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Introduct ion 

In this paper  we prove existence and regularity for solutions of  abstract quasi- 
linear parabolic systems 

8u 
0-7 q- d ( t ,  u) u -~ f ( t ,  u), 

:~(t, u) u = g(t, u), 

u ( s )  = Uo ,  

s < t ~ T, which can be interpreted as quasilinear evolution equations of  the 
form 

(1) it + A(t,  u) u = F(t, u), s < t <= T, u(s) -~ Uo 

in an appropriate Banach space IV. The results are applicable to rather general 
parabolic systems of the form 

~u 
~ t -b  ~ ( x , t , u  . . . .  , D ~ u ) u = f ( x , t , u  . . . . .  D2m-lu) in [ 2 •  

~ ( x ,  t, u . . . . .  ]if'u) u = g(x, t, u . . . . .  Dku) on ~s • (s, T], 

u(', s)  = Uo on s 

where 2m is the order of  the system and k < 2m - -  1. 
To be more specific we describe now the main results for some simple second- 

order systems. We denote by ~2 a smooth bounded domain in R n and consider 
a family of  second-order differential operators of  the form 

d ( t ,  u) u: = - -  ~ Dj(ajk(., t, u) Dku ) -b ~ aj(., t, u) Dju, 0 ~ t ~ T < oo,  
j,k=l j~ l  
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where D j : :  8/Ox j, acting on N-vector valued real functions u: -(2-+ ~N We 
assume that the coefficient functions are smooth, that is, 

a j k  = ak )  , aj E C~(I'~x [0, T] • p N, .~(RN)), 

where .5,e(R N) is the space of all endomorphisms ( ~ - ( N •  N)-matrices) of  R N. 
Moreover we assume that each ~r u) is a strongly elliptic system, that is, 

a)'~(x, t, 7) ~i~k~s > 0 
r,s=l j , k= l  

for all (x, t, r/) E ~ •  [0, T] •  N, all ~ : =  (~e~ . . . . .  ~e,) E Rn \ {0}, and all ~" : =  
(~'1 . . . . .  ~N) E R N \ {0}, where, of course, a]~ are the elements of  the matrices ai~. 
We denote by ~ : =  (~  . . . . .  ~,") the outer normal on 0/2 and put 

~( t ,  u) u : =  2 ajk(', t, u) ~iDku. 
j , k= l  

Finally we suppose that 

and 

f E  C~~ T] X ~ X R "  XR "u, R u) 

g E C~176 T] • ~aQNxR, ~N) with g(. , . ,  0) ----- 0. 

Of course, the above assumptions of differentiability are only imposed for 
simplicity. They can be considerably relaxed. 

We consider the initial-boundary value problem for the quasilinear parabolic 
system 

0U 
~t 
- -  + d ( t ,  u) u = f ( x ,  t, u, Du)  in .(2 x (s, T], 

(2) ~(t ,  u) u = g(x, t, u) on OO • (s, T], 

u(', s) ---- Uo on /2, 

where 0 :< s < T. By a classical solution of  (2) on an interval J C [s, T], with 

s E J and ) : - -  J \ {s) =t= 0, we mean a function 

U E C(.~ X J, ~a~ N)/~ CI(,(~X J, R N) ~ C2'~ X J, RN), 

which satisfies (2) pointwise. A noncontinuable classical solution is said to be 
maximal. 

We suppose now that n < p < cx~ and we denote by W[ : =  W~(/2, RN), 
v E [0, oo), the standard Sobolev-SIobodeckii spaces. 

Theorem. Suppose that 0 <~ s < T, that 1 + nip < v ~ 2, and that Uo E W~ 
satisfies the compatibility condition 

(3) M(s, Uo) Uo = g(', s, Uo) on ~ .  
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Then problem (2) has a maximal classical solution u, defined on a perfect subinterval 
J o f  [s, T], which is open in [s, T]. If' 

(4) sup [lu(t)llw~ < ' ~ ,  
tEJ P 

then J ~- [s, T], that is, u is a global solution. Finally, i f  f is independent o f  Du, 
then u is the only solution of  (2). 

Suppose now t h a t f i s  independent of Du and denote by u(., s, Uo) the unique 
maximal solution of (2) for each Uo E W~ satisfying (3). Then it will be shown that 
u(., s, Uo) depends continuously upon uo in an appropriate neighborhood of s and 
with respect to appropriate topologies. 

In the important autonomous case, that is, if ~r &, f and g are independent 
of t, we shall also establish global continuity results. In particular we shall give 
conditions guaranteeing that the autonomous system (2) generates a local semi- 
flow on appropriate "spaces of initial values". 

The above theorem is a special case of the more general results in Section 6 
below. There we admit also boundary conditions which correspond to Dirichlet 
boundary conditions for some components of u on some components of 80. 
Moreover the system does not need to be strongly parabolic. A typical example 
of a case to which the results apply also is given by the following two-component 
system 

(5) 

~u 
D.I(A(x, u) D~u) = f (x ,  u, Du) in s • (s, co), 

~t j= 1 

~U 
A(x, u) - ~  + B(x, u) u ----- 0 on ~s • (s, oo) 

u(. ,  s )  = Uo o n  s 

where N = 2 and 

a(x,  u) = 
a l  X(x, u) a12(x, u)] 

J 0 a~2(x, u) 

with smooth functions a jk ; ~ X R 2-~ R, such that all(x,  ~) and a22(x, ~) are 

positive for each (x, ~7) E .~ • R 2 and where B(.) E C ~ ( ~  • ~2, .L~,(R2)) is also 
upper triangular, that is, B(x, u) has the same form as A(x, u). Observe that (5) 
is not strongly parabolic, in general. Systems of  this form occur in many appli- 
cations, for example in the mathematical theory of chemical reactions, in certain 
biological models, or in problems of  fluid dynamics (e.g. [2, 10, 13] and have, 
in fact, motivated this investigation. 

This paper concerns the case in which the boundary conditions depend upon 
the unknown solution. The case in which the boundary operator is independent 
of u and t -- which covers in particular the case of  Dirichlet boundary condi- 
tions -- has been thoroughly studied in an earlier paper [7]. 
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The existence of  classical solutions of  a single second-order quasilinear para- 
bolic equation under (nonlinear) Neumann boundary conditions has been exten- 
sively studied by LADYZENSKAJA, SOLONNIKOV & URAL'CEVA [17]. Their method 
is based upon a priori estimates for H61der norms of  the first derivatives of  the 
solutions and upon the Leray-Schauder fixed point theorem. The necessary a 
priori estimates are ultimately derived from a priori estimates for the maximum 
norm of  the solutions, which are obtained by maximum principle arguments. 
It is well known that these techniques require growth restrictions as well as further 
structural conditions for the non-linearities. 

Unfortunately the methods of  LADYT.ENSKAJA, SOLONNIKOV & URAL'CEVA do 
not carry over to general parabolic systems (except, of  course, to some systems 
whose principal parts are in diagonal form). There are two reasons. Firstly for 
general systems, there are no maximum principles which could be used to derive 
a priori bounds for the maximum norms of  solutions. Secondly, even if an a priori 
bound could be obtained for the maximum norm (for example due to geometrical 
restrictions), bounded weak solutions of  system are not generally H61der contin- 
uous (cf. [11, 12, 20, 21]). 

These facts explain why nothing seems to be known about classical solutions 
of  general quasilinear parabolic systems under general nonlinear boundary condi- 
tions. 

The approach here is completely different and uses functional analysis essen- 
tially. Because of  the negations above we cannot expect to get global classical 
solutions in general. For  this reason we investigate the local solvability, for which 
we need not impose any growth condition or other structural condition upon 
the nonlinearities. However it should be noted that we also get global solutions 
if  we can bound a priori a sufficiently strong norm of  the solution (cf. (4)). Thus 
we can recover essentially the results of  LADYT, ENSKAJA, SOLONNIKOV & URAL'CEVA 
for  a single equation.). 

The basic idea of  this paper is rather simple. We interpret the system as an 
abstract equation evolution (1) in an appropriate Banach space W, an Lv-space. 
We associate with (1) the unique solution u(v) of  the linear equation of  evolution 

(6) it + A(t,  v) u = F(t, v), s < t ~ T, u(s) = Uo, 

where v belongs to an appropriate subset of  W. Then we try to establish a fixed 
point of  the map v ~  u(v), which gives obviously a solution to our problem. 

Unfortunately for the following reasons there are serious problems in carrying 
out this simple idea. Formally the solution of  the linear problem (6) is given by 
the "variation-of-constants" formula 

(7) u(v) (t) : Udt, s) Uo + / Uv(t, z) F(% v(r)) dr, s <-- t <~ T,  
$ 

where Uv is the fundamental solution for the family {A(t, v) ] 0 <-- t <-- T}. For  
each fixed argument - -A( t ,  v) is the infinitesimal generator of  a strongly contin- 
uous analytic semigroup on IV. This is essentially a consequence of  the Lp-esti- 
mates for  elliptic systems (c f  [l]). The difficulty lies, however, in the fact that the 
domains of  the unbounded operators A(t,  v) depend upon t and v. 
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There are well known results due to K n r o  & TANAnE [15] (cf. also [22] and 
YAGI [24, 25]), which guarantee the existence of  a unique fundamental solution 
for  time-dependent parabolic evolution equations. However if one tries to satisfy 
the hypotheses of  these theorems in our concrete situation (we consider now the 
case of  second-order systems, for simplicity) one finds that one has to assume that 

v E Cl([s ,  T], C ~ ( ~ , R N ) ) .  (This is due to the fact that the Lp-estimates involve 
CX-norms of  the coefficients of  the boundary operators, which contain v.) Unfor- 
tunately this good regularity is not  preserved by u(v), and so the fixed-point op- 
erator v ~-> u(v) is not well defined, in the sense that it does not preserve the 
regularity of  v. 

In a previous paper [8] I have shown that a fundamental solution can be 
constructed under weaker assumptions of  regularity provided certain additional 
hypotheses are satisfied. These results apply to the present situation. The basic 
idea is to extend the whole problem to a larger space such that the domains of  
the extensions of  A( t ,  v) become independent of  the argument (t, v). In terms o f  
differential equations this corresponds to the study of  a weak formulation of  the 
problem. 

For  constant domains it is possible to obtain sharp estimates for the depen- 
dence of  the (extended) evolution operator upon v. These estimates have been 
derived in [7] and are crucial for the present paper. It is most important that in 
the extended, or weak, formulation the first-order boundary terms disappear. As 
a consequence we can obtain continuous dependence of  U v upon v with respect 

to the topology of  C(.Q) (and not with respect to the C'-topology), It is then pos- 
sible to lift back the problem within the abstract framework to the space IV, so 
that the weak formulation does not appear explicitly in this paper. 

The existence proof  is rather delicate since we have to work simultaneously 
with two topologies. Namely, the weak formulation gives us continuity of  the 
fixed-point operator v~-~ u(v) with respect to the C-norm. On the other hand 
the whole theory depends heavily upon the Lp-estimates which are uniform only 
on bounded subsets of  C ~. Hence one has to ensure that the function v ~-~ u(v) 
is bounded in C ~ although it is only continuous in C. 

Finally we have to use a third set of  topologies, namely the topology of  H61der 
spaces, to get classical solutions. I prefer to get the existence theorems in the 
setting of  Sobolev spaces, since in these spaces the associated semigroups are 
strongly continuous, which is not true for H61der spaces. Having established 
existence in Sobolev spaces, we use the H61der spaces only for proving regularity. 
Although the semigroups are not strongly continuous in the H61der spaces, they 
behave well enough for this purpose. A similar technique has been used in [7]. 

All these considerations are carried through in an abstract framework. This 
has the advantage that the results are also applicable to a variety of  parabolic 
systems of  higher order. It  remains only to verify that the hypotheses of  the 
general results are satisfied. 

In Section 1 we introduce the basic assumptions and the abstract formulation 
of  the problem. Section 2 contains a detailed study of  the regularities of  the linear 
Cauchy problem. These regularities are crucial for the study of  the fixed point 
map v ~-~ u(v), which is carried out in Section 3. The main abstract results of  this 
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paper are contained in Section 4. Besides of  general existence and uniqueness 
theorems we derive also results concerning the continuous dependence upon the 
initial values. Section 5 contains the proof  of  the abstract regularity theorem, and 
in Section 6 we apply the results to rather general quasilinear second-order para- 
bolic systems. In the last section we indicate briefly how the general theorems can 
be applied to higher-order parabolic systems. 

Notations 

Throughout  this paper we use standard notation. All vector spaces are over 
K : =  R or C. I f  K = R and we use complex numbers (for example in the con- 
text of  spectral theory) it is always understood that we work with the natural 
complexification (of spaces and operators). Thus, by Q(A), the resolvent set of  the 
linear operator A with domain D(A), kernel ker (A) and range R(A), we mean 
always the resolvent set of  its complexification, if IK ----R. 

We denote by L,e(X, Y) the Banach space of  all continuous linear operators 
from the Banach space X to the Banach space Y, and ~q'(X) : =  .L~a(X, X). More- 
over, Isom (X, ]1) is the (open) set of  all isomorphisms in La(X, Y). We write 
Xc_. Y if X is continuously injected in Y, that is, X is a linear subspace of  Y 
and the natural injection i, given by i(x) = x, is continuous. If  i is compact, 
then we write X ~c_. y, and X - -  Y means that X and Y coincide as vector 
spaces and carry equivalent norms, that is, Xc_. Y and Yc_~ X. 

Let M be a metric space and X a Banach space. Then we denote by B(M, X) 
the Banach space of  all bounded functions from M to X with the supremum norm. 
BC(M, X) and BUC(M, X) are the closed subspaces of all bounded and continuous 
functions and all bounded and uniformly continuous functions, respectively. If  
0 < o~ < 1, we denote by C~'(M, X) the space of  all functions f :  M - +  X which 
are o~-H61der continuous. This means that each point in M possesses a neigh- 
borhood U such that f is uniformly o~-H61der continuous on U, that is, 

(8) [ f ] ~  : =  sup [If(x) - -  f(y)1[ < cx~, 
x,,~v [d(x, Y)F 

where d denotes the metric in M. The space C~ X) is given the locally convex 
topology induced by the seminorms 

sup [If(x)f[ -4- [f]~, u Q M, U compact. 
xEU 

This topology is well defined since every 0~-H61der continuous functions is uni- 
formly 0~-H61der continuous on compact sets. I f  0~---- 1, we denote the above 
space by C-I(M,X), the space of  all Lipschitz continuous functions. Finally, 
UC~'(M, X), 0~ E (0, 1) W (--  1}, denotes the space of  all uniformly 0r con- 
tinuous (respectively Lipschitz continuous) functions from X to M, that is, the 
subspace of  all fE C~ X) for which the seminorm (8) is finite if U is replaced 
by M. 
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More generally, if M is a subspace of some product space A • B, we write 
f E  C~'~(M, X), ~, fl E (0, 1) k) (I--}, c~ =t= fl, if each point in M has a neigh- 
borhood U • V such that there is a constant c with 

Ilf(x, y) - f l x ' ,  y')ll < c([dA(x, x')] ~ -V [dn(y, y')]~} 

for all (x, y), (x', y') E U• V (where t ~- : =  t for t ~ 0). Clearly UC~'a(M, X) 
has the now obvious meaning. 

Suppose now that M and N are smooth manifolds. Then we write f E  C ~ 
(M•  N, X), IE N* : =  N \ (0}, if f is continuous (that is, f E  C(M• N, X)), 

f(x, .): N---> X is l -  1 times continuously differentiable for each xE M, and 
the derivatives of order l -- 1 are Lipschitz continuous (with respect to the natural 
metric, present in all cases which will occur). Moreover, we put 

C k'O A c~ N, X) := C~'~215 N, X) A c~215 N, X),  

k E ~T kJ (oo), l E I~*, where ck'~215 N, X) has the obvious meaning. 
After having finished this paper I learned of the work by K. FURUYA [26]. 

That author proves, among other things, the existence of a local solution of the 
abstract initial-value problem (1) under the assumption that an appropriate 
fractional power of  A has a constant domain. His proof is based on KATO'S result 
in [27]. However, the abstract existence theorems of FURUYA do not seem to 
be applicable to quasilinear parabolic equations and systems under nonlinear 
boundary conditions. 

1. The Abstract Setting 

Throughout this paper T denotes a fixed positive number, Ta :---- ((t, s) E R2 I 
0 ~ s (  t ~  T), and T~ is the closure of Tj in R 2. Moreover 27~:= ( z E C  I 
[argz I < : v  ~+~r/2} for 0=<v  ~<~r /2 .  

We fix a number p E [1, oo) and choose, for each 0 E (0, 1), either the real 
interpolation functor (., ")O.p or the complex interpolation functor [., "]0, and 
denote this fixed choice by (-, ")0. (We refer to [9, 23] for the basic facts about 
interpolation theory.) 

We denote by W:---- (W, [] "IL), ( W1, II "111) and (~W, l[ ll0w) three fixed Banach 
spaces, and we assume that 

(A1) W is reflexive and W 1 co__, W. 

Then we let 

w ~ : =  ( w  ~, II" II~) : =  ( w ,  w l )~ ,  0 < ~ < 1, 

and observe that (A1) implies) 

(I) W"~c_. W ~, 0 ~ r  1, 

where W ~ : =  W (cf. [9, Corollary 3.8.2 and Theorem 4.7.1]). Moreover we 
impose the following compatibility condition: 
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For each pair of  numbers 0 ~ v ~ ~ <_ 1 
(A2) that 

Itxll, < ~'(v, ,~) Ilxll ' -~/" llxll~/~ 

We fix four numbers such that 

(A3) 

and assume that 

(A4) 

Hence 

there is a constant ~,(~, ~) such 

Vx E W ~. 

o < r  ~ N # < I ,  

V is an open subset of  W "~, and 

(~r ~)E c([0, 71• v , . v ( w  ~, w•  

W)(t,y) : =  ker ~(t ,  y) 

is, for each (t, y) E [0, T] • V, a closed linear subspace of W ~, and we let 

W~(t,y)*.~-~ (W, W~(t,y))a, 0 < ~ < 1. 

Observe that 

W~(t,y)c-~ W ~, 0 < 0 <  1, (t, y) E [O, T] x V, 

and, in general, the topology of W~(t.y ) is strictly finer than the one of W ~ Hence 
a E [0, 1 ] is called regular, if W~(t,y) is a closed linear subspace of W" for each 
(t, y) E [0, T] • V, where W~.,y) : =  W. 

Now we assume that 

t3, ~, ~7 and ~ are regular, 

(', % = [', "]a, 

(A5) and there is a point ~ E V with 

w~(,,~)-" W~(o,~) = :  w~ 

for all ( t , y )E[O,T]•  

We let 

A(t, y) : =  ~r y) I W~(t,y) 

and consider A(t, y) as a linear operator in W. Then we assume that 

for each nonempty bounded subset S ( V there are positive constants ~o, 
~1, ~ and M and a number co E R,  such that 

R((2 + ~t(t ,y) ,  ~( t ,y) )  = W• 

(A6) 

~'o ][xt[1 ~= [[(2 + ~l(t, y)) x[[ q- I]~(t, y) xilow ~ 9'~ [Ix[[1 

and 
II(a + A(t,y))-~f[.~(w) ~ M/(1 + 12 -- col) 

for all Z E co q- So and (t, y) E [0, T] • S. 

Vx E W 1 
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Observe that the assumptions upon ( d ,  ~ )  imply, in particular, that co 5- 27a C 
o(--A(t,  y)). Hence the last estimate is meaningful. Moreover it follows that 
A(t, y) is a closed linear operator which is densely defined in W on account of 
the above resolvent estimate and the fact that W is reflexive (cf. [14]). Finally 
it foll6ws that --A(t ,  y) is the infinitesimal generator of a strongly continuous 
analytic semigroup {e-SA(t'Y) I s 3> O} on W (that is, in s 

For each y E V we choose now a constant to(y) such that the semigroup 
e - s (~  : e-S~ -sA(t'y), S ~_~ 0, shall satisfy an estimate of the form 

I[e-~("(Y)+A(t'Y))N~w) ~ 3~le -~0~, s 3> O, 

for some h~r 3> 1 and 03 ~ 0. It is well known that this is always possible. 
Then the fractional powers [co(y) 5- A(t, y)]Z are well defined for each z E C 
and ( t ,y)E [0, T]• V (e.g. [16, 23]). 

We put 

D~(t, y) :----- (D([to(y) 5- A(t, y)]~, l[ [co(y) 5- A(t, y)]~. ll) if o~ ~ 0, 

whereas 
D"(t, y) is the completion of W in the norm 

[I [co(Y) q- A(t, y)]".  [I if ~ < 0. 

Observe that D~ y) = W and that II [tory) + A(t, y)]~- II is equivalent to the 
graph norm of D([to(y) 5- A(t, y)]~), if ~ > 0. Hence each D~(t, y) is a Banach 
space, and 

D~( t, y), o~ E R ,  

is called the scale o f  fractional power spaces o f  A(t, y). This notation is justified 
since another admissible choice of to(y) gives the same scales, up to equivalent 
norms. 

We assume now that 

for  each (t, y) E [0, T] • V there are positive constants e and a such that 
(AT) [to(y) + A(t, y)]'~ E Le(W) and II [to(Y) 5- A(t, i~ Y)] ll-~(w) <= a for  

Then it follows from [8, Theorem 3.3] that 

[D~~ Y), D~'( t, Y)]o "--" D~~176176 t, Y) 
(2) 

for  0 < 0 <  I, - - o o <  o~ o < o ~  <Co ,  and (t ,y) E[0, T]•  

Hence we deduce from (A5) that 

(3) W ~  "--:- Ba(t, y) for all (t, y) E [0, 7"] • V, 

which means that the domain of [to(y) 5- A(t, y)] '  is independent of (t, y). 
It is a consequence of (2), the reiteration theorem for the complex interpolation 

funetor (cf. [9, Theorem 4.6.1]) and the commutativities of  the real and complex 
interpolation functors (cf. [23, Theorem 1,10.2] and [9, Theorem 4.7.2]), that  

(4) o W~(~,y) - -  ( W ,  [ W ,  ~ = W~(,)]~)0m --  (W, W~)0/~ : W~ 



(A9) 

162 H. AMANN 

0 for 0 ~ 0 ~ / 3  and all (t, y) E [0, T] x V. Thus W~(t,y) is independent of (t, y), 
up to equivalent norms, provided 0 ~ 0 ~/3.  

We denote by A'(t, y) the dual of A(t, y) and define the dual scale of fractional 
power spaces 

[D'] ~ (t, y), or E R,  

with the help of the linear operators og(y) q- A'(t, y) in the dual space W' of W. 
Then we assume that 

(A8) [D']' -~(t, y) --  [D'] l -~(0, ) )  for all (t, y) E [0, T] • V. 

In [8, Theorem 1.3] it has been shown that [D'] ~ (t, y) = [D -~ (t, y)]' for every 
o~ E R (with respect to the natural extension of the duality pairing (W',  IV)). 
Hence (A8) implies that 

(5) D~-lrt, y) "--D ~ 1(0 ,~)= :  W~ -1 for all ( t , y ) E [ O , T ] •  

We denote by Aa_xft, y) the closure of A(t, y) in W~ -1. It follows from [8, Theo- 
rem 2.1 and Corollary 2.2] that Aa_~(t, y) is well defined and that 

D(Aa_,(t, y)) = W~.  

Hence we can assume that 

there are a number ~) E (1 --/3, l) and, for each nonempty bounded subset 
S Q V, constants Lo and Mo such that 

and 

XtA~-I(s,y) --  A~_l(t, z) j[~(w~,w~-l)~ Lo(Is -- t[ Q + IlY -- z]I~) 

for all (s, y), (t, z) E [0, T] • S. 

Finally we assume that 

f E  C([0, T] x V, W~), and there are a number ~ E [~, ~] and, for each 
nonempty bounded subset S Q V, constants L~ and M1 such that 

(All)) IIf(t, Y)I]~ ~ M~ 

and 

I]f(t, y) - - f ( t ,  z)[I r ~ L1 ][y -- zl[, 

for all t E [0, T] and y, z E S. 

Under these assumptions we consider the quasilinear Cauchy problem 

(OCP)(s.x) u + A(t, u) u ---- f ( t ,  u), s < t ~ T, u(s) = x 

for (s, x)E [0, T)• V. By a solution u of (QCP)(s.x) on J we mean a function 

u E c(J, v)c~ c~(i, w),  
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such that J is a perfect subinterval of  [s, T] containing s and J ' : =  J \ {s}, and 
such that u(s) : x, u(t)E W~(t,,(o) and b(t) q- A(t,  u(t))  u( t )  = f ( t ,  u(t)) for 

t E ) ,  where/z denotes the derivative of  u. A solution u is maximal  if there is no 
solution which is a proper extension of u. In this case J is a maximal  interval o f  
existence for  (QCP)(s,x). If  J = [s, T], then u is a global solution. 

2. The Linear Cauchy Problem 

Throughout this section we assume that ,~r .~ and f are independent of  
y E  V, and that w = 0 .  Then Z' o C o ( - A ( t ) ) ,  

(t) I!(A -1- A(t))-t IIs~(w) _ Ml(l  _ l~-I) v(L t)~ r ~ •  [0, T] 
and 

(2) II A a - ~ ( s )  - -  Aa-~(t)ll.~(v,,w <= t o  Is -- t l ~ u t E Z'o • [0, T], 

as well as 

(3) II AO-I(0)li.~,(w~.w~-b -<- Mo 

and 

(4) ][f(t)llr _--< M, u  [0, T]. 

Moreover we conclude from [8, Theorem 2. I and Lemma 2.3] that t2(-- A,_ l(t)) C ~'o 

v(Lt)E Zo• (5) li(~. + Aa-~(t))-'ll~,(w$-') ~ n / ( I  " 121) 

and that 

(6) W~ ~ W ~  W~-',  

where the letter d denotes dense imbedding. 
Throughout this section we denote by e various positive constants, which 

may depend upon Lo, M, Mo, MI, T, [3, 70, 7,, o, ~ and ~, but are always in- 
dependent of  the specific independent variables occuring in a given formula. 
Moreover the constants c may be different from formula to formula, that is, we 
use c much in the same way as the Landau symbol O. 

It follows from (2), (3) and (5) that 

(7) [[ Aa-~(s) [Aa-~(t)] -111~w~,-') -<--- c Vs, t~ [0, T]. 

The quasilinear Cauchy problem reduces now to the linear Cauchy problem 

(LCP)o,x) it -k A(t)  u = f ( t ) ,  s < t ~ T, u(s) = x ,  

where we can now assume that (s, x) E [0, T) • W. By a solution of  (LCP)(s,x) 
we mean always a global solution belonging to 

C([s, T], W);~ C~((s, T], W) .  
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Let X and Y be Banach spaces. Then we denote by 9if(X, Y, o<), or E R, the 

Banach space of all functions k E C(7;A, .~(X, Y)) satisfying 

II k ll~) : - -  sup  (t  - s )  ~ II k(t, s)II < o o ,  
(t s)E TA 

endowed with the norm II" t[(~), and ~f'(X, ~) :=  ,Yf(X, X, ~). It is easily seen 
that 

(8) J{'(X, Y, O~o) ~..,4{'(X, Y, ~1) if O~o </. o~1, 

and that 

(9) .r Y, oO ~ C(Ta, s Y)) if ~ < 0, 

provided k E a~ff(X, Y, o0 is extended over TA by letting k(t, t) :=  0 for 0 ~ t --< T. 
For k E o~ff(Y, Z, So) and h E X(Y,  Z, o~1) with O~o, o~ <: 1, we let 

t 
h*k(t, s) :=- f h(t, 7:) k(T, s) dr, (t, s) ETA. 

8 

Then it is not difficult to see that 

(10) h , k  E a t ( x ,  Z,  0,o + o,L - l) 

and that 

(11) [[ll*kl[(:o+::_,) <= B(I -- 0%, 1 -- o~1)Ilhllc:o IIkll(:o>, 
where B(., -) is the beta function (cf. [7, Lemma 1.1]). 

If  X---- IK, we identify ge(K, Y) naturally with Yvia =~qa(K, Y) 3B+-+B �9 1 E Y. 
Hence k E 9ff(IK, Y, ~) if and only if k E C(7"a, Y) and II k(t, s) ll <= c(t -- s) -~ 
for all (t, s) E 7;~. In particular, 

(12) C([O, T], Y) c_., Jt"(IK, Y, O) = BC(J'A, r )  

by the obvious identification 

(13) C([0, T], Y) ~ u+-~ [(t, s) ~--~ u(t)] E BC(~'~, Y).  

If  (X(t) I 0 <-- t ~ T} is a family of Banach spaces, then we write 

k E ~(X(s), r, ~) 

provided k(t, s) E ~(X(s) ,  Y) for (t, s) E 7;a, 

sup (t -- s) ~ Ilk(t, s)lL~<x<:).r) < oo 
(t,s)EJ" a 

and k(-, s) E C((s, T], =~(X(s), Y)) for every s E [0, T). 
Below we use the following simplifying notation: whenever 9o is a function 

of  two real variables and ~p is a function of one real variable, we let 

~q~(t, s) :----- ~o(t) ~(t, s), q0r(t, s) : =  qg(t, s) ~o(s), 

provided the right-hand sides be meaningful. 
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Finally we denote by .LP~(X, Y) the vector space Ae(X, Y) endowed with the 
strong topology, that is, the topology of pointwise convergence, and .LP~(X):= 
~ ( X ,  X). 

It follows from [8, Theorem 4.4] that a unique parabolic fundamental solution 
U exists for {A(t) ] 0 <-- t <-- T) and has the following properties: 

(u1) UE C(T~, ~(rv))  :~ c (~ ,  L:(w)), 

(U2) U ( t , t ) = i d  w and U ( t , s ) =  U(t,~) U(~,s) for O < - - s < - - v < t < - - T ,  

(U3) R(U(t, s)) C W~r A U E C('['A, ~(  W)), U(', s) E C~((s, T], .~(W)) 
for 0 =< s < T, and D ~ U =  - -AU,  

(U4) (U] W'~) (t, ") E C~([0, t], s W)) for 0 < t ~ T and 
I D2U(t ,s)  x =  UA(t ,s)  x for xE War and ( t , s ) E / ~ ,  

(u5) AUA -~ E C(T~, ~es(w)), 

(U6) [[ U(t, s)l[.~(w), II AUA-I (  t, s)[[.~(w) <: e V(t, s) ETa 

and 

11A U(t, s)[[ < c(t --  s) -1 u  s) E J'a, 

and 

~ ( t )  (v(t) -- v(r)) = f ( t )  - - f ( r ) -  @(t) --  i:(r)) -- ( ~ ( t )  -- z~(r)) v(r) 

~ ( t )  (v(t) --  v(r)) = - - (~ ( t )  -- ~(r))  v(r) 

where the constants c depend only upon L, M, Mo, T, fl and Q, but not upon the 
individual operators A(t), 0 <-- t <-- T. 

Moreover it follows from [8, Theorem 6.2] that (LCP)(s,x) has, for each 
(s, x) E [0, T) • IV, a unique solution u(., s, x), which is given by 

(14) u(', ", x) = Ux + U*f. 

The following theorem shows that u(., s, x) is more regular if x E 0 Wb<s). 

Theorem 2.1. Suppose that 0 ~ z <_ 0 <_ 1 and that 0 is regular. Then 

(15) u(', s, x) E C((s, T], W 1) I% C~ r], W ' ) ,  

provided x E o Wb(~. Moreover 

(16) I[u(', s, x)[lcO-,(rs, rl,w5 <: c(T, O, N)  

for  all s E [0, T) and all x E o W)(~) satisfying [[x[[0 ~ N. 

Proof. Let v : =  u(., s, x) and observe that 

1 (17) v(t) E W)(o and b(t) = - -A( t )  v(t) § f ( t )  for s < t --< T. 

Hence 
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for s < r, t g T. Thus, by (A6), 

Yo [[v(t) -- v(r)lit "< [if(l) - - f ( r ) l  I + I[v(t) -- b(r)[[ + ([[~r - ~(r)ll.~,(w,,w3 

+ II,~'(t) - ~(r)II~(w,,ew)) II v(r)1[~. 

Now (A4), (A10) and the fact that v is a solution of (LCP)(,,x) imply 

(18) vE C((s, T], W').  

From (U l), (U3), (U6) and (A6) we deduce that UE M'(W, 0) A Ae'(W, W ~, I). 
Hence, by interpolation, 

(19) UE X ' ( W ,  W e, 0). 

Since (U5), (U6) and (A6) imply A U E  ,r W, 0), interpolation gives 

(20) A U E .,T'(W~ W, 1 -- 0). 

Observe that 

I ~'o IIx[I, :< HA(g) xll < ~'~ Ilxll~ VxE w~(o, tE [0, T], (21) 

and that 

(22) ' ~ " VsE[0, V] W..~(s) W.~(s) 

by [9, Theorem 3.4.2 and 4.4.2]. Moreover 

s l ( t )  [U(t, s) x --  U(r, s) x] = AU(t ,  s) x -- AU(r,  s) x --  [.~r -- ~r U(r, s) x 

and 

~ ( t )  [U(t, s) x --  U(r, s) x] = -- [~'(t) -- ~(r)] U(r, s) x ,  

so that 

yo II u(t ,  s) x - U(r, s) xll, _-< I[AU(t, s) x - AU(r , s )  xH + ( l [~( t )  - d(r)l!_~(w,,w) 

~- I[.*(t) - ~(r)ll~,(w,,~w~)II U(r, s) xll~ 

for all x E W.~(s) and s ~ t, r ~ T, by (A6). By using these facts, together with 
(U1), (U5), (U6) and (A2), we conclude easily that 

(23) U E ~(W~(~), W', i -- 0), 

(24) U(., s) E C([s, T], .%(W~ W~ s E [0, T), 

and 

u(t, .0 (w~(,)) C 1 o w~(,)  c_, w~(,),  (t, s) ETA,  

o Suppose now tha t  x E W.~(.,). Then U(., s) x E C([s, T], W ~ by (24). More- 
over we deduce from (19), from 

(25) f E  C([s, T], W~)  c_. , ~ ( ~ ,  W~,  O) c.., ,.,T'(K, W, 0),  
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and from (8) and (9) that U*fEC(TA, W~ if 0 <  I. If  0 =  1, w e  obtain 
U*fE C(T a, W 1) from (25), (23) (with 0 replaced by r (8) and (9). Thus 

0 (26) vE C([s, T], W ~ and [Ioilc(t,.rl.w ) ~ c(N). 

Now let 0 < 0 ~  1. Then 

( t - - s ) l - ~  u s) ETa 

by (20), and (4), (11)-(13) and (20) imply 

II (A U). f( t ,  s)11 -< e v(t, s) E Tn. 

Hence, since ( A U ' ) , f =  A(U*f), 

(t -- s) t -0 II A(Ux + U. f ) ( t ,  s)II < c(N), s < t <; T, 

which, due to v = [Ux + U*f] (., s) and (17), gives 

(t - s) I - ~  Ilb(t)il _~ c(a), s <~ t < T. 

Now we conclude from 

t t 

l i t( t)  - v(r)ll <_- f l[,5(r)l ~, dr<= f (r -- s) I-~ [It;(r)ll (~" - r )~  

that 

[I V(t) -- v(r)li <= c(O, N) (t -- r) ~ 

Thus (26) and (A2) imply 

s<_r<< t<_ T. 

(27) I l v ( t ) - v ( r ) l ' ~ < = c ( r , O , N ) l t - r l  ~ s<=t,r<= T. 

Hence (18) and (27) prove the assertion, provided 0 -- z < I. However, if 0 ---- 1, 
we deduce from (26), (A4) and (A10) that 

(28) b = - ~ , ( . )  v + . f E  C([s, r],  W). 

that is, vE C~([s, T], W). Finally we obtain 

II vllc,<t,.~,w) <= c(N) 

from (26), (28) and (A6). [ ]  

Remark 2.2. It should be noted that for the above proof the compactness of 
the injection of W 1 into W has not been used. [ ]  

3. A Local Existence Theorem 

Let S be a nonempty bounded subset of V. Then we fix constants Yo, 71, O, 
oJ, Lo, LI, Mo and Mt such that the inequalities (A6), (A7) and (A10) are satisfied. 

For 0 = < t o < = t t  <~T and vEC([to, t t ] ,S)  we denote by ~ the continuous 
extension of v over [0, T] which equals V(to) on [0, to] and v(tl) on [tl, T]. More- 
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and 

Suppose that 
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~ o  : =  ,o + ~r ~(.)), ~o : =  ~( . ,  ~(.)) 

f ~ : =  co~ + f(-,  ~(.)). 

[Iv(s) - v(t)lln ~: L ' l s  - t l e Vs, t E [to, t,]. 

Then it follows from (A6), (A9) and (A10) that A, and f~ satisfy the estimates 
(2.1)-(2.4), where Lo is replaced by Lo + L', where Mo depends also upon to 
and/3, and where M1 depends now also upon ~o, ~:, ( and diam (S). Hence a 
unique parabolic fundamental solution U, exists for (Ao(t) I 0 --< t ~ T}, and 
the function 

~o.(v, x) (t) :=  Uv(t, s) x + Uv*fo(t, s), s <-- t ~ T, 

is, for each (s, x) E [0, T) • W, the unique solution of the linear Cauchy problem 

(1) il + A.( t )  u ----f~(t), s < t <: T, u(s) = x .  

Observe that this means that 

u : =  ~s(v, x) E C([s, "13, w) A c~((s, 73, w) ,  (2) 

that 

(3) 

and that 

(4) 

u(t)  E l W~(t,[(t)), s < t <= T,  

iz + A(t,  ~(t)) u(t) = f ( t ,  ~(t)), s < t <= T, u(s) = x .  

Moreover u satisfies the assertions of Theorem 2.1, where the constant c(z, 0, N) 
depends now also upon to,/3, ~ and diam (S). 

We now put 

C V : : C V ( S ) : = ( v E C ( [ O , T ] , S ) t l [ v ( s ) - - v ( t ) [ I , < ~ l s - - t [ ~  f o r O ~ s , t ~ T }  

and prove the following crucial 

Lemma 3.1. For each b ~ 0 there is a constant c such that 

[[Ws(v, x) (t) -- ~os(w, y) (t)][n ~ c((t - -  s) ~-~ [[v - -  Wllcffs.tl.w~) + [Ix -- YI[~} 

f o r  all v, w E CV.  all (t, s) E Ta. and all x ,  y E W ~  satisfying [[ xl[~, IlYlI~ ----< b. 

Proof. The results in [8] imply that vA(v, x) is the unique solution of the linear 
Cauchy problem 

h + A~.~_l(t) u -=f~(t), s < t ~ T, u(s) -~ x 
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in W~- ~. By the reiteration and commutativity properties of the real and complex 
interpolation functors we deduce from (1.2) and (1.4) that 

(5) w~, = (w,  w ~ ) ~  _- ( [w~ - ' ,  w~]~_~, w ~ ) ~  - ( w ~  -~, w~),_~+~ 

for 0 < 7 </3 .  Hence we can apply [7, Theorem 5.4], with (X, X ~) replaced by 
(W~ -~, W~) (where it is easily verified that the last term, namely (t - -  s) ~ IIx --  Yllo 
can be replaced by I l x -  y ll0, to obtain the assertion. [ ]  

In the following we let 

Js,n : =  [s, s -}- ~]/5 [0, T] 

for ~ > 0 and s E [0, T). Then Lemma 3.1 implies the 

Corollary 3.2. Let  b > 0 be f ixed.  Then there are positive constants c and 
such that 

l[ ~o~(v, x) -- ~o~(w, y)Ilc(1,,e, wn) ~ �89 [I v - -  W llcc1~,o,w o) + c l[ x -- y [In 

for  all v, wE CV, all x, y E  W ~  satisfying Ilxl[~, I[yl[e :< b, and all sE [0, T). 

Let K be a nonempty subset of  W ~ for some x E [0, 1]. Then we denote by 

B~(K, e) the closed e-neighborhood of K in WL 
We suppose now that K is a nonempty subset of S such that B~(K, 2e) Q S 

for some e > 0. For each (s, x) E [0, T) • B~(K, e) w e  let 

.,~'fn(s,x):= {vE C(J~,o, W~) [-~ E CV, v(s)= x, llv(t)-- xll~ <:e for tE  J~,e}, 

and observe that o~ffe(s, x) is a nonempty closed and convex subset of the Banach 

space C(J~,~, W ~) such that v(J~,e) C B d K ,  2e) for every v E ~,Y'e(s, x). 
Moreover we put 

g~.~(v, x ) : =  ~0~(v, x) I J~.~ 

for all v E C(J~,~, W ~) with ~ E C V  and prove the following 

Lemma3.3.  Let z, OE(~,I]  be regular such that 0 - -  ~ > ~ and z <= O. 
Moreover suppose that N and b are positive constants. Then there are positive num- 
bers ~, Co and c~ such that: 

(i) 

(ii) 

(iii) 

for  all 

all 

gs,.(v, x) E ~ ( s ,  x), 

[Ig,.~(v, x)l[co-~!s~.~.w ") <= co, 

llgs.n(v, y) - gs,~(w, z)l[c(s~.~.w~) <= �89 I[v - Wllc(6.~.w=) + c~ Ily - z[[~ 

o • B~(K, e) f~ Bo(O, N)  and v E ~"e(s, x), and for  s E [0, T), x E W~(s,x) 
y, z E W ~  A B~(O, b) and u, w E C(J~,n, W ~) with fi,~E CV. 
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Proof. We deduce from Theorem 2.1 that 

I[~0~(v, x)[l~0-~(c~.~.,.~ ~ =< c, ;t ~ (~, ~, ,7), 

for all admissible s, v and x. Consequently 

II ~oAv, x) (t) - xll~ =< c ~0-~ 
and 

[[~v~(v, x) (to) --  vA(v, x) (tl)l[~ ~ e t~ ~176  I to - t~ 1~ 

for all t, to, tt E J~.~. Now the assertion follows from Corollary 3.2. [ ]  

I t  is convenient to exhibit the following simple general facts, which we shall 
use below. 

Lemma 3.4. Let .(2 be a metric space and suppose that X, Y and Z are Banach 
spaces such that X ~c_. yc__~ Z. 

(i) I f  g E C(g2, Z)  and g(g2) is bounded in X, then g E C(~2, Y). 
(ii) If, in addition, .(2 is a nonempty closed and convex subset o f  Y, and 
g(s C f2, then g has a f ixed point, which is unique, provided g be a strict 
contraction with respect to the norm of  Z. 

Proof. (i) Let (xj) be a sequence in -(2 converging to some x E-(2. Then 
(g(xj)) is a bounded sequence in X, hence a relatively compact sequence in Y. 
Thus there are a subsequence (Xjk) and a point y E Y such that g(Xjk ) -+ y in 

Y. Since yc_~ Z and gE  C(g2, Z), it follows that y = g(x). Now the assertion 
follows since, by this argument, g(x) is the only cluster point of  the sequence 
(g(xi)) in Y. 

(ii) The existence of  a fixed point follows from (i) and Schauder's fixed point 
theorem. The asserted uniqueness is a trivial consequence of yc_. Z. [ ]  

Let D be a nonempty subset of  W and let 0 ~ ~" ~ 1. Then we put 

(6) D~ : =  D A W ~, endowed with the topology induced by WL 
After these preparations we can easily prove the following local existence, 

uniqueness and continuity 

Theorem 3.5. Let N be a positive constant and let K be a nonempty subset o f  S 

such that B~(K, 2e) C S for some e ~ O. Suppose that 0 E (~, 1] is regular, 
that 0 -- ~ ~ ~, and that there is a regular T E (~, 0). 

Then there is a positive number t~ such that (QCP)(s,x) has, for each s E [0, T) 
and 

0 x E W~(s,x, r~ ~ ( K ,  ~) ~ B0(0, N) = : Z> 

a solution U~,x on J~,~, such that u~,x(J,,~) Q Br 2e). I f  tr = ~l, then U,,x is the 
only solution of  (QCP)(~,~) on J~,o, and 

(x ~ us,x) E C(Dn, C(J,,o, Wr f~ UC~-(D,, C(J,.x, W'~)). 
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Proof. Let b be a positive constant such that B~(K, e) ( Bp(0, b), and let 
be the positive number of Lemma 3.3. 

Now let (s, x) E [0, T) • D be fixed, and let Y2 : =  .X'o(s, x). Moreover, let 
X : =  0 - r  C (d~,~, WO, Y : =  C(d~,o, W e) and Z : =  C(J,,~, W~). Then (1.1) and 
the Arzelh-Ascoli theorem imply X~c_~ yc_~ Z. Furthermore it follows 
from Lemma 3.3 and the fact that Y ~  C(J~I~, W~ that g : =  g~,0(', x) belongs 
to C(~2, Z)  and that g(~) is bounded in X and contained in Y2. Hence Lemma 3A 
implies the existence of a fixed point u(x) of g, and it follows from (1)-(4) that 
u(x) is a solution of (QCP)(,,~ on J~,~. 

Suppose now that ~ = ~/. Then we see from Lemma 3.3 (iii) that g is a strict 
contraction with respect to the norm of  Z. Hence u(x) is the unique fixed point 
of g and, consequently, the unique solution of (QCP)(,,x) on J~,~. 

For each y E D let u(y) be the unique fixed point of g,,~(., y) in ~ffo(s, y). 
Then we deduce from Lemma 3.3 (iii) that 

[I u(x) -- u(y)l[~ =< 2cx IIx - ylln. 

Hence u E UC~-(Dn, Z). Since u(D) is bounded in X, by Lemma 3.3 (ii), the 
remaining continuity assertion is a consequence of Lemma 3.4 (i). [ ]  

4. Global Existence and Continuity 

Throughout this section we assume that 

(Al l )  0E(~ , I ]  isregular, 0 - - ~ > ~ ,  and there i saregu lar  ~E(~,0).  
Then we can prove our main abstract result, namely 

Theorem 4.1. Suppose that (s, x) E [0, T) • V such that 
0 x E W~(s,x). 

Then the quasilinear Cauchy problem (QCP)(~,x) has a maximal solution u(., s, x) 
and 

(1) u(', s, x) E C~ W ~) • C(J, W 1) 

for  every ;t E [0, 0]. Each maximal interval of  existence o f  (QCP)c,,x) is open in 
Is, TI. 

I f  ~ = 7, then u(', s, x) is the only maximal solution o f  (QCP)(~,x), and there 
0 are positive constants e and ~ such that u(', s, y) exists on J~,e for each y E W~(~,y) 

Bo(X, e) = : D. Moreover 

[xe--~ u(', s, x)] E C(D n, C(J~,a, We)) {h UC'-(Dn, C(J~,o, Wn)). 

Proof. Let K : = ( x }  and choose C o > 0  such that S :=B~(x ,  2eo) Q V. 
Moreover choose e > 0 such that Bo(x, e) ( B~(x, co). Then it follows from 
Theorems 3.5 and 2.1 that there are a ~ > 0 and a solution u~,y o f  (QCP)(s.r) 
on J,,o, for every  y E D, possessing all the properties of the assertion (suitably 
restricted to J~.o, of course). 
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Now let (sl, xl) : =  (s q- 6, u~,x(s + 6)), provided s + 6 < T. Then, by the 
above, there is a ~ > 0 such that (QCP)(sl.x o has a solution v on ./,~.6~, which 
is unique if o----r/. Since x~ E W~(,,,:r o, it follows from Theorem 2.1 that 
v E C~(J,~,~,, W). Now it is easily verified that the function u, defined to be equal 
to u,,~ on ./~,~ and to v on J~,,01, is a solution of  (QCP)(,,~ on J,,0+~. This implies 
that every maximal interval of  existence is open in Is, T], and that there is at most 
one maximal solution if a = ~/. Finally the existence of  a maximal solution fol- 
lows now by a standard application of  Zorn 's  lemma. [ ]  

In the next theorem we give a sufficient condition for global existence. In 
this connection we define the distance to the empty set to be oo. 

Theorem 4.2. Suppose that (s, x) E [0, T) • V such that x E W~(s,x), and let 
u(', s, x) be a maximal solution of (QCP)(~,x). Let J be the corresponding maximal 
interval of  existence and suppose that 

(2) u(J, s, x) is bounded in W ~ 

and 

(3) u(J, s, x) has a positive distance to ~ V. 

Then u(', s, x) is a global solution. 

Proof. Let K:~-- u(J, s, x) and observe that y E wOo,y) whenever t E J and 

y : =  u(t, s, x). By (3) we can find a number e > 0 such that S:---- B~(K, 2e) C V. 
Hence (2) and Theorem 3.5 imply the existence of a positive number t~ such 
that  (QCP)(t,u(t,s,x)) has, for every t E J, a solution on Jr:. Thus we could con- 
tinue u(-, s, x) beyond J, if  J =~= IS, T], which contradicts the maximality of  J. [ ]  

Let X be a metric space and suppose that 

t + : X ~  (0, oo] 

and 

: ~ : =  ((t, x) ~ [0, o~) • X ] 0 =< t < t+(x)} --~ X. 

Then we put ~0t:= ~(t, .) and call q) a preflow (more precisely, a local semi- 
preflow) on X if 

(i) ~(-, x) E C([O, t+(x)), X)  for every x E X. 

(ii) 9~ ~ = idx. 

(iii) I f  O ~ t < t+(x) and O ~ s < t+(~t(x)), then s + t < t+(x) and 
~ ' + ' ( x )  - ~ ( ~ ' ( x ) ) .  

The function t + is the (positive) exit time of  ~0, and ~ is global if t+(x) = oo for 
all x E X. The set y+(x) : =  ~F([O, t+(x)), x) is the orbit (more precisely, the posi- 
t ire semi-orbit) ofx .  A subset Y C  X is positively invariant if  7+(Y) C Y, and Y 
is invariant if, for each y E Y, there is a solution u through y with u (dom (u)) C Y. 
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Here we mean by a solution u of thef low ~ through x E X a continuous function 
u: J-+ X such that J is an open interval in R containing [0,t+(x)), such that 
u ( 0 ) = x  and u ( t + z )  =~t(u(~)) for all t ,~Elq,  with ( t , u ( ~ ) ) E ~  and 
t + ~: E J, and such that there is no proper continuous extension o f  u with these 
properties. Clearly every critical point is invariant, where x is a critical point of  

if  ~,+(x) = {x}. Finally, 

o,(x) : =  ,>m ~ r,+(x) 

is the o~-limit set o f  x. Observe that oJ(x) = fl i f  t+(x) < e~. 

For  each ~ E C(X, R) we define ~6(x), the orbital derivative of  �9 at x, to be 
the lower right Dini derivative of  the continuous function ~/i o ~0(., x) at t = 0. 

Then ~ is said to be a Liapounov function for ~0 on the subset Y ( X if q~(y) =< 0 
for all y E  Y. 

Lastly, a preflow ~o is a flow (more precisely, a local semiflow) on X if  ~ is 
open in R + X X and ~0 E C(~,  X). 

Suppose now that a = ~/ and that a / ,  & and f are independent of  t. Then 
Theorems 4.1 and 4.2 are valid for every T > 0. This implies, in particular, that 
the autonomous quasilinear Cauchy problem 

(AQCP)(~) it + A(u) u = f ( u ) ,  s ~ t ~ oo, u(s) = x 

has, for each (s, x) E R+ • V with x E 0 W~(~), a unique maximal solution u(., s, x), 
which is now defined on some open subinterval J(s, x) of  [s, oo), containing s, 
such that 

(4) u(', s, x) E C~ W ~) C~ C(J, W ~) C~ c~(j ,  IV) 

for every ;t E [0, 0]. 
We put 

and 

as well as 

~(-, x) : =  u(-, O, x), t+(x) : =  sup J(0, x) Vx E ~', 

:= {(t, x) E R+ • ~" I 0 <= t < t+(x)}. 

Then the unique solvability of  (AQCP)cs,~) implies that ~ is a preflow on ~x 
for every 2 E [0, 0] (cf. (3.6)), possessing the additional regularity properties o f  
(4). Moreover ~0 has the "local continuity" given in Theorem 4.1. The following 
theorem shows that the restriction of  ~0 to certain positively invariant subsets of  
5f" has the corresponding global continuity. 

Theorem 4.3. Let ~ be a positively invariant bounded subset o f  ~'o, which is 
closed in IF. Then 

,~.@ : =  {(t,x)q~lxE~} 
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is open in R+ • t~e and 

E c ( ~ ,  ~ ) A  co-~,~-(~, ~),  

where ~ is ~ ,  endowed with the topology induced by ~ • W ~, 

Proof. Let (to, Xo)E ~ be fixed and choose a constant N such that 

C B0(0, N). Since K : =  9([0, to], Xo) is compact in V, by (4), there is a number 

e > 0 such that S : =  ~ ( K ,  2 e ) (  11. Thus, by Theorem 3.5, we find positive 

constants c and t~ such that t+(x) > ~ for every x E ~ A B~(K, e) = : D, such 
that 

(5) [ x ~  ~0(., x)] E C(D~, C([0, ~], Wg) ,  

and such that 

(6) [[qTt(x) -- q~ ~ c l[ x -- Y I[~ Vt E [0, ~], x, y E D. 

Since D is closed in V and dist (D, 8 V) => e, the boundedness of  # in W ~ and 
W ~ ~c_~ W e imply that De is compact. Thus D~ is also compact, due to 
Wr W n. Hence the map (5) is uniformly continuous. 

We now fix points So :=  0 < s~ < ... < Sm : :  to < Sm+l with sj+l --  sj ~ ~, 
and let o~ E (0, e) be arbitrary. By the uniform continuity of the map (5), and 
by W* c_~ W~, we find numbers 0 < 0r O ~ O~ 1 ~ . . .  <S~ 0r I : =  0(. such that 

(7) i[~0'(x) - ~o'(y)[[~ =< c~j+~ 

for all tE [0, ~] and all x, yE  D with IIx - y[[r ~ ~y,j : 0 . . . . .  m. This shows 

that 9~t(x)EBr for all x E ~ ( X o , ~ o ) .  Thus t+(9~(x)) > ~ and 

~o~(x):~o~-~(qJ~(x)) CBr162 for all xEB~(Xo,~o), by (7). By re- 

peating this argument m times, we see that t+(x) > to + ~ for every x E B~(Xo, O~o) 
which proves that ~ is open in R+ • ~ .  Moreover, it follows from (5) that 

there is a number ~, > 0 such that ~ ( x )  E Br ~ )  for all x E Bn(Xo, y), 

which implies that ~ot(~(xo, ?)) Q B~(~t(Xo), o~) for all t E [0, to + ~]. From 
this we deduce easily that q~ E C ( ~ , ,  # , ) .  The second continuity assertion is 
now an immediate consequence of  (4) and (6). [ ]  

Corollary 4.4 Let ~ be a positively &variant bounded subset o f  Yf o, which 
is closed in V. Then q~ is a flow on t~r l f  v+(x) is an orbit in ~ ,  which has a positive 
distance from ~ V, then ~+(x) is relatively compact. Hence co(x) is a nonempty, in- 
variant, compact and connected subset o f  ~r and qJ(x) -~ co(x) as t -+ ~ .  I f  
is a Liapounov function on ~ ,  then there is a number o~ E R such that 

o,(x) C (y E ~ I ~(Y) = 0} A ~_1(~).  

Proof.  The fact that ~o is a flow on ~ follows from Theorem 4.3 and Wr W ~. 

The compactness ofy+(x)  in #~ is a consequence of the fact that 7+(x) is a closed 
subset of  V, and of  W ~ ~ W ~. The remaining assertions are well known facts 
from the general theory of  semiflows (e.g. [3, Theorems 17.2 and 18.3]). [ ]  
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Remarks 4.4. (a) Let V : =  W ~ and let ~ be a positively invariant bounded 
subset of  ~o, which is dosed in W ~. Then ~v is a global flow on ~ such that every 
orbit is relatively compaet. 

(b) I f  y E YC is  a eritical pointfor the preflow % then y E W~ty) and A(y) y = 
f(Y). 

This follows from (4). 
(c) In the special case ~ = ~, it follows that q9 is a flow on ~ such that 

q~ E C ~ 9?). In fact, denoting by J(s, x) the maximal interval of existence 
of the unique maximal solution u(., s, x) of (QCP)(~,~ and letting 

and 

 r(s) : =  {x E V l E 

: =  ((t, x) E Is, T] x 1 t E J(s, x)}, 

we conclude that ~(s) is open in [s, T] • (~(s))~ and that u(', s, .)E C ~ 
([~(s)],, [~(s)],). Moreover, in this case it suffices to assume that W a ~ W. 

This follows from the above proofs since Theorem 3.5 can be obtained by 
the contraction mapping principle in this case. [ ]  

5. Higher Regularity 

In addition to the assumptions (A1)-(All)  we presuppose throughout this 
section the assumptions (HR1)-(HR3) below. 

There are Banach spaces H a, H and OH and a number y E (0, r/] such that 

(HR1) H a c_~ W a c_~ W ~ c_~ H c_. W 

and OHc-~ OW, and such that 

(~', ~r E C([0, r ] x  V, ~e(H a, H •  OH)). 

We p u t  

H~(t,y ) :---- ker ~(t ,  y) [ H 1 V(t, y) E [0, T] • V 

1 and observe that H~t,y ) is a closed linear subspace of H a such that 

H~,,y) c_~ W~(,,y). 

Let X and Y be Banach spaces with yc_~ X, and let A be a linear operator 
in X. Then we define the Y-kea]ization Ay  of A to be the maximal restriction of 
A to Y, that is, Ay is the linear operator in Y, defined by 

Ary : =  Ay for all y E {y E D(A) • Y Iay E Y} = : D(Ar). 

Clearly Ar  i s  dosed if A is closed. 
It is obvious that the H-realization An(t, y) of A(t, y) satisfies 
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Moreover it is an easy consequence of (HRI) that e(--An(t,y)) ~ e(--A(t, y)) 
and that 

(1) (2 + An(t, y))-a = (2 + A(t, y))-~ [ n q2 E ~(--A(t, y)). 

Hence the following assumption is meaningful, where o~ and v a are the constants 
of  (A6). 

There are a number z E [0, 1) and, for each bounded subset S ( V, posi- 

tive constants 7o, ~1 and ~I such that 

(HR2) 7~o IIxllm <= I1(/,+ ~( t , y ) ) xHH+ JIdB(t,y)xllon<=~ IIXllH, V x E H  ~ 

and 

II(/, + An(t, y))-i ils~(m < ~/] / ,  _ co It -~ 

for all / , E o + 2 ; ' ~  and ( t ,y)E[O,T]xV.  

Finally we strengthen the requirements for the nonlinearity f .  
There are numbers ,, E (~, 1) and /, E (y, fl) such that 

f E  C ~'1 -([0, T] X V, H) 

(HR3) and 

f ( ' ,  u(')) E B([O, T], W~) 

for every u E (7([0, T], V) satisfying u(t) E W~(t,u(t)) for 0 ~ t ~ T. 

Then we prove the following abstraet regularity 

Theorem 5.1. Let (s, x) E [0, T) x V satisfy x E W~o,x), and suppose that 
O -- ~ ~ v and p >  1- -  fl + y. Then every maximal solution u(', s, x) of 
(QCP)o,x) satisfies 

u(', s, x) E C(J, Hi) f~ c ' (J ,  H). 

Proof. Let t~ E J be arbitrarily fixed and put v: u( ' , s ,x)  [s,t~]. Then 
S : =  v([s, G]) is a compact subset of V and v E CO(Is, tl], W ~) by (A11) and 
Theorem 4.1. Hence we can define ~v,  ~v, f~ and Uv as in the beginning of 
Section 3. Moreover, if 

u : =  uo(',s)x+ uv*s s), (2) 

it follows that 

u I Is, t , ]  = u(. ,  s, x )  I Is, t , ] .  

Hence it suffices to show that 

(3) u E C((s, T], H')  f~ C~((s, T], 11). 

Since 0 -- y :> 0 -- ~: ~ v, we deduce from (HR1), (HR3) and Theorem 4.1 
that 

(4) f~ E B([0, T], W~) :q C'(I0, T], H). 
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In the remainder of  this proof  we shall be concerned with the functions u, 
~r ~ ,  f~ and U~ only, and so we will drop the subscript v from now on. More- 
over we let 

B(t) : :  A~_l(t), 0 ~ t <-- T. 

It follows from (2.5) and (2.6) that --B(t)  is the infinitesimal generator of  a 
strongly continuous analytic semigroup {e -~B~~ ] s ~ 0} on W~-I. If  

a(t, s) : :  e -(t-~)B(~), 0 <: s, t ~ T, 

it is an easy consequence of  (2.7) and of  the analyticity of  the above semigroup 
that aE ~f'(W~ -1, 0)/5 o~f'(W~, W~ -1, 1). Hence we deduce from (3.5) by inter- 
polation that 

aE ,.~/'( W~ -I ,  W~, 1 -[- ~' --  fl). (5) 

Let 

k(t, s ) : :  --[B(t) --  B(s)] a(t, s), 0 ~ s, t ~ T, 

and denote by w the unique solution in a'f'(W~ - l ,  1 -  Q) of  the equation 
w : k -1- k ,w ,  whose existence is guaranteed by [7, Theorem 1.2]. Then we know 
from [8, formula (5.14)] that wE ~'f'(W, W~-l ,  f l -  e). Hence we obtain from 
(5) that awe  aT'(W, W~, 1 + 7 -  ~), which implies, due to (HR1), that 

(6) aw E J l (H ,  1 + 7 -- e) 

(where, of  course, aw(t, s) : =  a(t, s) w(t, s)). 
In [8] it has been shown that U(., s)E Ca((s, T], ~ (W~- I ) ) ,  that 

(7) 

and that 

(8) 

where 

and 

D ~ U =  Dla -1- Dl(a*w), 

Dl (a ,w ) --~ aw -q- bl -}- b2, 

t 

bl(t, s) : =  f [B(t) e -~t-~176 -- B(z) e -r w('r, s) d'r 
$ 

t 

b2(t, s) : :  f B(t) e-(t-')n<~ s) -- w(% s)] d~ 
$ 

for (t, s)E TA (ef. [8, formulas (5.14) and (5.15)]). 
From (2.5), (2.7) and (3.5) we obtain by interpolation 

II(Z + B(t)) -lll~Cw~-,,W~) =< c I~1 ~-~ 

for all (2, t) E Z'o • [0, T]. Hence, by modifying in an obvious way the arguments 
following the proof  of  [8, Lemma 5.3], we find that bl E o~f'(W, W~, 1 + ~ -- ~). 
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Thus, using again (HR1), we conclude that 

(9) b~ E ~ ( H ,  1 + ~, -- e)- 

From [8, Lemma 5.2] and (3.5) we deduce by interpolation that 

II B(t) e - ( t - 'B( t )  ll.~(w~- l w~) _--< c(t - -  "1~) f l - 7 - 2  

for all (t, z)E ~Pa- Hence [8, Lemma 5.3] implies easily that b2 E :U(W, W~, 
1 + ~, - -  9), whence 

(10) b2 E or(H, 1 + ~, -- e), 

provided e > 1 -- fl + y, which we have assumed. Thus, by collecting (6), (9) 
and (10), we conclude from (8) that 

(1 l) na(a*w) E Off(H, 1 + y - -  ~). 

Denote b y / '  any piecewise smooth curve in Z' o running from oo e -i(~ to 
ood (~ and let e -~ : =  idH and 

1 
(12) e-tan(s) : :  ~m" / e~t()" + An(s))-1 dA, t :> O. 

Standard arguments show t h a t  {e -tAn(s) ] t ~ O) is a semigroup on H, which 
is differentiable for t > 0 (but not strongly continuous at t ----- 0, in general) 
and satisfies 

(13) ]] AJH(S) e -tAn(s) [[.oca(n ) ~ e t - J - "  

for t > O, sE [0, T] and j : 0, 1. It is an easy consequence of ( I )  and (12) that 

(14) e -tan(s) = e tA(s) ] H.  

Since A(s) is the W-realization of B(s) by [8, Proposition 3.1], and since Daa(t, s) = 
- -B(s )  e -(t-s)a(s), it follows from (14) that 

(15) n la ( t ,  s) I H = - -An(s )  e -(t-s)An(s) for (t, s) E 7"a- 

Let z E H  and ~tEZ'o be fixed and let z ( t ) : : O . + A n ( t ) )  - a z .  Then 
z(t) E H  a and ~ ( t )  z ( t ) : O ,  so that 

(~ + d ( t ) )  (2(0 ~(~)) = - ( ~ ( t )  - d(~))  ~(~) 

~ ( t )  (z(t) - -  z(s)) ---- --(~i~(t) - -  ~(s ) )  z(s) 

for 0 --< s, t ~ T. Thus (HR2) implies the estimate 

7o []z(t) -- z(s)llnt < (JIM(t) - -  zd(s)l].e(m,n) + ]]~(t) ~(s)]]x(m,om) ][z(s)l]a 



for all s, t E [0, 7"]. 
that 

(16) 

for each fixed 4 E S0. 
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Since IIz(s)ll, _-< 1[(4 § AH(s))-xI[.~(H,~,)[Izll}t, it follows 

(4 + A.(-)) -~ E C([0, r],  ~( / - / ,  hr,)) 

Thus, since H a c_~ H and 

1 
An(s) e-tAn(s) = 2~t / - : - - .  4e~'(4 + Al~(S)) -1 d4, 

we deduce from (13), (15) and (16) that 

(17) D~a(t, s) I HE  Of(H, 1 + ~). 

Observe now that W ~ c_. H and Theorem 2.1 imply 

(18) u E C((s, rl, It). 

Moreover, 

(19) ~(t) = --A(Ux § U.f) (t, s) -]- f(t), s < t ~ T 

in W. By replacing s by any sl  E (s, T] and by using (18), we can assume that 
x E H. Thus, since 

(20) - - A U [ H =  D, U I H =  D a a l n §  D~(a*w)IHE ~ ( H ,  1 § x) 

by (11), (7) and ~ , - - ~ < f l - -  1 < 0 < ~ ,  we obtain 

(21) u E C~((s, T],/r 

from (4), (18) and (19), provided we can show that 

A(U. f )  (', s) E C((s, T], /4) .  

Since A(U*f)= ( A U ) , f  in W, we see from (20), (11) and (2.10) that it suffices 
to show that (Dta)*f(., s) E C((s, T], H). But 

t t 

(Dta)*f(t, s ) =  -- f An(r)e -(t-r)AH(~) I f ( r ) - - f ( t ) ]  d r -  f B(r) e-('-~)B(~).f(t) dr, 
$ $ 

and the first integrand can be estimated, because of (4), (15) and (17), by 
c(t -- 7:) . . . .  I. From (4), (3.5), [7, Lemma 2.1] and W~ c__~ WVc_, H we deduce 
that the second integrand can be estimated by c(t -- r) ~-~-~ in the norm of  H. 
Now [5, Lemma 1.1] implies (Dta)*f(', s) E C([s, T], H) and (21) has been proven. 

From (4), (19) and (21) we see that u(t)E H and A(t) u(t) ~-f(t)  -- u(t)E H 
for s < t ~ T. Hence u(t) E D(AH(t)) 1 = H ) (  o for s < t ~  T. Now we con- 
elude, on the basis of (HR2), that u E C((s, T], H1), much as we derived (2.18) 
from (2.17). [ ]  
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6. Second Order Parabolic Systems 

In the following we identify s u) with the space of  all real (N•  N)-matrices 
by identifying aEL/ ' (R N) with its matrix representation [a"Jl~_r.,~_N with re- 
spect to the standard basis o f R  N. Moreover a family ajk E s k = 1 . . . . .  n, 
is said to be strongly elliptic if  ajk ~ aky and 

N 

r,s=l j , k=l  

for all ~ :=  (~ ,  . . . ,  ~") 6 P~" \ (0} and ~ :=  (~'~ . . . . . .  ~v) 6 p~N \ (0}. 
A matrix a 6 ~ ( R  N) is said to be block-upper-triangular if there are positive 

integers l a n d  Na, 1 ~ 2 ~ l ,  with Na + N 2 + . . . + N I : N  such that 

2~ a = [o~ ]t<~..,zt with o~a~(~(RN-,PJ v~,) 

for 1 ~ 2 ,  z ~ l  with o~x~ = 0 for :~ < 2. 

Then the family ajk E ~o(pN), I ~ j ,  k ~ n is said to be block-upper-triangular 
strongly elliptic if each ajk is block-upper-triangular, with t and N~ . . . . . .  Nl being 
independent of  j ,k  E {1 . . . . .  n), such that the diagonal families ha a)~, l < = j , k ~ n ,  
are strongly elliptic for each 2 E {1, . . . ,  1}. 

In the remainder of  this paper .(2 denotes a bounded smooth domain in R", 

that is, -Q is a compact connected n-dimensional C~-submanifold of  JR, with 
boundary 0s We denote by r :=  (~,~ . . . . .  ~") the outer unit normal vector field 
on O.Q and we put 

QT : = -  A~ X [0, T] and X r : =  b.Q • [0, T]. 

Throughout the remainder of  this section N is a fixed positive integer a n d  

(P 1) aj~ = aki C C ~'~ A C ~ (Qr • RN, -~(RN)), 1 ~ j, k <= n. 

Moreover we suppose that 

ajk(x, t, ~7), 1 ~= j, k ~ n, is block-upper-triangular strongly elliptic for 
(P2) every (x, t)E Qr, ~ C R N, where the block structure is independent of  

(x, t, ~?). 

In the following we employ the summation convention with the indices j ,  k 
running from t to n. Then we define a family of linear differential operators, acting 
on N-vector valued functions u : s --~ R N, by 

d ( x ,  t, z/) u : ~  --Dj(ajk(', t, ~) DkU), (t, ~) C [0, T] • R N 

(where the letter x indicates that the coefficients are functions of  xE ~).  
We denote by I the identity matrix in Lf(RN), consider functions 

J, E C(~9, {0, 1)), 1 ~ r ~ N, 
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and put 

: =  diag ' (~,  . . . ,  0N) E C(ag2, Lg(RN)) : 

Observe that each ~, is constant on each component of 6~2. Then we define a 
family of boundary operators o1~ OQ by 

JO(x, t, ~1) u : :  (~ajk(', t, ~) ~iDku + (I -- ~) U, (t, ~)) E [0, T] X R N. 

Thus [~(x, t, ~/) u]" = u" if 0, -- 0, that is, the r th component of ~(x,  t, 7) u 
reduces to the Dirichlet boundary operator for the r th component of  u on each 
component of ~ on which ~t, : 0. 

We suppose that 

f E  C ~'~ fX C~215 , RN), (P3) 

that 

(a4) 

and that 

(PS) 

and we put 

go E c=(xT, R N) 

g~ E C ~176 :~ cO'3-(ZT• N, RN), 

g := ~gl + ( I -  ~)go. 

Then we consider the second-order block-upper-triangular quasilinear para- 
bolic initial boundary value problem 

~U 
0---~ + ~r t, u) u = f ( x ,  t, u, Du) in ~ • (s, T], 

(IBV)(~.,,o) ~ ( x ,  t, u) u = g(x ,  t, u) on 0 ~  X (s, T] ,  

u ( - , s ) = u o  on 9 .  

By a classical solution u of (IBV)(s,uo) on K we mean a function 

(1) u E C(,.-Qx J, R N) A C: t (~x ), R N) A C~ x J', RN), 

where J is a perfect subinterval of [s, T] containing s and J : =  J \ {s}, such 
that u satisfies (IBV)(~,uo) pointwise (in the obvious sense). 

Define b E C ~176176 ~ C~215 RN, L~e0z~N)) by 

so that 

! 

b(', ", ~) := f DagL(', ", sT) ds V~ E R N, 
0 

gl(' ,  ", ~7) = b(. , . ,  ~) ~ + gl(', ", O) ~ V~ E RN.  �9 
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by the mean-value theorem. Then we assume that 

the matrix b has the same block-upper-triangular structure as each one 
(P6) o f  the matrices ajk and there is a function Wo E C~176 R N) such that 

(*) ~ ( x ,  t, ~7 q- Wo(X, t)) Wo(X, t) --  6b(x, t, &7 q- Wo(X, t)) Wo(X, t) : g(x,  t, O) 

fo r  all (x, t, ~7) E S r  • R N. 

There are many conditions sufficient to ensure the validity of  (*). For  example, 
(*) is true (with Wo = 0) i f  g(.,-, 0 ) =  0. Condition (*) is also satisfied i f  
gl( ' ,  ", O) : 0 and i f  

(2) 

~ ( x ,  t, 6~) --  6b(x, t, &l) = ~ ( x ,  t, &7) ~ -- ~b(x, t, ~ )  ~ u t, tl) 6 S r  • R N, 

for, in this case, we can take for Wo any smooth extension of go over Qr such 
that w~ vanishes in a neighborhood of  any component of  O~Q on which ~, = 1. 
Observe that (2) is trivially true if 6 = / ,  thus, in particular, if N = 1. Hence, 
i f  N = 1 or ~ = L then (*) can be replaced by the assumption that gl( ' ,  . ,0) = O. 

We now put 

and 

a~(x, t, ~ ) : :  ~r t, Wo(X, t) -k- ~) 

~(x ,  t, ~ ) : =  ~ ( x ,  t, Wo(X, t) -k ~1) --  Ob(x, t, Wo(X, t) -k ~) 

jT(x, t, ~, ( ) : :  f (x ,  t, Wo(X, t) -k ~1, Dwo(X, t) -k ~) 

OWo(X, t) 
--  ~ ( x ,  t, ~) Wo(X, t) 8t 

for all (x, t) E Qr, ~ E R N and ~ E R "N. Then u is a classical solution of  (IBV)(s,.o) 
on J if  and only if v : =  u -- Wo is a classical solution on J of  

(3) 

where 

(4) 

For  

-~-k~v z~(x, t, v) v : f (x ,  t, v, Dv) in~2  x (s, T] 

~(x,  t, v) v = 0 on ~ X (s, T], 

v(',s)=vo on Q, 

Vo : =  Uo - wo(., s ) .  

1 ~ p < oo and s E 1%+ we denote by W~ :---- (W~, [['[[s,p) the Sobolev- 
Slobodeckii spaces W~(~, RN), so that W ~ -= Lp : =  Lp(~, RN). 



Quasilinear Parabolic Systems 183 

We now fix p E (n, oo) arbitrarily and put 

(5) W 1 : :  Wv 2 and W : =  Lp. 

Then it is well known that (A1) is satisfied. Moreover we let 

(', . ) 0 : : / ( . ,  .)0., if 0E(0 ,  1 ) \  {1/2} 

It-, "]0 if 0 ~- 1/2. 

Thus it is known (erg. [5, Theorem 11.6]) that 

W ~  W 2~ V0E [0, 1], 

and [5, Theorem 11.6] implies that (A2) is satisfied. 
We denote b y / '  the set of  components of  ~J2 and by 0~(/') E {0, 1} the value 

of  O r on / ' E / ' .  Then we put 

N 

(6) OW:---- H H W~-'~'(-r)-'IP(/-',R)" 
s  r = l  

We fix s e E ((1 + n/p)/2, 1) arbitrarily and put 

~'(t, u) v : =  ~(~,  t, u) (7) 

and 

(s) ~( t ,  u) ~ : =  ~ (x ,  t, u) v 

for all uE W ~ and v E W  1, Observe that 

(9) w ~  Cl+~(~,RN)~ C'(~,RN)~C(9, RN), t7:= 2~-- 1 - - . /p ,  

by a well known $obolev-type imbedding theorem (e.g. [23]). By a using these 
facts and (PI) and (P5), it is not difficult to see that assumption (A4) is satisfied 
with V : ~  W ~. 

For each fixed (t, u) E [0, T] • V we put 

[ (v6 W~,l~(t, u) v : 0} for 1 + lip < s <-- 2, 

r v ~ , ~ , , . ~ : = / { ~ w ; l ( t - a ) ~ t 0 ~ = 0  ) for 1/p<~<=l+l/p, 
[ W; for O ~ s ~  lip. 

Then we know from [5, Theorem 13.3] that 

a �9 2 a  wa(,,.)---- we,e(,,.) va  E [0, 11 \ {1/2p, (1 -}- l/p)/2}. 

This implies in particular that every a E [0, I] \ (51" + l[p)/2 is regular and that 

1 �89 --" W~ for every (t ,u) E [O,T) •  W~ct..) -:- W~(o,o) - - .  
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We now fix fl, ~ and ( subject to 

(lO) 

O ~ ~ ~ 1/2p < ~ + n/2p ~ ~ < 1/2:~--fl and ~ < ~ - - ( I  +n /p) /2 .  

Then it follows from the above facts that (A3) and (A5) are satisfied. 
It is a consequence of (P2), of [6, Theorem 6.6 and Lemma 6.8] and of (9), 

that (~7(x, t, u), ~(x,  t, u), -Q), 0 _< t --< T, is, for every u E V, a regular parabolic 
initial boundary value problem of class C o in the sense of  [6, Section 1]. From 
this and [5, Theorems 12.1 and 12.2] we deduce easily the validity of (A6). 

We can now invoke a result of SE~LEV [19, Theorem 1 and Section 3] to verify 
that (A7) is true. (For this we consider first the ease u E ~(.Q, RN), that is, u is 
smooth and has compact support. Then we use the density of  ~(.Q, R N) in V 
and the continuous dependence of [o~(u) + A(t, u)y, Re z < 0, on u E V, which 
is an easy consequence of the representation of these operators by a Dunford- 
type integral, together with a limit argument for Re z-+  0 as in [19, Section 3].) 

We define the formally adjoint problem (~/~(x, t, u), ~7~(x, t, u), -Q) 0 ----- t --~ T 
for each u E V by 

~ ( x ,  t, u) v : =  --Dj(~fk(', t, u) DkV ) on QT 

and 

B~(x, t, u) v := ~5~t;k(', t, u) vJDkv -- 0/~*(', t, u) v + (I -- 0) v on ZT, 

where 

ajk(', t, 7) :---- ajk(', t, Wo + ~), b(-, t, 7) : =  t)(', t, Wo + 7) u E R N, 

and where c* is the transposed matrix of c E s Moreover, we let 

(, .) : =  E I t, = 0} ,  

where p' : =  p/(p -- 1), and put 

A~(t, u) v := ~ ( x ,  t, u) v Vv E W~..,#O,, ). 

Then it follows from Gauss' theorem that 

( l l )  (w ,A( t ,u )  v) : (A*( t ,u)v ,w) ,  uE V, vE W~(t,u), wE W2f.~#(t,u), 

where (., .) : W'• W-->R is the duality pairing and W' = Lf .  Moreover (P2) 
and [6, Theorem 6.6 and Remark 6.7] imply that ( ~ ( x ,  t, u), ~ ( x ,  t, u), Q), 
0 <-- t --< T, is also a regular parabolic initial boundary value problem of class 
C ~ for every u E V. From this and from (11) we deduce by well known arguments 
( c f  e.g. [4, Theorem 7.l]) that A'(t, u) : A#(t, u). In addition it follows from 
~[5, Theorem 13.3], much as above, that 

D([A'(t, u)] �89 ----- (vE W~. [ ( I - -  (~) v I e.Q ---- 0} = :  [W']~# 
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for all (t, u) E [0, T] • V. Thus assumptions (A8) is satisfied. 
r lxz,al-8 let For each ( t ,u)E [0, T]x V, and for v E W~ and wE t , ,  J ~ ,  

a(t, u;v,w):= f (Dkwlaj~(', t, u) Djv) dx -- f (wlb(. ,  t, u) v) d~r, 
I1 OD 

where (. [-) denotes the Euclidean inner product in R N. Then it is an obvious 
consequence of (P1) and 

(12) W'---- W~' c-. C(~),RN), 

which follows from (10) and Sobolev's imbedding theorem, that 

(13) [(t, u)~-~ a(t, u; ", ")1E C1-([0, T]• Wn,-oq'z(w~, [W' ]~ ;  R)),  

where .~2(., .; .) is the Banach space of all continuous real bilinear forms on 
W~•  [W']~.  Observe that, by Gauss' theorem, we obtain for every (t, u)E 
[0, T] • V the relation 

' 
a ( t , u ; v ,w ) :=  f (wJA(t,u) v )dx  VvE W~(t,u), VwE 

a 

Hence we deduce from [8, Theorem 1.3] that 

(14) a(t, u; v, w) = (w, Aa_l(t, u) v} 

for all ( t ,u)E [O,T]• vE W~ and wE [W' ]~  ~ ---- (W~-~) '. Since the im- 
bedding (12) is in fact compact and since locally Lipschitz-continuous maps are 
Lipschitz-continuous on compact sets, we easily obtain now from (13) and (14) 
the validity of  (Ag) for any ~ with 1 -- fl = �89 < 0 < I. 

Suppose t h a t f i s  an affine functions of (E  R "N, where ~ is a dummy variable 
for Du. Then we can write f( . ,  t, u, Du) in the form 

f( ' ,  t, u, Du) = aj(', t, u) Diu q- fo(', t, u) 

with well defined functions 

aj E C ~'~ C 0'2- (Qr • ~:~N ,,~(RN)), j ---- 1 . . . . .  n, 

and 

fo E C ~'~ f~ C~ RN). 

If  we replace ~r t, u) v by 

s / (x ,  t, u) v - aj(', t, u) Djv, 

all the above results remain true. Hence we can assume that jris independent of 

(, if f is an affine functions of ~'. 
We denote by F the substitution operator induced by f that is, 

(15) F(t, u) (x) := Jr(x, t, u(x), Du(x)) 
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for u : ~--> R N and (t, x) E Qr. Moreover, we put 

o" : = /  ~/ i f f  is an affine function of ~6 R "N, 

! otherwise. 

Then it is an easy consequence of (P3), (9), (10) and [5, Proposition 15.6] that 
assumption (A10) holds for F. 

We now fix 

(16) /~ E (0, 1 -- n/p) such that y : =  (/~ q- n/p)~2 ~ ~ 

and such that )~ § -12- < $ -- ~2, which is possible if we choose ~ < 1 large enough. 
Then we fix any ~ E (;e q- 1/2, ~: -- ~) and observe that (A11) is satisfied for every 
0 E (~e, 1 ]. Moreover, 

(17) 

Then we put 

(18) 

as well as 

~ >  1 - / ~  + ~, = ~ + 1/2. 

H : :  C~(L), R N) and H '  :=  C:*"(L),RN), 

N 

(19) a l l : =  l-~ H C2-~r(r)+" (F ,R) .  
/ 'EP r = l  

Since we can assume that /~ < fi, it is an easy consequence of (9), (PI) and (P5) 
that condition (HR1) is satisfied (el  the proof of [5, Proposition 15.6]), 

Since (zr t, u), ~(x,  t, u), D), 0 ~< t ~ T, is, for each u E V, a regular 
parabolic initial boundary value problem, it satisfies Schauder-type a priori 
estimates (e.g. [1, Theorem 9.3]). By use of this fact together with W ~ ~c__, C ~+" 
(.Q, RN), the first part of (HR2) is easily established. The second part of (HR2), 
with x :~-/~/2, follows by modifying the proof of [7, Lemma 10.5] in the obvious 
way. 

After these preparations we can prove the main results of this section, where 
we assume throughout that (P1)-(P6) are satisfied. 

Theorem 6.1 Suppose that p > n and that 1 -5 nip < v ~ 2. Moreover 
suppose that s E [0, T), and that Uo E Wp satisfies the compatibility condition 

(20) ~(s, Uo) Uo = g(', s, Uo) on 8f2. 

Then the quasilinear parabolic initial boundary value problem (IBV)(s,~o) possesses 
a maximal classical solution u(', s, Uo) such that 

u(., s, Uo) E C('-~')/2(], WJ) 

for all 2 E [0, z]. 
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I f  f is an affine function of  Du, then u(., s, Uo) is the only maximal solution o f  
(IBV)(~.uo). Moreover there are positive constants ~ and ~ such that u(', s, vo) exists 

on J~,3 : :  [s, s + ~] A [s, T] for each 

and 

Vo E (v E W~, I (I -- ~) vL, os = go(', s), IIv - uoll~,~ ~ ~} = :  D 

[Vow-> u(', s, Vo)] E C(D~, C ( J j ,  W~)) f~ UC'-(Da, C(Js,3, W~p)), 

where n/p ~ ~ ~ 1 and 1-k  n/p ~ ~t ~ T with ~ -- 2 ~ 1, and where Dz de- 
notes D, endowed with the topology induced by W~. 

Proof. We put 0 :=  ~/2, ~ : :  ~/2 and ~/:= 2/2, and choose ~ such that 
(10) is satisfied. Then we define W, W ~ and 0W by (5) and (6), respectively, 
(~d, ~ )  by (7) and (8), and F b y  (15), where V:---- W "~. By the above considerations 
we know that the assumptions (Al ) - (Al l )  are satisfied and that (IBV)(s,uo) is 

0 equivalent to (3). Observe that Vo E W~(~,oo) by (4) and (20). Hence we can apply 
Theorem 4.1 to the abstract quasilinear Cauchy problem 

(21) 6 + A(t, v) v ---- F(t, v), s < t ~ T, v(s) = Vo. 

Consequently (21) possesses a maximal solution v(., s, Vo), which is unique, if 
---- ~, that is, i f f  is an affine function of Du. If  we can show that v(-, s, vo) is 

regular in the sense of (1), then u(', s, Uo) : =  v(., s, v0) + wo is a maximal classical 
solution of (IBV)(s,,o) and the stated continuity follows directly from Theorem 4. I. 

Let v :---- v(., s, v0) and let t~ E J be arbitrary. Denote by ~ the continuous 
extension of v I [s, q] over [0, T], which is constant on [0, s] and on It1, T], and 
put ,4(t) :---- A(t, ~(t)) and F ( t ) : =  F(t, ~(t)) for 0 --< t--< T. Let M be a non- 
empty compact subset of g2 • (s, t~] and choose a q~ E C~(Qr, P~) with ~1M = 1 
and supp (q0) Q g2 • (s, T]. Moreover let 

F o : =  + Z(.) - + 

and observe that Fo contains at most first-order x-derivatives of v(t), where 
s ~  t ~  t~. 

We now fix # so as to satisfy (16) and define H, H a and OH by (18) and (19), 
respectively. Then the above considerations imply that conditions (HR1) and 
(HR2) are satisfied for (~r ~(t)) ,  0 ~< t --< T, where ~t):----  ~r ~(t)) and 
~( t )  : =  ~( t ,  -~(t)) (cfl the beginning of the proof of Theorem 5.1), Since Fo 
vanishes in a neighborhood of ({s} • ~)  U (0O • Is, T]), it is clear that we can 
assume that (HR3) is satisfied (cf. again the beginning of the proof of Theorem 5.1). 

Consider now the linear Cauchy problem 

(22) iv + A(t) w = Fo(t), s < t ~ T, w(s) = O. 

By Theorem 2.1 it has a unique solution w(., s, 0), and 

w(', s, O) E C((s, T], H 1) t% Cl((s, T], H)  
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by Theorem 5.1. On the other hand, by multiplying (21) by % we see that the 
function q~] [s, T] is a solution of  (22). Hence ~ [  [s, T] = w(., s, 0). Now the 
assertion follows from ~0] M = 1, the arbitrariness of M, and from v(t) E W 2 c_~ 

C:(,r2, R N) for t E J. [ ]  

/ f  

Corollary 6.2. There exists a constant p ~ 0 such that 

u(-, s, Uo)E C(J, C~+"(S~, RN)) A c'(J, C~(-Q, R")). 

then d = [s, T], 

sup II u(t, s, Uo)Ik,, < 0 0 ,  
tEJ 

that is, u(., s, Uo) is a global solution. 

Proof. The first assertion follows from the above proof  and the second one 
from Theorem 4.2. [ ]  

We suppose now that ~1, ,~, f and g are independent of  t and consider the 
autonomous initial boundary value problem 

~u 
Ot -k d ( x ,  u) u ---- f (x ,  u, Du) in -Q • (s, oo), 

(AIBV)(~,~o) ~(x ,  u) u = g(x, u) on O-Q • (s, oo), 

u(', s) = Uo on -Q. 

In addition we assume that f is an affine function of Du. We put 

Y'~ :---- (Uo E W~[~(x, Uo) Uo ~- g(', Uo) on O.Q} 

and 

~0(-, Uo) : =  u(', 0, Uo) Vuo E ~ 

Observe that Theorem 6.1 implies that q~ is a preflow on ~ .  

Theorem 6.3. Suppose that d ,  ~ ,  f and g are independent of  t and that f is 
an affine function of  Du. Let n ~ p ~ oo and I -k nip ~ ~ ~ v ~ 2 and suppose 
that ~ is a positively invariant bounded subset of  W~, which is closed in W~. Then q~ 
is a global flow on ~ such that every orbit is relatively compact, where ~ is ~ ,  
endowed with the topology induced by W~. Moreover every critical point u E ~ 

of  the preflow qD belongs to C1(~, R N) • C2(-Q, R N) and is a solution of  the elliptic 
boundary-value problem 

d ( x ,  u) u = f (x ,  u, Du) in -Q, 

~(x,  u) u = g(x, u) on 0.Q 
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Proof. This is an easy consequence of  Theorem 6.1 and Remark 4.4. [ ]  

For  simplicity we have restricted our considerations to the case in which 
V----- W ~, that is, when the coefficients of  ~ '  and ~ and the nonlinearities are 
defined everywhere, and the dependence upon (x, t) is smooth. I leave it to 
the reader to obtain more general and more precise results by applying the ab- 
stract results of  Sections 1-5 to concrete parabolic systems. For  the same reason 
I do not reformulate all the general abstract results of  Section 4 in the present 
concrete situation. 

7. Remarks on Parabolic Systems of Higher Order 

In this section we indicate briefly how the general abstract results apply to 
higher-order problems. 

We consider a family of  quasilinear differential operators of  order 2m 

d ( x , t , u  . . . .  ,Dku) u : : ( - - 1 )  m ~] a~( ' , t ,u  . . . . .  D~u) D~u, O ~  t ~ T ,  
I,xl ~ 2 m  

acting on N-vector valued functions u : g2 -+ C N. In addition we suppose that 

~(x ,  t, u . . . . .  Dku): = (~ (X ,  t, U . . . . .  DkU) I 1 ~ tr ~ mN) 

is a system of  boundary operators of  the form 

t~(x ,  t, u . . . . .  Dku) U : =  ~ b~,(', t, u . . . . .  Dku) D~u. 
I~,[ < m  a 

We suppose that k ~ 2m -- 1 and that the coefficients of these operators are 
smooth functions of  their arguments. Moreover we assume that, for each 

(t, u) E [0, T] • Ck(~ff, CN), the family (~ff(x, t, u . . . . .  Dku), ~ (x ,  t, u . . . . .  Dku), 
Q), 0 ~ t ~ T, is a regular parabolic initial-boundary value problem of  order 2m 
in the sense of  [5, Section 14]. 

We fix p E (n, oo) and denote by (d ( t ,  u), ~( t ,  u)), 0 ~ t ~ T, the operators 
induced by (~'(x,  t, u . . . . .  Dku), &(X, t, u . . . . .  Dku)), 0 ~ t ~ T, in the natural 
way on the space w2m(s cN). For  0 --~ s ~ 2m we let 

W~,~(t.u) : =  {v E W~(f2, C ~r I ~~ u) v = 0 for m~ < s -- l/p), 

and we put 

A(t, u):----- d ( t ,  u) I 2m W~,~(t,u), 

considered as an unbounded linear operator in Lp(f2, CN). 
We suppose now that there is a "Jbrmally adjoint" system ( ~ ( x ,  t, u . . . . .  Dku), 

&~(x, t, u, . . . ,  Dku), ~Q), 0 ~ t ~ T, which is also a regular parabolic initial- 
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boundary value problem of  order 2m for each fixed (t, u) E [0, T] • ck(g2, CN), 
such that 

A'(t, u) = A~(t, u) u u) E [0, T] • Ck(.Q, cN), 

where A~(t, u) is the Lp,-realization, given by 

A~(t, u) :---- ~r t, u, i f ' u )  ] 2m �9 .., W~'~g~(t,u), 

and where W27~#.,~) has the obvious meaning. Observe that this assumption 
is always satisfied if  N : 1 (e l  [18, Theorem II.8.4], where the case p : 2 
is treated). 

SEELEY'S results [19] imply that 

and 

D(Al /2m( t ,  U)) 1 W p , & ( t , u }  

D([A']l/Zm(t, u)) t : Wp,,~z(t ,u ) 

for 1 = 1, 2 . . . . .  2m. We suppose now that the boundary operators ~f f t ,  u) o f  
order m. ~ k and theboundaryopera tors (~ f  (t, u) o f  order mY < 2m -- k -- 1 
are independent o f  (t, u) E [0, T] • Ck(~  cN), and we put fl :=  (k + 1)/2m and 

T~172m -- k -- 1 W~ : = usk.. ~(o,o) + ~ and (W~,~l) ' : = "p',a~(o,o)" 
Finally we suppose that there is a function 

[(t, u)~--> a(t, u; ", )] E C1-([0, T] • ck(~ ,  CN), ~5f:(W~, (W~-~) ', (3)), 

such that 

a(t, u; v, w) ---- (w, A(t, u) v) 

2m for  all (t, u) E [0, T] • Ck(~, CN), all v E W~,~q,u, and all w E (W~-I) ' .  Of 
course, such a function is obtained, in practical cases, by an appropriate "Green's  
formula". 

Given the above assumptions, we can apply the abstract results of  this paper 
to show that the quasilinear parabolic system 

Ou 
~---~+ d ( x , t , u  . . . . .  Dku) u : f ( x , t , u  . . . . .  o 2 m - l u )  in f2 •  

~(x,  t, u, . . . ,  Dku) u = 0 on ~12 • (s, T], 

u(., s) = Uo on ,Q 

has a maximal classical solution provided Uo E W~(t, uo) for 2m -- 1 q- nip 
a =< 1. Moreover this solution is unique if f depends only upon u, . . . ,  Dku. 
In this case one obtains also results concerning the continuity of  the solution as 
a function of  its initial value. The proofs and conclusions are similar to those of  
the preceding Section. 
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