24 a 34 5 la6[<3-+-i3+\V~ 3 ] 7 + \ - f f  - - ~ ]  +-~-~-(5t/4) +-~-(5 t /4)  . 

The above polynomial is increasing and less than 6 at t= 1/4. Hence 6a6<6  if 
t~  [o, .25]. 

On the interval [.25, 1], it is a consequence of (3.20), (4.6), (4.7), (5.11), (5.15), 
(5.18), (6.1) and Lemma 6.2 that 

34 (t 5_ 1) + 16 t4 (1 -  t) 6a6 =<-~ (t2-- 1 ) + - ~  
(7.1) 

+ ~ ( Q ) ( I _  t2)_t [24t2(1-t)+~r(qa)] 2 

12 [~--~8 t + ~ ( Q ) - 6 ]  
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where 

(7.2) 

and 

(7.3) 

7 . 5 - 7 t ,  
~o(Q)=~ll- lOt, 

[4, 

~, , ( ( 50 t -37 .5 ) (1 - t2 ) ,  
trl.qa)= ~.4( 1_ t2),  

t ~ [.85, 1] 
t [.70, .85] 
t e [.25, .70] 

tE [.85, 1] 
t e  [.25, .85]. 

By convexity we have 

[24t2+.4(l+t)]2<16(21t-5), t ~ [.25, .70]. 

Using the above inequality, together with (7.1), (7.2), (7.3), we obtain 

2" 34 
(7.4) t~a6<= ( 1 - - t ) + - ~ ( t s - - 1 ) + 1 6 t 4 ( 1 - - t ) - ~  2(21t--5)14t_3 (t--l)2" 

The quantity 2(21 t - 5 ) / ( 1 4 t - 3 )  is increasing and hence can be shown to have the 
respective bounds 2.2 and 3 on the intervals [.25, .30] and [.30, .70]. Substituting 
these estimates into (7.4), we obtain on each interval a polynomial upper bound 
for t~a 6 . Each of these polynomials has a positive second derivative on the interval 
and is negative at its endpoints. It follows that t~a 6 <0  if te  [.25, .70]. 

On the interval [.70, .85], we have 

[24 t 2 + .4(1 + 0] 2 < 6.2 
4 ( 1 5 - 2 0  

as a consequence of monotonicity. The above inequality, together with (7.1), (7.2), 
(7.3), implies that 

6a6<  ( _ ~ _ ( 1 1 _  lOt)) . 2 34 (t - 1) + ~ -  (t s - 1) + 16 t '(1 - t) + 6 .2 ( t -  1) 2 

for te  [.70, .85]. The above polynomial is easily shown to be convex on [.70, .85] 
and negative at t =  .70 and t=  .85. It follows that t~a 6 <0  o n  [.70, .85]. 

Finally we come to the local estimate, t~[.85, 1]. After substituting (7.2) and 
(7.3) into (7.1) and re-arranging terms, we obtain the inequality 

(7.5) (28 t + 18) 6 a6 < 46 ( t -  1) + ( t -  1) 2 ~ (t) 

where 
2 4 ~(t)=80.2+41.6t-268t -568  - ~  t3-384 1- ~ t4+[24t2+(50t-37.5)(l+t)] 2. 

The function ~(t)  has a positive second derivative on [.85, 1] and satisfies 

25* 

7J(.85) < 79.25, ~(.9) < 369.02, ~(1)__< 1302; 
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hence 

,~ t ~9329 8 ( t -  9) + 369.02, t ~ [.90, 1] 
(7.6) kg(,)-- ~ " " 

= ( 5 7 9 5 . 4 ( t -  .85) + 79.25, t~ [ .85 ,  .90] .  

Af ter  pu t t ing  (7.6) in to  (7.5), and  replac ing 1 -  t by  s, we ob ta in  

. . . . .  f -s[46-1302s+9329.8s2],  s t [ 0 ,  .1] 
(28 t + l~)oa6~- ~ 

=~-s[46-948.56s+5795.as2],  s e  [.1, .15].  

In  the first  est imate,  the quadra t ic  within the brackets  is easily shown to have a 
negat ive d iscr iminant .  Hence  6 a 6 < 0  if te [ .90,  1). In  the second est imate,  the 
quadra t ic  within the brackets  can be shown to have a posi t ive derivat ive for  s > .  1 
and  to be posi t ive at  s =  .1. Hence  6 a 6 < 0  if t~[.85, .90]. 

The  previous  cons idera t ions  prove  tha t  ~ a 6 < 0  with equal i ty  only  if t =  1. I t  
is well known  tha t  the la t ter  poss ibi l i ty  can occur  only for  the  K o e b e  funct ion.  
This  completes  the proof .  
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